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Abstract. Modern database systems are very often in the position to
store their entire data in main memory. Aside from increased main
emory capacities, a further driver for in-memory database system has
been the shift to a column-oriented storage format in combination with
lightweight data compression techniques. Using both mentioned software
concepts, large datasets can be held and efficiently processed in main
memory with a low memory footprint. Unfortunately, hardware becomes
more and more vulnerable to random faults, so that e.g., the probabil-
ity rate for bit flips in main memory increases, and this rate is likely
to escalate in future dynamic random-access memory (DRAM) mod-
ules. Since the data is highly compressed by the lightweight compression
algorithms, multi bit flips will have an extreme impact on the reliabil-
ity of database systems. To tackle this reliability issue, we introduce
our research on error resilient lightweight data compression algorithms
in this paper. Of course, our software approach lacks the efficiency of
hardware realization, but its flexibility and adaptability will play a more
important role regarding differing error rates, e.g. due to hardware aging
effects and aggressive processor voltage and frequency scaling. Arith-
metic AN encoding is one family of codes which is an interesting can-
didate for effective software-based error detection. We present results
of our research showing tradeoffs between compressibility and resiliency
characteristics of data. We show that particular choices of the AN-code
parameter lead to a moderate loss of performance. We provide evaluation
for two proposed techniques, namely AN-encoded Null Suppression and
AN-encoded Run Length Encoding.

1 Introduction

Data management is a core service for every business or scientific application 
in today’s data-driven world. The data life cycle comprises different phases
starting from understanding external data sources and integrating data into 
a common database schema. The life cycle continues with an exploitation phase
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by answering queries against a potentially very large database and closes with
archiving activities to store data with respect to legal requirements and cost effi-
ciency. While understanding the data and creating a common database schema
is a challenging task from a modeling perspective, efficiently and flexibly storing
and processing large datasets is the core requirement from a system architectural
perspective [17,28].

With an ever increasing amount of data in almost all application domains, the
storage requirements for database systems grows quickly. In the same way, the
pressure to achieve the required processing performance increases, too. To tackle
both aspects in a consistent uniform way, data compression as software concepts
plays an important role. On the one hand, data compression drastically reduces
storage requirements. On the other hand, compression also is the cornerstone
of an efficient processing capability by enabling “in-memory” technologies. As
shown in different papers, the performance gain of in-memory data processing
for database systems is massive because the operations benefit from its higher
bandwidth and lower latency [1,6,14,18].

Aside from the developments in the data compression domain, the hardware
sector has seen important developments, too. Servers with terabytes of main
memory are available for a reasonable price, so that the entire data pool in a
compressed form can be kept and processed completely in main memory. In order
to increase main memory density and to put more functionality into integrated
circuits (ICs), transistor feature sizes are decreased more and more. On the one
hand, this leads to performance improvements in each hardware generation. On
the other hand, ICs become more and more vulnerable to external influences
like cosmic rays, electromagnetic radiation, low voltages, and heat dissipation.
Data Centers already face crucial error rates in dynamic random-access memory
(DRAM) [13,25] including multi bit flips which cannot be handled by typical
SECDED1 ECC DRAM anymore. These error rates are likely to increase in the
future, and will become a major challenge for in-memory database systems. We
argue that ECC DRAM alone is not the silver bullet, because the employed
codes are statically integrated into hardware with fixed parameters.

Generally, the field of error correcting codes as well as the field of data com-
pression techniques are well-established. In order to tackle the above mentioned
resiliency challenge for in-memory database system, we propose to tightly com-
bine existing techniques from the corresponding files in an appropriate way:
resiliency-aware data compression techniques. Of course, our software approach
lacks the efficiency of resiliency-aware hardware realization like ECC DRAM,
but its flexibility and adaptability will play a more important role regarding
differing error rates, e.g., due to hardware aging effects and aggressive proces-
sor voltage and frequency scaling. Our main idea is to minimize the amount of
useful information (bits)—using data compression—which are then enriched by
redundant information (bits) to protect against bit flips. As a side constraint,
our resiliency-aware compressed data should allow to directly work on that data
representation without explicitly decompressing and re-encoding the data. This

1 Single-error correcting and double-error detecting.
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constraint is important to achieve query processing performance expected by
in-memory database systems. Furthermore, error detection should be possible in
an online fashion, so that wrong results can be excluded to a well-defined degree.

Our Contribution. To show the potential and challenges in this research direc-
tion, we present our first research results in this paper. From the field of error
correcting codes, we have chosen the family of arithmetic AN codes as a very
promising alternative (or complementary) to ECC DRAM, since its very nature
allows to do arithmetic operations – including comparisons – without the need
of decoding. Consequently, arithmetic AN codes are suitable for both transac-
tional and analytical database workloads. From the data compression domain, we
decided to use two heavily-used lightweight techniques: Null Suppression [1,22],
and Run Length Compression [1]. In detail, our contributions are as follows:

1. We show how to tightly combine arithmetic AN encoding with Null Suppres-
sion [1,22], and Run Length Compression [1] as concrete examples for our
resiliency-aware data compression techniques or AN-encoded lightweight data
compression techniques. As we are going to show, the combination approach
differs and depends on various factors.

2. We introduce our AN-encoded data compression techniques in our data com-
pression modularization concept. Generally, our modularization concept offers
an efficient and an easy-to-use way to describe, to compare, and to adapt
(AN-encoded) lightweight data compression techniques.

3. We provide an analysis of how the basic parameter A of AN encoding can be
chosen to detect various amounts of bit flips.

4. We show that there are “good” As with very low performance penalties to
enable online error detection for compressed data.

5. We provide a performance evaluation for the “good” As for both AN-encoded
Null Suppression and AN-encoded Run Length Compression.

Outline. The remainder of this paper is structured as follows: In Sect. 2, we
present related work with a brief overview of existing lightweight compression
techniques and give a detailed insight into AN encoding in Sect. 3. Then, we
present how to integrate AN encoding with two compression schemes in Sect. 4.
Next, we present our evaluation in Sect. 5, where we discuss “good” As and
provide throughput comparisons for one of the “good” As. Finally, we conclude
the paper in Sect. 6.

2 Related Work

Before we present our novel approach of resiliency-aware data compression tech-
niques, we briefly review related work on (1) lightweight data compression tech-
niques frequently used in-memory database system in Sect. 2.1 and (2) generic
and database-specific resilience mechanism in Sect. 2.2 and 2.3.
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2.1 Lightweight Data Compression Techniques

In the area of conventional data compression a multitude of approaches exists.
Classic compression techniques like arithmetic coding [31], Huffman [12], or
Lempel-Ziv [32] achieve high compression rates, but the computational effort is
high. Therefore, those techniques are usually denoted as heavyweight. Especially
for in-memory database systems, a variety of lightweight compression algorithms
has been developed. These achieve good compression rates similar to heavy-
weight methods by utilizing context knowledge, but they require much faster
compression and decompression.

The main archetypes or classes of lightweight compression techniques are
dictionary compression (DICT) [2,5,16], delta coding (DELTA) [18,22], frame-
of-reference (FOR) [7,33], Null Suppression (NS) [1,21,22,27], and Run-Length
Encoding (RLE) [3,22]. DICT replaces each value by its unique key. DELTA
and FOR represent each value as the difference to its predecessor or a certain
reference value, respectively. These three well-known techniques try to represent
the original data as a sequence of small integers, which is then suited for actual
compression using a scheme from the family of NS. NS is the most well-studied
kind of lightweight compression. Its basic idea is the omission of leading zeros
in small integers. Finally, RLE tackles uninterrupted sequences of occurrences
of the same value, so-called runs. In its compressed format, each run is repre-
sented by its value and length, i.e., by two uncompressed integers. Therefore,
the compressed data is a sequence of such pairs.

2.2 Generic Resilience Mechanisms

Increased memory density, decreased transistor feature sizes and more are major
drivers in the area of hardware development. On the one hand, this leads to per-
formance improvements in each hardware generation. On the other hand, the
hardware becomes more and more vulnerable to external influences. As sev-
eral researches have already stated, especially main memory becomes a severe
cause for hardware based failures [13,15,19,25,26]. These errors can be classi-
fied into static or hard errors as permanently corrupted bits and dynamic or soft
errors as transiently corrupted bits. In particular, dynamic errors are produced,
e.g., by cosmic rays, electromagnetic radiation, low voltage and increased heat
dissipation.

While dynamic error rates are still quite low, it is predicted that they increase
substantially in the near future [13]. Moreover, dynamic errors already have a
significant impact on large-scale applications on massive data sets. The field
of fault tolerance against dynamic memory errors is not new and several tech-
niques are well-known. A generally applicable approach is executing the same
computation multiple times. In this case, any dynamic error can be detected by
comparing the final results – except when both results have the very same error
which is just assumed to not happen. The most well-known technique in this
class is Triple Modular Redundancy. Error detection and error correction codes
represent a second class. In this case, the coding schemes introduce redundancy
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to the data [20]. Regarding DRAM bit flips, the most commonly used app-
roach is hardware-based (72,64)-Hamming ECC [20], which realizes single-error
correction and double-error detection (SECDED). Many other general coding
algorithms are available, whereas the enhanced coding schemes are more robust,
however their coding results in higher memory overhead and higher computa-
tional costs. Generally, the major problem of ensuring a low dynamic error prob-
ability by employing generally applicable techniques is dramatically increasing
costs for memory and computational power.

2.3 Database-Specific Resilience Mechanism

In the past, several techniques have been presented to deal with certain error
classes. To our best knowledge, no research was done in the field of databases to
protect in-memory data against arbitrary bit flips, except our own investigations
on error detecting B-Trees [15]. We presented software based adaptations for
B-Trees, a widely used database index structure, to cope with increasing bit
flip rates in main memory. We showed that pointer sanity checks, parity bits
and checksums can deliver comparable or better error detection on commodity
hardware compared to ECC hardware, since they are able to detect more than
2 bit flips in 8-byte words. Furthermore, we showed that checksums are able to
detect more bit flips and provide higher reliability which is highly desired for
database systems.

In the field of databases, other relevant related work mainly concentrates on
handling errors during I/O operations, or regards situations where the system
inadvertently writes to wrong memory regions, e.g. due to software bugs like
buffer overflows or broken pointers. For instance, [8,9] harden also the well-known
B-Tree and variants against errors during I/O operations or against certain other
tree corruptions. On the one hand these techniques are offline methods, which
means they are periodically executed. On the other hand, they may be very
heavy-weight, especially when comparing entries between several indices, and
may not be suited for online error detection. Furthermore, bit flips may lead
to false positives and false negatives when querying such trees between these
maintenance checks.

Sullivan et al. [29] deal with corruptions due to arbitrary writes by employing
hardware memory protection for individual pages. Memory pages are protected
using hardware directives and the protection is removed only when accessing the
pages through a special interface. The routines for protecting and unprotecting
require kernel calls which leads to high performance penalties. Additionally, while
a page is unprotected other threads may still corrupt data. Furthermore, this
does not help against bit flips as they are not induced by stray writes, but by the
hardware itself. Furthermore, Bohannon et al. [4] handle the case for in-memory
database systems by computing XOR-checksums over certain protected memory
regions. A codeword table is maintained which stores the original checksums.
Pages are then later validated against this table. This again helps detecting
undesired, arbitrary writes, but bit flips may corrupt the codeword table and,
e.g., correct pages may then mistakenly be regarded as corrupted.
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3 Error Detection by Arithmetic Codes

To tackle our vision of resiliency-aware data compression techniques, we decided
to utilize arithmetic codes2 as our resilience technique in a first step. Arithmetic
codes are a long known technique to detect hardware errors at runtime caused
by transient (e.g., dynamic bit flips) and permanent (e.g., stuck-at-1) hardware
faults [23]. This is achieved by adding redundancy to processed data, i.e., a larger
domain of possible data words is created. The domain of possible words contains
the smaller subset of valid code words – the so-called encoded data items. Arith-
metic codes are preserved by correct arithmetic operations, that is, a correctly
executed operation taking valid code words as input produces a result that is
also a valid code word.

3.1 Basic Idea of an Encoding

The underlying idea of AN encoding is simple: multiply each data word n by a
predefined constant A, i.e., the code word n̂ is computed as:

n̂ = n · A (1)

As a result of this multiplication (encoding), the domain of values expands such
that only the multiples of A become valid code words, and all other values
are considered non-code. As an example, if one wants to encode a set of 2-bit
numbers {0, 1, 2, 3} with A = 11, then the set of code words is {0, 11, 22, 33},
while 1, 10, 34 are all examples of non-code words.

If a bit flip affects an encoded value, the corrupted value becomes non-code
with a probability of (A− 1)/A. If n̂ = 11 and the least significant bit is flipped,
then the new value n̂er = 10 and is non-code. To detect this fault, we have to
check if the value is still a multiple of A:

n̂ mod A = 0 (2)

Finally, to decode the value, we have to divide the code word n̂ by A:

n = n̂/A (3)

For any given native data width X – usually X ∈ {8, 16, 32, 64} – processors’
integer arithmetic modular arithmetic, i.e. the equation a ∗ b = c implicitly
transforms into |a∗b| ≡ |c| mod 2X for unsigned integers, or a∗b ≡ c mod 2X−1

for signed integers. By that, for several A’s there exists a multiplicative inverse
A−1 so that

n = n̂/A = n̂ ∗ A−1 (4)

For instance, 641−1 ≡ 6700417 mod 232 and Table 1 lists the available inverses
for 32-bit unsigned integers for the given A’s – in our case any even number has
no inverse. Consequently, for some A’s the division is replaced by a multiplication
which is usually much faster on modern processors.
2 Please note that some codes for lossless data compression are also called arithmetic

codes. These are not equivalent with the ones used throughout this paper.
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3.2 Beneficial Features of an Encoding

Generally, arithmetic code or AN-encoding offers some features that are benefi-
cial for database systems. One of the features of AN encoding is the ability to
directly process encoded data, i.e., there is no need to decode values before work-
ing on them. Most database-related operations can be performed on encoded
values; these operations include addition, subtraction, negation, comparisons,
etc. For example, the addition of two valid code words 11 + 22 = 33 produces
an expected code word, and 11 is less than 22 just like their original counter-
parts. Encoded multiplication and division are also possible, but require some
adjustments.

This encoded processing feature is beneficial for in-memory database systems.
AN-encoded data words can be read from main memory, processed using com-
plex queries and stored back without the need for intermediate decoding, which
reduces the overhead for resiliency mechanism. Examples of database operations
on encoded data include scans, projections, aggregate computations, joins, etc.

3.3 Application Challenge

AN encoding is an arithmetic encoding scheme, allowing certain arithmetic oper-
ations directly on encoded data with relatively little overhead as well as mul-
tiplication and division with higher overhead. However, AN encoding does not
pose any restrictions on a value of A. This constant must be carefully chosen
to suit the needs of a particular application. The choice of A affects three para-
meters: fault coverage, memory footprint, and encoding/decoding performance.
As a rule of thumb, greater values of A result in higher fault coverage, higher
memory footprint and worse performance. The challenge is to find an A provid-
ing sufficiently high fault detection rate at a low cost of memory blow-up and
performance slowdown.

In general, some “good” A’s with the best trade-offs can be found. In terms
of fault coverage, there is no known formula to find the best A, so the researchers
resort to experimental results [11]. Memory blow-up depends on the size of
A in bits; for example, encoding one 22-bit integer with a 10-bit A requires
22 + 10 = 32 bits, i.e., an increase of 45%. Finally, performance slowdown
can be negligible during encoding (since multiplication requires only 2 − 3 CPU
cycles, see the note on multiplicative inverses above), but can be a bottleneck
during checks and decoding (since division is an expensive CPU instruction). To
alleviate this decoding impact, A must be chosen such that the division operation
is substituted by a sequence of shifts, adds, and multiplies [30].

4 Resiliency-Aware Data Compression

To the best of our knowledge, nowadays no additional information is added to
explicitly detect bit flip corruption of compressed data in main memory data-
base systems. In order to tackle an increasing bit flip error rate, in particular
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for dynamic errors, we want to tightly combine techniques from both fields of
lightweight data compression and resilience techniques like AN encoding. On the
one hand, lightweight data compression reduces or eliminates data redundancy
to represent data using less bits. On the other hand, resilience techniques intro-
duces data redundancy to detect bit flips. Therefore, both fields have opposing
aims and combined approaches have to be carefully designed, so that benefits
of both fields remain. Anyways, by compressing data, (almost) exclusively those
bits which contain actual information are taken into account by the AN-encoding
process. As we are going to show later, based on a well-defined and specific app-
roach, the overhead of resiliency-aware data compression is less compared to
uncompressed data, so that the approach is beneficial for database systems.

As next, we are going to present two specific AN-encoded compression scheme
extensions: (i) AN-encoded Null Suppression in Sect. 4.1 and (ii) AN-encoded
Run-Length Compression in Sect. 4.2.

4.1 AN-encoded Null Suppression

Null Suppression (NS) is the most well-studied kind of lightweight data compres-
sion technique. Its basic idea to the omission of leading zeros in small integers.
This technique further distinguishes between bit-wise and byte-wise null sup-
pression where either all leading zero bits or leading zero bytes containing only
zero bits are stripped off. Usually, some kind of compression mask denotes how
many bits or bytes were omitted from the original value. Decompression works
by adding the leading zeros back.

Fig. 1. Compression Scheme for Modularization for AN-encoded Null Suppression.

General Idea

The general idea of our AN-encoded Null Suppression technique is illustrated in
Fig. 1. The illustration is based on our modularization concept for lightweight
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data compression methods [10]. Our scheme is a recursion module for subdi-
viding data sequences several times. The first module in each recursion is a
Tokenizer splitting the input sequence in finite subsequences or single values
at the finest level of granularity. For that, the Tokenizer can be parameterized
with a calculation rule. The finite output sequence of the Tokenizer serves as
input for the Parameter Calculator, which is our second module. Parameters
are often required for the encoding and decoding. Therefore, we introduce this
module, whereas this module knows special rules (parameter definitions) for the
calculation of several parameters. Our third module as depicted in Fig. 1 is the
Encoder, which can be parameterized with a calculation rule for the processing
of an atomic input value, whereas the output of the Parameter Calculator is
an additional input. Its input is a token that cannot or shall not be subdivided
anymore. In practice the Encoder gets a single integer value to be mapped into
a binary code. The fourth and last module is the Combiner. It determines how
to arrange the output of Encoder together with the output of the Parameter
Calculator. Generally, these four main modules including the illustrated assem-
bly in Fig. 1 are enough to specify a large number of lightweight data compression
algorithms.

Our AN-encoded Null Suppression algorithm works as follows and is depicted
in Fig. 1: We use a very simple Tokenizer outputting single integer values of
an input data sequence. This Tokenizer instance can be characterized as data
independent and non-adaptive, whereas only the beginning of the data sequence
has to be known. For each value, the Parameter Calculator determines the
number of necessary bytes (omission of leading zero bytes), whereas each value
is multiplied by an value A for resiliency before. The corresponding formula is
depicted in Fig. 1. The determined number of bytes is used in the subsequent
Encoder to compute the bit representation of the AN-encoded value. The binary
representations for whole compressed AN-encoded values are concatenated in the
Combiner, symbolized by a star. That means, our AN-encoded Null Suppression
technique encodes the values first and compresses afterwards. The compression
mask itself is also AN-encoded.

SIMD-Based Implementation

In recent years, research in the field of lightweight data compression has mainly
focussed on the efficient implementation of the techniques on modern hardware
e.g., using vectorization capabilities of modern CPUs (SSE or AVX extensions).
Schlegel et al. [24] presented 4-Wise Null Suppression as vectorized version.
4-Wise NS eliminates leading zeros at byte level and processes blocks of four
integer values at a time. During compression the number of leading zero bytes
of each of the four values is determined. This yields four 2-bit descriptors, which
are combined to an 8-bit compression mask. The compression of the values is
done by a SIMD byte permutation bringing the required lower bytes of the
values together. This requires a permutation mask, which is looked up in an
offline-created table using the compression mask as a key. After the permu-
tation, the code words have a horizontal layout, i.e. code words of subsequent

Final edited form was published in "Data Management Technologies and Applications 4th International Conference. 
Colmar 2015", S. 135-153. ISBN: 978-3-319-30162-4 

https://doi.org/10.1007/978-3-319-30162-4_9 

9 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden 



basicstyle

1 compress (in elements[], out buffer [])

2 {

3 for (i = 0; i < |elements |; i = i + 4)

4 {

5 n1 = elements[i] * A;

6 . . .
7 n4 = elements[i+3] * A;

8 z1 = count_zero_bytes (n1);

9 . . .
10 z4 = count_zero_bytes (n4);

11 mask = (z4 << 6) | (z3 << 4) | (z2 << 2) | z1;

12 buffer ← (mask * A);

13 buffer ← n1;

14 . . .
15 buffer ← n4;

16 }

17 }

Listing 1.1. Pseudo code for AN encoded 4-wise Null Suppression. elements is the
input array while buffer is the output array. |elements| denotes the array’s number
of elements.

values are stored in subsequent memory locations. The compressed data is thus a
sequence of compressed blocks. The decompression simply reads the compression
mask, looks up the appropriate permutation mask which reinserts the leading
zeros bytes and applies the permutation. Based on that principle, we are able to
introduce our resiliency-aware extension of 4-Wise NS as an efficient vectorized
implementation of our AN-encoded Null Suppression technique as illustrated in
Fig. 1.

Encoding and Compression. Encoded compression for NS works as follows.
Listing 1.1 shows the pseudo code for a 4-Wise encoded NS scheme (processing
four 32-bit integers at once in a vectorized version). There are input and output
arrays to function compress, where elements stores original data and buffer

receives the compressed and encoded data. Four data items are processed in
each loop iteration (line 3). First, each item is multiplied by A (lines 5–7) and
afterwards the leading zero bytes are counted (lines 8–10). This can be done
by counting the leading zero bits using compiler intrinsics (_builtin_clz() for
g++) and then dividing by 8. The bit compression mask contains the number of
leading zeros. It is computed by ORing the lower 2 bits of the zero byte counts
together (line 11). Finally, the mask is encoded and the compressed encoded
words are stored in the output buffer (lines 12–15). Assuming a little endian
system, the leading zero bytes of a compressed value are inherently overwritten
by the next appended data item, by advancing the write pointer by the number
of non-zero bytes of the item just written.
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1 decompress ( in bu f f e r [ ] , out e lements [ ] )
2 {
3 f o r ( i = 0 ; i < | bu f f e r | ; )
4 {
5 mask = bu f f e r [ i ] ∗ A−1 ;
6 i f (mask % A != 0) e r r o r ( ) ;
7 mask = mask ∗ A−1 ;
8 i = i + 1 ;
9 non ze ro byte s = mask & 0 × 3 ;

10 item = bu f f e r [ i ] & (0xFFFFFFFF >> ( non ze ro byte s ∗ 8 ) ) ;
11 i f ( item % A != 0) e r r o r ( ) ;
12 e lements ← item ∗ A−1 ;
13 i = i + 4 − non ze ro byte s ;
14 mask = mask >> 2 ;
15 non ze ro byte s = mask & 0 × 3 ;
16 . . .
17 }
18 }
Listing 1.2. Pseudo code for AN encoded NS decompression. buffer is the input
array while elements is the output array containing the uncompressed, decoded items.
| buffer | denotes the array’s number of elements.

Decompression and Decoding. Decompression and decoding is also straight-
forward. Listing 1.2 shows the according pseudo code. In this case, function
decompress again receives an input and an output buffer and a loop iterates over
the input buffer of AN-encoded and compressed data (lines 1,3). First, the com-
pression mask is loaded, checked for errors and decoded (lines 5–7). Then, the
buffer position is incremented (line 8), the number of non-zero bytes – denoted
by the mask’s lowest 2 bits – of the first data item is extracted (line 9) and
the according bytes are stored (line 10). The restored item is checked against
A and errors may be handled (line 11). Then, the decoded data item is stored
in the output array and the read position of the input buffer is advanced by the
number of non-zero bytes (lines 12,13). Finally, the mask is shifted right, so that
the same steps can be repeated for the next three items, since always 4 items
are represented by a single-byte compression mask (lines 14–16).

4.2 AN-encoded Run-Length Compression

The basic idea of Run-Length Compression (RLE) is to compress consecutive
sequences of a same value – the runs. For compression, the distinct original
value is stored together with the number of uninterrupted appearances – the
run length. For decompression, these values are rolled out again.

General Idea

In contrast to our AN-encoded Null Suppression compression scheme, our AN-
encoded RLE approach compresses first and encodes afterwards, since runs are
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Fig. 2. Compression Scheme for Modularization for AN Run Length Encoding.

condensed to the value and its run length, therefore encoding only 2 values
instead of long runs of values (see Fig. 2). That means, we reduce the neces-
sary work for encoding using compression. In detail, AN-encoded RLE compres-
sion works as follows: Consecutive appearances of values are counted—the run
lengths—using a data dependent Tokenizer. Whenever a new value is encoun-
tered, the previous value and its run length are encoded and written to the out-
put. While the run-length is computed and encoded in Parameter Calculator,
the value is encoded in the Encoder. The Combiner produces the resulting AN-
encoded RLE output sequence. Decompression is done by reading in pairs of
encoded values and their encoded run lengths. After checking both of them
against A the decoded value is written “run length” times to the output buffer.

SIMD-Based Implementation

The SIMD variants differ only in comparing multiple input values against the
current one, for compression, and in writing out multiple values at once. Since
the encoding and decoding only takes place on the single values and their run
lengths, changes to the algorithm are actually the same as to the sequential
variant.

4.3 Summary

As shown in this section, the combination of AN-encoding and compression
schemes differ, whereas the combination is straightforward. Nevertheless, the
combination is useful from a database perspective and the AN-encoding inte-
grates seamless in efficient vectorized compression techniques. However, our two
examples are only a starting point and further research is necessary to protect
compressed data in an efficient way. Additionally, the parameterization of the
AN-encoding approach has a high impact as presented in the next section which
is also a open topic.
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Table 1. Information about A: parameter A; invA: the inverse for 32-bit integers
(if applicable); |A|: the number of effective bits of A; p1 . . . p6: the respective proba-
bilities of not detecting 1 . . . 6 bit flips; NS comp. rate: NS compression rate for 16-
effective-bits random integers; overhead : memory overhead of AN-encoded compression
compared to the unencoded compressed ratio.

A inv(A) |A| p1 p2 p3 p4 p5 p6 NS comp.
rate

NS over-
head

compr. - - - - - - - 0.561 -

3 2,863,311,531 2 0.0 14.2 3.74 2.73 1.124 0.567 0.729 30%

5 3,435,973,837 3 0.0 7.2 3.31 1.73 0.890 0.439 0.762 36%

13 3,303,820,997 4 0.0 2.2 1.72 0.93 0.515 0.282 0.793 41%

26 — 5 0.0 2.2 1.72 0.93 0.515 0.282 0.803 43%

59 2,693,454,067 6 0.0 0.0 0.51 0.34 0.210 0.130 0.808 44%

118 — 7 0.0 0.0 0.51 0.34 0.210 0.130 0.810

250 — 8 0.0 0.0 0.25 0.19 0.133 0.088 0.811 45%

507 2,837,897,523 9 0.0 0.0 0.08 0.07 0.046 0.040 0.936 67%

641 6,700,417 10 0.0 0.0 0.08 0.06 0.040 0.030 0.962 71%

965 485,131,021 10 0.0 0.0 0.00 0.04 0.032 0.025 0.996 78%

7567 3,745,538,415 13 0.0 0.0 0.00 0.00 0.007 0.007 1.054 88%

58659 2,839,442,059 16 0.0 0.0 0.00 0.00 0.000 0.001 1.061 89%

5 Evaluation

In this section, we first discuss the choice of the constant A and what trade-offs
it introduces. Then, we show the experimental results of applying AN encoding
to Null Suppression and Run Length Encoding using 32-bit integers with only 16
effective bits to guarantee compressibility. We present throughput measurements
for both sequential and SIMD implementations using A = 641. The experiments
were run on a machine with an ASUS P9X79 Pro mainboard running a 12-core
Intel i7-3960X CPU and 8 X 4 GiB (32 GiB) DRAM on an Ubuntu 15.04 OS.
Generally, our measurements were executed on different sizes of random data
sets, in particular 8, 16, 32, 64, 128, and 256 Million integers. Since all encoding /
compression is done by copying instead of in-place operations, we use copying as
a baseline. To ensure that the compiler does not generate undesired SIMD code,
we use the GCC compiler flag -fno-tree-vectorize.

5.1 An Encoding

As mentioned earlier, the choice of parameter A affects the fault detection
rate, memory blow-up, and encoding/decoding performance. Table 1 shows some
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(a) Runtime (b) MIPS

Fig. 3. Performance Evaluation of Sequential Algorithms.

“good” A’s that range in their fault coverage3, bit size and memory overhead,
and whether there exists a multiplicative inverse for 32-bit arithmetic and thus
fast decoding. For example, A = 3 has a size of 2 bits which leads to a 6%
memory increase for 32-bit integers and we are able to detect all single bit flips
but only 86% of double bit flips. On the other extreme, A = 58, 659 ensures
detecting up to 5 bit flips, but is 16 bits wide, leading to 50% memory increase
of 32-bit integers. In the end, the choice of A depends on how many bit flips
should be detectable and how much redundancy is tolerable.

5.2 Compression Rates of AN-encoded Data Compression

AN-encoded Null Suppression. The last two columns of Table 1 show the
typical compression rates for Null Suppression and the overhead of our AN
encoding compared to pure NS. Notice that the original compression rate is
about 0.561, and our AN-encoded NS scheme introduces a memory overhead of
30-89%. The overhead regarding uncompressed data reduces with smaller value
ranges. For example, 16-bit compressible data using A = 641 occupies 3.8%
less space than uncompressed 32-bit data (0.962), while using (A = 3) occupies
27.1% less space. The memory footprint of AN-encoded NS-compressed data
exceeds uncompressed data when using an A which is more than 10 bits large.

AN-encoded Run Length Encoding. Since we assume 16 effective bits of
data and A = 641 there is no actual memory overhead for RLE when comparing
pure and AN-encoded RLE. If the values and run lengths are further compressed
– e.g. using Null Suppression – then AN-coding incurs the overhead of the bits
of the used A. RLE was tested with a fixed run length of 16.

3 The probabilities for the table are taken from the experimental results of [11]; they
can be found on https://www4.cs.fau.de/Research/CoRed/experiments.
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(a) Runtime (b) MIPS

Fig. 4. Performance Evaluation of SIMD Algorithms.

5.3 Performance of Encoding / Compression

Figures 3 and 4 show the throughput measurements for our AN-encoded com-
pression techniques for the sequential as well as SIMD (SSE 4.1) versions, respec-
tively, using A = 641. In the experiments, we varied the size of the data sets.
Table 2 lists the average number of MIPS, which is quit stable for all algorithms
across the sizes of the sets.

Copying the data from one array to another is the baseline. AN-encoding
itself leads to almost no overhead, which can be attributed to the good pipelining
of simple multiplications. The SIMD RLE variant is faster than purely copying,
because only an eighth of the original number of values is written: Instead of 16
32-bit integers, only 1 value and 1 run length, both 32 bits wide, are written.

For Null Suppression, AN-encoding incurs an overhead of 483/601 = 0.8020%
and 725/896 = 0.8119% for sequential and SIMD variants, respectively. Next to
the additional multiplication, the increased amount of data written to memory is
responsible for the increase in runtime. The overhead for our AN-encoded RLE
is 804/818 = 0.982% and 1, 639/1, 677 = 0.982% for sequential and SIMD vari-
ants, respectively. Depending on the run lengths, the multiplication for encoding
is negligible, since much fewer ones than for NS are actually executed (one eighth,
as described above).

5.4 Performance of Decoding / Decompression

Table 3 outlines the average MIPS for decoding / decompressing from the
encoded / compressed formats. As expected, pure AN-coding exhibits (almost)
the same results as encoding, since there exists a multiplicative inverse for
A = 641 and the differences are negligible.

Decoding Null Suppression is slower than Compression, since more data
is written back to memory than during decoding. AN-encoded NS decoding
becomes much worse now, because every encoded value is first tested against
A using the modulo operation and then decoded back by multiplying with the
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Table 2. Average MIPS for encoding from raw data. Absolute and relative (compared
to Copy) numbers are given.

Copy AN NS AN+NS RLE AN+RLE

Abs Rel Abs Rel Abs Rel Abs Rel Abs Rel Abs Rel

Sequential 1,016 1.00 978 0.96 601 0.59 483 0.48 818 0.81 804 0.79

SIMD 1,339 1.00 1,333 1.00 896 0.67 725 0.54 1,677 1.25 1,639 1.22

Table 3. Average MIPS for decoding. Absolute and relative (compared to Copy) num-
bers are given.

Copy AN NS AN+NS RLE AN+RLE

Abs Rel Abs Rel Abs Rel Abs Rel Abs Rel Abs Rel

Sequential 1,016 1.00 1,013 1.00 500 0.49 260 0.26 1,051 1.03 994 0.98

SIMD 1,339 1.00 1,317 0.98 750 0.56 570 0.43 1,258 0.94 1,339 1.00

inverse. Decoding overead is as high as 260/500 = 0.5248% and 570/750 =
0.7624% for sequential and SIMD code, respectively.

RLE decoding is very fast since on the one hand much less memory is read
compared to what is read – due to the run length of 16 – and on the other hand
unrolling of values is much simpler than NS decoding.

5.5 Summary

We find these results encouraging. The choice of parameter A provides trade-
offs in terms of error detection capability, memory overhead, and performance
penalty, while the speeds of the compression schemes are affected differently by
the encoding overhead – both in terms of added complexity of code as well as
dependency on the data characteristics.

6 Conclusion

Modern database systems are very often in the position to store their entire
data in main memory. The reasons are manifold: (i) increased main memory
capacities, (ii) column-oriented storage format and (iii) lightweight data com-
pression techniques. Unfortunately, hardware becomes more and more vulnerable
to random faults, so that e.g., the probability rate for bit flips in main memory
increases, and this rate is likely to escalate in future dynamic random-access
memory (DRAM) modules. Since the data is highly compressed by the light-
weight compression algorithms, multi bit flips will have an extreme impact on
the reliability of database systems. To overcome this issue, we have introduce
our research on error resilient lightweight data compression algorithms in this
paper. In detail, we have utilized arithmetic AN encoding, which is one fam-
ily of codes which is an interesting candidate for effective software-based error
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detection. We have presented two algorithms: (i) AN-encoded Null Suppres-
sion and (ii) AN-encoded Run Length Encoding. We have shown in our exper-
iments that by using AN encoding, much higher bit flip detection capabilities
are achievable than with SECDED ECC. Furthermore, Our evaluation indicates
that data compression schemes augmented with AN encoding become resilient at
a low memory and performance cost. As an example, a “golden” A of 641 makes
16-bit data completely resilient to single and double bit flips. Depending on the
scenario and the compression schemes, AN encoding results in little to no per-
formance penalties. Of course, encoding leads to memory overhead, but we also
showed that gains over uncompressed data are still possible. For instance, AN
encoded Null Suppression occupies 4% less space than uncompressed data, with
a 5-10% slowdown of compression/decompression speed for the case of SIMD.
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dation (DFG) within the Cluster of Excellence “Center for Advanced Electronics
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