
Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Methods and Algorithms for Efficient
Programming of FPGA-based
Heterogeneous Systems for Object
Detection
Lester Kalms
Born on: 22nd December 1985 in Hannover

Dissertation
to achieve the academic degree
Doktor-Ingenieur (Dr. Ing.)

Supervisor and Examiner
Prof. Dr.-Ing. Diana Göhringer
Co-Examiner
Prof. Dr. Marco D. Santambrogio

Submitted on: 7th April 2022Defended on: 28th June 2022

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Statement of authorship
I hereby certify that I have authored this document entitledMethods and Algorithms for Efficient
Programming of FPGA-based Heterogeneous Systems for Object Detection independently andwithout undue assistance from third parties. No other than the resources and referencesindicated in this document have been used. I have marked both literal and accordinglyadopted quotations as such. During the preparation of this document I was only supportedby the following persons:

Diana Göhringer
Additional persons were not involved in the intellectual preparation of the present document.I am aware that violations of this declaration may lead to subsequent withdrawal of theacademic degree.
Dresden, 7th April 2022

Lester Kalms

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Abstract

Nowadays, there is a high demand for computer vision applications in numerous applicationareas, such as autonomous driving or unmanned aerial vehicles. However, the applicationareas and scenarios are becoming increasingly complex, and their data requirements aregrowing. To meet these requirements, it needs increasingly powerful computing systems.FPGA-based heterogeneous systems offer an excellent solution in terms of energy efficiency,flexibility, and performance, especially in the field of computer vision. Due to complex appli-cations and the use of FPGAs in combination with other architectures, efficient programmingis becoming increasingly difficult. Thus, developers need a comprehensive framework withefficient automation, good usability, reasonable abstraction, and seamless integration oftools. It should provide an easy entry point, and reduce the effort to learn new concepts, pro-gramming languages and tools. Additionally, it needs optimized libraries for the user to focuson developing applications without getting involved with the underlying details. These shouldbe well integrated, easy to use, and cover a wide range of possible use cases. The frameworkneeds efficient algorithms to execute applications on heterogeneous architectures withmaximum performance. These algorithms should distribute applications across variousnodes with low fragmentation and communication overhead and find a near-optimal solutionin a reasonable amount of time. This thesis addresses the research problem of an efficientimplementation of object detection applications, their distribution across FPGA-based hetero-geneous systems, and methods for automation and integration using toolchains. Within this,the three contributions are the HiFlipVX object detection library, the DECISION framework,and the APARMAP application distribution algorithm.
HiFlipVX is an open-source HLS-based FPGA library optimized for performance and resourceefficiency. It contains 66 highly parameterizable computer vision functions including neuralnetworks, ideally for design space exploration. It extends the OpenVX standard for featureextraction, which is challenging due to unknown element size at design time. All functionsare streaming capable to achieve maximum performance by increasing parallelism andreducing off-chip memory access. It does not require external or vendor libraries, whicheases project integration, device coverage, and vendor portability, as shown for Intel. Thelibrary consumed on average 0.39% FFs and 0.32% LUTs for a set of image processingfunctions compared to a vendor library. A HiFlipVX implementation of the AKAZE featuredetector computes between 3.56 and 4.13 times more pixels per second than the relatedwork, while its resource consumption is comparable to optimized VHDL designs. Its neuralnetwork extension achieved a speedup of 3.23 for an AlexNet layer in comparison to a relatedwork, while consuming 73% less on-chip memory. Furthermore, this thesis proposes an

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

improved feature extraction implementation that achieves a repeatability of 72.57% whenweighting complex cases, while the next best algorithm only achieves 62.99%.
DECISION is a framework consisting of two toolchains for the efficient programming ofFPGA-based heterogeneous systems. Both integrate HiFlipVX and use a joint OpenVX-based frontend to implement computer vision applications. It abstracts the underlyinghardware and algorithm details while covering a wide range of architectures and applications.The first toolchain targets x86-based systems consisting of CPUs, GPUs, and FPGAs usingOpenCL (Open Computing Language). To create a heterogeneous schedule, it considersdevice profiles, kernel profiles and estimates, and FPGA dataflow characteristics. It managessynchronization, memory transfers and data coherence at design time. It creates a runtimeoptimized program which excels by its high parallelism and a low overhead. Additionally,this thesis looks at the integration of OpenCL-based libraries, automatic OpenCL kernelgeneration, and OpenCL kernel optimization and comparison for different architectures.The second toolchain creates an application specific and adaptive NoC-based architecture.The streaming-optimized architecture enables the reusability of vision functions by multipleapplications to improve the resource efficiency while maintaining high performance. Fora set of example applications, the resource consumption was more than halved, while itsoverhead was only 0.015% in terms of performance.
APARMAP is an application distribution algorithm for partition-based and mesh-like FPGAtopologies. It uses a NoC (Network-on-Chip) as communication infrastructure to connectreconfigurable regions and generate an application-specific hardware architecture. Thealgorithm uses load balancing techniques to find reasonable solutions within a predictableand scalable amount of time. It optimizes solutions using various heuristics, such as SimulatedAnnealing and Tabu Search. It uses a multithreaded grid-based approach to prevent threadsfrom calculating the same solution and getting stuck in local minimums. Its constraints andobjectives are the FPGA resource utilization, NoC bandwidth consumption, NoC hop count,and execution time of the proposed algorithm. The evaluation showed that the algorithm candeal with heterogeneous and irregular host graph topologies. The algorithm showed a goodscalability in terms of computation time for an increasing number of nodes and partitions. Itwas able to achieve an optimal placement for a set of example graphs up to a size of 196nodes on host graphs of up to 49 partitions. For a real application with 271 nodes and 441edges, it was able to achieve a distribution with low resource fragmentation in an averagetime of 149ms.

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Acknowledgements

First, I would like to express my deepest appreciation to my supervisor Prof. Dr. DianaGöhringer for giving me the opportunity to do this dissertation and for the good supportthroughout the whole time. I could not have undertaken this journey without your support,advice and great supervision. Special thanks goes to my second supervisor, Prof. Dr. Marco D.Santambrogio, for the support and review of my dissertation. Many thanks tomy FachreferentProf. Dr. Jerónimo Castrillón-Mazo and your advice. Many thanks also to the committeemembers Prof. Dr. Akash Kumar and Prof. Dr. Martin Wollschlaeger.
I would like to extend my sincere thanks to the entire MCA team at Ruhr-Universität Bochumand the ADS team at Technische Universität Dresden. I have enjoyed working with eachone of you and am grateful for the fruitful discussions, collaborations and insights. Thereare too many to name all. Yet I express my deep gratitude to Dr. Muhammed Al Kadi, Dr.Philipp Wehner, Dr. Jens Rettkowski and Dr. Salma Hesham, with whom I was able to comeup with many questions, especially at the beginning of this dissertation. I had the pleasureof supervising many students from whom I could also learn a lot. Some of these works arementioned at the end of this dissertation.
Of course, my biggest thanks go to my family, Camille, Dietmar and Nelson, without whom Iwould never have come this far in life. I am so happy for all their love. I also want to thank myclosest friends who have been with me on my journey since childhood: Felix, Pascal, Johann,Maximilian, Nicolas, Lukas and Malte.

Contents

List of Figures IV

List of Tables VII

List of Listings IX

1 Introduction 11.1 Motivation and Problem Statement . 11.2 Own Contribution . 21.3 Thesis Outline . 4
2 Background 52.1 Object Detection . 62.1.1 Pattern Recognition . 82.1.2 Feature Detection, Description and Matching 82.1.3 Multiscale Feature Detection and Description Algorithms 102.1.4 ORB . 112.1.5 (A)KAZE . 122.1.6 FREAK . 142.1.7 FPGA Implementations . 152.2 Heterogeneous Systems . 172.2.1 FPGA-based Systems . 182.2.2 Communication and Topology . 192.2.3 FPGA-based Clusters . 212.2.4 Summary . 232.3 Application Distribution . 252.3.1 Metaheuristics . 252.3.2 Mapping and Scheduling on Many-Core Systems 292.3.3 Design Space Exploration for Neural Networks on FPGA-based Cluster 312.3.4 Clustering and Placement for Configurable Logic Blocks 322.3.5 Tuning, Clustering and Placement for Partial Reconfigurable Regions . 342.3.6 Summary . 372.4 Programming Methods . 402.4.1 General Purpose Approaches . 412.4.2 Domain Specific Approaches . 482.5 Toolchains . 532.5.1 Source-to-Source Compilers (Transpilers) 54

I

Contents

2.5.2 High-Level Synthesis (HLS) Tools . 592.5.3 FPGA-based OpenVX Tools . 632.5.4 OpenCL-based Tools . 66
3 HiFlipVX: Object Detection Library 693.1 HiFlipVX Library Functions . 703.1.1 Image Pixelwise Functions . 703.1.2 Image Filter Functions . 723.1.3 Image Conversion Functions . 823.1.4 Image Analysis Functions . 833.1.5 Image Function Latency & HLS Directive Usage 873.1.6 Feature Functions . 893.1.7 Neural Network Functions . 953.2 Object Detection Algorithms . 1043.2.1 Proposed AKAZE and FREAK based Feature Extraction Algorithm . . . 1043.2.2 FAST Corner Detector . 1073.2.3 Canny Edge Detector . 1083.2.4 ORB feature detection . 1093.2.5 AKAZE feature detection . 1133.2.6 FREAK feature description . 1183.2.7 MobileNets . 1233.3 Evaluation . 1253.3.1 Library Functions . 1253.3.2 Feature Extraction Algorithms . 1373.3.3 Neural Network Extension . 1493.4 Summary . 156
4 DECISION: Vision Framework 1594.1 Overview . 1594.2 OpenVX Graph Creation Module . 1614.2.1 OpenVX Application Flow . 1624.2.2 Data Extraction . 1644.3 Architecture Dependent OpenCL Kernel Optimizations 1684.3.1 FPGA Bandwidth and Kernel Optimization 1694.3.2 FPGA Example Implementation . 1704.3.3 CPU and (integrated) GPU Kernel Optimization 1714.4 Automatic OpenCL Code Generation . 1724.4.1 Overview . 1734.4.2 PPCG Source Code Generation . 1744.4.3 Creating OpenCL Device and Host Code 1754.4.4 Conversion from LLVM-IR to C-Code . 1764.4.5 Converting PHI Instructions . 1764.5 High-Performance Vision Toolchain . 1774.5.1 Overview . 1774.5.2 Library Module . 1834.5.3 Profiling Module . 1844.5.4 Mapping and Scheduling Module . 1864.5.5 Program Creation Module . 1884.5.6 Runtime System Module . 192

II

Contents

4.6 Embedded System Vision Toolchain . 1974.6.1 Module Overview . 1984.6.2 Model Description . 2004.6.3 Library Module . 2034.6.4 Hardware Creation Module . 2074.7 Evaluation . 2084.7.1 Architecture Dependent OpenCL Kernel Optimizations 2094.7.2 Automatic OpenCL Code Generation . 2124.7.3 High-Performance Vision Toolchain . 2144.7.4 Embedded System Vision Toolchain . 2194.8 Summary . 223
5 APARMAP: Application Distribution Algorithm 2275.1 Overview . 2285.2 Heuristics and Concepts . 2295.2.1 Objective Function . 2305.2.2 Local Search Function . 2325.2.3 Grid-Based Solution Space . 2325.2.4 Simulated Annealing . 2335.2.5 History . 2335.2.6 Tabu Search . 2345.3 Algorithm . 2365.3.1 Scheduling & Mapping Phase . 2365.3.2 Load Balancing Phase . 2375.3.3 Optimization Phase . 2415.4 Evaluation . 2425.4.1 Default Parameters . 2435.4.2 Measurement Methodology . 2445.4.3 Memory Usage . 2445.4.4 Load Balancing & Optimization Phase Comparison 2445.4.5 Amount of Threads . 2465.4.6 Load Balancing Phase Iterations . 2475.4.7 Load Balancing Complexity . 2485.4.8 Optimization Phase: MTM and STM amount per LTM 2495.4.9 Irregular and Heterogeneous Topologies 2495.4.10 Verifying Optimality and Scalability . 2505.4.11 Real Application . 2515.4.12 Comparison to Previous Work . 2515.5 Summary . 252
6 Conclusion and Outlook 2556.1 Summary of Contributions . 2556.2 Future Work . 257
Bibliography 259

Student Work 281

A Appendix 283A.1 High-Performance Vision toolchain: Transaction Patterns Between Kernels . 283

III

List of Figures

1.1 DECISION framework including the HiFlipVX library and the APARMAP algorithm. 2
2.1 Three different object detection techniques in the computer vision field. . . . 72.2 Feature extraction properties: feature types, scale-space & orientation 92.3 Bresenham circle used in the FAST detector [17]. 122.4 Comparison between the Gaussian and nonlinear diffusion scale-space [46]. 132.5 Illustration of the FREAK sampling pattern [24]. 152.6 An MPSoC using a NoC as communication infrastructure. 182.7 FPGA cluster with inter-FPGA connection using a direct or indirect network. . 202.8 A combined computing model for embedded and HPC. 242.9 Classification of metaheuristics including the most known examples. 272.10 A taxonomy of mapping methodologies [107]. 292.11 The flow of FPGA-based CAD tools. 332.12 Placement example of the DyNoC [142] architecture. 362.13 Subareas for the application distribution process on FPGA-based systems. . 382.14 The OpenCL platform model [153]. 432.15 The OpenCL memory model [153]. 442.16 The OpenMP fork-join model. 452.17 Available implementations of the SYCL specification [165]. 472.18 The OpenCL acceleration of OpenCV, adapted from [179]. 502.19 The four main steps of the polyhedral optimization. 562.20 The structure of the Polly tool. 582.21 The structure of the PPCG tool. 592.22 Classification of HLS tools based on the input language [222]. 622.23 Overview of the layers in the OpenVX framework [229]. 64
3.1 Sliding window approach for a 3 × 3 kernel. 733.2 Common filter structure. 753.3 Separable filter structure. 773.4 Fields of a HiFlipVX feature data type. 903.5 Input stages of the 3D-convolution function. 983.6 Computation stages of the 3D-convolution function. 993.7 Canny edge and FAST corner detector implementations. 1083.8 Hardware design of the ORB detector. 1093.9 Hardware design of the Retain Best block. 1113.10 Integration of the ORB detector into the video processing system. 1123.11 Overview of the ORB feature detection implementation. 113

IV

List of Figures

3.12 Block diagram of the complete system for the AKAZE VHDL implementation. 1143.13 Block diagram of a 5 × 5 window generator. 1153.14 Block diagram of the AKAZE contrast factor and nonlinear scale-space creation.1153.15 Block diagram of the AKAZE feature detection. 1173.16 HLS implementation of the optimized AKAZE feature detector. 1173.17 Integral Image top-level (left) and parallel prefix-sum of 4 pixel (right). 1193.18 Top-level hardware design of the FREAK algorithm. 1203.19 HW design of Boundary block, unrotated Pattern block and Intensity block. . 1213.20 Design of the Orientation (top) and rotated Pattern block (bottom). 1223.21 Block design of the MobileNets hardware implementation. 1243.22 Compares relative LUT and FF utilization of pixelwise functions. 1283.23 Resource utilization scalability results of filter functions. 1313.24 LUT and FF utilization of conversion functions. 1323.25 Resource utilization of analysis functions. 1333.26 Resource utilization of feature functions. 1353.27 Relative FF/LUT and absolute BRAM/DSP utilization compared to xfOpenCV. . 1373.28 Repeatability comparison of the embedded AKAZE design. 1443.29 Repeatability comparison of the HiFlipVX AKAZE design. 1453.30 Relative resource utilization for neural network layers. 153
4.1 Overview and flow of the DECISION framework. 1604.2 Small application graph illustrating the buffering problem. 1664.3 Task graph of the AKAZE feature detection implementation. 1684.4 Windowed (3 × 3) function implementation on an FPGA. 1704.5 Example for the input pixels of a register buffer for an 8 × 4 grid. 1714.6 Overview of the combined Polly and PPCG tool design. 1734.7 LLVM to OpenCL: Modifications of Polly and PPCG. 1744.8 Overview of the proposed High-Performance Vision toolchain. 1784.9 Data movement and device, queue, and node types for memory management 1804.10 Dataflow pipelining latency effects, adapted from [214]. 1864.11 Example system to cover all possible types of data transfer. 1914.12 Multithreaded OpenCL runtime system to execute OpenVX graph applications.1954.13 All operations processed during the execution of a message. 1974.14 Overview and flow of the Embedded System Vision toolchain. 1994.15 Application distribution model for mesh-like partition-based architectures. . 2004.16 Example platform model topologies. 2014.17 Network interface and DMA controller example. 2034.18 Control flit structure for adaptable network interfaces. 2044.19 Computation time for different devices for a resolution of 1280 × 720. 2114.20 Matrix multiplication speedup compared to a single-threaded CPU execution. 2154.21 Median kernel pipelined and vectorized execution time for different devices. 2184.22 Embedded vision example architecture. 221
5.1 Overview of the application distribution process. 2275.2 Activation function (left) and bandwidth consumption (right). 2315.3 Structure of the LTM in the history. 2345.4 Plot of the node graph after load balancing. 2385.5 Shows which steps of load balancing are executed in which iteration periods. 2385.6 Computation for the initial node coordinates of a guest graph. 239

V

List of Figures

5.7 Optimization algorithm for the clustering and placement process. 2425.8 Example graphs with 24, 36 and 48 nodes. 2455.9 Load balancing and optimization phase comparison. 2465.10 Results for different thread amount. 2475.11 Results for different number of load balancing iterations. 2475.12 Collision detection in the load balancing phase. 2485.13 Results for different number of MTM and STM amount per LTM. 2495.14 Results for irregular and heterogeneous topologies. 2505.15 Verification of scalability and optimality. 250
A.1 Example system to cover all possible types of data transfers. 283A.2 All possible data transfers with a host or IACC as destination 285A.3 All possible data transfers with a DACC as destination 286

VI

List of Tables

2.1 Different FPGA implementations for feature detection and description. 162.2 Two approaches for direct GPU-FPGA communication over PCI-e. 212.3 Comparison of five FPGA-based cluster. 222.4 Comparison of application distribution algorithms targeting FPGAs. 392.5 Existing C/C++ based parallel programming approaches. 412.6 Comparison of directive-based languages. 452.7 Comparison of SYCL with OpenCL and OpenMP [164]. 472.8 OpenVX or similar libraries with their conformance version and acceleration. 502.9 Comparison of FPGA-based computer vision domain specific libraries. 522.10 Comparison of FPGA-based OpenVX frameworks. 662.11 Comparison of OpenCL-based toolchains. 68
3.1 HiFlipVX image pixelwise functions. 713.2 HiFlipVX image filter functions. 733.3 Constants (uppercase) and variables (lowercase) used in HiFlipVX. 743.4 HiFlipVX image conversion functions. 823.5 HiFlipVX image analysis functions. 843.6 HiFlipVX feature functions. 903.7 HiFlipVX neural network functions. 963.8 Implemented activation functions. 1023.9 FPGA development boards and their available resources. 1263.10 Default configuration of the HiFlipVX library functions. 1263.11 Synthesis and implementation results of pixelwise functions. 1273.12 Synthesis and implementation results of filter functions. 1293.13 Comparison of different combinations of feature detectors and descriptors. . 1383.14 Resource utilization of the FREAK and integral image hardware implementation.1403.15 Comparison of the FREAK with the related work. 1413.16 Proposed AKAZE hardware designs. 1423.17 Resource consumption of the proposed AKAZE implementation. 1443.18 Best configuration for ORB detector + FREAK descriptor. 1463.19 Comparison of ORB execution time between software and hardware. 1473.20 Resource utilization of the proposed ORB designs. 1473.21 Comparison of proposed ORB implementation to related work. 1483.22 Default configuration of the library compile time parameters. 1493.23 The MAPE (Mean Absolute Percentage Error) of the neural network extension. 1503.24 Resource utilization & latency of synthesized & implemented design per layer. 1513.25 The MAPE and resource utilization of the activation functions. 152

VII

List of Tables

3.26 Vectorization tuning for the proposed MobileNets modules. 1543.27 Proposed MobileNets modules executed separately on the ZCU104. 1553.28 Comparison of SSD-MobileNets-V1 with the related work. 155
4.1 Actions and protocol for data transfer for memory management. 1884.2 Test system components. 2094.3 Resource usage and memory bandwidth for 1 read and 1 write DMA kernel. . 2094.4 Compute time [ms] for different memory port widths of a 5 × 5 Gaussian kernel.2104.5 Comparison of the implemented algorithm for different devices and resolutions.2114.6 Devices used in the different measurements. 2164.7 Device profiling results calculated with Equation (4.7). 2164.8 Comparison of devices and kernels without data transfer in [μs]. 2174.9 OpenCL synchronization and kernel offloading overhead. 2184.10 Resource utilization of the NoC-based architecture for the example application.2224.11 Resource utilization of the example application as pure AC design. 223
5.1 Variables of the application distribution algorithm. 2295.2 Constants of the application distribution algorithm. 2295.3 Memory usage of application distribution algorithm. 245
A.1 Distance calculation for data transfer between two devices 284

VIII

List of Listings

2.1 Simple matrix multiplication code including two statements (S0 and S1). . . . 56
3.1 Integer square root function. Each stage computes 1 bit of the resulting vector. 723.2 Generic data type used for vectorization and to data types wider than 64bit. 873.3 Example application showing how to connect two HiFlipVX functions. 883.4 General structure of the 3D-convolution function. 973.5 Pseudocode of the proposed AKAZE-FREAK algorithm. 106
4.1 OpenVX example code for an edge detector. 1624.2 Instantiation of a HiFlipVX-based accelerator. 1664.3 Program flow of Program Creation module to create all queue commands . . 1894.4 Program flow of the Runtime System module. 1934.5 Example C++ matrix multiplication function. 2134.6 Generated OpenCL matrix multiplication kernel. 214
5.1 Main structure of the TS (Tabu Search) algorithm. 235

IX

Acronyms

AC Accelerator
ACO Ant Colony Optimization
AES Advanced Encryption Standard
AGAST Adaptive Generic Accelerated Segment Test
AKAZE Accelerated KAZE
ALAP As-Late-As-Possible
AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface
ASAP As-Soon-As-Possible
ASIC Application-Specific Integrated Circuit
AST Abstract Syntax Tree
BRAM Block Random-Access Memory
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
CAD Computer-Aided Design
CLB Configurable Logic Block
CLooG Chunky Loop Generator
CMP Common MidPoint
CNN Convolutional Neural Network
CORDIC COordinate Rotation DIgital Computer
CPU Central Processing Unit
CSA Carry-Save Adder
CU Compute Unit
CUDA Compute Unified Device Architecture
DACC Dedicated Accelerator

X

DAG Directed Acyclic Graph
DDR Double Data Rate
DFG Data Flow Graph
DLP Data-Level Parallelism
DMA Direct Memory Access
DMC Depth Map Computation
DoG Difference of the Gaussian
DoH Determinant of the Hessian
DPR Dynamic Partial Reconfiguration
DSE Design Space Exploration
DSL Domain-Specific Language
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
EOF End of Frame
EoL End of Line
EoM End of Message
FAST Features from Accelerated Segment Test
FED Fast Explicit Diffusion
FF Flip-Flop
FIFO First-in-First-out
flit flow control unit
FPGA Field-Programmable Gate Array
fps frames per second
FREAK Fast Retina Keypoint
FSM Finite-State Machine
GA Genetic Algorithm
GCC GNU C Compiler
GPL General-Purpose Language
GPU Graphics Processing Unit
HDL Hardware Description Language
HDMI High Definition Multimedia Interface
HEFT Heterogeneous Earliest Finish Time
HLS High-Level Synthesis

XI

HPC High-Performance Computing
I/O Input/Output
IACC Integrated Accelerator
ICAP Internal Configuration Access Port
ICD Installable Client Driver
IFM Input Feature Map
ILP Instruction-Level Parallelism
IP Intellectual Property
IR Intermediate Representation
ISL Integer Set Library
k-NN k-Nearest Neighbors
LCM Least Common Multiple
LLVM Low Level Virtual Machine
LooPo Loop Parallelizer
LTM Long-Term Memory
LUT Lookup Table
M-LDB Modified-Local Difference Binary
M-SURF Modified SURF
MA Manager
MAPE Mean Absolute Percentage Error
MMU Memory Management Unit
MPI Message Passing Interface
MPSoC Multiprocessor System-on-Chip
MSI Modified Shared Invalid
MTL Matrix Template Library
MTM Medium-Term Memory
MWD Multi Window Display
NI Network Interface
NMS Non-Maximum Suppression
NoC Network-on-Chip
NUMA Non-Uniform Memory Access
ODE Ordinary Differential Equation
oFAST oriented FAST

XII

OFM Output Feature Map
OpenACC Open Acceleration
OpenCL Open Computing Language
OpenGL Open Graphics Language
OpenMP Open Multi-Processing
ORB Oriented FAST and Rotated BRIEF
OS Operating System
PC Personal Computer
PCI-e Peripheral Component Interconnect Express
PDE Partial Differential Equation
PE Processing Element
PET Polyhedral Extraction Tool
PIPLib Parametric Integer linear Programming
PLUTO Polyhedral Parallelizer and Locality Optimizer
PoCC Polyhedral Compiler Collection
PPCG Polyhedral Parallel Code Generator
PPS Pixels Per Second
PRR Partial Reconfigurable Region
PSO Particle Swarm Optimization
PU Processing Unit
QAP Quadratic Assignment Problem
rBRIEF rotated BRIEF
RISC Reduced Instruction Set Computer
RSA RivestShamirAdleman
RTL Register Transfer Level
SA Simulated Annealing
SCEV SCalar EVolution
SCoP Static Control Part
SDK Software Development Kit
SIFT Scale Invariant Feature Transform
SIMD Single Instruction Multiple Data
SLAM Simultaneous Localization and Mapping
SoA State-of-the-Art

XIII

SoC System-on-Chip
SoF Start of Frame
SPIR Standard Portable Intermediate Representation
SR Subpixel Refinement
SSA Single Static Assignment
STL Standard Template Library
STM Short-Term Memory
SURF Speeded Up Robust Features
SVM Shared Virtual Memory
SVP Soft Vector Processor
TCL Tool command language
TDP Thermal Design Power
TLP Task-Level Parallelism
TOPS Terra Operations per Second
TS Tabu Search
UAV Unmanned Aerial Vehicle
UMA Uniform Memory Access
URAM Ultra Random-Access Memory
VCI Vector Custom Instruction
VHDL Very High-Speed Integrated Circuit Hardware Description Language
VLSI Very Large-Scale Integration
VOPD Video Object Plane Decoder
VPS Video Processing System
VPU Vision Processing Unit
WCET Worst-Case Execution Time
XML Extensible Markup Language

XIV

1 Introduction

1.1 Motivation and Problem Statement

Many application areas, such as autonomous driving, hand gesture recognition, medical x-rayimaging, advanced driver assistance or UAVs (Unmanned Aerial Vehicles), require objectdetection [1, 2, 3, 4, 5], which is a subfield in computer vision and image processing. However,the applied application areas and scenarios are becoming more and more complex. Inaddition, application requirements are increasing due to higher image resolutions, framerates, color depths, and a larger number of input images for 2D and 3D vision.
To meet these demands, the corresponding algorithms require increasingly powerful com-puting systems. At the same time, energy consumption plays an important role in the presenttime [6]. This is true for small embedded systems as well as for large computing clusters.To counteract this, FPGA (Field-Programmable Gate Array)-based heterogeneous systemsprovide an excellent solution for many use cases in terms of energy efficiency, flexibility,and performance [7, 8]. Especially in the field of computer vision, these systems can showtheir strengths and benefits compared to CPU (Central Processing Unit)- and GPU (GraphicsProcessing Unit)-based acceleration [9, 10]. For example, through their streaming capabil-ity, which enables very large parallelism with little external memory access through deeppipelines.
Due to the complex algorithms and the use of FPGAs in combination with other architectures,efficient programming is becoming increasingly challenging. Thus, developers need a com-prehensive framework with efficient automation, good usability, reasonable abstraction, andseamless integration of different tools and libraries. It should not only provide an easy entrypoint for the user, but also reduce the effort required to learn new concepts, programminglanguages and tools. Additionally, the framework should use optimized libraries and DSLs(Domain-Specific Languages) so that the user can focus on developing new applicationswithout getting too involved with the underlying details. These should be well integrated andeasy to use, but at the same time complex enough to cover as many use cases as possible.Furthermore, it should be possible to optimize an application based on various objectivessuch as performance or resource utilization.
The framework needs efficient algorithms to execute applications on heterogeneous architec-tures with maximum performance. These algorithms should be able to distribute applicationsacross various heterogeneous nodes with low fragmentation and communication overhead.Even though such problems are complex and NP-hard [11], the algorithm should find anear-optimal distribution in a reasonable amount of time. The specified objectives can be

1

1 Introduction

diverse, such as high performance, energy efficiency, or resource utilization. Through thedesign time optimizations and flexibility of FPGAs, it should even be possible to generate anapplication-specific architecture, based on a set of applications.

1.2 Own Contribution

This thesis addresses the problem of efficient programming of object detection algorithmson FPGA-based heterogeneous systems using various methods and algorithms. It identifiedthree main areas within this topic as particularly important and explored them. This includesthe efficient implementation of object detection applications, their distribution across het-erogeneous architectures, and methods for automation and integration using toolchains.This thesis addresses them in the following three contributions, which are also shown inFigure 1.1:
DECISION

Computer Vision
ApplicationOpenVX

Graph Creationfrontend

HiFlipVXimage processingfeature detectionneural networksNoC extension

1

2 3

4 5 6

7

8

High-Performance Vision Toolchain

Scheduling
Mapping

Program
Creation

Embedded System Vision Toolchain

APARMAPmiddleend
Hardware
Creation

CPU

GPU

FPGA

FPGA

FPGA

CU

CU

NI CU

CU

NI

CU

CU CU

NI CU

Figure 1.1: DECISION framework including HiFlipVX object detection library and APARMAP ap-plication distribution algorithm. Maps computer vision application to heteroge-neous HPC architecture (top), or creates an application specific NoC-based archi-tecture (bottom). NI (Network Interface), CU (Compute Unit)
• HiFlipVX: An open-source, portable, highly parameterizable, resource and performanceoptimized HLS (High-Level Synthesis)-based FPGA library containing 66 computer visionfunctions for implementing object detection algorithms.
• DECISION: A modular framework for FPGA-based embedded and high-performance sys-tems that enables efficient programming with an OpenVX-based frontend, automaticallybuilds application and hardware, and integrates HiFlipVX.
• APARMAP: A scalable application distribution algorithm for partition-based and mesh-liketopologies that uses load balancing techniques and heuristics in amultithreaded grid-basedalgorithm to generate an application-specific hardware architecture.
The first contribution is HiFlipVX, an open-source HLS-based FPGA library for computervision, optimized for performance and resource efficiency [12]. It is based on the OpenVXstandard, but extends it for feature extraction, which is challenging due to unknown element

2

1.2 Own Contribution

size at design time [13]. Most functions provide additional parameters, such as multiple SIMD(Single Instruction Multiple Data) widths, data types, or kernel sizes, to increase throughputand reduce latency. The various compile-time parameters make it highly parameterizable,thus offering a wide range of possibilities for an optimized design and extensive DSE (DesignSpace Exploration). It contains 66 computer vision functions including a neural networkextension to cover several fields in one library [14]. All functions are streaming capable,which is a key feature to achieve maximum performance by increasing parallelism andreducing off-chip memory access. Using C++ and HLS with OpenVX simplifies cross-platformdevelopment between different architectures, vendors, and toolchains. HiFlipVX does notrequire external or vendor libraries, which eases integration into existing projects, usage ofdifferent devices and portability to other vendors, as shown for Intel FPGAs [15, 16].
In addition to the OpenVX standard, the library extracted various functions from differentalgorithms and converted them into generic and reusable functions. These include theFAST (Features from Accelerated Segment Test) corner detector [17], Canny edge detector[18], ORB (Oriented FAST and Rotated BRIEF) feature detector [19], AKAZE (AcceleratedKAZE) feature detector [20], and MobileNets neural network [21]. This thesis also comparesdifferent combinations of feature extraction algorithms to identify the most promising onesand implement an improved algorithm from them [22, 23]. It implements these algorithmsnamed ORB, AKAZE and FREAK (Fast Retina Keypoint) [24] in an optimized VHDL (Very High-Speed Integrated Circuit Hardware Description Language) design for embedded systems [25,26], and to improve and evaluate the library. The improved algorithm is based on AKAZE andFREAK and outperforms the other combinations in terms of repeatability.
The second contribution is DECISION, a framework for the efficient programming of FPGA-based heterogeneous systems. It consists of two toolchains composed of different modulesand models that serve as interfaces. Both integrate HiFlipVX and use a common OpenVX-based frontend to implement computer vision applications, build the application model, andcheck their validity. The advantage of this abstraction is that, regardless of the target platform,the user does not have to learn any new concepts or input languages, or deal with the un-derlying hardware architecture. OpenVX makes it possible to integrate libraries from variousvendors or developers. Therefore, this thesis examines the integration of different OpenCL(Open Computing Language)-based libraries for GPU and CPU architectures [27]. Sincelibraries cannot provide everything, it needs methods to create and integrate custom acceler-ators. Therefore, this thesis explores the generation of user-defined OpenCL-based kernelsusing source-to-source compilers [28]. Implementing custom kernels is not trivial and candiffer greatly between different architectures. Therefore, this thesis describes the differencefor CPU, GPU, and FPGA devices to implement own vision functions in OpenCL [9].
The first toolchain targets x86-based HPC (High-Performance Computing) systems, which canconsist of CPUs, GPUs, and FPGAs [27]. It integrates a heterogeneous scheduling algorithmthat distributes the application graph across the different architectures, taking the streamingcapability of the FPGA into account. It generates synthesis results for FPGAs and profilesfunctions and devices for others, to annotate the graph with information about resourceconsumption, computation time, and communication costs. The toolchain creates a runtimeoptimized program, which manages synchronization, memory transfers and data coherencyat design time. The OpenCL-based runtime system excels by its high parallelism and a lowoverhead. The second toolchain creates an application specific and adaptive NoC (Network-on-Chip)-based architecture. The streaming-optimized architecture enables the reusability ofvision functions by multiple applications to improve the resource efficiency while maintaining

3

1 Introduction

a high performance. The toolchain automatizes the creation of the hardware design andspecialized components, such as NIs (Network Interfaces), DMA (Direct Memory Access)controllers, and a MA (Manager). This MA stores the flow of multiple applications to executeand orchestrate them in an adaptive runtime system.
The third contribution is APARMAP, an application distribution algorithm for partition-basedand mesh-like FPGA topologies [29, 30]. The proposed algorithm is integrated into the
DECISION framework, but keeps all models and methods as general as possible to cover awide range of use cases and to be vendor independent. This thesis chose a combinationof synthesis results and analytical models based on the HiFlipVX library as one possibleway to calculate the model data. The application model is a dataflow graph consisting oftasks and transactions. First, the algorithm maps and schedules these tasks to a flexibleset of physical nodes that form a node graph. The platform model enables heterogeneousarchitectures with irregular structure that provide high flexibility. This architecture uses aNoC as one possible instantiation for inter- and intra-chip communication. The NoC connectsthe NIs to PRRs (Partial Reconfigurable Regions), which can be entire FPGAs or regions, usingrouters, to be applicable for SoCs (Systems-on-Chip) or large FPGA clusters.
The main part is the clustering and placement of the node graph into the platform model in amultithreaded approach. It processes both parts in one to not lose optimality. First, the algo-rithm maps the node graph to the platform graph within a two-dimensional Euclidean vectorspace. It uses load balancing techniques to find reasonable solutions within a predictableand scalable amount of time. Second, the algorithm optimizes the solutions using variousheuristics. SA (Simulated Annealing) allows solutions to get worse up to a certain value,which decreases from time to time. TS (Tabu Search) uses a multilevel history to prevent thealgorithm from calculating the same solutions. The constraints and objectives are the FPGAresource utilization, NoC bandwidth consumption, NoC hop count, and execution time of theproposed algorithm. The algorithm divides the solution space into a grid to prevent threadsfrom calculating the same solution.

1.3 Thesis Outline

The next chapter will discuss the SoA (State-of-the-Art) and provide the necessary back-ground knowledge that will help in understanding this thesis. Its topics are object detection,FPGA-based heterogeneous systems, application distribution, programming methods, andtoolchains. Chapter 3 will describe the HiFlipVX library, the implemented object detec-tion algorithms, and the improved feature extraction algorithm. Chapter 4 will discuss the
DECISION framework with the modules and models of its two toolchains targeting embeddedand high-performance systems. Chapter 5 will describe the APARMAP application distributionalgorithm that uses load balancing techniques and heuristics. The last chapter concludesthis thesis and provides an outlook for future research.

4

2 Background

This chapter provides the background information necessary to understand the followingchapters based on the current SoA. For an efficient programming of parallel and hetero-geneous FPGA-based systems, this thesis identified five different research topics. The firstpart discusses the different types of object detection algorithms. The second part exploresdifferent types of architectures and their associated compute nodes, memory architectures,communication infrastructures, and topologies. As heterogeneous systems and object de-tection algorithms become more complex, it requires efficient algorithms for a near-optimalapplication distribution. There is a need for programming languages, models and librariesthat are both expressive and simple so that the user can program applications that areas performant as possible. Finally, it needs a comprehensive toolchain that acts as a linkbetween the mentioned parts and provides the user with an automated toolflow and aneasy-to-use interface.
Object detection is a subfield of computer vision and image processing. Many applicationsareas need to detect objects, such as medical x-ray imaging, advanced driver assistance orUAVs [3, 1]. Section 2.1 investigates the topic of object detection. This thesis divides thetopic into three different techniques, namely (1) pattern recognition, (2) traditional machinelearning, and (3) deep learning. Deep learning is based on neural networks that are trainedto detect objects. One advantage of deep learning is that it does not require complex featureengineering. On the other hand, pattern recognition has the advantage that it does not needtraining data. Pattern recognition is based on the extraction of features or points of interestfrom images. Traditional machine learning algorithms also extract features and then usethem in a trainable classifier. The focus of this work is on the improvement and acceleration offeature extraction algorithms, which are part of pattern recognition and traditional machinelearning algorithms. Many applications rely on these algorithms, e.g., when little or no trainingdata is available, as in SLAM (Simultaneous Localization and Mapping) [31].
Section 2.2 explores heterogeneous systems consisting of different parallel computing ar-chitectures. It divides the field of computer architectures into five areas: (1) computing (2)memory (3) communication (4) topology and (5) I/O (Input/Output). The computing areaincludes all PEs (Processing Elements) of the system. This thesis considers PEs as the smallestunits that perform computations. Depending on the constellation of nodes, a system maycontain different communication types for off-chip/on-chip or inter/intra communication.Thereby, the chosen topology strongly depends on the selected communication types. Thefocus of this work is on the use of heterogeneous systems containing FPGAs. In this context,it investigates various systems from the embedded and HPC areas. One difficulty with thesetwo areas is the terminology. Based on the research results, this paper extends the OpenCLterminology for the computing field so that it is suitable for both areas.

5

2 Background

One challenge in designing or deploying FPGA-based systems is the distribution of theapplication(s), which strongly depends on the communication model and the topology ofthe overall system. As a result of the increasing number of nodes in heterogeneous anddistributed systems, it needs a good algorithm to place communicating nodes close toeach other. Due to the high complexity of application distribution algorithms, heuristics,metaheuristics, or even neural networks are used to solve these problems in a reasonabletime. Section 2.3 investigates the different steps needed to create an application-specificFPGA-based system from one or more application(s). Based on the SoA, this thesis hasidentified six areas within this process: (1) partitioning (2) tuning (3) mapping (4) scheduling(5) clustering and (6) placement. This process is a very complex problem, and no one hasyet addressed all these areas in one work. Therefore, this thesis examines the problem fordifferent FPGA-based systems from different perspectives. These perspectives include (1)mapping and scheduling in NoC-based MPSoCs (Multiprocessor Systems-on-Chip), (2) designspace exploration for neural networks, (3) clustering and placement in FPGA-based CAD(Computer-Aided Design) tools, and (4) tuning, clustering, and placement for PRRs.
Section 2.4 focuses on the programming of heterogeneous parallel computer architectures.There are several approaches that are highly expressive on the one hand and simplify theprogrammability on the other hand. This thesis divides these approaches into two categories,namely domain-specific and general-purpose. GPLs (General-Purpose Languages) such asOpenCL or CUDA (Compute Unified Device Architecture) often contain explicit constructs toprogram parallel architectures. These can be directive-based approaches such as OpenACCor OpenMP (Open Multi-Processing), which simplify programming when using GPLs. Byadding a domain, such as computer vision, the programmer can use both DSLs and librariesto improve efficiency and performance. Depending on the architecture or use case, differentprogramming methods are useful. This thesis uses several C/C++-based approaches suchas (1) OpenCL, which is a GPLs that supports the widest range of architectures, (2) HLS,which is a directive-based approach to program FPGAs and (3) OpenVX, which includes adomain-specific library for computer vision. OpenVX is an open, royalty-free standard forcross-platform acceleration of computer vision applications [32].
Section 2.5 investigates the SoA for the various modules of the vision framework developedin this thesis. The first part focuses on source-to-source compilers, also called transpilers,and introduces the needed compiler topics. This thesis examines transpilers to create user-generated and accelerated functions that the toolchain can easily integrate. The second partfocuses on HLS-based tools and discusses their benefits and realization by researchers andvendors. This thesis uses HLS-based toolchains to implement a C++-based object detectionlibrary for FPGAs. The third part focuses on FPGA-based tools that implement part of theOpenVX standard. This thesis uses OpenVX as a common frontend for the toolchain toprogram both embedded and HPC systems. The last part focuses on OpenCL-capabletoolchains. On the one hand, this thesis uses the OpenCL device code to program non-FPGAdevices. On the other hand, it uses the OpenCL host code in a runtime system as a low-levelAPI (Application Programming Interface) for x86-based systems.

2.1 Object Detection

This section will look at the object detection topic, which is a subfield of computer visionand image processing, from different perspectives. Many application areas need to detect

6

2.1 Object Detection

objects, such as autonomous driving, hand gesture recognition, medical x-ray imaging, ad-vanced driver assistance or UAVs [1, 2, 3, 4, 5]. Many implementations rely on DSPs (DigitalSignal Processors), GPUs, FPGAs, or ASICs (Application-Specific Integrated Circuits), since thefield of computer vision often involves very computationally intensive operations. Variouspublications have shown the good performance and energy efficiency of FPGAs comparedto GPUs and CPUs for image processing and computer vision related tasks [33, 7, 8, 10].Depending on the application and its streaming capability the performance can be lower,higher, or similar to GPUs. However, when it comes to energy efficiency FPGAs can evenoutperform GPUs by a factor of 10 and more [9].
As shown in Figure 2.1, this work divides the object detection topic into three techniques.Deep learning is based on neural networks that are trained to detect objects. One advantageof deep learning is that it does not require complex feature engineering. With a good datasetfor training, deep learning algorithms can achieve a significantly better detection rate thanthe other techniques.

NeuralNetworks
Classifier

FeatureExtraction

FeatureMatching

FeatureDescription

FeatureDetection

Deep
Learning

Traditional
Machine Learning

Pattern
Recognition

Object
Detection

Figure 2.1: Three different object detection techniques in the computer vision field.
The advantage of pattern recognition is that it does not need training data. The techniqueis based on extracting features or points of interest from images. These features can be,for example, corners, edges, or blobs. It is important that the algorithm detects featuresregardless of their viewpoint, rotation, size, or image quality. A descriptor needs to describethese features so that they can be compared with each other.
Deep learning is a subfield of machine learning. However, traditional machine learningalgorithms first detected and described features before they can classify them. Therefore,they often use the same algorithms as in pattern recognition to extract features. Due to themix of feature extraction and training of a classifier, traditional machine learning is suitablefor use cases where there is not enough data to train a neural network. In addition, deeplearning algorithms can be computationally intensive and consume a lot of resources incomparison to other algorithms.
However, the focus of this thesis is on feature extraction. Many applications rely on thesealgorithms, e.g., when little or no training data is available, as in SLAM [31]. The followingsections present the SoA in the field of pattern recognition and discuss device-specificimplementations.

7

2 Background

2.1.1 Pattern Recognition

Pattern recognition algorithms can still outperform machine learning algorithms when, forexample, the required data is unavailable or insufficient. One important step in many patternrecognition algorithms is the extraction of features. However, feature extraction also playsan important role in classical machine learning algorithms. Features are points of interestextracted from images to describe their content. A feature can be a corner, an edge, or aregion in an image. To detect the same features in different images, it is very important toachieve high repeatability and distinctiveness against different image transformations, such asviewing angle, blur, or noise. To achieve high repeatability, an algorithm must detect featuresat different locations invariant to rotation, scale and changes in brightness or contrast.
The feature extraction process contains two steps, namely feature detection and featuredescription. Numerous computer vision tasks, such as object detection, object tracking andSLAM, need to extract features. Based on the current state of research, this thesis focuseson the following three algorithms:
• AKAZE [20] detection: Due to the nonlinear scale-space in this algorithm, it outperformsother algorithms in terms of repeatability.
• ORB [19] detection: It outperforms other algorithms in terms of computational speed andachieves good results in terms of repeatability.
• FREAK [24] description: The algorithm is resource efficient, not as computationally intensive,and when combined with AKAZE or ORB, it achieves better repeatability results than otherdescriptors.

2.1.2 Feature Detection, Description and Matching

Features Detection: One of the first steps in many computer vision applications such asobject recognition, image registration and motion tracking, is feature detection [34]. Imagefeatures can be divided into two main categories, namely global and local features [35].Global features usually describe an entire image, for example, using a multidimensionalfeature vector. Among other things, this vector contains information regarding resolution,colors, textures, and shapes. Local features, on the other hand, describe individual points ofinterest in an image separately. They are called features, points of interests or keypoints. Asshown in Figure 2.2, one can distinguish between three different types:
• Corner: FAST [36, 17, 37] and Harris [38]
• Edge: Canny [18] and Sobel
• Blob: DoH (Determinant of the Hessian) and DoG (Difference of the Gaussian)
Scale-Space: Multiscale feature detection algorithms build a scale-space to detect featuresindependent of their scale. This scale-space represents the same image in different sizes byresizing the image as shown in the middle of Figure 2.2. How this scale-space is created mayvary among different feature detection algorithms.
Feature Descriptor: A feature descriptor describes the individual features to create a uniquepattern so that they can be compared. It describes a feature based on its neighboring pixels

8

2.1 Object Detection

blob edge

corner

feature types

scale

original image

scale space

y

x

orientation
Figure 2.2: Three different feature types (left). Scale-space needed for scale invariance (mid-dle). Orientation needed for rotation invariance (right).
within a certain range, which depends on the scale size of the feature. Mostly, it selects andcompares the surrounding pixels according to a certain pattern. An important property of agood feature description algorithm is that the described features are invariant to rotation. Itcan achieve this by calculating the orientation of the surrounding pixels, as shown on theright side of in Figure 2.2. Feature descriptors usually store their results in a floating-point orbinary representation.
• Floating-point: like in SIFT (Scale Invariant Feature Transform) [39] or SURF (Speeded UpRobust Features) [40]
• Binary: like in BRIEF (Binary Robust Independent Elementary Features) [41, 42], FREAK [24]or BRISK (Binary Robust Invariant Scalable Keypoints) [43]
BinaryDescriptor: A binary feature descriptor is a feature vector consisting only of a sequenceof ones and zeros. It describes each feature by a bit vector. One advantage over floating-pointdescriptors is that it can use the Hamming distance instead of the Euclidean distance forfeature matching. Many algorithms use them to improve the computational speed of thefeature description and the subsequent algorithms. They work with intensity comparisonsbetween the pixels surrounding the feature using sampling patterns. For example, thedescriptors BRIEF and rBRIEF (rotated BRIEF) use random sample points around the selectedfeatures. The BRISK descriptor uses concentric circles around the feature and then performsintensity comparisons. The FREAK descriptor is based on the retinal scanning pattern toperform intensity comparisons.
Properties: Feature extraction algorithms can differ in several properties regarding theirability to detect and describe features. Mikolajczyk et al. [44] categorize these properties asfollows:
• Robustness describes the ability of detecting the same feature locations regardless ofscale, rotation, shifting, or problems caused by the image quality, such as compression ornoise.
• Repeatability is the ability of recognizing the same feature under different photometricand geometric transformations.
• Accuracy is the ability of a feature detection algorithm to precisely locate the pixel positionof image features. This property is particularly important for image comparison tasks.

9

2 Background

• Generality describes how well features can be detected in different types of applications.
• Efficiency is the ability to detect features in images in a reasonable time. This property isespecially important for real-time tasks.
• Quantity describes the ability of a feature detection algorithm to detect all or most of thefeatures in an image.
Feature Matching: Many pattern recognition algorithms are based on the feature detec-tion and description process. Simple object detection algorithms compare features of twodifferent images to find the same object in both images. They compare the descriptors oftwo or more images to identify similar features. They use distance metrics to determine thesimilarity or distance between two feature descriptors. The most used distance metrics arethe Euclidean distance for floating-point descriptors and the Hamming distance for binarydescriptors. They use algorithms like k-NN (k-Nearest Neighbors) to eliminate outliers. Anobject tracking algorithm compares consecutive images of a video with each other. Algo-rithms such as SLAM [31] use well-known feature extraction algorithms, like ORB. SLAMrefers to a method of robotics in which a mobile robot must simultaneously create a map ofits environment and estimate its location in space within that map.

2.1.3 Multiscale Feature Detection and Description Algorithms

Several algorithms exist that detect and describe image features in a multiscale environment.Two of the first and most known multiscale feature detection and description algorithms areSIFT [39] and SURF [40]. SIFT has achieved remarkable success in many computer visionapplications and SURF is a computational efficient alternative. Both approaches and manyrelated algorithms build on the Gaussian scale-space and use its derivatives as smoothingkernels for scale-space analysis. This approach has some important drawbacks sinceGaussianblurring does not preserve object boundaries and smooths both detail and noise to thesame degree at all scale levels. SIFT identifies features using the DoG. Its descriptor isrepresented by histograms of image gradients calculated at each image point around thedetected feature. SURF uses integral images to accelerate the convolution, and its detectoris based on the Hessian matrix. Its descriptor is like SIFT but uses Haar wavelets. While SURFhas its advantages within its computational speed, SIFT outperforms SURF in cases of imagetransformations like rotation and scaling.
Several feature detection and description algorithms, such as ORB, BRISK, KAZE, AKAZE andFREAK have been proposed to improve the computation time and/or repeatability of SIFTand SURF. Alahi et al. [24] proposed FREAK, which is a binary descriptor inspired by thehuman retina. It describes features by efficiently comparing image intensities across a retinalsampling pattern. Leutenegger et al. [43] proposed BRISK, which uses the FAST detector.They use a binary descriptor computed from intensity comparisons obtained by selectivelysampling each feature in its neighborhood [45].
Rublee at al. [19] proposed ORB, which combines the FAST corner detector [36, 17, 37] andthe BRIEF feature descriptor [41, 42]. They improve the algorithms by adding a pyramidscheme to achieve scale invariance and the intensity centroid function to achieve rotationinvariance. Different works show that ORB performs better than SIFT, SURF, BRISK and AKAZEin terms of computation time. FAST is a high-speed corner detector that detects corners, by

10

2.1 Object Detection

comparing 16 pixels that lie on a circle around a feature. BRIEF is a binary descriptor that isbased on pairwise intensity comparisons of image patches [45].
Alcantarilla et al. [46] proposed KAZE, to improve the repeatability of feature extractionby creating a nonlinear scale-space. They show that KAZE achieves a better repeatabilitythan other algorithms, such as ORB, BRISK, SIFT and SURF. Alcantarilla et al. [20] proposedAKAZE, to close the performance gap between KAZE and algorithms such as ORB and BRISKby using FED (Fast Explicit Diffusion), since the creation of the nonlinear scale-space is acomputationally intensive process.
Only a few works have dealt with the comparison of the different algorithms and the testingof new combinations. D. Dwarakanath et al. [45] compared various combinations of differentfeature detectors, like SIFT, SURF, BRISK, ORB, KAZE and AKAZE, and different descriptors, likeBRIEF and FREAK, for stereo vision of 3D applications. The best results in terms of repeatabilitythey achieved with the combinations of AKAZE-BRIEF and of KAZE-FREAK. Unfortunately, theydid not achieve good repeatability results for the combination of AKAZE-FREAK. However,the KAZE algorithm in its original form performed best, but is also the slowest in terms ofcomputational speed. Song et al. [47] use the FREAK algorithm in a solar image matchingsoftware. They combined the SIFT, SURF and AKAZE detectors with FREAK and evaluateddifferent configurations to find the most suitable for their use case. The AKAZE-FREAKcombination provided the best results for their application.

2.1.4 ORB

The ORB [19] algorithm relies on the oFAST (oriented FAST) corner detector [36, 17, 37] andthe rBRIEF feature descriptor [41, 42]. Both offer good performance with low computationalcosts. They augment the FAST detector with a pyramid scheme to create a multiscalealgorithm and achieve scale invariance. They add the Intensity Centroid function to the FASTto compute the dominant orientation of a pixel and achieve rotation invariance [48]. They adda Harris corner detector [38] to reject edges and provide a reasonable score. The detectorpasses the orientation values to the rBRIEF descriptor in addition to the features. BRIEF is adescriptor that uses simple binary tests between pixels in a smoothed image patch, to createbinary strings, to reduce its construction and matching time.
The pyramid scheme consists of multiple levels, to detect features at different scales toachieve scale invariance. Each level represents a scaled image of the original image. However,this also means that the algorithm performs the subsequent functions on each image inthe scale-space to detect features. There are various methods for resizing an image. Forexample, there is the nearest neighbor method, bilinear interpolation, and area interpolation.The nearest neighbor method is computationally faster but loses more image informationbecause it takes the closest pixel of the original image to create the pixel of the resized image.The interpolation methods try to include the image information of the neighboring pixels toreduce this information loss.
The FAST corner detector uses a Bresenham circle of radius three, as shown in Figure 2.3. Asegment test considers the 16 pixels on the Bresenham circle and the center pixel p (pixelunder test). The detector classifies p as a corner if there are n contiguous pixels on theBresenham circle, which satisfy one of the two conditions. It was observed that for n = 9contiguous pixels the best results were obtained.

11

2 Background

15

11
10

16

141312 p

21
3

456
7

89

Figure 2.3: The 16 contiguous pixels of the Bresenham circle used in the FAST detector todetect corners [17].
• All pixels are brighter than the intensity of pixel p plus a threshold t (Ip + t).
• All pixels are darker than the intensity of pixel pminus a threshold t (Ip – t).
One problem that the FAST detector faces is that it detects multiple features adjacent to oneanother, which means that it detects redundant corners. To solve this problem, it appliesNMS (Non-Maximum Suppression) on the detected features. This method suppresses acorner if it does not have the local maximum value. Therefore, it searches in a squaredwindow around the pixel if all other pixel values are below the value of the observed pixel.To apply NMS, there must be a score or response function that describes the strength of acorner (V).

v = max

 ∑
x∈Sbright

∣∣Ip→x – Ip∣∣ – t, ∑
x∈Sdark

∣∣Ip – Ip→x

∣∣ – t (2.1)
Sbright = {x|Ip→x ≥ Ip + t} , Sdark = {x|Ip→x ≤ Ip – t} (2.2)

The intensity centroid function assumes that the brightness centroid of a feature is offsetfrom its center. Thus, when considering a field around a feature, where the feature is thecenter, a vector that starts at the center and points to the centroid is used to determine theorientation. Defining the moments as mpq, the centroid can be determined as C and theorientation of the patch as θ, where atan2 is the quadrant-aware version of arctan.
θ = atan2(m01,m10) (2.3)
C = (m10

m00 ,
m01
m00

)
(2.4)

2.1.5 (A)KAZE

Alcantarilla et al. [46] proposed KAZE, a multiscale 2D feature detection and descriptionalgorithm. KAZE describes 2D features in a nonlinear scale-space by means of nonlineardiffusion filtering. It is the first algorithm to use the nonlinear diffusion in multiscale feature

12

2.1 Object Detection

detection. The advantage is that nonlinear diffusion filtering is adaptive to the local imagestructure, as shown in Figure 2.4. This reduces noise and keeps image boundaries in higherscale levels, unlike the Gaussian scale-space (linear diffusion), which evenly smooths allstructures in an image. The algorithm shows that it is possible to obtain multiscale featuresthat achieve much higher repeatability and distinctiveness than other algorithms, by usingnonlinear diffusion filtering. The main drawback of KAZE is the computational intensityneeded to build the nonlinear scale-space.

t i =5.12 t i =20.48 t i =81.92 t i =130.04 t i =206.42
Figure 2.4: Comparison between the Gaussian and nonlinear diffusion scale-space for severalevolution times ti. First row: Gaussian scale-space (linear diffusion). Second row:nonlinear diffusion scale-space [46].
Alcantarilla et al. [20] also proposed AKAZE, which is based on KAZE. It aims at reducingthe computation time, while preserving the high repeatability of KAZE. AKAZE uses FED toaccelerate the creation of the nonlinear scale-space. In addition, FED is simpler to imple-ment and more accurate. Furthermore, they introduced a binary descriptor called M-LDB(Modified-Local Difference Binary). It is rotation and scale invariant and reduces computationtime and memory requirements compared to M-SURF (Modified SURF) used in KAZE. Theimplementation of the AKAZE algorithm contains four parts: (1) computing the contrast factor,(2) building the nonlinear scale-space, (3) detecting features and (4) describing features.
The contrast factor (k) is important for building the nonlinear scale space. It first smooths theimage with a Gaussian filter. It then calculates the maximum absolute gradient values (hmax)of the smoothed image pixels. It then fills a histogram of 300 bins with the gradient values. Itthen loops over the histogram to find its index i at which the 70 percentile of the gradienthistogram is achieved.

k = hmax · i
300 (2.5)

The scale-space is built by numerically solving the partial differential equation iteratively usingFED with varying time steps τi.
∂L
∂t = div(g(|∇Lσ|) · ∇L) (2.6)

L
j+1 = (I + τjA(Lj))Lj (2.7)

g(|∇σ|) = 1
1 + |∇Lσ|2

k2
= k2
k2 + |∇Lσ|2 (2.8)

13

2 Background

g(|∇Lσ|) is the conductivity function (or flow function) and A(L) is the matrix notation of thisfunction. The conductivity function depends on the contrast factor k. This thesis adjustedthe equation, to prevent from using two division operations. For each pixel, computing theconductivity function requires one division, two multiplication and two addition operations.Additionally, each FED step needs five multiplication and twelve add/subtract operations foreach pixel. The conductivity function and the high amount of FED steps is what makes AKAZEso computationally intensive.
The scale-space of AKAZE is a pyramidal framework. It consists of octaves and each octaveconsists of sublevels. The amount of both octaves and sublevels is four in the baselineconfiguration. For each new octave it quarters the image size.
After creating the nonlinear scale space, AKAZE calculates the DoH blob detector for eachimage in scale space. The scale size of the DoH increases with each sublevel. That is also whyAKAZE downscales the images at each octave. A pixel of the DoH image is a feature if its valueexceeds a threshold T and is maximum in a 3 × 3 window within the DoH image. A furtherstage filters the resulting features by comparing all features with each other. It suppresses afeature if its value is not maximum in a σ × σ window of the same, the upper and the lowerscale-space level. At the end, the algorithm calculates a SR (Subpixel Refinement) for eachfeature.

2.1.6 FREAK

Alahi et al. [24] presented the FREAK descriptor, which creates a binary string through intensitycomparisons. It uses the human eye as a model, where intensity comparisons are basedon the pattern of the retina. FREAK does not use all pixels of the neighborhood, but mapsvalues from areas of the neighborhood according to a certain pattern.
The retina has four areas that perform different tasks. It is noticeable that the densitydecreases exponentially towards the outside of the retina. The FREAK creates the samplingpattern according to the distribution of each area. The inner part of the retina shows manysmall circles, while the outer part shows large circles. These circles correspond to receptivefields in the eye, as shown in Figure 2.5. As a result, it weights points that are close to the centermore heavily than those located further away. The radii of the circles increase exponentiallytowards the outside, while the weights of the sampling points decrease exponentially.
The algorithm calculates an integral image for the fast calculation of the area of these circles.Furthermore, it simplifies the circle with radius r by placing a rectangle around the circle. Thevalue of a pixel in the integral image (Ix,y) represents the sum of all pixel values of the inputimage whose x and y coordinate is smaller or equal. The algorithm can calculate a squarearea in the input image, by using the values of the four corner pixels in the integral image.

intensity = Ix+r – Ix–r + Iy+r – Iy–r2 · r2 (2.9)
It compares two different sample points for each intensity comparisons. Having 43 samplepoints results in 903 different intensity comparisons. Furthermore, it only compares samplepoints whose receptive fields overlap. The descriptor consists of a total of 512 of these pairs.Increasing this number did not show any noticeable improvement. The descriptor results ina 512bit wide binary vector describing the feature. It assigns 128 bit to each of the four areas

14

2.1 Object Detection

Figure 2.5: Illustration of the FREAK sampling pattern similar to the distribution of retinalganglion cells with their corresponding receptive fields. Each circle represents areceptive field [24].
of the retina. The importance of these partial vectors decreases starting from the innermostregion of the retina.
For the descriptor to become invariant to rotation, it forms the gradients between the samplepoints. It uses only pairs that have a particularly large distance to each other and can bemapped to each other due to their symmetry. The descriptor then takes the average of thesegradients to determine its main orientation. It uses 45 pairs to calculate the orientation. Dueto the large receptive fields in the outermost region, the errors in the orientation calculationare allowed to be larger than in BRISK. Due to this approach, thememory required to calculatethe orientation is 1/5 of BRISK.

2.1.7 FPGA Implementations

Detecting and describing features on high-resolution images at high frame rates requires anoptimized implementation. Depending on the required computational power, it needs eithera multicore CPU, a GPU or an FPGA. The following will look at the various implementationsfrom the SoA. It will mainly focus on AKAZE, ORB and FREAK, as this thesis also implementsthem. Table 2.1 shows five different FPGA implementations that focus on these three featureextraction algorithms.
Two different research groups investigated the implementation of the ORB algorithm. Leeet al. [54, 49] proposed an FPGA implementation of the ORB algorithm. Fularz et al. [50]proposed an FPGA implementation of the FAST corners and the BRIEF descriptor, which arepart of the ORB. In the second work, the authors omit the implementation of the orientation,which is necessary to achieve rotation invariance. Both implementations did not create ascale-space, so the implementations are not scale invariant in comparison to the originalalgorithm. The creation of a scale-space would multiply the resource consumption of thedetector. The second work uses a higher resolution, thereby only achieves a lower framerate. However, they calculate 3.24 times more pixels per second than in the other work.Unfortunately, there is no reliable information about the repeatability in both papers, whichmakes a more precise evaluation of the design difficult.

15

2 Background

Table 2.1: Different FPGA implementations for feature detection and description.
ORBLee [49] FAST & BRIEFFularz [50] AKAZEJiang [51] FREAKBello [52] SURF & FREAKZhao [53]

Resolution 640 × 480 1920 × 1080 1920 × 1080 800 × 600
FPGA type Artix7 Artix7 Virtex5 Virtex5 Kintex7
Frequency [MHz] 100 100 200 108 122
fps 100 48 111 15 60
FF 6411 9543

0.95M

gates

1975 60044
LUT 31677 4118 6706 147190
DSP 14 139
BRAM [36 kbit] 31 31 2.12 Mbit 4 289

The main problem of the AKAZE algorithm is the computation intensiveness. Jian et al. [51]presented an FPGA implementation of the AKAZE algorithm that achieves real-time perfor-mance. However, the design is not that flexible to be integrated in other systems. Theymade several optimizations to the algorithm to improve performance and reduce resourceutilization. They achieve a 111 fps (frames per second) for an image resolution of 1920×1080.The good performance comes with a small loss of repeatability compared to the originalimplementation. A missing part in their work is the calculation of the contrast factor, which isessential for the construction of the nonlinear scale-space. In addition, the hardware testingmethodology in this paper is very vague.

Only few implementations of the FREAK algorithm exist and none of them implements thecomplete algorithm. Bello et al. [52] implemented the FREAK on an FPGA with approximationsto the original algorithm to accomplish their hardware requirements. For example, theydo not implement the integral image which is needed as input by the FREAK algorithm.They achieve 14 fps for 1000 features running at 108MHz on an XC7Z020. Zhao et al. [53]presented an FPGA-based system for traffic sign detection. In their implementation, theyuse the SURF detector together with the FREAK descriptor. The resource utilization of theirimplementation is relatively high, although it includes the SURF algorithm. They reach 60fps at 122MHz for an image resolution of 800 × 600. They did not specify the number ofprocessed features, although it is decisive for the computational speed of the descriptor. BothFREAK implementations do not show repeatability results needed to evaluate the accuracyof the implementation. Both implementations also do not integrate the calculation of theorientation needed for rotation invariance.

An important part of the FREAK algorithm is the calculation of the integral image. However,there are also other algorithms that benefit from calculating the integral image, such as theViola and Jones [55] and the AdaBoost [56] algorithms. Svab et al. [57] implemented theintegral image for the SURF algorithm. Chakrasali et al. [58] have taken a similar approachfor their implementation. Both show a simple and efficient architecture of the integral imagethat computes one pixel after each other. Unfortunately, they do not show the performanceor resource utilization of the integral image function.

16

2.2 Heterogeneous Systems

2.2 Heterogeneous Systems

In the past decade, there has been a significant growth towards parallel computing archi-tectures and heterogeneous systems. Primary reasons for this growth are the decreasingtransistor size and power wall. Parallel architectures can achieve high performance with animproved energy efficiency, while running at a slower clock speed. In the past, there havebeen several optimization strategies to increase parallelism and throughput of these architec-tures. Among them are ILP (Instruction-Level Parallelism), DLP (Data-Level Parallelism), TLP(Task-Level Parallelism), out-of-order execution, branch prediction and specialized instructionsets. The combination of those strategies with leads to a variety of architectures, with differentstrengths, weaknesses and uses. The architectures have different strengths and requiredifferent strategies to exploit their full potential and parallelism. Most known examples areCPUs, GPUs, ASICs and FPGAs. By combining different architectures in a heterogeneoussystem, one can benefit from the relevant advantages, compensate their disadvantages, andincrease efficiency. Heterogeneous systems are becoming more and more important due tothe increasing performance and energy requirements of more complex applications.
Before discussing the topic of application distribution, this section addresses some character-istics and distinctions of computer architectures. For this reason, this thesis divides the fieldof computer architectures into the following five main areas, namely computing, memory,communication, topology, and I/O. The smallest unit observed in the computing area is aPE. Wanhammer [59] describes a PE as follows: "PEs usually perform simple, memory-lessmappings of input values to a single output value". When using the term PE in this thesis,it includes the internal memory and control circuits, as such granularity and complexity issufficient.
Memory architectures can be split into two groups: (1) distributed and (2) shared memory.On the one hand, PEs can access the shared memory symmetrically and with the sameaccess time (UMA (Uniform Memory Access)). On the other hand, PEs can access the sharedmemory asymmetrically, resulting in different access times (NUMA (Non-Uniform MemoryAccess)). In distributed memory systems, each PE has its own memory and the PEs exchangedata via messages. The field of supercomputing often follows a hybrid approach, where adistributed memory system interconnects several shared memory architectures [60].
The communication infrastructure also plays an important role in heterogeneous parallelcomputing architectures. The choice of the communication infrastructure, for example a bus,depends on the scalability and number of physical nodes in the system. Communicationrequirements between the different nodes can be met by using a NoC as a scalable solutionto shared buses [61]. NoCs have many advantages when it comes to connecting largearchitectures and enabling dynamic communication. Further benefits are their modularity,flexibility, reusability and reprogrammability [62]. NoCs are also valuable for data-intensiveapplications such as: VOPD (Video Object Plane Decoder), MWD (Multi Window Display) andDMC (Depth Map Computation) [63]. Numerous FPGA-based systems use NoCs, such as inRAMPSoC [64], RAR-NoC [65], Hoplite [66] or RingNet [67].
In the embedded system domain, heterogeneous MPSoCs have proven to be a good solutionto meet the increasing performance requirements of more complex applications. They canprovide higher performance, energy efficiency and lower costs compared to homogeneousMPSoCs [68]. They can have different types of physical nodes, like PUs (Processing Units),ACs (Accelerators) or I/Os, interconnected via a communication infrastructure. Figure 2.6

17

2 Background

shows an example MPSoC containing multiple physical nodes, which are interconnected bya NoC. In the HPC domain, heterogeneous FPGA-based clusters are proving to be an idealsolution due to their performance, flexibility, and energy efficiency.
R R R

R R R

R R R

AC IO AC

PU PU PU

AC IO AC

Figure 2.6: Heterogeneous MPSoC using a NoC as communication infrastructure, includingRouter (R), I/O (Input/Output), PU (Processing Unit) and AC (Accelerator).
Rethinagiri et al. [69] show the potential of heterogeneous platforms containing CPUs, GPUs,and FPGAs for both HPC and embedded systems. Furthermore, they show the energyefficiency of different platform combinations. Applications have been hand optimized usingC/C++, CUDA and VHDL. However, there is also a version that shows the potential of usingOpenCL as a common language for all platforms. They used OmpSs [70] to program theXILINX FPGA using OpenCL. Unfortunately, they did not optimize the OpenCL model and onlyachieve 1/8 of the performance of the hand optimized implementation.
The next subsection will introduce FPGAs and their benefits over other compute devices.The following subsection will present different FPGA-based systems from the embeddedsystem and HPC domains. Thereby, this thesis investigated different computer architectureareas, with focus on computing, communication, and topologies. The end of this section willsummarize the gained knowledge, refer to this thesis and present a common terminologyfor the embedded system and HPC domains.

2.2.1 FPGA-based Systems

FPGAs enable rapid prototyping, fast emulation, and exploration of new architectures withoutthe overhead of ASIC production [61]. They offer reconfigurability, a higher degree of flexibility,and lower development costs than ASICs, for both embedded and HPC systems. Recentdevelopments have brought FPGAs to the point of closing the gap to GPUs, in terms of rawperformance, while being more energy efficient [8]. For example, XILINX’s Alveo U250 FPGAoffers 1728k LUTs (Lookup Tables), 3456k FFs (Flip-Flops), 12 288 DSPs and 54MB of on-chipmemory, achieving up to 33.3 INT8 TOPS (Terra Operations per Second) of raw performance.To further increase energy efficiency and flexibility, DPR (Dynamic Partial Reconfiguration)can be used to reconfigure selected regions of an FPGA at runtime while the remainingregions continue to operate [71]. The reconfiguration time of a region is faster than that ofthe entire FPGA, since it mainly depends on the byte size of the bitstream [71]. A bitstream isa generated file that is needed to configure the FPGA.

18

2.2 Heterogeneous Systems

In recent decades, power consumption has become a dominant factor in the developmentof computer architectures, making the energy efficiency of the various compute devicesincreasingly important [6]. Many researchers have shown that FPGA-based systems canachieve comparable compute performance to high-end GPUs and higher energy efficiencythan CPUs and GPUs [7, 8]. While ASICs are still more efficient than FPGAs, newer FPGAtechnologies are diminishing the gap as they also incorporate more dedicated DSPs andon-chip BRAM (Block Random-Access Memory) [7]. Due to the enormous computationalcapacity needed in various application fields, researcher have introduced several approachesthat address this problem by combining multiple FPGAs in one large system [72, 73, 74, 75].One challenge of such systems is the scalability, as they need to distribute multiple computedevices over a large infrastructure [76].
An increasingly common solution is the use of clusters consisting of efficient compute devicesinterconnected by high-performance networks [77, 76, 6]. The slowdown of Moore’s Lawcombined with the growing size of data center infrastructure makes specialized computedevices extremely valuable [76]. Therefore, using an FPGA-based cluster is a simple andeffective technique to achieve high computational performance thanks to massive parallelprocessing [78]. FPGA-based clusters are widely used for the internet of things, digital signalprocessing, and prototyping [79]. Recently, data centers with clusters that contain multipleFPGAs or clusters that directly connect multiple FPGAs have become more common [80, 81,79]. In this context, widely used environments such as Hadoop [73] and Spark [80, 79] areused for distributed computing.
FPGAs provide a high degree of reconfigurability and flexibility, whichmakes them very suitablefor hardware emulation and prototyping. Due to advances in semiconductor technology andmanufacturing, they can emulate very large systems. However, large FPGA systems, such asthe CHIPit from Synopsys, can be very costly. To reduce these costs, a cluster of off-the-shelfFPGA boards [82], such as proposed by Mentens et al. [83], can be used as an emulationplatform. Examples such as the Zedwulf of Moorthy et al. [74] and the ZCluster by Lin etal. [73], demonstrate the growing need for such low-cost FPGA clusters. Both approachescombine several low-cost commercial FPGA boards, such as the ZedBoard [82] containing anARM-FPGA-based SoC. Using an FPGA cluster does not only reduce the costs of an emulationplatform, but also increases the maximum number of available resources. Another advantageis expandability, as new FPGAs can be added without having to replace the entire systemwhen running out of resources.

2.2.2 Communication and Topology

Off-chip communication, between different components of an FPGA-based cluster, increaseslatency and limits data throughput. To design high-performance clusters, a scalable topologyand an efficient communication infrastructure with low overhead is needed [78]. One chal-lenge is the interconnection between the different compute devices. They can be connectedeither directly or indirectly, as shown in Figure 2.7. In a direct network, each node in thenetwork is both an FPGA and a switch. In an indirect network, the nodes are either a switchor an FPGA.
A large portion of existing FPGA clusters consist of multiple CPU-based compute nodes, whereone or more FPGAs are connected to the rest of a compute node (e.g. the CPU) via PCI-e(Peripheral Component Interconnect Express) bus. In many cases, the communication and

19

2 Background

CPU

FPGA

FPGA

CPU

FPGA

FPGA

R R

R R

CPU

FPGA
FPGA

CPU

FPGA
FPGA

switch

Figure 2.7: FPGA-based cluster with inter-FPGA connection using a direct (left) or indirect(right) network. R = Router
control between different compute nodes in a cluster is done by the CPUs via Ethernet [77,6]. The detour of sending data via the CPU often results in a bottleneck and increases latency.Therefore, many clusters additionally connect all FPGAs in the system via an Ethernet switch,such as in the Microsoft Catapult system [76]. Indirect inter-FPGA communication withoutthe detour of sending data via the CPU enables a lower latency and higher bandwidth [84],as shown in Figure 2.7 on the right.
However, the use of switches can limit the scalability of the overall system. Therefore, tightlycoupled FPGA clusters contain a dedicated network in which the FPGAs are directly connectedto each other [78], as shown in Figure 2.7 on the left. In this type of connection, each FPGArequires its own router. The communication between two FPGAs is done via two or morerouters. The maximum number of routers on the communication path between two FPGAsdepends on the size and topology of the cluster.
In many systems with a direct connection between FPGAs, they are interconnected in aring or line topology, which is sufficient for medium sized clusters [85, 86, 79, 87]. In thevarious publications, Gbit transceivers have shown to be among the best performing andmost efficient physical link types between FPGAs. Many clusters suffer from poor scalabilityand become inefficient when it comes to building a large cluster. Therefore, mesh and torustopologies provide a significantly improved scalability of the overall system and can connecthundreds of compute nodes within a cluster [78].
A common problem in large distributed systems is that different protocols cannot commu-nicate directly with each other. Wu et al. [88] presented a flexible FPGA-based inter-nodecommunication interface that can transmit different bus protocols, such as PCI-e or Ethernet,simultaneously. Other researchers rely on less generic approaches for the communicationinterface. Some are specifically designed for FPGAs and can therefore be implemented moreresource efficient. Markettos et al. [75] describe building a reliable FPGA cluster containinghundreds of low-cost commodity FPGA boards interconnected using BlueLink, a lightweightmodular interconnection library.
One alternative is the use of wireless networks [89]. These allow direct communicationbetween different compute nodes in a cluster without routing through other FPGAs orrouters. However, large data centers require very large bandwidths, which is why they relyon hardwired connections. Knodel et al. [72, 90] presented a scalable cluster infrastructureconsisting of multiple hybrid CPU/FPGA compute nodes. They employ a high-bandwidth inter-FPGA link using multiple Gbit transceivers (100Gbit) in addition to a global inter computenode link via Ethernet (40Gbit). External connections can always add additional points offailure. Therefore, Fox et al. [91] proposed an error detection and correction method.

20

2.2 Heterogeneous Systems

Which topology suits which communication type strongly depends on the application and itsconstraints. These constraints can be cost, size, flexibility, scalability, robustness, or powerconsumption. Therefore, a widely used approach is to develop a custom FPGA cluster basedon an application. Buscemi et al. [92] presented a design for a digital wireless channelemulator based on a cluster of 64 FPGAs. Kono et al. [93] presented a tightly coupled FPGAcluster for Lattice Boltzmann computation.
Heterogeneous computing architectures consisting of different compute devices often havea problem with a direct communication between them if they are from different vendors. Var-ious vendors offer driver support for direct communication with their compute devices overPCI-e, for example using DirectGMA from AMD or GPUdirect from NVIDIA. Communicationbetween compute devices from different vendors often has to be done via the host CPU dueto incompatible drivers. It is obvious that this is inefficient, leads to an increased latency andfurther limits the bandwidth. Communication between two compute devices is either donevia a shared PCI-e bus or a vendor specific direct physical connection, e.g., NVSwitch andNVLINK from NVIDIA. On the FPGA side, a customized IP (Intellectual Property)-core includingdrivers enable a direct connection to a GPU. Table 2.2 compares two different approachesin which direct communication between GPUs and FPGAs is enabled via PCI-e bus. Amongother things, the table compares the resource consumption of the PCI-e IP-cores and theirachieved bandwidth. The method from Bittner et al., where the GPU is master, achievesbetter performance, but requires more resources.

Table 2.2: Two approaches for direct GPU-FPGA communication over PCI-e.
Thoma 2013 [94] Bittner 2012 [95]

GPU NVIDIA 8400 GS NVIDIA 580 GTX
FPGA XILINX ML506 XILINX ML605
DMA master FPGA GPU
GPU driver Gdev & Nouveau NVIDIA
Bandwidth (FPGA-to-GPU) [MB s–1] 203 500
Bandwidth (GPU-to-FPGA) [MB s–1] 189 1800
FPGA LUT 6234 7839
FPGA FF 4090 6965
FPGA BRAM 8 29

2.2.3 FPGA-based Clusters

This subsection presents five modern FPGA-based clusters shown in Table 2.3. It shows thetypes of CPUs and FPGAs each compute node in a cluster uses. It shows how the inter-nodecommunication between CPU and CPU or FPGA and FPGA takes place. The communicationbetween CPU and FPGA within a compute node is usually done on-chip or via PCI-e.
Bai et al. [77] proposed a low-cost cluster using 48 XILINX Zynq-7020 ARM-FPGAs-based SoCs.They use the ARM for node-to-node communication via MPI (Message Passing Interface),while using the FPGA for more complex computations. They connect the compute nodes

21

2 Background

Table 2.3: Comparison of five FPGA-based cluster. ETH (Ethernet)
Bai2017 [77] Hernandez2018 [6] Caulfield2016 [76] Takano2019 [79] Ueno2019 [78]

CPU 1x ARMCortex-A9 1x ARMCortex-A9 2x IntelHaswell 1x IntelCore-i7 4770 1x IntelXeon 5122
FPGA 1x XILINXArtix-7 1x IntelCyclone-V 1x IntelStratix-V 1x XILINXKintex-7 4x IntelArria-10
CPU-CPU 48-portGbit ETH 2x4-portFast ETH

40GbitQSFP+(shared)
ETH HUB1000 BASE-T

16-port100GbitInfiniBand
CPU-FPGA yes yes PCI-eGen3x8 PCI-eGen2x4 PCI-eGen3x8
FPGA-FPGA no no 40GbitQSFP+ring (shared)

4Gbitcoaxialring
40GbitQSFP+torus

Compute node 48 SoC 4 SoC - 4 8

via Gbit Ethernet switch to form a local area network. They evaluated the cluster with anasymmetric encryption algorithm, called RSA (RivestShamirAdleman).
Hernandez et al. [6] proposed a low-cost cluster of Cyclone-V FPGAs, embedded in DE1-SoCboards, and connected to an ARM dual-core. The use two fast Ethernet routers to connectthe ARM CPUs with each other. They developed an OS based on a Debian 8, which runs onthe ARM CPU, for a fast network communication and to provide OpenCL support. Severalbenchmarks have been parallelized for the cluster and a workstation, to compare executiontime and energy consumption. The workstation has two Intel Xeon E5-2695 v3, which have14 cores and 28 threads each. The results show the efficiency of the cluster, which reducesenergy consumption by up to 83%whilemaintaining a similar performance to the workstation.In addition, the cluster is more than five times cheaper than the workstation, which is anadvantage of using low-cost FPGAs.
Caulfield et al. [76] describe an FPGA-based acceleration architecture for data centers thatis both scalable and flexible. By using FPGAs as I/O, between the server network card andbetween the local switch, the FPGA can serve as a network device and as a local computedevice. The FPGAs can communicate directly with each other over the network without goingthrough a CPU. They developed a reliable inter-FPGA communication protocol that achievescomparable latency to the previous SoA while scaling up to hundred thousand nodes. Theevaluated the architecture in multiple scenarios: to accelerate the Bing web search, as a localnetwork acceleration engine, and as a remote web search acceleration service.
Takano et al. [79] presented a cluster consisting of four compute nodes connected viaEthernet through a hub. Each compute node has an Intel Core-i7 CPU and a XILINX KintexKC705 FPGA connected via PCI-e. In addition, the FPGAs have a bidirectional connectionto each other via coaxial cables (4 Gbit) in a ring topology. Each FPGA has an internal busthat includes a router for FPGA-to-FPGA communication, a PCI-e DMA for CPU-to-FPGA

22

2.2 Heterogeneous Systems

communication, a bus DMA, a connection to the DDR (Double Data Rate) memory, controlregisters, a hardware ICAP (Internal Configuration Access Port) [96] and the user modules.The hardware ICAP, which was not used in their work, is capable of performing DPR for theuser modules. To distribute the application, they used the Spark system [80], which theyextended for FPGAs using Python. They implemented a JPEG encoder using HLS for the FPGAto evaluate the system. The overall execution time was shortest for a CPU-to-FPGA ratio of 9to 1.
Ueno et al. [78] presented a tightly coupled FPGA cluster. The host system consists ofeight (Intel Xeon 5122 x 2) CPUs connected via a 16-port 100 Gbit fat tree network switchusing InfiniBand cables. For their host-server network, they used the work of Sheng etal. [97], who presented a communication infrastructure that supports both online and offlinerouting. Each host is connected to up to four FPGAs via Gen3x8 PCI-e. In addition, theFPGAs are directly connected to each other in a 2D torus topology, which makes the systemvery scalable. Each FPGA has a common hardware-based system for efficient inter-FPGAcommunication. The system consists of a router, a flow controller [98], a serial transceiver,and a remote DMA controller. The remote DMA controller reads and writes from and to localmemory(s) on any FPGA controlled by the servers using MPI. The router is connected to fourbidirectional communication ports, adds header information to the message, and uses aX-Y routing algorithm. The measured payload bandwidth for a single FPGA-to-FPGA link is32.2Gbit s–1. Whereas the FPGA-to-host link reaches 7.88 GB s–1 and the host-to-host linkreaches 12.5GB s–1. The results show that the FPGA network is superior to the host networkin terms of communication delay between any individual nodes. On the other hand, thehost network is more effective for collective communication where performance is highlydependent on the bandwidth. When only the FPGA or the host network is used, an input tothe destination server becomes a bottleneck because there is no alternative route.

2.2.4 Summary

This part summarizes the knowledge gained from the SoA and relates it to this thesis. Itintroduces a common terminology that combines the embedded system and HPC domainsto bridge the gap between them. This thesis focuses on the computing and communicationareas, where topology also has a major impact. It uses a distributed (or hybrid) memorymodel, without going too much into detail about the memory architecture. Thereby, it willuse dataflow models and treat nodes that use a shared memory model as single unit. Thereduction in complexity has a significant impact on the application distribution process.
The system represents the top level, which comprises the entire architecture includingmemory, computing, communication, topology, and I/Os. Thereby, a distinction can bemade between heterogeneous and homogeneous systems. The concepts and methodsdeveloped in this thesis focus on heterogeneous FPGA-based systems. Within this context,it mainly considers MPSoCs in the embedded system domain and compute clusters in theHPC domain.
Figure 2.8 shows a common computing model for the two domains, which is derived from theOpenCL terminology. A later section will discuss the OpenCL API in more detail. A computecluster consists of 1 to n compute nodes. These can range from a classical PC (PersonalComputer) in the HPC domain to an energy efficient SoC in the embedded system domain.

23

2 Background

1..n1..n

1..n

0..10..1

1..n

GPU Core

ASIC

Compute Cluster

PC

SoC

Compute Node

GPU

CPU

FPGA

CPU (x86)

DSP

CPU Core

ASIP

CPU (ARM)

Processing Element (PE)

Compute Device

Compute Unit (CU)

ICAP

Host

HDMI

DMA

Accelerator
(AC)

Input/Output
(IO)

Processing
Unit (PU)

Figure 2.8: A combined computing model for embedded systems and HPC computing usingthe OpenCL terminology.
A compute node consists of 0 to 1 hosts and 0 to n compute devices. The host, which isnot always necessary in decentralized systems, is typically an ARM CPU in embedded or anx86 CPU in HPC systems. In the embedded domain, host and compute devices are usuallyon one SoC, which connects them via AMBA (Advanced Microcontroller Bus Architecture)interconnect on ARM-based systems. In the HPC domain, a compute node connects host andvarious compute devices via PCI-e bus. However, direct communication between computedevices from different vendors via PCI-e requires special drivers and IP-cores.
Loosely coupled compute clusters usually connect the various hosts via Gbit Ethernet orInfiniBand through a switch. Tightly coupled compute clusters additionally connect all com-pute devices in the cluster with each other. For example, via Gbit transceivers on XILINXFPGAs or via NVLINK on NVIDIA GPUs. The topology chosen for a tightly coupled intercon-nection network is mostly a ring. Depending on the size and scalability, line, mesh, and torustopologies can also be used. Which topology and which communication type is used stronglydepends on the application and its constraints. These constraints can be cost, size, flexibility,scalability, robustness, or power consumption.
A compute device can be a GPU, an FPGA, a multicore CPU or an ASIC. An embedded systemcould have an integratedMPSoC implemented on an FPGA or ASIC compute device. Examplesof ARM-based SoCs are the Tegra from NVIDIA [99] or the Zynq from XILINX [100].
A compute device consists of 1 to n CUs (Compute Units). This thesis distinguishes betweenthree types of CUs, which are I/Os, ACs and PUs. The difference between ACs and PUs is thatACs cannot act independently. In a multicore CPU, the CU would be a single core, referred asPU. On an MPSoC, the CU can be an AC, I/O or PU. On an FPGA-based MPSoC, this I/O wouldbe the IP-core needed for interfacing to the physical I/O. The different CUs can be directlyconnected to each other. For example, via ring bus in CPUs or NoC in MPSoCs. For GPUs,the connection between CUs within the same compute device usually does not exist.
The smallest units in the computing area considered in this thesis are the PEs. A CU canhave 1 to n PEs. Multiple PEs within a CU can be processed in SIMD manner, which enablesdata-level parallelism.

24

2.3 Application Distribution

Using a direct network topology is a useful approach for both off-chip communication betweencompute devices and hosts, and on-chip communication between CUs, if a scalable systemneeds to be set up using a NoC. In a direct network topology, each node has its own router.The off-chip communication can also be wireless. This allows a direct communication betweendifferent compute deviceswithout routing via other FPGAs or routers. However, many systemsprefer wired connections due to their reliability and available bandwidth.

2.3 Application Distribution

One challenge in the design or deployment of FPGA-based systems is the distribution ofapplication(s), which strongly depends on the communication model and the topology of theoverall system. A good distribution of an application reduces the influence of communicationoverhead between the different compute devices or CUs. However, most of FPGA-based sys-tems leave this task to the developer. While tools and libraries such as Simulink and SystemCare suitable for system-level modeling and simulation, automatic mapping to heterogeneousand distributed systems has proven to be a very difficult task [101]. Due to the increasingnumber of nodes in these systems, it needs a good algorithm to place communicating nodesclose to each other [63].
The following subsections deal with the different steps that are necessary to create anapplication specific FPGA-based system. Since this is a very complex problem and no onehas dealt with all steps, this thesis examines the problem for different types of FPGA-basedsystems and from different perspectives. Due to the high complexity, application distributionalgorithms use heuristics, metaheuristics, or even neural networks to solve these problemsin a reasonable amount of time. Therefore, the first subsection discusses metaheuristics.
The second subsection deals with the mapping and scheduling problem in NoC-basedMPSoCs and heterogeneous systems. It examines the classical mapping problem, which isalso relevant in non-FPGA-based systems. However, the architectures in these systems aremostly fixed and do not use the full potential of an FPGA. The third subsection examines DSEin FPGA-based clusters for neural networks. Neural networks are a computationally intensiveuse case, and DSE is part of all steps in the application distribution process. However, bybeing tied to the use case, both the toolchain and the resulting system lose generality.
The fourth section examines the clustering and placement problem for CLBs (ConfigurableLogic Blocks) in CAD tools. The fifth subsection examines the tuning, clustering, and placementproblem for PRRs. Both subsections deal with mesh-like structures and therefore havesimilarities. The last subsection summarizes the collected knowledge from the differentperspectives and systems and related them to this thesis. Based on this, it provides a genericdefinition for the different application distribution steps, including dimensionality, constraints,and objectives.

2.3.1 Metaheuristics

Many real-world optimization problems involve different complexities such as non-convexity,nonlinearities, discontinuities, and large dimensionality, making many mathematically prov-able algorithms ineffective or inapplicable [102]. There are no known mathematical models

25

2 Background

to find an optimal solution to all these problems in a limited computation time [102]. Anexample is the solution of the QAP (Quadratic Assignment Problem), where even for mediumsized problems of > 20 it is not possible to compute all possible combinations to find anoptimal solution. The first part of this subsection discusses the QAP as it describes theplacement problem in FPGA CAD tools. The following parts discuss the characteristics andclassification of metaheuristics. The last part describes four different metaheuristics used inthe SoA or in this thesis.

Quadratic Assignment Problem

The QAP addresses the problem of allocating a set of facilities to a set of locations, with thecost being a function of the distance and flow between the facilities, plus costs associatedwith a facility being placed at a certain location. The objective is to assign each facility to alocation such that the total cost is minimized. The problem can be described with three n× ninput matrices (F = (fi,j), D = (dk,l), B = (bi,k)). The first matrix describes the flow betweenfacility i and facility j. The second matrix describes the distance between location k andlocation l. The third matrix describes the costs of placing facility i at location k. The QAP isNP-hard and even finding an approximate solution within some constant factor from theoptimal solution cannot be done in polynomial time unless P=NP. [103]

Characteristics

In many optimization problems it is not necessary to find the best solution. In these cases, it issufficient to find the best possible solution in the available time. Therefore, algorithms usingheuristics are applied to optimization problems where it is not possible to find a solutionin a reasonable amount of time. Many heuristics are adapted to the problem that must besolved and often use greedy-based algorithms. They (1) look for an approximate solution,(2) do not particularly need a mathematical convergence proof and (3) do not explore eachpossible solution in search space [102].
Metaheuristics, on the other hand, are problem-independent and can therefore better searchthe solution space to avoid getting stuck in a local optimum. While they do not guaranteefinding an exact optimal solution, they can lead to a near-optimal solution in a computation-ally efficient manner [102]. The solution space describes the set of all possible solutions.Metaheuristics are often used to solve NP-hard problems. They are popular for solvingcombinatorial optimization problems because few classical methods can manage the type ofvariables they involve. Examples include knapsack problems, bin-packing, network design,traveling salesman, vehicle routing, facility location and scheduling [102]. Metaheuristicsinherit the heuristic properties to solve search and optimization problems [102]. They (1) seekto find a near-optimal solution, (2) usually do not have a rigorous proof of convergence to theoptimal solution and (3) usually are computationally faster than an exhaustive search [102].
To do this, they operate on a representation or encoding of a solution that can be easilymanipulated. The algorithm then performs a series of operations to iteratively convergeto the best possible solution. To this end, they evaluate potential solutions and perform aseries of operations on them to find a better solution in solution space. For this purpose, theobjectives of the optimization problem must be clearly defined. Metaheuristics are inherentlyan iterative process.

26

2.3 Application Distribution

• They start with an initial solution that is randomly generated in most cases.
• They need a search function to find new solutions in solution space.
• They need an evaluation function that rates solutions based on the objectives and con-straints.
• They need a termination criterion that is also based on the objectives and constraints.
When multiple objectives are involved, there is usually no single solution that represents theoptimum for all objectives. Rather, a variety of optimal solutions are possible, which representa compromise between the different objectives. These solutions are known as the Pareto-optimal solutions. For multi-objective optimization problems with conflicting objectives wherethere are multiple optimal solutions, population-based metaheuristics are often preferredso that the entire Pareto-optimal front can be represented simultaneously. [102]
Good metaheuristics balance between exploitation and exploration to search for new solu-tions. Exploration uses a global search behavior to avoid getting stuck in a local optimum.Exploitation uses a local search behavior that can find the nearest optimum.

Classification

Many metaheuristics are of a stochastic nature, mimicking a natural, physical, or biologicalprinciple that resembles a search or optimization process. Figure 2.9 shows a commontaxonomy for metaheuristics and lists a few of the most popular algorithms as examples.Single-solution metaheuristics, on the one hand, start with an initial solution, which theyiteratively modify. Population-based metaheuristics, on the other hand, start with more thanone initial solution. In each iteration, they modify multiple solutions, and some of them makeit to the next iteration. Using multiple initial solutions allows single-solution metaheuristics tobe transformed into population-based ones. Population-based metaheuristics can be furtherdivided into two categories. Evolutionary algorithms mimic various aspects of evolution innature, such as survival of the fittest, reproduction and genetic mutation. Swarm intelligencealgorithms mimic the group behavior or interactions of living organisms, such as ants, bees,birds or fish, and non-living things, such as water drops or river systems. [102]

DifferentialEvolution(DE)
GeneticAlgorithm(GA)

Particle SwarmOptimization(PSO)

Swarm Intelligence
(SI)

Ant ColonyOptimization(ACO)

Evolutionary Computation
(EC)

Tabu Search(TS)Simulated Annealing(SA)

Population BasedSingle Solution

Metaheuristics

Figure 2.9: Classification of metaheuristics including the most known examples.
However, there are also other classifications that can be made. Deterministic methods followa trajectory from an initial solution. Whereas stochastic methods allow probabilistic jumpsfrom a current solution to the next. Greedy methods tend to search in the neighborhood of

27

2 Background

the current solution and move on to a better solution when it is found. Whereas non-greedymethods either wait for some iterations before updating a solution or have a mechanism tobacktrack from a local optimum. Memory-based methods maintain a record of past solutionsand their trajectories. Some metaheuristics allow only a limited number of moves from thecurrent solution within a single neighborhood (e.g. SA or TS). Whereas others use operatorsand parameters to allow for multiple neighborhoods (e.g. PSO (Particle Swarm Optimization)).Unlike static objective functions, dynamic objective functions can be updated dependingon the current search requirements. Most metaheuristics are population-based, stochastic,non-greedy and use a static objective function. [102]

Algorithms

The SA process like to the cooling process of molten metals by a structured annealingprocess [102]. At a high temperature, the atoms in the molten metal can move freely againsteach other. The movement of the atoms is restricted when the temperature is reduced. Theatoms begin to arrange themselves and eventually form crystals with the lowest possibleenergy. This process is simulated with the Metropolis algorithm [104]. In its original form, itis a metaheuristic based on single solutions. It allows that new solutions can also becomeworse. However, the value for deterioration also decreases from time to time. This allowsthe simulated physical system to break out of local optima. The decrease of the temperaturealso leads to a termination of the algorithm.
The TS algorithm searches the entire neighborhood from a correct solution to find a newsolution [105]. A neighboring solution is a solution that can be reached with an elementarystep. The algorithm chooses the best solution from all neighboring solutions, even if it isworse than the current one. A problem that arises from this approach is that it can easily leadto cycles. For example, when reaching a local optimum, the search would always return backto it. The solution of the algorithm is to save already visited solutions and to forbid to visitthem again. Therefore, it stores intermediate solutions in a tabu list. Mostly it does not storethe whole solution but features or the modifications that led to this solution. However, thetabu-lists can also lead to the inability to find solutions that have not yet been visited [105].The aspiration criterion can override the taboo criterion. This allows the algorithm to revisit apreviously visited solution. The tabu-list, also named as memory or history can have differenttypes of memories, such as STM (Short-Term Memory), MTM (Medium-Term Memory) or LTM(Long-Term Memory). The definition and way of using the different memories differs in theliterature. TS is efficient for solving combinatorial optimization problems with discrete searchspaces and vehicle routing [102].
GAs (Genetic Algorithms) are among the most popular metaheuristic techniques [102].The solutions are represented by binary bit strings that are iteratively modified throughrecombination and random bit flips. This approach is similar to the evolution of genesin nature, which also undergo natural selection, genetic crossovers, and mutations. Thealgorithm begins with an initial population that it randomly generates [106]. From this initialpopulation, it performs a series of genetic operations such as selection, recombination,and mutation to generate a new population in an iterative manner. The first step of thisiterative process is to evaluate the individuals using an objective function that calculates thefitness value. Then, the algorithm selects the individuals with the highest fitness value forreproduction. It generates new individuals from the selected individuals through variousoperations, such as genetic crossover and mutation.

28

2.3 Application Distribution

In the ACO (Ant Colony Optimization), ants often follow each other along a specific pathbetween their nest and a food source [102]. When ants walk, they leave a trail of a chemicalsubstance called pheromone. This pheromone has the property of disappearing over time. Ifthere is no further deposition of pheromone on the same pheromone trail, the ants cannotfollow each other. In the beginning, when the ants do not have a specific food source, theyare wandering almost randomly in search for such a source. The stronger the pheromonetrail is, the higher the number of ants that follow it. When a group of ants finds a food source,repeatedly carrying small amounts of food back to the nest, it increases the pheromonecontent of that trail, attracting more and more ants to follow it. For example, if two differentants can reach a food source via two pheromone trails of different lengths, the pheromonecontent on the shorter trail will be increasingly strengthened. The fact that pheromonesstrengthen shorter trails allows the entire ant colony to detect a possible minimal trail.Therefore, traveling salesman problem commonly uses the ACO algorithm.

2.3.2 Mapping and Scheduling on Many-Core Systems

Singh et al. [107] presented a survey for mapping applications to many-core and multicoresystems. As shown in Figure 2.10, they divide mapping algorithms into two groups (designtime and runtime). They further divide these into two subgroups (heterogeneous and ho-mogeneous systems). While runtime mapping methods can manage dynamic workloadscenarios, their computational overhead must be kept low. Whereas design time methodscan produce better quality results if the application parameters are known. The mappingalgorithms can have different objectives: (1) performance (2) resource usage (3) energyconsumption (4) temperature distribution and (5) system reliability. In addition, they caninclude other tasks such as adding synchronization, communication between tasks, memorymanagement, or ensuring the correct functionality [107]. They require a scheduler to ensurethe execution order of tasks and to provide synchronization between them.

Hybrid
Management

Distributed
Management

Centralized
Management

Homogeneeous
Architectures

Heterogeneous
Architectures

Homogeneeous
Architectures

Heterogeneous
Architectures

Run-Time(for dynamic workload)Design-Time(for static workload)

Mapping
Methodologies

Figure 2.10: A taxonomy of mapping methodologies [107].

Mapping and Scheduling of Task Graphs on Heterogeneous Systems

A topic of this thesis is the scheduling andmapping problem of DAGs (Directed Acyclic Graphs)on heterogeneous FPGA-based systems at design time. The considered problem is known

29

2 Background

to be NP-hard [108] and has a strong impact on system performance. Which is why manyresearchers use heuristics. One interesting heuristic involves the duplication of tasks. Theyschedule some tasks redundantly to reduce the overhead of inter-process communication.They usually differ only in the selection strategy of the tasks that are duplicated.
Goens et al. [109] present a runtime system for static mapping of multiple applicationson heterogeneous architectures. However, they do not cover DAG-based applications andcases targeting multiple devices. Grew et al. [110] distribute OpenCL programs to multipledevices based on the set and properties of operations used using a machine learning model.The model can be easily ported to different applications and devices. Unfortunately, thisapproach only considers applications written in a singular kernel. This makes it useless forscheduling DAG-based programs that consist of multiple kernels. Van Craeynest et al. [111]observe the performance impact of tasks on heterogeneous devices, in particular cycles perinstruction and memory/instruction level parallelism. The approach uses runtime estimatesof tasks on a given core or device to predict the performance of other cores or devices forthe same tasks.
In a comparative study, Canon et al. [112] compare several task mapping and schedulingalgorithms in terms of their robustness and performance [112]. One heuristic that stoodout is the HEFT (Heterogeneous Earliest Finish Time) [113] algorithm. The algorithm aimsat an efficient and static scheduling of tasks of an application, which can be representedas a DAG, on the available resources of a heterogeneous system. It annotates the nodes(tasks) with the estimated computation time and the edges (data dependencies) show theestimated communication time between the tasks. The goal is to map tasks to processorsand order their executions to meet task precedence requirements and achieve a minimumtotal computation time.

Mapping and Scheduling on NoC-based MPSoCs

For NoC-based MPSoCs, mapping is the step where individual system processes can beoptimally assigned to NoC entry points (routers), to reduce traffic and energy consumptionin the network [114]. One advantage of NoC-based MPSoCs is the easier way of mappingmultiple applications to it. Another advantage of NoC-based MPSoCs is that applications caneasily be mapped at runtime [115, 61]. Using FPGAs-based techniques such as DPR, notonly virtual tasks can be mapped at runtime, but also physical nodes (CU) can be placed atruntime.
Many researchers aim in improving the design or mapping process of NoC-based MPSoCsusing rapid prototyping techniques and DSE [116, 101, 117, 118]. DSE refers to the investiga-tion of design alternatives to the implementation. Zhu et al. [118] present a platform-involveddesign flow for multi-application mapping onto tiled NoCs, by integrating various single-application heuristics. Mand et al. [116] map artificial neural networks to a NoC-based MPSoCusing a scalable and extensible methodology for rapid prototyping of complex applications.They create the MPSoC with a NoC generation tool that describes the system using an XML(Extensible Markup Language) configuration file. The purpose of the experiments was tofind the best architecture to emulate artificial neural networks on FPGAs. One conclusionfor their system was that on-chip memory is a main bottleneck. Robino et al. [101] de-scribe a system-level design methodology that starts from a Simulink model and generates aNoC-based MPSoC. The hardware and software description files are generated using rapid

30

2.3 Application Distribution

prototyping, and the generated MPSoC gives the same results as in simulation. They use theHeartBeat model, an application implementation concept for NoC-based MPSoCs that usesthe synchronous computation model [119]. Their design flow reduces the design time tocreate NoC-based MPSoCs and enables fast DSE. Sultan et al. [117] proposed a developmentenvironment for rapid prototyping on NoC-based MPSoCs to improve DSE. They convert ahigh-level dataflowmodel into multiple executable C codes that are executed on an emulationplatform and collect runtime performance traces. By using the proposed method, developerscan quickly design NoC-based platforms and accurately evaluate mapping algorithms.
For many researchers, the main objective for mapping in NoC-based MPSoCs is the communi-cation infrastructure. For example, they aim to reduce the number of hops in NoCs to reducethe energy consumption of the communication infrastructure. The number of hops is definedas the number of routers that a message must pass between two communicating tasks. Ostet al. [68] present runtime task mapping on CUs in heterogeneous NoC-based MPSoCs usingpredefined constraints. They use a uniform model-based approach to separate application,mapping and the platform. They use static and dynamic mapping heuristics like LEC-DN [120].LEC-DN uses two cost functions for the number of hops and the communication volumebetween tasks. Bayar et al. [63] use simple switches instead of routers to set communicationpaths between nodes on NoC-based architectures. They do task mapping using PFMAPand communication routing according to the application. PFMAP is inspired by a systematicresampling algorithm for particle filters [121]. They generate the topology and reconfigurableswitches based on the routing information and load (start) the tasks. Pang et al. [122] givea good overview of task mapping algorithms. They explore different mapping algorithmsfor different shaped mesh topologies for FPGA-based NoCs. The analyzed results are theapplications execution time, energy consumption and mapping time. Reddy et al. [123]proposed an energy efficient mapping algorithm for NoCs and show a good comparison toother algorithms in terms of energy efficiency.

2.3.3 Design Space Exploration for Neural Networks on FPGA-based Cluster

A very computationally intensive application area is machine learning. Therefore, manyoptimized FPGA implementations exist in the area of machine learning [84, 85, 124, 87]. Asthe complexity of machine learning algorithms, such as ResNet [125], increases, the resourcesof a single FPGA may not be sufficient to efficiently implement these complex algorithms.Therefore, clustering multiple FPGAs is necessary to manage Big Data applications. However,the growing size and complexity of neural networks, coupled with communication and off-chipmemory bottlenecks, make it increasingly difficult for multi-FPGA designs to achieve highresource utilization and performance, especially for the backward propagation [126, 127].
Depending on the application and its distribution on the compute cluster, different com-munication scenarios can occur [84]. One case would be the transfer of data from oneCU to multiple other CUs (scatter). Another case would be that intermediate results gen-erated by one CU need to be transferred to another CU (point-to-point). The last casewould be that partial results need to be merged and written back to the application software(gather). Therefore, when distributing CUs across different FPGA-based compute devices,the bandwidth and latency between them must be considered.
Zhang et al. [87] proposed an implementation of the AlexNet CNN (Convolutional NeuralNetwork) [128] on a pipeline of six FPGAs connected in a ring topology using Aurora serial

31

2 Background

interconnects. They highlight the key advantages of an inter-FPGA network with low overheadand high bandwidth. They reduced the complexity of the solution space to (N–1
K–1
) for Nlayers and K FPGAs, due to their restricted topology and application area. They proposea polynomial-time DSE solution using dynamic programming. The algorithm reduces theproblem of DSE from multiple FPGAs to that of a single FPGA. The problem of a singleFPGA was addressed in a previous work, in which they identified all possible solutions inthe design space using a roofline model, under the constraints of resources and memorybandwidth [124].

Geng et al. [126, 127] present FPDeep, a framework for CNNs. Unlike other work, they focusnot only on the forward pass, but also on the backpropagation (training). For acceleration theyuse a pure FPGA cluster, which is arranged in a line topology. They use different strategiesfor the distribution of the neural network over the FPGA cluster and an efficient resourceutilization. FPDeep uses a deep pipeline to map the CNN to multiple FPGAs. It provides fine-grained inter- and intra-layer partitioning to improve workload distribution between FPGAs.It uses fine-grained pipelining to minimize the activations while waiting for back-propagation.It uses weight load balancing to balance weight allocation between FPGAs to reduce therequired number of compute devices. Experimental results show a good scalability with alarge number of FPGAs, while the bandwidth between them remains the limiting factor. Usingsix transceivers per FPGA, they can achieve linearity for up to 83 FPGAs. Using XILINX VC709FPGAs they achieve an 8.8 times better energy efficiency than with a Titan X GPU system.
Owaida et al. [84, 85] explored and developed techniques to map resource-intensive machinelearning applications, namely inference over decision tree ensembles, on an FPGA cluster.Inference is a resource-intensive operation and behaves differently depending on size anddata dimensionality. For large scales it becomes compute-bound, while with increasing datadimensionality it becomes memory- and network-bound. The proposed cluster computeconsists of 20 Microsoft Catapult CPU/FPGA compute nodes [76]. The CPUs are intercon-nected via a 10Gbit s–1 network switch. In addition, the FPGAs are interconnected witheach other in a ring topology. They developed a light-weighted inter-FPGA communicationprotocol and routing layer to simplify communication between the different FPGAs. Theyinvestigated different strategies for data partitioning and the distribution of the machinelearning application, thereby maximizing the performance. They investigated how to effi-ciently distribute applications across the mentioned compute cluster. They demonstrate theimportance of decoupling I/O from the computational part in the algorithm and developingreusable hardware and software I/O management components to productively map complexoperations on an FPGA cluster. Their empirical evaluation demonstrates the efficient use ofresources in an FPGA cluster while achieving linear scalability. For large tree ensembles thesystem becomes computation bound, while with increasing data dimensionality it becomesmemory and network bound.

2.3.4 Clustering and Placement for Configurable Logic Blocks

Many different researchers looked at partitioning, clustering, placement, and routing prob-lems for CAD tools to efficiently map a netlist to the resources (LUTs, FFs, etc.) of a singleFPGA [129, 130, 131, 132, 133, 134]. Efficient algorithms in CAD tools are important toreduce the performance differences between FPGAs and ASICs [131]. The CAD toolflowcan be broadly divided into five distinct steps, namely synthesis, technology mapping, clus-tering, placement, and routing, as shown in Figure 2.11 [129]. Different objectives have

32

2.3 Application Distribution

been addressed in the various publications to reduce performance, energy consumption orarea (resource utilization). For example, they attempt to reduce the critical path to increaseperformance. Bouzaziz et al. [129] use clustering methods to improve power consumption,area, critical path delay and energy. Using a first-choice algorithm, they can achieve 17%,11%, 13%, and 24% improvement for the mentioned four objectives compared to using theT-VPack algorithm [135]. For CAD tools, clustering is the process of partitioning a mappednetlist of logic blocks into a netlist of clusters mapped directly into logic elements on the FPGAarchitecture [129]. Other objectives focus on the reduction of the execution time needed inCAD tools for computationally intensive processes, like clustering, placement, and routing.
PlacementClustering RoutingTechnology

MappingSynthesis

Figure 2.11: The flow of FPGA-based CAD tools.
Many researchers describe the placement process as a QAP in which each node of a taskgraph is mapped to a node in a resource graph [133]. In addition, the distance (hop count)should be considered in the resource graph and the communication data in the task graph.Due to the complexity, it is difficult to find an optimal solution for this type of problem ina short time. Therefore, heuristics or metaheuristics can be used. Several metaheuristicshave been explored for the placement problem in reconfigurable systems, such as GA, TS,ACO, and SA [132, 133, 134]. An observed advantage of SA was that it finds good results in areasonable amount of time [134].
Mohtavipour et al. [132] use quadratic subregions to divide a task graph into differentindependent parts. Then, each part is placed into a predefined quadratic region in a re-source graph. To reduce the computational complexity of the placement problem, there is apreprocessing to simplify the graph by using link elimination.
Mohtavipour et al. [133] also proposed a distributed task graph placement algorithm toanalytically reduce the intensive computations of the problem. They introduce a distancemodel for the resource graph to remove heavy weighted connections from search space.For this purpose, they analyze forbidden regions in the placement matrix. They split the taskgraph into several parts (clusters) to place each part into a lighter weighted region. Theywere able to reduce the number of hops between CLBs by 9.3% to 27.25% compared to auniform and normal distribution. They evaluated their approach on four different real-worldapplications that consume between 32 and 77 CLBs, which is a rather small size comparedto the total amount of CLBs in modern FPGAs, which can reach over one million.
Mohtavipour et al. [134] presented another approach that includes the placement andclustering process. They use graph convolutional networks to partition the task graph intothe least dependent parts. They compute the final placement using inter-cluster and intra-cluster optimizations. They perform the intra-cluster placement by using a conventionalSA algorithm and the inter-cluster optimization by estimating the average distance. Theyevaluated their approach using three applications that contain 1550 to 1955 CLBs. Theycould improve the communication costs between 17% and 26% in comparison to a uniformand normal distribution.
All three publications by Mohtavipour et al. [132, 133, 134] use clustering and placementmethods to map a task graph to a resource graph containing CLBs with the goal of decreasingthe hop count. In contrast to this thesis, the first two publications use the partitioning term

33

2 Background

for the clustering process. All three publications target a rather small CLB size (32 - 1955)compared to the available resources of a modern FPGAs. Separating inter-cluster and intra-cluster optimizations reduces complexity, but carries some loss of optimality for the finalsolution. It would have been interesting to see some timing measurements of the proposedmethods to also evaluate complexity and scalability.

2.3.5 Tuning, Clustering and Placement for Partial Reconfigurable Regions

The use of FPGAs in the HPC domain, such as cloud computing and data centers, creates op-portunities for novel mapping and resource allocation strategies to increase system through-put [136]. This affects, for example, strategies involving spatial partitioning of resources,since vendor tools often treat the FPGA as a sea of gates [137]. Two different ways of how toplace multiple applications on an FPGA are temporal (sequential) or spatial (parallel) [136].While the former provides a high throughput, PRRs can be used to run multiple applicationssimultaneously, but also in a time-shifted manner [137]. For spatial partitioning of resourcesbetween independent applications, frameworks that use PRRs support partitioning of FPGAresources into fixed rectangular regions [136]. These regions are often homogeneous andallow a set of offline mapped applications to be placed on tile-based FPGAs [137].
Placing heterogeneous and independent applications with variable requirements, such asmemory, compute power, resources, or bandwidth, onto PRRs can result in lower com-pute density and thus low utilization of FPGA resources by up to 40% [137]. Without anintelligent placement strategy, spatial partitioning of the FPGAs using PRRs can yield equalor worse computational performance than sequential execution [137]. This is partly dueto the asymmetric spatial distribution of the various on-chip resources of an FPGA [137].Together with the placement constraints of static logic, for example for I/Os, and suboptimalplacement of heterogeneous applications to homogeneous PRRs, resource utilization can bevery inefficient [136]. The problem of inefficient use of PRRs has been addressed by someresearchers using intelligent DSE and clustering methods [137].
Minhas et al. [137] developed a methodology using DSE, machine learning based ridge regres-sion, and clustering of heterogeneous independent tasks to select an optimized combinationof tasks for resource sharing on FPGAs. They first run DSE to generate multiple hardwarebitstreams for each task that provides speedup according to resources and throughput. ForDSE they use task-specific parameters such as the block size or the number of rows, in theHLS tool. They then use DSE along with machine learning based ridge regression modelsto evaluate the relationship between on-chip and off-chip resources and FPGA throughput.They use this to split all tasks into smaller clusters so that the tasks in a cluster share theFPGA resources at a single point in time while maximizing overall resource utilization.
They evaluate their design on a Stratix-V FPGA using the OpenCL SDK (Software DevelopmentKit) from Intel. They implemented eleven independent HPC applications, such as graphanalysis, linear algebra, media streaming, and data mining, using HLS. Each applicationconsists of one task. Resource sharing is limited to a cluster of two tasks. Both tasks aremerged into one bitstream. For DSE, they create between four and nine different bitstreamsper task. For random clustering, they achieve 2.4 times higher system throughput and1.9 times better energy efficiency with static partitioning compared to using PRRs. In theirproposed clustering method, system throughput increases by 1.2 times using PRRs, which isdue to a more efficient use of the off-chip memory bandwidth. For static partitioning, the

34

2.3 Application Distribution

throughput increases by 1.4 times, which is due to the optimization of on-chip and off-chipresources.
The complexity of the clustering methods in the application examples is very low, since onlya maximum of two applications per cluster were evaluated for both methods. Furthermore,the work is limited to independent applications with only one task per application. However,combining the applications into one bitstream limits the use of PRRs. Creating multiplebitstreams for each application to get estimates is a very time-consuming process comparedto using synthesis results, since it can greatly increase with the number and complexity ofapplications.
In the past, various DPR techniques have been proposed for PRRs on NoC-based SoCs, whichmainly include multiple CUs and efficiently utilize a mesh topology [138]. The developmentof scalable NoC-based systems also brings other challenges, such as efficient mapping andplacement, which are NP-hard problems [114, 138]. The traditional NoC mapping problem isa QAP, defined asmapping a set of tasks to locations on a NoC, where each location contains aCU connected to a router [138]. The objective is mainly to reduce network traffic and therebyenergy consumption [138]. Free placement of CUs within the NoC, adds an additionalcomplexity. In this case, mapping and placement cannot be completely separated, becausethe changing physical constraints must be considered in the mapping process [138].
Rad et al. [139] presented a placement method based using neural networks. First, theyuse the Node2vec embedding algorithm, dimension reduction, and rotate and scale aninitial mapping from the task graph to the resource graph. Second, optimization of dilation(hop count) and maximum capacity utilization was performed using the stochastic gradientdescent method and a loss function. Main goal of their work was to reduce the dilation (hopcount). It would also be interesting to see computation time of their proposed methods interms of scalability to an increasing number of FPGAs and CUs.
A few works have addressed the placement problem for PRRs using DPR on NoC-basedarchitectures [114, 138]. In this context, DPR has the potential to lower the cost of digitalcircuits, increase flexibility, and reduce space requirements [114]. However, DPR increasesthe complexity of the task mapping and CU placement problem by adding a new layer.
A few researchers have tried to solve the placement problem for NoC-based reconfigurablesystems, using GA [140, 114] and TS [138, 141] metaheuristics. They have adapted the DyNoCarchitecture proposed by Bobda et al. [142] as a base model. It includes a NoC-based meshtopology that is flexible, simple, and based on traditional routers, as shown in Figure 2.12.A core (CU) is always connected to the router in its upper right corner. For larger cores, allrouters within the occupied area are disabled. The heterogeneous size of the core area leadsto an irregular structure. Additionally, not each router is connected to a core. They simplifytemporal partitioning, by quantizing time into scenarios. The evaluated applications, containthree to five scenarios in which the reconfigurable cores can be placed. The smallest scenarioplaces six static and seven dynamic cores to 7 × 7 allocation slots and three scenarios. Themain objectives in both works are the communication bandwidth and the number of hopsbetween routers.
Filho et al. [140, 114] presented a GAs-based solution for the placement of hardware cores toNoC-based partially reconfigurable systems in the design phase. Three GA crossings and twopopulation diversification methods were applied and compared to analyze the best solution.The best GA solution is compared with the best solution obtained with a semi-exhaustivealgorithm [140]. The goal is to place the cores in such a way that the total number of hops in

35

2 Background

C4

C3

C2

C1

Figure 2.12: Placement example of the DyNoC [142] architecture containing four cores (C1 -C4) placed to 20 allocation slots.

the NoC is minimized for each configuration scenario. The measured execution times were48, 73 and 113 seconds for applications with 13, 16 and 26 cores on an Intel Core-i7-3770CPU. The different solutions had an average penalty of 5.4% compared to the best solutionfound by the semi-exhaustive algorithm.

Novaes et al. [138, 141] explore TS-based algorithms for the placement problem in NoC-based systems containing PRRs. They compare four combinations of TS algorithms. Theyuse the Robust and Adaptive TS algorithms as base and combine them with the Navigationand Force Inversion heuristics. The robust TS adds a STM called taboo list and the aspirationcriteria. The adaptive TS adds backtracking and an adaptive radius to avoid getting stuck in alocal minimum. The Navigation heuristic adds a restart mechanism to explore new regionsfrom the search area. The Force Inversion heuristic, which was proposed by the authors,inverts the solution after a random solution is selected, to explore new regions and avoidinglocal minima. The Force Inversion-Adaptive TS algorithm provides the best results and anaverage penalty of 2.0% compared to the best solution found by a semi-exhaustive algorithm.Its execution time is between 1.3 and 6.9 seconds.

The size of their cores is quite coarse-grained due to their tiled architecture, which can lead tohigh fragmentation. In comparison, this thesis allows more heterogeneous size of these tilesand the placement of multiple cores to one partition, which can reduce the fragmentationproblem [29, 14]. Their mapping process is quite simple, as each task is mapped to exactlyone core. In comparison, this thesis allows multiple tasks to run sequentially on one core,which is also the purpose of a PU. Their time slots or scenarios for DPR are kept fixed andquite coarse-granular. Therefore, resource consumption is not an objective for them. Incomparison, to this thesis their placement process is very time consuming. Compared tothis thesis, their placement process is very time-consuming. This thesis does not start with arandom mapping and increases the exploration using a multithreaded grid-based approach.Additionally, the SA algorithm increases exploration while reducing memory requirements.Furthermore, this thesis has a more complex memory structure with STM, MTM and LTMelements.

36

2.3 Application Distribution

2.3.6 Summary

The previous subsections presented various concepts for application distribution on FPGA-based systems based on the SoA. The systems range from a NoC-based compute deviceto a FPGA-based compute cluster. Based on the preliminary work, this thesis identified sixsubareas for the distribution of applications on FPGA-based systems at design time. Basedon these subareas, it should be possible to produce an application-specific architecturestarting from its application code. In this context, the last two subareas, namely clusteringand placement, refer exclusively to reconfigurable hardware.
• Partitioning is the process of dividing the original application into tasks. Dependent tasksspan the application or task graph that represents the dataflow or control flow of theapplication. These tasks can be performed on physical nodes, such as compute devices orCUs. In addition, spatial partitioning of FPGA resources into PRRs can be done to span aresource graph.
• Tuning is the process that optimizes the application at functional level. This involvesimprovements to the task graph that also affect dataflow by using task duplication, loopfusing, and other optimizations. This can also be the tuning of task parameters to achievehigher throughput, and a more optimal use of resources and bandwidth. In addition, aninitial selection of CUs that can be placed on PRRs must be done.
• Mapping is the step in the design flow where application tasks are assigned to physicalnodes, such as compute devices or CUs. These nodes can be connected to the entry pointsof an interconnection network. For example, in a NoC-based MPSoC, these entry pointsare the routers.
• Scheduling determines when to execute which task onwhich physical nodes. The scheduleris responsible for maintaining the schedule and synchronization between tasks. Theschedule can be monitored in a centralized or decentralized way.
• Clustering is a method that combines multiple CUs to place them into one PRR to achievean efficient resource utilization if there are more CUs than regions. This PRR can be eitherstatically or dynamically reconfigurable. It can represent a complete FPGA in a cluster or aregion of an FPGA.
• Placement is the step that allocates resources and places CUs, including their associatedtasks, inside of PRRs. A set of CUs must be placed in these regions so that they do notoverlap and do not exceed space boundaries [114].
The various subareas shown in Figure 2.13 do not have to be performed in sequential order.The design process can perform them repetitively, interleaved or in parallel to each otherto create an optimized application specific system. However, computing all these subareasin parallel would make the design process extremely complex. The various subareas spanmultiple dimensions in the design space, which include physical, temporal, and functionalpartitioning of the original applications to a physical architecture.
• The functional dimension partitions the application into task graphs and tunes it withinthe design space.
• The temporal dimension assigns tasks to physical nodes and creates the schedule toimprove performance while taking communication overhead into account.

37

2 Background

Partitioning Tuning

Functional

Mapping Scheduling

Temporal

Clustering Placement

Physical

Figure 2.13: Subareas for the application distribution process on FPGA-based systems in-cluding their main dimensional categorization within the design space.
• Thephysical dimension clusters and places CUs to PRRs considering the available resources.In addition, a resource graph needs to be created and the physical nodes need to beselected.
However, the different subareas cannot be assigned to only one of these dimension types.For example, DPR adds a temporal dimension to the clustering and placement problems,since different physical nodes are assigned to the same resources even though they exist atdifferent points in time. This leads to different configurations in time which will have differentcommunication profiles. Creating the resource graph containing PRRs and selecting CUsto be placed in these regions also adds a physical dimension to the partitioning and tuningsubareas. Additionally, the different subareas have an impact on each other. For example, adifferent physical clustering and placement will affect the required synchronization of theschedule. In addition, partitioning and tuning algorithms should consider communicationcosts and physical constraints, such as resource consumption.
The different subareas can have different objectives or constraints, which they address usingdifferent approaches. For example, performance optimization in the tuning process is a trade-off between whether the application becomes memory-bound or compute-bound. Reducingthe hop count is a common method for mapping and placement problems to reduce energyconsumption. Reducing the critical path in clustering and placement processes is a valid wayto improve application performance. Various metaheuristics such as GA, TS, ACO, and SA ormachine learning techniques can be used to improve the performance and complexity of thetoolchain. The efficient use of DPR techniques can improve resource utilization. Furthermore,temperature distribution and system reliability are also valid objectives, besides tool perfor-mance, application performance, resource consumption and energy consumption. Based onthe application distribution, the final system often requires mechanisms for synchronization,error detection, communication, and memory management.
This thesis considers all six subareas within the application distribution process [29, 30]. Thefocus is the process of clustering CUs and placing them to PRRs in mesh-like topologies.Preoptimization using clustering before placement holds the problem of losing informationand therefore optimality, thus ending in a local optimum. Therefore, both processes aremerged, while keeping the complexity of the algorithm low. The proposed algorithm focuseson design time methods for heterogeneous systems. However, the final system, createdfrom the application distribution results, also includes a minimal runtime system includingsynchronization mechanisms, memory management, and a communication protocol. Thecombination of load balancing techniques and metaheuristics is a unique feature of thisthesis. By using a more generic definition of the application and platform model, this thesiscan cover a much wider range of different architectures and topologies than most of therelated work.
Table 2.4 compares the various publications concerning application distribution fromdifferentareas. Since the number of comparable studies to this thesis is limited, it also considers

38

2.3 Application Distribution

related research areas. The comparison can roughly be divided into the following areas:
• subareas of the application distribution process
• layout and size of the task graph(s)
• support for PRRs or multiple FPGAs
• topology and architecture of the compute cluster
• heuristics and methods for application distribution
• objectives, constraints and multithreading capability of the toolchain

Table 2.4: Comparison of different application distribution algorithms that target FPGAs. CLB(Configurable Logic Block), GCN (Graph Convolutional Network)
Filho2015[114]

Novaes2019[138]
Minhas2019[137]

Mohtavip.2020[134]
Mohtavip.2020[133]

Geng2018[126, 127]
Proposed2022[29, 30]

Partitioning 7 7 7 7 7 3 3

Tuning 7 7 3 7 7 3 3

Mapping 7 7 7 7 7 7 (3)
Scheduling 7 7 7 7 7 7 3

Clustering 7 7 3 3 3 (3) 3

Placement 3 3 7 3 3 (3) 3

Dependent tasks 3 3 7 3 3 3 3

Multiple tasks 7 7 7 7 7 3 3

Multiple apps 7 7 3 7 7 7 3

Application 9 synth13-26 core 9 synth13-26 core 11 apps 3 apps1752 CLB 4 apps32-77 CLB AlexNetVGG16/19
13 synth1 app24-271nodes

PRR/DPR 3 3 3 7 7 7 3

Multi FPGA 7 7 7 7 7 3 3

Topology mesh, NoC mesh, NoC - mesh mesh line mesh, NoC
Node type core core IP-core CLB CLB IP-core AC, PU, I/O

Methods geneticalgorithms tabusearch ridgeregression
GCN,simulatedannealing

distancemodel,forbiddenregion
weightbalancing,pipelining

loadbalancing,TS,SA

Objectives hop count,tool time hop count,tool time throughput,energy hop count hop count performance,energy
resources,hop count,bandwidth

Constraints - - resources - - resources resourcesbandwidth
Multithreading 7 7 7 7 7 7 3

Most of the works that have dealt with application distribution on MPSoCs have predomi-nantly dealt with the mapping and scheduling problem, which is needed in dynamic runtimesystems [107]. However, they have a fixed architecture at design time and contain onlyPUs that are statically connected to entry points. In contrast, the works that looked at theclustering and placement problem did not deal with the mapping and scheduling prob-lem [114, 126, 127, 137, 133, 134, 138]. This is mainly because only ACs or CLBs and no

39

2 Background

PUs were used in these systems. Even though none of the works in Table 2.4 addressed themapping/scheduling problem, some of these works still required temporal quantization dueto the use of PRRs [114, 137, 138]. However, this quantization is very coarse-grained.
For many clustering and placement problems, the goal is to map a task graph to a resourcegraph. This is true for different domains, such as CLBs in CAD tools or PRRs in single ormultiple FPGAs. Filho et al. [114] and Novaes et al. [138] looked at the placement problemfor PRRs on the DyNoC architecture, using different heuristics. Minhas et al. [137] looked atclustering and tuning problems for independent applications on a single FPGA. Mohtavipouret al. [133, 134] worked on dealing with the placement problem of CAD tools and how theycan be improved using clustering methods. Although CAD tools are not the target of thisthesis, there are similarities to them in the placement and clustering process due to theregular structure of FPGA resources andmesh topology. This implies that the tools developedin this thesis can also be used to solve the clustering and placement problem of CAD tools.
Geng et al. [126, 127] and Owaida et al. [84, 85] focused on the partitioning and tuningproblems for neural networks on FPGA clusters. The information from the use case allowsfor an easier partitioning and better fine-tuning at a functional level. However, by focusing onthe application, the presented algorithms lose generality. No special scheduling or mappingis needed because their FPGA designs are only based on ACs. Since they are workingon FPGA clusters, there is a simple clustering and placement process integrated in theirpartitioning algorithm. Like the work of Owaida et al., this thesis also introduces a lightlyweighted communication protocol. The proposed architecture of this thesis focuses on thecommunication between different types of CUs and the avoidance of deadlocks.

2.4 Programming Methods

Several concepts emerged to overcome the difficulties of an efficient programming of parallelarchitectures and heterogeneous systems. This section will discuss how these architecturesand systems can be programmed. There are different approaches, which on the one handhave a high expressiveness, and on the other hand simplify the programmability. Theseapproaches fall into two categories, domain-specific and general purpose. This section willconcentrate predominantly on C++-based approaches, since they are the most widespreadand can address a wide variety of parallel architectures.
One approach is to use a GPL. They often contain explicit constructs to program parallelstructures. Furthermore, these types of languages provide additional constructs needed tocopy data or to synchronize between different nodes, such as compute devices or CUs. Thegreat expressiveness of these languages allows a wide range of applications and programmingcodes to achieve high performance. However, with languages like CUDA and OpenCL manynew paradigms must be learned, and the required program code is greatly increased.
There are two approaches to simplify programming using GPLs. They allow to achieve usefulresults faster, but do not always reach the same maximum performance. Directive-basedlanguages use directives to parallelize code and offload it to compute devices. Single-sourceapproaches, such as SYCL, aim at eliminating the separation of host and compute devicecode without using directives.

40

2.4 Programming Methods

Another possibility is to add the information of the domain, such as computer vision. Thereare two approaches used to program parallel heterogeneous architectures that incorporatedomain information. One approach is to use a library specifically designed for the applicationfield. The more generic approach is to use a DSL, which is based on a standard languagesuch as C/C++.

2.4.1 General Purpose Approaches

Different programming paradigms exist to ease the complexity of programming parallelarchitectures within heterogeneous systems. However, using a new programming paradigmand dealing with different types of architectures adds additional challenges. Developers needto detect potential program parts that would benefit from running on a compute device, likea GPU or FPGA. The choice depends on the computation and communication time of theimplemented algorithm since compute devices do not always share the memory with thehost CPU.
Although there are alternative approaches, C/C++ based languages are most common forprogramming applications on parallel architectures within heterogeneous systems. Most ofthe alternative approaches, like python, use common programming languages, like CUDAor OpenCL, as an intermediate language. CUDA [143] and OpenCL [144] made it possibleto use GPUs for general-purpose computing. They allow the use of GPUs beyond thetask of computing image contents and make it easier to execute scientific calculations onthem. Table 2.5 gives an overview of different C/C++-based general purpose programmingapproaches to program x86-based parallel computing architectures for a set of vendors. Thedifferent languages in the table will be explained in the following.
Table 2.5: Existing C/C++ based parallel programming approaches for different vendors andcompute devices including the papers that extend those approaches.
Device Vendor CUDA OpenCL SYCL OpenMP OpenACC
CPU Intel Stratton [145] 3 X 3 3

AMD Stratton [145] 3 X 3 3

GPU
Intel Harvey [146] 3 X 3 7

AMD Harvey [146] 3 X 3 3

NVIDIA 3 3 X 3 3

FPGA Intel Mavroidis [147] 3 X Knaust [148] Lee [149]
XILINX Papakons. [150] 3 X Sommer [151] 7

CUDA

One of the first approaches to program GPUs scientifically was CUDA [143]. It is a parallelcomputing platform and programming model to program NVIDIA GPUs and was released in2006. Developers can program their code in C, C++, Fortran, Python and MATLAB. Tasks can

41

2 Background

be offloaded using kernels called from the host program. The API defines several functionsfor memory movement and allocation, and for querying device and platform information.As shown in Table 2.5, there are several approaches from different researchers to extendCUDA for other types of architectures [146, 147, 150, 145]. Most methods use transpilers toconvert the CUDA code to a different language to target other platforms.
Stratton et al. [145] present theMCUDA framework, which enables efficient execution of CUDAprograms on shared memory multicore CPUs. Their framework consists of a set of compilertransformations and a runtime system for parallel execution. They can demonstrate that theirframework approaches the performance that can be achieved with manually parallelizedand optimized C code. Harvey et al. [146] present Swan, a transpiler that translates CUDAto OpenCL code. Using OpenCL also other devices, like GPUs from AMD or Intel, can beprogrammed. For NVIDIA GPUs, CUDA remains the better programming paradigm, sinceit has been developed for these devices and can therefore outperform OpenCL on NVIDIAGPUs.
There are also approaches to program XILINX [150] and Intel [147] (formerly Altera) FPGAsusing CUDA. Mavroidis et al. [147] present FASTCUDA, which is an open-source FPGA accel-erator and hardware/software co-design toolchain for CUDA kernels. To program kernels onFPGAs they transform the CUDA code to SystemC, as an intermediate HLS language. Thesoftware code is executed on an embedded multicore CPU. The generated software alsocontains the host code that controls the device kernel code. Papakonstantinou et al. [150]present FCUDA, to efficiently map coarse-grained and fine-grained parallelism onto an FPGA.They use a transpilers that transforms CUDA thread blocks into parallel C code. They use theAutoPilot [152] HLS tool as backend to program the FPGA.

OpenCL

OpenCL [153, 154, 144] is an open-standard and API for general-purpose parallel program-ming of heterogeneous systems. It is a very promising programming model, due to its richinstruction set and support of TLP and DLP, as well as heterogeneous platforms. Developerscan implement applications for all kinds of architectures, like CPUs, GPUs, DSPs and FPGAs.Nearly all vendors (AMD, NVIDIA, Intel, XILINX, ARM, and IBM) provide an implementation fortheir different devices. This eases the programmability of heterogeneous systems since thedeveloper does not need to learn multiple languages and can access different devices fromone program code. The concept of OpenCL can be divided into execution model, platformmodel and memory model [153].
The OpenCL Platform Model is shown in Figure 2.14. It consists of one host (e.g. CPU) andone or more compute devices (e.g. CPU, GPU or FPGA). Each compute device is composedof one or more CUs, such as a CPU or GPU core. Each CU is further divided into one or morePEs. The computations on a device take place on the PEs. On most compute devices, thePEs of a CU are executed in SIMD manner.
The OpenCL Execution Model splits an application into host and kernel code. The hostcode initializes and manages the OpenCL specific contexts and moves data between hostand devices. It can execute kernels on multiple devices from different vendors at the sametime. The kernel code is portable to any compatible device, but not in terms of performance.A kernel instance concurrently executes work items on a device over a virtual grid, calledNDRange, with one to three dimensions. Work-items are grouped into work-groups. The size

42

2.4 Programming Methods

Compute Device

Compute Unit

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Device

Compute Unit

Compute Unit

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Compute Device

. . .Compute Unit

Compute Unit

...

Processing
Element

Processing
Element

Processing
Element . . .

Processing
Element

Processing
Element

Processing
Element . . .

Host

Figure 2.14: The OpenCL platform model [153].
of these work-groups can either be set manually by the user or generated automatically bythe OpenCL runtime system. The advantage of the automatic approach is that a near-optimalsize does not have to be identified by the user for each single device. If no particular size isrequired by the kernel code, this approach often achieves a near-optimal result.
The OpenCL Context is bound to a specific host driver installation and stores the:
• Platform ID: represents the vendor installation on the host.
• Devices IDs: physical devices supported by the platform.
• Kernel objects: function instances, which are executed on devices.
• Program objects: store the source and executable files of the kernels.
• Event objects: are used for synchronization between kernels and profiling.
• Command Queue objects: execute commands for devices.
Each command queue is linked to an OpenCL device. The host can place three differenttypes of commands into a command queue:
• commands to enqueue a kernel for device execution.
• commands to transfer data between the different host and device memories.
• commands for synchronization.
The OpenCLMemory Model is shown in Figure 2.15. The host memory is defined outside ofthe OpenCL context and is available by the host. Memory objects can move between hostand OpenCL memory space through functions. The device memory is split into private, local,global, and constant memory. The global and constant memory can be cached.
• The private memory is visible to its work-item that is executed on a PE. Work-items cannotsee the private memory of other work-items.

43

2 Background

• The local memory is visible to its work-group that is executed on a CU. Work-items within awork-group can share data through the local memory.
• The global memory of a compute device is visible to all work-items in all work-groups ofthe corresponding compute device.
• The constant memory is a region of the global memory that remains constant during theexecution of a kernel.

Context

Global/Constant Memory Cache

Work Group LocalMemory

Work Group LocalMemory

...

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Context

Global/Constant Memory Cache

Work Group LocalMemory

Work Group LocalMemory

...

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Context

Global/Constant Memory Cache

. . .Work Group LocalMemory

Work Group LocalMemory

...

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Work
Item

Private
Memory Work

Item
Private
Memory . . .

Host

HostMemory
GlobalandConstantMemory

DeviceMemory

Figure 2.15: The OpenCL memory model [153].

OpenMP and OpenACC (Directive-Based)

A further general-purpose based approach to program parallel architectures is to use direc-tives. In this approach, the programmer adds directives to the code, such as C/C++, as a hintfor the compiler. The compiler can transform the source code based on the directives orignore them. One advantage of this type of programming is that the program is still usablewithout the directives. Another advantage of directive-based languages in comparison toOpenCL or CUDA is the reduction of the needed host code or boilerplate code. However,directive-based languages often use OpenCL or CUDA as an intermediate language for GPUand FPGA targets [155, 149, 148]. The directive-based approach eliminates the need topackage accelerator code into separate functions, explicitly manage data transfers, andoptimize device memory usage. Reducing boilerplate code also comes with some drawbacks.For example, the level of control required when distributing multiple tasks across multiplenodes and optimizing data transfers and synchronization.
One of the most known directive-based languages is OpenMP [156]. It is an API designedfor shared memory programming on CPUs in C/C++ or Fortran. Directives are used to tellthe compiler, which code areas should be executed in parallel on a compute device, like aCPU or a GPU. OpenMP implements a typical fork-join model, where a primary thread forksa number of subthreads and divides the tasks among them, as shown in Figure 2.16. Parallelexecution is managed by the OpenMP runtime system in the background. Later versions ofOpenMP introduced constructs that focus on different aspects of parallelism, such as DLP orTLP. While memory management is mostly covered by OpenMP, only a basic task schedulingexists and finding an efficient schedule is left to the developer.

44

2.4 Programming Methods

A B C A B C D A B
Parallel Task 1 Parallel Task 2 Parallel Task 3

A
B
C

A
B
C
D

A
B

Parallel Task 1 Parallel Task 2
Parallel Task 3

Parallel

Sequential A B C A B C D A B

A
B
C

A
B
C
D

A
B primary threadsubthread

sync point

Figure 2.16: The OpenMP fork-join model.
In contrast, OpenACC (Open Acceleration) [157] is a directive-based language designed forcompute devices, like GPUs. OpenACC uses directives, as hints for the compiler, to showwhich part of the application should be executed on a compute device. It consists of acollection of compiler directives, library routines and environment variables. It providesthree different types of instructions, which are for computation, data management andsynchronization. Additional information can be provided to the compiler regarding datahandling, work distribution and control flow.
Over the years, both languages have evolved and learned from each other. More and moreconstructs and available platforms have been added as shown in Table 2.5. The progress alsobrought the maximum achievable performance closer to languages like OpenCL and CUDA.Due to the original intention of both languages, they still have some fundamental differencesas shown in Table 2.6. OpenMP aims to extend known concepts frommulticore programming,while OpenACC was developed for GPU users [158]. Both OpenMP and OpenACC have beenextended by various researchers for FPGAs using HLS methods.

Table 2.6: Comparison of directive-based languages.
OpenMP OpenACC

Consistent, predictable behaviorbetween implementations Quality of implementation willgreatly affect performance
Users can parallelize non-parallelcode and protect data races explicitly Users must restructure their codeto be parallel and free of data races
Substantially different architecturesrequire different directives High-level parallel directives canbe applied to different architectures

Lee et al. [155] presented OpenARC, an open-source framework that implements the Open-ACC model. They take standard OpenACC C code and use source-to-source transformationsto target heterogeneous devices, like NVIDIA GPUs using CUDA [155]. They have extendedOpenARC to perform source-to-source translations and optimizations of an input OpenACCprogram into OpenCL code [149]. This is further compiled into an FPGA program using theIntel OpenCL compiler as backend.

45

2 Background

Many researchers have addressed the task of developing OpenMP for FPGAs. Mayer etal. [159] give a good overview of many different approaches. Sommer et al. [151] presentedan OpenMP device offloading model for XILINX FPGAs integrated into the existing LLVM (LowLevel Virtual Machine) offloading infrastructure. The programmer can generate a completeFPGA design, including memory and host connectivity, from an input source code. Knaustet al. [148] presented a HLS approach that uses OpenMP to target Intel FPGAs using Intel’sOpenCL SDK.
There are many other directive-based languages besides OpenMP and OpenACC. For ex-ample, Duran et al. [160] presented OmpSs, a programming model based on OpenMP andStarSs [161] for the execution on CPUs and GPUs. Bosch et al. [162] extended OmpSs toprogram heterogeneous systems, like GPUs and FPGAs using CUDA, OpenCL and the HLStoolchain from XILINX.

SYCL (Single Source)

SYCL is a royalty-free, cross-platform abstraction layer specified by the Khronos Group, toovercome the issue of the source code separation in OpenCL [163]. It enables code forheterogeneous systems to be written using standard ISO C++ with the host and kernel codefor an application contained in the same source file. SYCL builds on the features of C++11, withadditional support for C++14 and C++17, enabling parallel STL (Standard Template Library)programs and using lambda expressions to integrate kernels as anonymous functions. Itis mainly implemented as a C++ template-based library and is interoperable with alreadyexisting OpenCL code. This allows the developer the reuse of existing OpenCL kernels.Therefore, it is also possible to interact with Vulkan and OpenGL (Open Graphics Language)without transformation overhead. Since SYCL is an abstraction layer on top of OpenCL, itinherits many further features:
• a broad hardware support
• a set of data types representing multidimensional vectors and images
• device partitioning into subdevices
• shared virtual memory
• pipes (FIFO (First-in-First-out) buffers)
• support of SPIR-V as an intermediate representation
SYCL adds the idea of data accessors, representing the data access of kernels. It detectsdata dependencies to build the processing graph. The kernel scheduling is based on OpenCLqueues, but only supports out-of-order queues. SYCL is managing the processing order andcorresponding data movements by itself. Explicit buffer transfer and event handling, as inOpenCL, is therefore not needed. This prevents from unnecessary copying of data and allowsthe runtime to optimize data movements. All SYCL data types and objects are inherited fromOpenCL. To maintain interoperability, the developer should be able to access the underlyingOpenCL object.
SYCL as an abstraction layer on top of existing languages like OpenCL comes with someoverhead. Silva et al. [164] compare SYCL with OpenCL and OpenMP using two exampleapplications. In average the SYCL implementation needed a 2.18 times higher execution time

46

2.4 Programming Methods

and 0.52 times more memory in comparison to OpenCL and OpenMP as shown in Table 2.7.The 27stencil problem [164] is an algorithm used by PDE (Partial Differential Equation) solvers,which update a multidimensional grid in both time and space. The CMP (Common MidPoint)problem [164] is an optimization method for seismic data to reduce noise. As the publicationwas still in an earlier state of SYCL, the results should be better by now.
Table 2.7: Relative execution time, memory usage, kernel size and API calls of SYCL in com-parison to OpenCL and OpenMP [164].

27Stencil CMP
OpenCL OpenMP OpenCL OpenMP

Execution time 2.35 2.22 2.77 1.38
Memory usage 0.39 1.16 0.20 0.32
Kernel size 0.73 1.19 0.85 0.46
API calls 0.45 4.50 0.75 25.00

Since SYCL is a specification of an API, the set of provided features highly depends on theimplementation. Depending on the implementation and target device, languages other thanOpenCL, such as CUDA or OpenMP, are also used internally. Most libraries available onthe market use OpenMP as the basis for parallelization on CPUs and as a fallback solution.Figure 2.17 gives an overview of the most advanced implementations that realized part ofthe SYCL specification [165]. It also shows the supported devices and used programmingmodels.

experimental
OpenMPAny CPU

OpenCL + SPIRXilinx FPGAsPOCL (GPUs)
OpenCL + SPIR-VIntel CPUs,GPUs, FPGAs

CUDA+PTXNVIDIA GPUsAny CPU

ROCmAMD GPUs

CUDANVIDIA GPUsOpenMPAny CPU
experimental

OpenCL + SPIR-VIntel CPUs, GPUs, FPGAs,AMD GPUs, ARM Mali

OpenCL+PTXNVIDIA GPUsAny CPU

hipSYCLUni Heidelberg triSYCLXILINXComputeCppCodeplay DPC++Intel

SYCLsource code

Figure 2.17: Available implementations of the SYCL specification, their supported devicesand used programming models [165].
ComputeCpp from Codeplay offers a professional version including support and a freecommunity version for research and evaluation. In terms of usability, this library provides thebest user experience thanks to precompiled packages for Windows and Linux distributionsand a reasonable user documentation.
HipSYCL is not based on OpenCL, but on OpenMP, AMD’s ROCm and NVIDIA’s CUDA, whichhas advantages and disadvantages. On the one hand, vendor-specific frameworks are moreoptimized in terms of performance than OpenCL [166]. On the other hand, the missing ofOpenCL leads to incompatibility with all other OpenCL devices.

47

2 Background

In contrast to the previously mentioned projects, Intel is working on an implementation ofSYCL for the LLVM compiler framework. There are ongoing efforts to incorporate this workinto the upstream build of LLVM. This will improve the usability of SYCL device compilers andthe overall development process.
TriSYCL is an open-source implementation of SYCL, formerly started by AMD and now led byXILINX. It is used as a testbed to provide feedback to the Khronos group and to influence thestandardization development of SYCL. The team behind triSYCL is working to merge theirwork with the Intel project mentioned earlier. triSYCL also provides a header-only library,which simplifies its integration. Besides these four projects, there is a long list of furtherprojects that implement and support parts of the SYCL standard [167].

2.4.2 Domain Specific Approaches

When developing an application that is in a specific domain, it is advantageous to use a DSL orlibrary. The developer needs to deal less with the implementation details and can focus moreon the design of the algorithm compared to a general-purpose language. Both approachesare good to further abstract the hardware from the application developer. The borderbetween both approaches is seamless. On the one hand, a DSL can provide greater flexibility.On the other hand, a library can provide further abstraction. Therefore, a combination of thetwo approaches is advantageous.

2.4.2.1 Libraries

In addition to the realization of SYCL-based libraries, there are numerous other generic C++libraries which rely on parallel programming paradigms such as OpenCL, CUDA or OpenMP.By their nature, most libraries are limited to a specific domain due to the large numberof possible applications. Denis et al. [168] present a comparison of modern C++ librariesproviding high-level interfaces for programming multicore and many-core architectures. Thecomparison focuses on the solution of ODEs (Ordinary Differential Equations) for librariessuch as Thrust, MTL4, VexCL or ViennaCL. One conclusion of this study was that CUDA andOpenCL perform equally well on large problems, while OpenCL has a higher overhead onsmaller problems. In addition, they show that modern high-level libraries make it possible toeffectively use the computational resources of GPUs or CPUs without much knowledge ofthe underlying hardware. Another conclusion was that due to the similar performance, thedifferences in the programming interfaces of the libraries are more relevant for the choice ofthe library. A few of these libraries will be described in the following paragraphs.
Thrust [169] is a C++-based parallel library to implement high-performance applicationswith minimal programming effort for STLs. Its high-level interfaces significantly increasedevelopers’ productivity while enabling performance portability between GPUs and CPUs.Internally, it uses CUDA to program GPUs.
The MTL (Matrix Template Library) [170] is a linear algebra library providing an intuitiveinterface by creating a DSL embedded in C++. The library aims at maximizing performance,achievable through high-level languages and the use of compile-time transformations. Differ-ent versions exist: (1) an open-source edition supporting CPUs, (2) a supercomputing editionproviding MPI and (3) a CUDA version supporting NVIDIA GPUs.

48

2.4 Programming Methods

VexCL [171] is a vector expression template library for OpenCL and CUDA, which has beendeveloped for general purpose GPU development using C++. It aims at reducing the amountof boilerplate code needed and supports computation on multiple devices and platforms. Itprovides a convenient and intuitive notation for vector arithmetic, reduction, sparse matrix-vector products, and more.
ViennaCL [172] is a free open-source linear algebra library for computations on multicoreand many-core architectures such as CPUs, GPUs, or microcontrollers. The developer onlyneeds to interface with a single library to use different parallel architectures. The library iswritten in C++ and uses CUDA, OpenCL and OpenMP as backend. Despite the hardwareabstraction, target-specific optimizations can still be applied. It also achieves a better overallperformance than the respective vendor libraries, while preserving the ability to apply target-specific optimizations. Although it does not provide a solution for task scheduling or dataconsistency, it enables portable performance for GPUs through a device database coupledwith a kernel code generator.

2.4.2.2 Computer Vision Libraries

The number and complexity of image processing and computer vision applications is growingcontinuously [173, 3, 174]. Libraries are a good solution to reduce algorithm details from thedeveloper. The use of optimized libraries for specific devices, like GPUs or FPGAs, furtherabstracts away the hardware specific optimizations.
Frameworks such as TensorFlow [175] or Caffe [176] have been developed for the field ofdeep learning. The developer uses them via scripting languages, which fully abstract awaythe implementation details of the underlying hardware. They are mainly optimized for GPUprogramming. Shi et al. [177] show a good comparison between different deep learningframeworks, such as Caffe, CNTK, TensorFlow and Torch.
To ease the development process of computer vision applications, standards, and librariessuch as OpenVX [32] and OpenCV [178] have been proposed and are widely used. OpenCVis an open-source computer vision software library, which is built to provide a commoninfrastructure for computer vision applications. It is one of the most known and used librariesin the field of computer vision and image processing. Parts of the OpenCV library have beenoptimized to use GPUs and multicore CPUs in an efficient way. The algorithm developer canturn optimizations, like OpenCL, OpenMP or CUDA, using specific flags.
Since version 3.0, OpenCV supports OpenCL device acceleration through the T-API. A widerange of functions are seamlessly accelerated through fine-tuned image processing functions.Figure 2.18 shows the acceleration achieved by OpenCL on a Radeon HD7790 GPU and anintegrated GPU of an AMD A10-7850k (Kaveri) CPU compared to a C++ implementation onthe same CPU [179].
OpenVX [32] is an open, royalty-free standard for cross-platform acceleration of computervision applications. Because of its graph-based approach andmemorymanagement it ismuchmore than just a library. Various vendors implemented compliant libraries or frameworks,such as MIVisionX (former AMDOVX) from AMD or VisionWorks from NVIDIA, due to its well-defined interfaces. Therefore, it is predestined to create computer vision applications forheterogeneous systems.

49

2 Background

WarpPerspective BilateralFilter CornerHarris Filter 2D Sobel0

10

20

30

1 1 1 1 12 4
9 8 107

16

27 30 32

Function

Acc
eler

atio
nfa

cto
r[#]

CPU/C++Integrated GPU/OpenCLDedicated GPU/OpenCL

Figure 2.18: The OpenCL acceleration of OpenCV, adapted from [179].
Table 2.8 shows a list of OpenVX compliant or similar libraries [179]. The libraries or toolsare usually highly optimized for their own architectures, so combining them requires someeffort. For example NVIDIA for their GPUs and SoCs, Cadence for their Tensilica Vision DSPs,Imagination for their PowerVR GPUs, or Texas Instruments for their automotive SoCs.
Table 2.8: OpenVX or similar libraries with their conformance version and acceleration.
Vendor library OpenVX conformance Acceleration method
AMDOVX 1.0.1 OpenCL and optimized x86 code
Cadence 1.1 Device driver
Imagination 1.1 Device driver
Texas Instruments 1.1 Device driver
NVIDIA VisionWorks 1.0 CUDA
OpenVINO 1.1 OpenCL and optimized x86 code
CLIJ2 7 (similar functions) OpenCL
OpenCV 7 (similar functions) OpenCL

OpenVINO, Intel’s Open Visual Inference & Neural Network Optimization Toolkit, enablesthe development of applications and solutions that emulate human vision. The toolkit isbased on CNNs and is capable of extending workloads to Intel’s CPUs, GPUs, VPUs (VisionProcessing Units) and FPGAs while maximizing application performance.
The CLIJ2 library [180] implements many image processing functions as OpenCL kernels.It was originally developed as a module for the ImageJ image processing program, but itskernels can also be used via bindings for C, Java, and Python. Unfortunately, the languagebindings are not yet fully usable, as they are still in a prototype phase.
AMDOVX is a highly optimized implementation of the OpenVX specification. The libraryenables fast prototyping as well as fast execution on a variety of architectures, ranging fromsmall embedded x86 CPUs to large discrete workstation GPUs. Its source code is available on

50

2.4 Programming Methods

GitHub and functions are accelerated using OpenCL kernels. The library consists of severalcomponents:
• An OpenVX library that provides a standards-conformant implementation of the speci-fication. It includes a graph optimizer that examines the entire processing pipeline andremoves, replaces, and merges functions.
• The RunVX command line tool for executing OpenVX graphs. It defines its own DSL, whichprovides a simple and intuitive syntax for describing the various data buffers, nodes, anddependencies in a graph.
• The RunCL command line tool for creating, running, and debugging OpenCL programs.

2.4.2.3 FPGA-based Computer Vision Libraries

The benefits of FPGAs to process computer vision applications in comparison to otherarchitectures, like CPUs and GPUs, has been shown by different researchers [7, 8, 10].Qasaimeh et al. [10] compare the energy efficiency of CPU, GPU, and FPGA implementationsfor vision kernels on embedded platforms. They evaluated embedded vision applications ondifferent devices (ARM Cortex-A57 CPU, NVIDIA Jetson-TX2 GPU and XILINX ZCU102 FPGA)using the vendor optimized libraries (OpenCV, VisionWorks and xfOpenCV). The GPU achievedan energy/frame reduction ratio of 1.1 times to 3.2 times for simple kernels in comparison tothe other devices. The FPGA outperforms the other devices with an energy/frame reductionratio of 1.2 times to 22.3 times for more complicated kernels and complete vision pipelines. Inconclusion, it was observed that FPGAs perform increasingly better as the pipeline complexityof the computer vision application grows.
Several libraries have been proposed which reduce the complexity of developing computervision and image processing applications on FPGAs. For example, XILINX released their ownFPGA-oriented OpenCV implementation called xfOpenCV [181], which has already been usedin several systems [174]. xfOpenCV also includes many computer vision functions, whichare part of the OpenVX specification. xfOpenCV can be integrated into the different HLStoolchains from XILINX.
Özkan et al. [182] proposed a highly efficient and parametrizable C++-based library forimage processing applications. It targets HLS to produce optimized algorithms for FPGAs.The motivation behind their work is the implementation of image processing applicationsthat can be expressed as DFGs (Data Flow Graphs). They also provide designers multiplePareto-optimal architectures for the same library instances to tailor their implementation.
Vasiljevic et al. [183] show the potential of streaming data between hardware componentson FPGAs. They presented an OpenCL library of preoptimized stream memory componentstargeting FPGAs using SDAccel. A video watermarking and a matrix multiplication are used toevaluate the library, by comparing a naive with an optimized implementation. Unfortunately,the results are not compared to alternative architectures, like CPUs or GPUs.

51

2 Background

2.4.2.4 FPGA-based Computer Vision DSLs

The use of a DSL increases the compiler’s ability to generate efficient code for a certain appli-cation field. There are numerous DSLs that reduce the complexity of developing computervision applications, such as Halide [184, 185], HIPACC [186, 187, 188], PolyMage [189, 190],Darkroom [191] or Rigel [192]. Table 2.9 gives a comparison of four known image processingand computer vision DSLs and their FPGA extensions.
Table 2.9: Comparison of FPGA-based computer vision domain specific libraries.

Halide HIPACC PolyMage Darkroom
Publication Ragan-Kelley[185] Membarth[186, 188] Mullapudi[190] Hegarty[191]
FPGA Extension Pu[184] Özkan[187] Chugh[189] Hegarty[191]
Input embeddedin C++ embeddedin C++ embeddedin Python embeddedin Terra
Compiler own IR loweredto LLVM-IR Clang (LLVM) Polyhedralcompiler Terra,Genesis2
Output OpenCL, CUDA,OpenGL OpenCL, CUDA,C/C++ C++ System Verilogusing Synopsisand Vivado
Architecture CPU (x86, ARM),GPU, FPGA CPU, GPU, FPGAfor x86, ARM CPU (Intel),FPGA (XILINX) CPU (x86),FPGA, ASIC
License Apache 2.0 BSD-2, BSD-3 Apache 2.0 MIT

Ragan-Kelley et al. [185] presented a high-performance programming language and com-piler, called Halide. It has been designed to ease the development of implementing imageprocessing applications. It supports various CPU and GPU architectures, and OSs. Halide isembedded into the C++ language and uses its own IR (Intermediate Representation), which islowered to LLVM-IR. It uses OpenCL, CUDA and OpenGL to program the different computingarchitectures. It works on data parallel pipelines based on simple interval analysis and dis-covers high quality schedules. It is not built on the polyhedral model, which is used in manyother DSLs. Pu et al. [184] extended Halide to allow users to specify which parts of theirapplications should become a hardware accelerator. They provide a compiler that uses thiscode to automatically generate the accelerator along with the additional code needed for theuser application to access that hardware. They use the HLS tools from XILINX to synthesizetheir accelerators. The evaluation shows that on a XILINX Zynq FPGA, they achieve a 3.5 timeshigher performance and a 12 times lower energy consumption than on a K1 192-core GPUfrom NVIDIA.
Membarth et al. [186] proposed a framework and transpiler for automatic code generation ofimage processing algorithms, called HIPACC. They show that domain knowledge can be cap-tured within a language and that this knowledge allows to generate tailored implementationsfor a given target architecture. HIPACC is embedded into the C++ language and can even run

52

2.5 Toolchains

normal C++ code. It provides a runtime system and uses OpenCL, CUDA and C/C+ to targetx86 and ARM-based CPU and GPU architectures. Its compiler is based on the Clang frontendof LLVM. Reiche et al. [188] extended the HIPACC DSL for FPGAs. They proposed a codegeneration technique for C-based HLS from a high-level DSL description for XILINX FPGAsusing the vendor toolchain, called Vivado HLS. Their approach includes FPGA-specific memoryarchitectures for handling point and local operators, numerous high-level transformations,and automatic testbench generation. Their evaluation shows higher execution time but lowerpower consumption on a XILINX Zynq-7045 FPGA compared to an NVIDIA Tesla K20 GPU.Özkan et al. [187] extended this approach to generate highly optimized OpenCL code for IntelFPGAs. They designed a compiler backend that supports arbitrary bit-width operations.
Mullapudi et al. [190] presented PolyMage, a DSL and compiler. It automatically generateshigh-performance implementations of image processing pipelines by using complex fusion,tiling, and storage optimizations. It is embedded into the Python language and works ona Polyhedral compiler that generates C++ code to program multicore CPUs. Experimentalresults on a CPU show that the achieved performance is up to 1.81 times higher than bya manual tuned Halide implementation. Chugh et al. [189] extended the PolyMage workfor FPGAs using the XILINX HLS toolchain. They have developed an approach to map imageprocessing pipelines expressed in the PolyMage DSL to efficient parallel FPGA designs. It firststarts exploiting the pipeline structure from a directed graph of image processing stages. Itthen replicates the CUs to exploit DLP until either memory bandwidth or FPGA resourcesare exhausted. The evaluation shows a speedup of 1.05 times, 1.06 times, 1.85 times or15.6 times for different image processing applications using a XILINX Virtex-7 690T FPGA incomparison to an optimized implementation for an Intel Xeon E5-2680 16 core CPU.
Hegarty et al. [191] created an image processing DSL and compiler embedded into the Terralanguage to target CPUs, called Darkroom. They use the Genesis2 tool to generate SystemVerilog to target FPGAs and ASICs using the toolchains from Synopsis and XILINX. They workon a DAG and compile programs directly into line buffered pipelines. In comparison to Halide,they are less expressive.
The various DSLs in Table 2.9 havemany similarities, but also somedifferences. All approacheshave developed a transpiler to convert the input language to another one. This allows the useof the vendor-specific toolchains to program different architectures. The DSL constructs werebuilt into existing programming languages, so no completely new language was developed.Consequently, existing programs can be reused. Halide and HIPACC can program mostdevices and are embedded in to the C++ language, which opens many more possibilities.Whereby HIPACC seems to achieve the better performance between the two DSLs. PolyMageshows very good performance and works with the polyhedron model, which opens manyoptimization possibilities. On the other hand, Darkroom is the only DSL that allows to programASICs.

2.5 Toolchains

This thesis proposes a framework for application distribution of object detection applicationsin heterogeneous FPGA-based systems. In addition to the topics, application distributionand object detection presented in the previous sections, this toolchain comprises severaltopics. Four of these topics will be examined in this section based on the current SoA.

53

2 Background

The first part looks at transpilers, their advantages and disadvantages, and their realization inresearch. Transpilers usually transform source code from one language to source code of thesame or another language. They are used in many languages, such as DSLs, and toolchains,such as for HLS. This thesis uses transpilers to build user-generated functions for GPUs andFPGAs to be integrated more nicely into the rest of the framework.
The second part discusses HLS tools, their benefits and their realizations by researchersand vendors. Using HLS has several advantages, such as an easier and faster way of testingfunctional correctness, good code portability, and a much shorter design cycle comparedto RTL (Register Transfer Level)-based languages. This thesis uses HLS-based toolchainsto implement a C++-based object detection library for FPGAs. Furthermore, HLS-basedtoolchains from XILINX are integrated into the framework of this thesis.
The third part looks at FPGA-based OpenVX tools. OpenVX [32] is an open, royalty-freestandard for cross-platform acceleration of computer vision applications. Because of itsgraph-based approach and memory management, it is much more than just a library. Thisthesis uses OpenVX as a common frontend of the framework to program both embeddedand HPC systems.
The last part looks at existing OpenCL-capable toolchains in research. As mentioned earlier,OpenCL allows programming a wider range of different parallel architectures comparedto other languages. On the one hand, OpenCL kernels are used in this thesis to programnon-FPGA devices. On the other hand, this thesis uses the OpenCL host code as a low-levelAPI in its runtime system to orchestrate the work in x86-based systems.

2.5.1 Source-to-Source Compilers (Transpilers)

Compiler optimizations can also be used to offload program code to a compute devicewithout the influence of the developer. By using different optimization steps and adjustingthe schedule, an optimized code for parallel architectures is created. A frequently usedapproach in this context are transpilers. These convert the input source code, for example,into a general-purpose language that is used as IR to leverage vendor toolchains. As shownin Section 2.4.2.4, DSLs use transpilers to address parallel architectures by transforming theircode into OpenCL, CUDA, C++ or GPLs. This section will provide an overview of transpilersthat target parallel and heterogeneous architectures. It will individually elaborate on the Pollytool and the PPCG (Polyhedral Parallel Code Generator) tool. Before that, there is a briefintroduction to some essential concepts about LLVM and the polyhedral model.
Transpilers usually transform source code from one language to source code of the same oranother language. Unlike normal compilers, which usually generate machine code from aninput language. Transpilers have the following advantages.
• Human readable code: Transpilers can make machine code readable again for the de-veloper. This allows the developer, for example, to make own changes and optimizationsto the source code. Such changes would be difficult on a machine code or IR, such asLLVM-IR, MLIR [193] or SPIR (Standard Portable Intermediate Representation) [194].
• New language features: Using a transpiler the developer can add new features to a
language. This approach is often used within DSLs, like Halide [185] or HIPACC [188].

54

2.5 Toolchains

• Downwards compatibility: Transpilers can also enable downwards compatibility of lan-guages. For example, C++03 could be generated from C++20 if the target platform doesnot support it and the programmer does not want to lose the useful features of C++20.
• Reuse of existing tools: Transpilers allow an easy integration and usage of existing tool-chains. This means that no new backend needs to be programmed for each target architec-ture, for example if a new language is developed. The integration of the vendor tools alsoallows to use their upgrades for new architectures without changing the backend. VariousHLS tools generate, for example, VHDL or Verilog to reuse the existing toolchain of thevendor. Also, other directive-based languages like OpenACC use intermediate languageslike OpenCL to address different architectures more easily.
There are, of course, some challenges in the development of a transpiler. Whether or notcertain aspects of the transpiler toolchain have tolerable side effects largely depends on thedesired use case. The detour via the IR increases the optimization possibilities but makesit more difficult to get back to human-readable code. Generating human-readable sourcecode from an IR is a challenging task. Especially when naming variables since informationcan be lost on the way to the IR or disappear due to transformations and additional code.Therefore, it is important to pass through as much debug information as possible from theoriginal code.

LLVM

The LLVM framework is a modular open-source compiler written in C++11 and divided intothree sections (frontend, middleend and backend). The frontend parses the desired language,such as C, syntactically and semantically and translates it into the intermediate language(LLVM-IR). Using a common IR has the advantage that optimizations and transformations ofthe program code can be performed independently of the input language. Thus, techniquessuch as loop detection, dependency analysis, or transformations need to be performed onlyonce and not for each input-output combination. The transformations and the analysesare cascaded in LLVM using passes. Each pass is programmed as a separate module andcan access data from other passes. The LLVM framework ensures that these passes areexecuted in the correct order. In the backend, LLVM-IR is converted to the desired machinelanguage, such as x86, x64, ARM or NVIDIA PTX.

Polyhedral Model

The polyhedral model [195] attempts to model memory accesses to arrays in nested loopsas a function of the iteration variables. A program is divided into Statements that are exe-cuted depending on the iteration. Listing 2.1 shows a function with two Statements (S0[i, j],
S1[i, j, k]). They are denoted as integer tuples (n[i0, ..., id–1]). n denotes the name and d thenumber of parameters. Together, the two are called a tuple space. Using the ISL (Integer SetLibrary) [196], calculations are performed on Statements. The ISL includes a solver for integerlinear optimization and can be used for calculations in set theory. A program area that iswritable with polyhedral modeling is a SCoP (Static Control Part), which includes the followingparts:
• Fixed or parametrized loop bounds: i < 8; i < n; ����XXXXi < A[i, j]

55

2 Background

• Affine accesses: a +∑n

i=1(bi · Xi) → A[i · 6]; A[i + j]; ����XXXXA[i · a]
• Single-entry-single-exit
• Side-effect free calls
1 void matmul (float A[m][o], float B[o][n], float C[m][n], int m, int n, int o)
2 for (int i=0; i<m; ++i)
3 for (int j=0; j<n; ++j)
4 C[i][j] = 0; // S0
5 for (int k=0; k<o; ++k)
6 C[i][j] = C[i][j] + A[i][k] * B[k][j]; // S1

Listing 2.1: Simple matrix multiplication code including two statements (S0 and S1).
Figure 2.19 shows the four main steps of the polyhedral optimization.

4. AST Generation

3. Scheduling2. Dependency Analysis

1. Extraction Step

Abstract Syntax Tree

New ScheduleDependency Relations

Original ScheduleAccess RelationsStatements

Figure 2.19: The four main steps of the polyhedral optimization.
1.The Extraction step searches for areas in the input code that would be suitable for thepolyhedral modeling. From these areas the Statements of the Instance Set, which is the set ofall dynamic execution instances, is formed. Subsequently, the memory Access Relations arecreated for the Statements. Depending on the Statements, the Original Schedule is createdfrom the program code. The results of the Extraction step for Listing 2.1 looks as follows:
• Statements: S0 and S1
• Write-access relations: S1[i, j, k] → C[i, j]; S0[i, j] → C[i, j]
• Read-access relations: S1[i, j, k] → C[i, j]; S1[i, j, k] → A[i, k]; S1[i, j, k] → B[k, j]
• Original schedule: S0[i, j] → [i, j, 0, 0]; S1[i, j, k] → [i, j, 1, k]

2.The Dependency Analyzes step forms the Dependency Relations, which are binary relationsbetween the Statements of the Instance Set. For this, the Instance Set, the Access Relations,and the Original Schedule are used. A relation indicates whether one element must beexecuted in front of the other: read-after-write (true dependence), write-after-read (antidependence) or write-after-write (output-dependence).

56

2.5 Toolchains

3.The Scheduling step creates a New Schedule using the Dependency Relations and Original
Schedule. The schedule can be recreated with the Dependency Relations, or the Original
Schedule can be modified by incremental changes. The target hardware architecture is alsoimportant for the schedule.

4.The AST Generation step converts the Statements of the Instance Set into an AST (AbstractSyntax Tree) with the help of the New Schedule. The code for a high-level language such asC or a compiler intermediate language can be generated using the AST.

Polyhedral Tools

Polyhedral modeling has become the basis for automatic program optimization and paral-lelization [197]. LooPo (Loop Parallelizer) by Griebl et al. [198] is one of the first practicaltools. PLUTO (Polyhedral Parallelizer and Locality Optimizer) by Bondhugula et. al. [199]performs automatic parallelization and optimization of program code. PLUTO is a transpilerfor generating OpenMP code for CPUs with an UMA architecture. The program code isoptimized to maximize parallelism and data locality by using loop tiling to optimize cacheutilization. It uses LooPo as a scanner and parser. For linear optimization it uses PIPLib(Parametric Integer linear Programming) of Paul Feautrier [200]. To generate source codefrom the polyhedral model, Cedric Bastoul’s CLooG (Chunky Loop Generator) [201] is used. Anewer version of PLUTO uses the PET (Polyhedral Extraction Tool) of Verdoolaege et al. [202].PET uses Clang as frontend instead of LooPo.
PoCC (Polyhedral Compiler Collection) combines many of the presented tools to form acompiler collection. With Polly for LLVM [203] and GRAPHITE for GCC (GNU C Compiler) [204],polyhedral optimization has also been introduced into traditional compilers. Polyhedraloptimization requires integer linear programming. For Polly and other projects, this isrealized in the ISL of Verdoolaege [196]. It includes an integer linear programming solver,offers modeling of sets and relations and can express piecewise quasi-affine expressions.A quasi-affine expression is a function that maps from a named integer tuple with a giventuple space to a rational number.
The C-to-CUDA compiler by Baskaran et al. [205], mainly based on PLUTO and CLooG, wasthe first to address GPUs using CUDA. The challenge with GPUs is the different processingand memory architecture and the fact that data often needs to be copied explicitly. Amore advanced version is PPCG from Verdoolaege et al. [206], which is described in a latersubsection.

Polly Tool

Polly [203] is a high-level loop and data-locality optimizer for the LLVM framework. It workson the LLVM-IR and tries to detect loops and transforms them to parallelize a programusing OpenMP, SIMD or GPU code. Polly uses the polyhedral model and the ISL library forpolyhedral optimization. The structure of the Polly tool is shown in Figure 2.20.
First, the Polly Canonicalize pass canonizes and normalizes the LLVM-IR code, so that thecode is in a standard form and the subsequent steps do not need any special treatment.The detected loops are reshaped to only use one iteration variable per loop. The loopsconsist of a single-entry single-exit region, and they conform to the loop-closed SSA (Single

57

2 Background

LLVM-IR

LLVM-IR

CodeGenerationIslAstInfo

ScheduleOptimizer

DependenceInfo

ScopPass Manager

ScopInfocreates a polyhedronmodel for valid regions
ScopDetectiondetection of themaximum SCoPs

PollyCanonicalizecanonizes & normalizesLLVM-IR code

Figure 2.20: The structure of the Polly tool.
Static Assignment) form. This form checks for each loop whether a variable written inside theloop is also read outside of the loop. Then the Scop Detection pass checks whether parts ofthe program code can be converted into a SCoP. It checks if a region only has valid loops,statements, control flow graphs and affine memory accesses. A valid loop is a loop thatdoes not allow jumps out of the current region since it can only have one entry point andone exit point. Then the Scop Info pass creates a polyhedral model for valid regions from
Scop Detection. First, the Statements of the Instance Set of the current region are generated.Then, for each load, store and PHI instruction, the memory Access Relations are formed. PHIstatements assign a value to a variable depending on from which basic block it branches tothe current block. Finally, the schedule for the current SCoP is generated from the LLVM-IRcode. The Scop Pass Manager runs various SCoP passes in sequence that perform calculationsand optimizations on the SCoP and ensures the order of the SCoP passes. At the end, the
Code Generation pass converts the New Schedule into LLVM-IR by generating an ISL-AST, whichis then converted into LLVM-IR code.

Polyhedral Parallel Code Generator (PPCG) Tool

PPCG [206], shown in Figure 2.21, is a transpiler based on polyhedral optimization. It usesaffine transformations to extract data parallelism and generate code. The focus is onmulticorecompute devices with strict memory hierarchies, like GPUs. PPCG is divided into severalphases. PET is used to extract a polyhedral model from C code which is based on the C99standard. The Statements and memory Access Relations are created in ISL format. Unlike Polly,PET works on the AST of Clang, which is a frontend for the LLVM framework. Like in Polly, a
Dependency Analysis is performed using the ISL. The Dependency Relations are used to createa GPU optimized Schedule. In the Code Generation step, it is converted using the ISL to createOpenCL, OpenMP or CUDA code.
A multilevel tiling strategy has been implemented, which respects the hierarchical memoryarchitecture of GPUs. It is possible to select work-group and work-item sizes regardless of thesize of the array. It therefore decouples the multilevel parallelization from the optimization ofthe data locality. Non-fully nested loops can be split into multiple kernels. PPCG creates thehost code, which allocates the memory on the compute device, organizes the data transfer,and defines the correct order of kernels. Using the Live Range Reordering [207] feature, PPCG

58

2.5 Toolchains

Polyhedral Extraction Tool (PET)

OpenMPCUDAOpenCL

C-Code AST

Dependency
AnalysisSchedulingCode

Generation

SCoP Detection
& Generation

Clang(frontend)

Figure 2.21: The structure of the PPCG (Polyhedral Parallel Code Generator) tool.
has a function to detect and resolve data dependencies of local variables when they areonly used within the SCoP. There is a write-after-read data dependency to ensure for thenext loop pass that the variable is successfully read first before it can be written again. Ifthe computation with local variables is distributed over several arithmetic units, a separateprivate memory can be created for each unit to resolve the write-after-read dependency.

2.5.2 High-Level Synthesis (HLS) Tools

FPGAs are used for various purposes. Classically, they are programmed with HDLs (HardwareDescription Languages) such as VHDL or Verilog. However, implementing applications fordigital circuits is very time consuming andmost software developers are not familiar with suchprogramming paradigms. When it comes to the development of computer vision or imageprocessing algorithms, such detailed knowledge is not always required. Moreover, algorithmdevelopers often do not have much knowledge about FPGAs. Therefore, programmingmethods are necessary, which provide a further abstraction. A good step towards fasterdevelopment are languages like SystemC [208] or Chisel [209]. However, the developer stillneeds to have a good understanding of the hardware being developed.
Developing FPGA designs with HLS has several advantages, such as an easier and faster wayof testing functional correctness, good code portability, and a much shorter design cyclecompared to RTL-based languages. As a result, several vendors have developed tools toprogram FPGAs with a high-level programming language such as C/C++ or OpenCL. Intel,for example, offers its OpenCL SDK [210, 211] for FPGA devices. XILINX also offers variousHLS toolchains, such as Vivado HLS [212], which is included in SDSoC [213] for embeddedsystems or in SDAccel [214] for HPC systems. OpenCL is a very promising programmingmodel for a wide range of different parallel architectures, due to its structure and rich set offunctions and built-in constructs. This also improves code portability between different FPGAvendors. Another advantage of FPGAs that can be realized in a user-friendly way by OpenCLis DPR, as runtime programming of devices is part of the OpenCL standard. In return, C++has advantages over OpenCL (version 2.0 or older) in the implementation of parameterizablelibraries, for example through templates.
Hardware designs for image processing and computer vision can be developed much fasterthan with an HDL, with the drawback of a slightly increased resource utilization. However,due to the high progress in the VLSI (Very Large-Scale Integration) technology, an increasingamount of logic blocks are contained within one FPGA. Therefore, the impact of the slightlyincreased resource consumption by using HLS is becoming less. When it comes to the

59

2 Background

implementation of hardware architectures such as a PU, HLS languages are not necessarilythe best choice, as the developer must consider more details and cover more corner cases.Regardless of the use case and the chosen language, the HLS developer needs experiencewith FPGA designs when writing efficient code. However, this is also the case with otherplatforms, for example GPUs.

Vendor Tools

Vivado HLS [212] is provided by XILINX for the development of hardware accelerators using ahigh-level language such as C/C++, SystemC or OpenCL. The tool uses a transpiler to convertthe source code into an RTL implementation that can be synthesized for XILINX FPGAs. Thedeveloper must optimize and improve the source code using directives (pragmas) to obtainefficient code for the FPGA.
In XILINX’s classic toolflow, developers of computer vision algorithms would need three toolsto program a heterogeneous system consisting of an ARM CPU and an FPGA when usingHLS. First, the developer would need to implement the computer vision ACs. The individualACs can be implemented either in VHDL/Verilog using Vivado or in C/C++/OpenCL usingVivado HLS. An IP-core is then generated from the AC and integrated into the final systemdesign. The system (block) design is created using Vivado. The block design simplifies thereuse of IP-cores and their integration into the embedded system design. Vivado is also usedto create the bitstream for the FPGA. The ARM CPU is tightly coupled to the FPGA and isprogrammed using XILINX’s SDK. It can be used to load the bitstream onto the FPGA anddebug the system.
XILINX also provides the SDSoC [213] tool to further abstract hardware-specific implementa-tion details from the developer. It supports heterogeneous embedded systems, consistingof an ARM CPU and an FPGA, such as the Zynq [100] system. The advantage of SDSoC isthat developers of computer vision algorithms can implement a complete design using onesoftware tool. The tool compiles software functions written in C/C++ with Vivado HLS to ACsand generates a complete hardware system based on the selected platform, including DMA,interconnects, hardware buffers and more. It also creates the software stack that controlsthe AC from the ARM CPU. An FPGA engineer can still create a new hardware platform thatcan be used in SDSoC, for example, to integrate I/Os.
A similar tool from XILINX is called SDAccel [214]. This tool was created to program FPGAs,which are connected to x86-based systems, using the OpenCL programming model. UsingOpenCL, the FPGA can be used like any other OpenCL device in the system, for example a GPUor CPU. The integration of the different vendor drivers is done via Makefiles. This simplifiesthe programmability of heterogeneous systems. Like SDSoC, SDAccel creates the hardwareplatform including data movers and the software stack that controls the implemented ACs.The OpenCL kernel itself can be written in OpenCL or in C/C++. The main difference to othercompute devices is that the FPGA bitstream must be generated before the OpenCL programis executed.
The OpenCL SDK [210, 211] from Intel, formerly Altera, provides software developers withan environment that abstracts away the underlying hardware details while enabling anefficient use of FPGA resources without requiring knowledge of an HDL. The SDK providesthe programmer with a higher level of abstraction and the development tools postponecostly hardware compilations to the end of the design process [215].

60

2.5 Toolchains

Janik et al. [211] present an overview of Intel’s OpenCL SDK. The process of speeding upan algorithm is not simple, as it requires knowledge of the behavior and structure of theOpenCL standard, as well as an understanding of parallel computing paradigms. A majoradvantage offered by the SDK compared to HDL tools is the fast creation of a functionalcorrect implementation. However, the initial design does not achieve the same speedup.Once the functional model is created, the optimization of the program becomes the focus ofthe task. This is quite different from traditional HDL designs, where you can’t determine if thedesign is functional correct until a later stage in the design process. The authors show that itis possible to achieve a high speedup when comparing their optimized FPGA implementationto a CPU implementation for a 1024 × 1024 matrix multiplication.

Research Tools

Besides the commercial tools, there are also university research tools, such as ROCCC [216]and LegUp [217], to efficiently implement FPGAs with high-level languages. Villarreal etal. [216] presented ROCCC 2.0, a C-to-VHDL compilation tool to generate ACs for FPGAs.It allows the user to define self-contained modules that can be reused. A module can beimported as C code, VHDL code or as a netlist. Creating and importing hardware modulesin C is done without adding explicit commands to the C code and allows the creation ofACs without requiring the low-level details of an HDL. The proposed compiler produces anefficient pipelined hardware based these modules. They show that the modules generated bythe ROCCC compiler are competitive with handwritten VHDL code in terms of clock frequency,while productivity increases by 15.
Canis et al. [217, 218] presented LegUp, one of the first and most known research tools. It isa SoA HLS compiler which automatically generates high-performance FPGA hardware fromC++ code. It supports hardware synthesis using the well-known multithreading approachesPthreads andOpenMP.Without requiring any code changes, it can producemultiple hardwarecores that can execute concurrently. Although it was one of the first HLS tools, it is still beingdeveloped further, as shown in the release version [219] of 15.09.2020. Just recently, a well-known vendor of microchips, called Microsemi, joined the toolchain. Like the vendor tools,LegUp HLS offers a rich set of user-constraints to specify the desired hardware architecture.
• Outer loops can be pipelined, or inner loops can be unrolled, to improve performance.
• Functions with a FIFO dataflow that have streaming inputs and outputs can be parallelized.
• C++ arrays can be partitioned into registers or BRAMs to achieve a better memory band-width.
• Larger hardware operations such as floating-point operations can be shared.
Windh et al. [220] focused on an investigation of five HLS tools to improve the productivityof efficient FPGA code development. They compare several vendor tools, such as VivadoHLS [212] from XILINX and the OpenCL SDK [210] from Intel, with various research toolssuch as Bluespec [221], ROCCC [216], and LegUp [217]. They describe the user interactionof these tools, show how the code is expressed and compiled, and discuss the resultingresource usage using an image dilatation filter and an AES (Advanced Encryption Standard)algorithm.

61

2 Background

Nane et al. [222] have presented a comprehensive survey and categorization for commercialand academic hardware compilers and HLS-based toolchains. Figure 2.22 shows the classifi-cation of different HLS tools, including only some of the tools mentioned in the survey paper.They experimentally evaluated three academic HLS tools (BAMBU [223], DWARV [224], andLegUp [217, 218]) against a commercial tool. The objective was to provide a fair comparisonof HLS tools, even though they were created in different compiler frameworks and targetdifferent FPGAs families. The results show that each HLS tool can significantly improve perfor-mance with benchmark-specific optimizations and constraints. However, software engineersmust consider that optimizations to achieve high performance, like enabling loop pipeliningand removing control flow, are significantly different from software-oriented optimizations,like data reorganization for cache locality. The performance results showed that academicand commercial HLS tools are not that far apart from each other in terms of quality, andthat no single tool provided the best results for all benchmarks. In general, the commercialcompiler supports more features while being more robust than the academic tools. Forexample, they allow multiple input and output languages, customization of generated kernelsin terms of interface types, memory bank usage and throughput.

Maxeler (MaxJ)...Vivado HLS (XILINX)OpenCL SDK (Intel)LegUp, Bambu, ...
ROCCC (C extended)...Bluespec (BSV)...

Object Oriented
Languages

Procedural
Languages

C-extended
Languages

New
Languages

General Purpose
Languages

Domain Specific
Languages

High-Level
Synthesis Tools

Figure 2.22: Classification of HLS tools based on the input language [222].

Case Studies and Analysis Tools

Winterstein et al. [225] presented a case study for Vivado HLS [212] using a K-Means clus-tering and a filtering algorithm. The K-Means clustering algorithm is dataflow-centric withregular control flow andmemory accesses, while the filtering algorithm uses dynamic memorymanagement based on recursive traversal of a pointer-linked tree structure. The perfor-mance gap between the HLS and RTL implementations of the K-Means clustering algorithmis approximately a factor of 2 in terms of area-time product, which is a remarkable resultconsidering the large difference in design time. For the filtering algorithm, the resource con-sumption of both implementations is similar, but the latency is initially decreased by a factorof 30. They were able to improve latency by a factor of 8 by applying code transformations topartition and privatize data structures accessed via pointers to promote parallelization andenable pipelining of the loop.
Hosseinabady et al. [226] present an automation technique to efficiently map an OpenCLdescription onto an ARM-FPGA-based SoCs from XILINX. They propose a work-group synthesistechnique to automatically divide a large dataset into small blocks and map the OpenCL

62

2.5 Toolchains

description to the FPGA, which does not have enough space to store a large dataset. Theprovided framework is based on a transpiler that transforms the OpenCL kernel into C/C++code. Vivado HLS [212] is then used to synthesize the code. They define the data accesspatterns of the OpenCL kernels, including intra- and inter-work item access patterns andfurther optimizations for parallelism and memory usage. Their OpenCL implementationshows a speedup of up to 89.8% compared to Intel’s OpenCL running on a Cyclone V.
Hill et al. [215] compare traditional VHDL application development with the OpenCL designflow of the OpenCL SDK of Intel for image processing kernels. The OpenCL SDK providesthe programmer with a higher level of abstraction and the development tools postponecostly hardware compilations to the end of the design process. They implemented threealgorithms for their case study: (1) the Sobel kernel (2) the Canny edge detector [18] and (3)the SURF feature extractor [40]. On the one hand, the SDK increased productivity by a factorof 6. On the other hand, the VHDL designs required 59% to 70% less hardware resources,while maintaining similar timing constraints (255MHz < fmax < 325MHz). The difference infps for the OpenCL and VHDL kernels is between 2% and 10% on a Stratix-V D8. In addition,they were able to demonstrate portability of the OpenCL code to two other FPGA platformswithout further modifications, while achieving similar performance in terms of operatingfrequency and resource utilization.
Wang et al. [227] presented an FPGA-based performance analysis framework for OpenCLapplications on Intel FPGAs. They proposed a performance model that detects the mainarchitectural features, predicts the performance with different optimization combinations,and identifies the bottlenecks of the OpenCL kernel code. They demonstrate the efficiencyof their model with multiple use cases (matrix multiplication, K-Means and MapReduce) byconsidering many combinations. The results show that the proposed model has a highaccuracy in predicting the performance acceleration of individual optimizations and canachieve up to two orders of magnitude speedup over a baseline implementation. The toolprovides programmers with understandable metrics and guides them in optimizing code toaddress performance bottlenecks.
In the above-mentioned work [215, 226, 227, 225], there were unfortunately no comparisonsto optimized implementations of other platforms, such as multicore CPUs or GPUs. Ayat etal. [228] looked at OpenCL using the Intel SDK and implemented a Sobel filter as a use case.Their implementation was compared with a GPU and a multicore CPU implementation fordifferent image and kernel sizes. The FPGA has the advantage over the GPU of providinggood data reusability for image processing applications by implementing custom buffers.Their results also show that each device needs its own optimization, since the same code willnot perform very well. They show that the kernel size does not increase the computationtime for FPGAs as much as for GPUs or CPUs. However, their timing results seem to be quiteslow. Additionally, they do not show any power measurements of the different platforms.

2.5.3 FPGA-based OpenVX Tools

OpenVX [32, 229] is more than just a library thanks to its graph-based approach and memorymanagement. OpenVX is a low-level programming framework domain that provides softwaredevelopers with efficient access to computer vision hardware acceleration. It has beendesigned to maximize functional and performance portability across different computedevices, such as CPUs, DSPs, GPUs or ASICs, in the embedded and HPC domain. Some

63

2 Background

vendor implementations rely on APIs like OpenCL or OpenGL to target a device, while othersbuild directly on top of the device drivers. Figure 2.23 gives an overview of the layers in theOpenVX framework [229]. The key features of OpenVX are:
• a library of predefined and customizable vision functions.
• a graph-based execution model for combining functions that enable both task- and data-independent execution.
• a set of memory objects that abstract physical memory.

Applications

OpenVX
C/C++OpenCL/OpenGL

ProgrammableVision Processors DedicatedVision Hardware

Application
Software

Engines or
Frameworks
Low-level APIs
or Languages

Processor
Hardware

Figure 2.23: Overview of the layers in the OpenVX framework [229].
In contrast to the various low-level APIs, such as OpenCL, OpenVX frees the programmer frommemory management and application scheduling. Implementation details are limited to edgeand node creation and parameter tuning. This leaves the developer of an OpenVX complianttoolchain with the task of optimizing the graph in terms of execution time, for example byreducing memory transfers and creating a schedule. There are many implementations fromdifferent vendors, such as AMD, NVIDIA, Synopsys, or QUALCOMM. However, it is not so easyto use different vendor libraries at the same time.

Research Tools

Several researchers have proposed OpenVX based frameworks to facilitate the developmentprocess of computer vision applications for different systems [230], but only a few for FPGAs.The most promising OpenVX frameworks that use FPGAs are ADRENALINE [231], JANUS [232],JANUS SVP [233], AFFIX [234] and HIPACCVX [235].
Tagliavini et al. [231, 236, 237] proposed ADRENALINE, which contains techniques basedon graph analysis and image tiling aimed at accelerating the execution of image processingapplications represented as OpenVX graphs. Its architecture contains RISC (Reduced Instruc-tion Set Computer)-based PUs, which share multi-banked data memory, and are connectedby a logarithmic interconnection. Its low-level API is OpenCL, and the system is evaluatedusing the STHORM architecture connected to a XILINX Zynq system that uses the FPGA asinterconnection to bridge to the ARM core.
Omidian et al. [232, 238] presents JANUS, which is a compilation system for OpenVX thatcan analyze and optimize the compute graph to find area/throughput trade-offs and maponto FPGAs. It also combines module selection and replication methods as well as changingtile size with node combining and splitting. Omidian et al. [233] expanded this approach for

64

2.5 Toolchains

a SVP, including a runtime environment, a library of OpenVX C/C++ kernels and a library ofprebuilt VCIs (Vector Custom Instructions) for the FPGA. The user selects the vector size, thescratchpad size, and the size of the PRR.
Taheri et al. [234] presented a framework for turning a high-level OpenVX graph specificationinto an FPGA implementation, which has been improved in the AFFIX [239] framework. AFFIXreceives an algorithm representative DAG in a textual format developed by a user includingthe desired SIMD size. It outputs a heterogeneous implementation of the vision algorithmusing Intel’s OpenCL SDK. It adds high and low-level optimization methods to improve theefficiency.
While HIPACC [186, 188, 187], introduced in Section 2.4.2.4, allows portability and efficientgeneration of high-performance accelerator code, application scheduling is left to the pro-grammer. A recent addition called HIPACCVX [235] aims to fuse the graph-based approachand execution model of OpenVX with the code generation implemented in HIPACC. Theyextended the OpenVX specification such that programmers can register HIPACC kernels ascustom nodes to OpenVX programs. The HIPACCVX framework consists of an OpenVX graphimplementation and routines that verify and optimize the input OpenVX applications. Itgenerates device specific code for a target platform using the HIPACC code generation.
In total, 9 OpenVX functions are implemented as OpenCV kernels since they cannot be fullydescribed with HIPACC. Excluding these functions, they list 46 functions in their table. It is hardto tell if all these functions have been implemented. Thanks to HIPACC, HIPACCVX can addressdifferent architectures, such as CPUs, GPUs, or FPGAs. However, in the evaluation, they areonly addressed one at a time. This means that there is no special mapping and scheduling incomparison to this thesis. Due to the various kernel-level optimizations, HIPACCVX achievesvery good performance.

Comparison

Table 2.10 compares the frameworks described above with each other and with the proposed
DECISION framework, which integrates the proposed HiFlipVX library. DECISION, JANUS,AFFIX, and HIPACCVX provide the best performance in terms of computation time becausethey use optimized ACs rather than generic PUs. They are not as bandwidth constrained asthe other approaches because they can transfer data directly between different computervision functions. Using the Canny edge detector as an example application, ADRENALINEachieves 109Mpx s–1 running at 16 cores at 433MHz, and JANUS SVP achieves 21Mpx s–1On the contrary, DECISION and AFFIX achieve about 2Gpx s–1 thanks to vectorization.
JANUS SVP seems to be a good option for software programmers, since almost no knowledgeabout the hardware is required. The user selects only the vector size, the scratchpad memorysize, and the size of the PRRs. HIPACCVX and DECISION have the advantage of using anOpenVX compliant interface. In contrast, AFFIX requires the user to use OpenCL constructsand channels. HIPACCVX, AFFIX and DECISION provide a large set of image processing func-tions, which are also available as an open-source library. In contrast, the HiFlipVX libraryalso supports CNNs and feature detection functions. Furthermore, it enables numerousoptimization and tuning possibilities through its high number of parameters. In addition,
HiFlipVX has even been used for large applications such as MobileNets [21] and AKAZE [20]with up to 163 ACs.

65

2 Background

Table 2.10: Comparison of FPGA-based OpenVX frameworks. SVP (Soft Vector Processor),VCI (Vector Custom Instruction)
ADRENALINE JANUS JANUS SVP AFFIX HIPACCVX DECISION

Publication Tagliavini2015[231, 236, 237]
Omidian2017[232, 238]

Omidian2018[233]
Taheri2019[234, 239]

Özkan2021[235]
Proposed2022[27]

Architecture ARM, Sthorm,intercon.via FPGA
FPGA,AC

ARM,SVP (MXP),VCI (AC)
Intel FPGA,AC CPU, GPU,FPGA CPU, GPU,FPGA

Inter-connection logarithmicbetween PUs - SVP to VCI(3 ports) - - NoC, -

Library 41 SWfunctions,set for Sthorm
Sobel,Canny,Harris

25 kernels(SVP & HLS) 46functions max. 55functions
66 feature,image, CNNfunctions

Abstraction OpenCL asbackend HWknowledge pure softwareprogrammers
OpenCLconstructs& channels

OpenVXcompliant OpenVXcompliant
Performance medium high low high high high
PRRs - - 3 - - (3)
Heterogeneous - - - - - 3

Of all the approaches, JANUS SVP is the only one that considers PRRs. However, the architec-ture and model of the DECISION framework provide the opportunity for PRRs. In addition,
DECISION builds a flexible and adaptable NoC-based infrastructure with a minimal runtimesystem. However, this flexibility does not comewith the performance drawbacks of JANUS SVPor ADRENALINE. In addition to FPGAs, DECISION and HIPACCVX can also address CPUs andGPUs in a heterogeneous system. However, only DECISION supports the simultaneous use ofheterogeneous devices. JANUS, AFFIX and HIPACCVX show different approaches to optimizekernels or the OpenVX graph, which can be used to complement this work. In contrast, thiswork proposes APARMAP, which can distribute applications to mesh-like and partition-basedFPGA clusters.

2.5.4 OpenCL-based Tools

Due to the good usability of OpenCL, it is available on a wide range of platforms. OpenVX-based frameworks such as AFFIX [239] and ADRENALINE [237] also use OpenCL as a low-levelAPI. However, they only target a specific platform and are often not general enough and donot have a comprehensive runtime system. Other frameworks, such as HIPACCVX [235], canaccess a variety of platforms, but do not take advantage of the wide range of applicationdistribution options.
This section deals with toolchains that are either based on OpenCL or integrate OpenCLinto their concept. Section 2.4.2.1 already dealt with libraries such as ViennaCL [172] andVexCL [171], which are based on OpenCL, or OpenCV [178], which integrates OpenCL foracceleration. These libraries often try to abstract the host code and provide implementedkernel functions. However, a toolchain includes more components such as a runtime system,

66

2.5 Toolchains

memory management, scheduler, or hides data transfers. The following subsections willdiscuss two frameworks that take a more comprehensive approach and compares them withthis thesis. These are SnuCL [240, 241] and StarPU [242, 243].

Research Tools

Jungwon Kim et al. [240] proposed SnuCL, anOpenCL framework for heterogeneous CPU/GPUclusters. Junghyun Kim et al. extended SnuCL in SnuCL-D [241] and SnuCL-Tr [244]. SnuCLallows an application to utilize compute devices of a compute node as if they were in thehost node. Standard OpenCL functions are used to manipulate memory objects. The SnuCLframework then maps the buffers in the device memories of the respective devices. In doingso, it minimizes the overhead of copying memory and takes care of memory consistency.They use a parallel loop scheduling algorithm to distribute a single kernel unto multipledevices [245]. They use code transformations to detect buffers written by a kernel and todistribute kernel code. The SnuCL runtime uses OpenMPI as a lower-level communicationAPI. The resulting system can accelerate eleven different benchmarks linear to the numberof devices used, except for programs that are limited by their sequential parts or memorytransfer delays. For large clusters, SnuCL can cause performance degradation due to itscentralized task schedulingmodel. SnuCL-D extends the framework by a distributed approachthat replicates the entire OpenCL program on each device to reduce overhead.
Augonnet et al. [242] proposed StarPU, a task programming API for hybrid CPU/GPU archi-tectures. Their approach is based on a task-based model represented as DAG. It targets andschedules heterogeneous systems including CPUs and GPUs, and manages data dependen-cies and data transfers between different devices. There are several functions in its API forexecuting and registering kernels and buffers. In addition, the library contains functions toinitialize and terminate the StarPU environment. Buffers must be registered to pass controlto the runtime system and unregistered to return control back to the user. Kernels areregistered with their buffers, access modes (read/write), and targeted architectures. StarPUhas its own C prototype to create these kernels. This prototype is also needed as a wrapperto execute OpenCL and CUDA kernels. A kernel is submitted as a task in a non-blockingmanner. The runtime manages all dependencies with the preceding and succeeding tasks.The task scheduler considers data transfers and benefits from caching techniques and datareuse. It can be used with a specific strategy that allows customizing the policy for differentuse cases. To improve the schedule, the programmer can provide additional hints about taskpriority and set weights for tasks and data transfers. An extension called StarPU-MPI [243]uses MPI to enable data transfers for data dependencies across the boundary of computenodes.

Comparison

Table 2.11 lists the related work and shows the benefits and drawbacks of each approach. Alow level of abstraction requires boilerplate code which is typical for OpenCL programs. Incontrast, the OpenVX standard allows a high-level description of a graph, hiding the imple-mentation details. Heterogeneous refers to the ability of the framework to utilize multipleheterogeneous devices simultaneously. The tables shows that no other framework than
DECISION provides a high abstraction level for acceleration of computer vision pipelines on

67

2 Background

heterogeneous systems supported by a memory model, minimal runtime system, automaticdevice and kernel profiling, and scheduling and mapping.
Table 2.11: Comparison of OpenCL-based toolchains.
OpenCV2008[178]

ViennaCL2016[172]
SnuCL2016[244, 241]

StarPU2011[242, 243]
AFFIX2019[239]

HIPACCVX2021[235]
DECISION2022[27]

CPU 3 3 3 3 7 3 3

GPU 3 3 3 3 7 3 3

FPGA 7 7 7 7 3 3 3

Abstraction low low low mid low mid/high high
Memory model 7 7 3 3 7 3 3

Profiling 7 7 7 7 7 7 3

Scheduling 7 7 7 3 3 3 3

Heterogeneous 3 3 3 3 7 7 3

Compared to SnuCL, the focus of this work is on optimizing at design time rather than atruntime. This has the advantage of a minimal overhead, which is negligible compared to thatof OpenCL. The scheduling algorithms of this work focuses on scheduling and mapping taskgraphs to different devices rather than a single kernel on multiple devices as done by SnuCL.One reason for this approach is that compared to their work, this work also integrates FPGAs.FPGAs play their full potential over GPUs if multiple functions are pipelined to enable TLP anddrastically reduce bandwidth consumption. Nevertheless, their approaches for work-itemand work-group optimization could be incorporated into the scheduling approach of thiswork to enhance the design space. Additionally, SnuCLs inter compute node communicationapproach could be a reasonable extension for this work. In terms of programmability, thiswork has a big advantage over SnuCL because it uses OpenVX as a frontend and thus has astandardized interface. This allows the integration of not only the HiFlipVX library developedin this work, but also libraries from other vendors.
In contrast to StarPU work, this work integrates FPGAs into the toolchain. By adding FPGAs,more efficient and flexible systems can be created. At the same time, new concepts arerequired due to the fundamental difference in architectures. For example, through pipeliningat function level, FPGAs need a more complex scheduler. A further difference is that in thiswork kernel libraries for object detection are developed and integrated. Using a standard API,like OpenVX, further libraries of different vendors can be integrated. The OpenVX conceptallows this work to make many optimizations at design time. For example, compared to theirwork, the mapping and scheduling in this work is calculated at design time. Design timeoptimizations allows many computations to be done in advance, thus reducing the overheadof the runtime system. However, it also reduces the number of API function calls of the user,such as registering buffers. In addition, the wrappers for the kernel functions in this work aregenerated automatically and do not need to be created by hand. The different parameters ofthe object detection library that are set in this wrapper allow further optimizations throughfine tuning at design time.

68

3 HiFlipVX: Object Detection Library

This chapter focuses on the design and implementation of the various object detectionalgorithms and individual functions covered in this thesis. The background informationabout the more complex algorithms can be found in Section 2.1. Based on the researchand the exploration of the different algorithms and their functions the HiFlipVX library wasdeveloped.
HiFlipVX enables a faster development of computer vision applications on FPGA-basedembedded or HPC systems. The name stands for High-Level Synthesis FPGA Library for Image
Processing. It is an open-source C++ and HLS-based FPGA library for object detection and isavailable at [246]. It stands out due to its high parameterizability, performance, portability,and resource efficiency, and is partly based on the OpenVX standard. OpenVX is an open,royalty-free standard for cross-platform acceleration of computer vision applications [32].
HiFlipVX contains 66 computer vision functions with 42 based on the standard and 24developed within this research. The additional functions were mainly extracted from differentalgorithms discussed later in this chapter and transformed to generic and reusable libraryfunctions. They also include functions that target the streaming capability of FPGAs, such asdata-width converter, multicast, scatter and gather functions.
Section 3.1 describes the implementations of the individual library functions. These havebeen divided into pixelwise, filter, conversion, analysis, feature, and neural network functions.Section 3.2 describes the more complex algorithms implemented using VHDL, HiFlipVX, orboth. These include the FAST [17] corner detector, Canny [18] edge detector, ORB [19] featuredetector, AKAZE [20] feature detector, FREAK [24] feature descriptor, and MobileNets [21]neural network. Section 3.3 evaluates the individual functions and algorithms in termsof their performance, resource utilization, accuracy, and scalability [12, 13]. Furthermore,different combinations of feature extraction algorithms were compared in terms of theirrepeatability and performance [22]. In this thesis, the most promising combinations werefurther developed, with significantly better results than the other combinations. Two of thefeature detectors and one feature descriptor were selected based on their performanceand characteristics for embedded and HPC systems, implemented using HiFlipVX [25, 26,23], and compared with the SoA. In addition, the neural network extension of the library hasbeen evaluated based on its accuracy, performance, scalability, and resource efficiency [14].Section 3.4 summarizes the implementation and evaluation of this chapter.

69

3 HiFlipVX: Object Detection Library

3.1 HiFlipVX Library Functions

The HiFlipVX library contains 66 computer vision functions divided into six groups.
• Image Pixelwise: Operates on its input images pixel by pixel, e.g., for arithmetic operations.
• Image Filter: Operates on an input window of pixels to compute an output pixel.
• Image Conversion: Converts image properties, like color, depth, width, and resolution, orconnects vision functions.
• Image Analysis: Analyzes all pixels of an input image, e.g., to calculate its histogram orstandard deviation.
• Feature: Extracts a set of features or operates on them and includes complete algorithms.
• Neural Network: Functions used in common CNN algorithms.
In addition to the OpenVX standard, most functions in HiFlipVX support different vectoriza-tion options (1, 2, 4 and 8) and additional data types (8 bit, 16 bit and 32bit signed/unsignedintegers) for their input and output parameters. Internally, the library uses bitmasks to createdata types of arbitrary precision, since they are not part of the C++ standard. This thesis didnot use the arbitrary precision data types from XILINX, to be more vendor independent. Forbit-widths above 64 bit and to perform vectorization, the library uses an own template-baseddata type. Due to the use of directives and macros for optimizations, HiFlipVX can also beexecuted on a CPU outside of the XILINX environment, for an easier testing and verification.To further increase the usability, the library uses static assertions to throw an error if pa-rameter values or data types with undefined behavior are used. The following subsectionsdescribe the six different function groups from the HiFlipVX library separately.

3.1.1 Image Pixelwise Functions

Table 3.1 shows the implemented pixelwise functions, which have several characteristics incommon. They perform their operations on the input image(s) pixel by pixel. The bit-width ofthe input and output images can be 8 bit, 16 bit and 32bit, but needs to be the same. Thepixel values can be unsigned or signed. Independent of the bit-width, 1, 2, 4 and 8 pixelscan be computed in parallel in a vector. Due to the template-based implementation, highervector sizes would also be possible. A shared, template-based function is used to implementall pixelwise operations for an easy expandability of new functions. It includes the verificationof data types and template parameters, reading the input vector(s) and writing back theresult. The function is pipelined to exploit temporal parallelism and the operation is executedon each element of the vector in parallel. The library performs all arithmetic operations usingfixed-point numbers, to reduce resource consumption while maintaining precision.
If the result of an arithmetic operation cannot be represented with the chosen bit-width, over-flow or underflow occurs. Therefore, the library contains different policies for the functionsthat need them. On the one hand, overflow can be ignored (wrap) or the minimum/maximumrepresentable number is used (saturate). On the other hand, underflow can be ignored(truncated) or rounded to the nearest integer value. Resource efficient operations for satu-ration are chosen depending on the type of arithmetic operation and the signedness of thevalues.

70

3.1 HiFlipVX Library Functions

Table 3.1: HiFlipVX image pixelwise functions. Non-standard are marked with F.
Name Operation
Data Object Copy out(x, y) = in1(x, y)
Bitwise AND out(x, y) = in1(x, y) ∧ in2(x, y)
Bitwise XOR out(x, y) = in1(x, y) ⊕ in2(x, y)
Bitwise OR out(x, y) = in1(x, y) ∨ in2(x, y)
Bitwise NOT out(x, y) = in1(x, y)
Arithmetic Addition out(x, y) = in1(x, y) + in2(x, y)
Arithmetic Subtraction out(x, y) = in1(x, y) – in2(x, y)
Absolute Difference out(x, y) = |in1(x, y) – in2(x, y)|
Weighted Average out(x, y) = (1 – α) · in2(x, y) + α · in1(x, y)
Magnitude out(x, y) = √in1(x, y)2 + in2(x, y)2
Pixelwise Multiplication out(x, y) = in1(x, y) · in2(x, y) · α
Constant MultiplicationF out(x, y) = in1(x, y) · α
Min out(x, y) = {in1(x, y) in1(x, y) < in2(x, y)

in2(x, y) in1(x, y) ≥ in2(x, y)
Max out(x, y) = {in1(x, y) in1(x, y) > in2(x, y)

in2(x, y) in1(x, y) ≤ in2(x, y)
Phase

θ(x, y) = atan2(in1(x, y), in2(x, y))
out(x, y) = {θ(x, y) + π θ(x, y) < 0

θ(x, y) θ(x, y) ≥ 0

Threshold
out(x, y) = {1 in1(x, y) > t00 in1(x, y) ≤ t0

out(x, y) =

0 in1(x, y) > t10 in1(x, y) < t01 (in1(x, y) ≤ t1) ∧ (in1(x, y) ≥ t0)

There are two functions in the table that are multiplied by the constant value α. Its value is setas a template parameter at synthesis time, which leads to an optimized resource usage. Forexample, the library uses a shift operation instead of a multiplication when the scalar value isa multiple of two. This saves resources for the multiplication operation, since fixed shifts canbe performed by rewiring. However, right shift operations performed on negative numberscan cause a rounding error. For example, –3 shifted by 1 would be –2, but –3 divided by 2would be –1. Therefore, the library performs a shift operation that produces the same resultsas the division. The value of α is represented as a fixed-point value with a 16 bit fraction forarithmetic operations.
To reduce the resource consumption of the magnitude function, the library contains anHLS-based integer square root function as shown in Listing 3.1. Here, N is the output bit-widththat is half of the input bit-width. For each output bit, two additions and one comparisonare performed. The shift values are signal connections, computed at synthesis time and the

71

3 HiFlipVX: Object Detection Library

OR-operation simply concatenates the result bits. An integer square root is used to reduceresource utilization, since for lower bit-widths the library does not need a higher precision tocomply with the OpenVX standard. Only for a 64 bit data type double precision floating-pointis needed to comply with the standard.
1 A1 = 0; // Intermediate result
2 A2 = 0; // Square of intermediate result
3
4 for (n = N - 1; n < N; n--)
5 #pragma HLS unroll
6
7 // (A1 + B1)^2 and add new bit at position n
8 B1 = 1 << n;
9 B2 = B1 << n;
10 AB = A1 << n;
11 A2_next = A2 + B2 + (AB << 1);
12
13 // Store if A2_next does not exceed value
14 if (A2_next <= input)
15 A1 |= B1;
16 A2 = A2_next;

Listing 3.1: Integer square root function. Each stage computes 1bit of the resulting vector.
As shown in Table 3.1 the phase is calculated using the 2-argument inverse tangent atan2(x, y).The library uses the CORDIC (COordinate Rotation DIgital Computer) algorithm with a 16 bitfraction part, to reduce the resources consumption while maintaining the desired accuracy.Dinechin et al. [247] show that this accuracy is sufficient for many cases. The range ofthe resulting angle is between – π2 and π2 . For negative angles, π needs to be added to theresult. Finally, the value is quantized using a parameterizable constant value. For example, aquantization of four would divide the angles into north, east, south, and west. Therefore, theangle is rotated in advance according to the quantization.
The threshold function takes an input image and creates a Boolean image using the thresholdvalues (t0 and t1). As shown in Table 3.1, two different threshold types exist. Default values forthe output pixels are defined by the standard to represent a Boolean. If the output format isan unsigned integer, true is equal to the maximum possible value. If it is a signed integer,
true is equal to –1. In both cases false is equal to zero.

3.1.2 Image Filter Functions

One of the most important concepts in the field of signal processing is spatial convolution.Spatial convolution is also considered as image filtering. This filtering could be smoothing,differentiation, edge detection, calculating the mean, etc. To calculate an output pixel, anoperation is performed on a n × n large window within each input image. In many cases thisoperation is a multiplication with a kernel matrix, where the elements of the window and thekernel matrix are multiplied pixel by pixel.
Table 3.2 shows the implemented filter functions that share several common features. There-fore, HiFlipVX uses a generic base structure (function) for all its filters. A parameter selects

72

3.1 HiFlipVX Library Functions

the correct kernel function at compile time. This approach simplifies the creation and im-plementation of new filter functions. To create a new filter, it needs a kernel and a wrapperfunction. The second one selects the required parameters of the base structure. This way alloptimizations, such as vectorization and line buffering, can be reused.
Table 3.2: HiFlipVX image filter functions. Non-standard are marked with F.

Box Gaussian Non-Maximum Suppression
Sobel Convolve Segment Test Detector 7 × 7F

Erode Scharr 3 × 3F Determinant of the Hessian 3 × 3F

Dilate HysteresisF Fast Explicit Diffusion 3 × 3F

Median Conductivity 3 × 3F Oriented Non-Maximum Suppression 3 × 3F

In the following, the different parameters of this base structure are described in more detail.Then the generic sliding window approach of the base structure is presented. To implementfilter functions on FPGAs in an effective way, a sliding window approach is needed, as shownin Figure 3.1. Then there is a description of an approach for separable filters that can beused to save resources when certain symmetries are present in the kernel matrix. Finally,the implementation of certain kernel functions is described.

columns

row
s

sliding window
line buffer
output pixel

Figure 3.1: Sliding window approach for a 3 × 3 kernel.

Parameter

The base structure can be configured generically for one to two input images and one totwo output images. In addition, there are numerous parameters, like the image rows (IR)and columns (IC), that are resolved at compile time to provide high variation and optimizeresources at the same time. All the constants and variables, which are used within thissection, are shown in Table 3.3. Within the base structure, most of the constants are checkedfor validity at compile time. Additionally, further restrictions of these parameters are made inthe wrapper functions. The most used template parameters are described in more detailbelow.
Kernel function: Optimized kernel functions operate on an input window and computea single output pixel. Beside these kernel functions there is also a forwarding unit, whichforwards one of the input images to one of the outputs. This can be used to reduce thenumber of needed buffers in specific algorithm implementations. A separate kernel function

73

3 HiFlipVX: Object Detection Library

Table 3.3: Constants (uppercase) and variables (lowercase) used in HiFlipVX.
IC image columns
IR image rows
IW image pixel bit-width
IMAX max possible pixel value
KS kernel size
KR kernel radius
Kσ kernel scale
SKσ scaled kernel size
WCT window columns total
WCL window columns left
WCR window columns right
OC loop column overhead
VS vector size

LBW bit-width of all line buffers
TC trip count
PI pipeline interval
PD pipeline depth
PF FIFO pipeline depth
t0 threshold (lower border)
t1 threshold (upper border)
cw window column
xv vectorized x-coordinate
x x-coordinate
y y-coordinate
v pixel value
r response value

(or forwarding unit) is needed for each output image of the filter. For example, the Sobelfilter calculates the derivatives in x and y-direction using two different kernel functions thatoperate on the same input window.
Kernel matrix: For each kernel function, a kernel matrix of size KS × KS can be passed. Thelibrary generates kernel matrices of variable sizes for different functions, such as the Gaussianor Sobel, at compile time.
Kernel size (KS): Table 3.2 shows the kernel size of a function if it is fixed. All other filterfunctions support kernel sizes of 3, 5, 7, 9 and 11. This thesis could not find a commonsolution of a larger kernel size for the Scharr filter. Both the conductivity and the DoHfunctions use the Scharr kernel to calculate their derivatives.
Data types: Like for the pixelwise operations, the filter functions offer different data types fortheir input images, output images and kernel matrices (8 bit, 16 bit and 32bit). Dependingon plausibility, there are restrictions on the signedness for the individual functions.
Vector sizes (VS): Like the pixelwise operations, all filter operations offer different vector sizes(1, 2, 4 and 8). Besides the resource limitation, the maximum size of a vector is determinedby the maximum possible bit-width of the interface, which is limited by the HLS tool (1024 bitfor Vivado HLS).
Kernel scale (Kσ): It enlarges the kernel of a filter by increasing the distances between theelements of the kernel matrix and filling the gaps with zeros. For example, a scaled kernel ofsize (SKσ) is used for the Scharr filter in the AKAZE algorithm. Using the kernel matrix and Kσ ,the scaled kernel matrix is automatically generated at compile time. The maximum value for
SKσ is 11, which is the same as for KS.

SKσ = (KS – 1) · Kσ + 1 (3.1)

74

3.1 HiFlipVX Library Functions

Step size: The step size or stride specifies by how many pixels the sliding window mustbe moved to calculate the next valid output pixel. Its value has an influence on the outputresolution and its vector size.
Border type: Every filter supports three different border behaviors. Values beyond borderscan be undefined, constant zero, or the replicated border pixels. In most feature detec-tion and description algorithms, this thesis achieved better results using replicated borderhandling.

Filter Structure

The basic filter function has a pipelined structure that uses line buffers and a sliding windowapproach to create a streaming capable function. Figure 3.2 shows the different stages ofthis pipeline. These stages can be grouped into two groups. The first one depends on thenumber of input images and the second one on the number of output images. Therefore, theunits of each step of a group are multiplied by the number of its parameters. For example,the number of sliding windows and line buffers depend on the number of input images.

read input

pac
kda

ta

line buffer
line buffer

unp
ack

dat
a

y-b
ord

er
x-b

ord
er

WCL

sliding window

WCR
ker

nel
writ

eo
utp

ut
Figure 3.2: The common structure used for all filters shown for a 3 × 3 kernel. Green partsare duplicated by the number of input images and blue parts by the number ofoutput images. Dashed lined paths are used for border handling.
An image filter needs parallel access to a window of pixels, to compute one output pixel ineach clock cycle. These observed pixels are stored in a sliding window built of registers. Inthis window, pixels are shifted from left to right in every clock cycle. The number of rows ofthis sliding window is equal to the kernel size. The number of columns (WCT) in the slidingwindow depends on the kernel radius (KR) and vector size (VS), which determines the numberof pixels computed in parallel.

KR = ⌊KS2
⌋

(3.2)

WCT = KR + VS + VS ·
⌈
KR

VS

⌉
(3.3)

These window columns are divided into three parts, separated by a left border (WCL) and aright border (WCR). The input source of the left and middle parts, depend on the proximity ofthe window to the left and right image borders.

75

3 HiFlipVX: Object Detection Library

WCL = WCT – VS – KR
WCR = WCT – VS (3.4)

To be able to stream data and read each pixel only once from memory, complete image rowsare buffered in line buffers. However, data that needs to be accessed in parallel cannot bepacked in consecutive memory addresses in the same BRAM. This is because the BRAM isonly dual ported, and the function needs one port to read and one port to write in each clockcycle. With an optimized usage of line buffers only (KS – 1) rows of each input image have tobe buffered. To further optimize the resource usage, the complete column of all line buffersis packed into a single vector (LBW), which depends on the vector size, number of line buffersand input image pixel bit-width (IW).
LBW = VS · (KS – 1) · IW (3.5)

To avoid writing each vector element into a separate BRAM, the HLS data_pack directive isneeded. The vector is written to or read from the line buffers. Depending on the resultingbit-width of the vector, Vivado HLS uses the minimum number of BRAM. A BRAM has amaximum width of 36 bit. For large kernel sizes this partitioning can lead to a reduction inBRAM usage due to fragmentation, compared to a manual partitioning into 32 bit large datatypes, since 36bit is not covered by the C++ standard.
Line buffers and sliding window need to be filled, before the first output value can begenerated. The overhead to fill the line buffers is equal to the kernel radius (KR). Whereasthe overhead (OC) to fill the sliding window is calculated based on the kernel radius and thevector size.

OC = ⌈KR
VS

⌉
(3.6)

Depending on the y-coordinate and vectorized x-coordinate (xv) of an image the key operationin each stage is:
1. If (y < IR) and (xv < IC

VS
) read in the next input element. This element contains a pixel vectorand additional AXI4-stream signals (last, user). To avoid unnecessary data dragging, thepixel vector is extracted.

2.Read the pixel vectors from the line buffers at xv and buffer them together with the newinput pixel vector.
3.Pack and write pixel vectors to line buffers at xv , but one row up (y – 1), to be used whenthe y-coordinate is increased.
4. If parts of the kernel matrix go outside the border, the border handling method is invoked(e.g. replicated or constant zero).
5.The sliding window shifts pixel vectors from left to right. The source changes if windowpixels are beyond image borders:
a) If xv = 0, border data is written into middle columns (WCL ≤ cw < WCR).

76

3.1 HiFlipVX Library Functions

b)If xv ≥ IC
VS
, border data is written into left columns (WCR ≤ cw).

6.Compute the kernel function for each vector element (pixel) in parallel.
7. If (y ≥ KR) and (xv ≥ OC) write the next element to the output. It contains the pixel vectorand the generated AXI4-stream signals (last, user).

Separable Kernels

Some 2-dimensional filters have the advantage that they can be computed by using two1-dimensional filters in sequence [248]. Such filters are called separable, and the libraryexploits this property to reduce resource consumption. This benefit increases for largerkernels. For example, the window elements for a 7 × 7 kernel would be reduced to an 1 × 7and a 7×1 kernel. Equation (3.7) illustrates this optimization using a 3×3 Gaussian kernel.

rea
din

put
x-b

ord
er

WCL

sliding window

WCR

ker
nel pac
kda

ta

line buffer
line buffer

unp
ack

dat
a

y-b
ord

er

ker
nel

writ
eo

utp
ut

Figure 3.3: The structure used for all separable filters shown for a 3 × 3 kernel. Dashed linedpaths are used for border handling.

GaussianKernel = 1
4
[1 2 1] · 14

121
 = 1

16
1 2 12 4 21 2 1

 (3.7)

Figure 3.3 shows the pipeline stages used for the implemented separable filters. It is like thenon-separable pipeline. The separable filter pipeline first reads the input pixel and writesit into a horizontal sliding window with a size of 1 × WC . This sliding window only needs tocheck the image boundaries on the x-axis. The next stage computes the horizontal computekernel and stores its intermediate results in line buffers. Then, data is read from the linebuffers and written to a vertical sliding window with a size of (KS × VS). This sliding windowneeds to check the image boundaries on the y-axis. The final stage computes the verticalcompute kernel and writes the results back to memory.
HiFlipVX provides separable filter implementations for the Gaussian, box, dilate and erodefilters. There is a non-separable implementation of the box and Gaussian filter becausethe computed values of the output pixels differ by a maximum of one in comparison to theseparable filter. The deviation results from the fact that the normalization is performed inboth kernels of the separable filter, to not increase the data bit-width of the line buffers.Larger Sobel or Scharr kernels would also have advantages when using a separable filter,as their LUT and FF consumption would decrease. Since these filters compute the x and yderivatives, different units, like the line buffer, would be needed for each derivative for thevertical kernel. This would in turn increase the consumption of LUTs and FFs, and double theamount of BRAM needed.

77

3 HiFlipVX: Object Detection Library

Kernel Functions

The following describes the individual kernel functions of the filters in more detail. More aboutthe functions defined in the OpenVX standard can be found in the manual [229]. Table 3.2marks all functions which are not defined in the standard with a F. All filter functions workon a window on each of their input images. Filters like box, median and Gaussian are oftenused to smooth the image. Other functions, such as the Sobel and Scharr filter calculatethe image derivatives. Apart from the median, the above-mentioned functions convolve theimage with a kernel matrix. The convolve function can also be used to compute customor unsupported convolutions. The kernel matrix passed for convolution is also resolved atcompile time. Filters like the median, dilate and erode are not linear. While the first onecalculates the median of an input window, the last two calculate its maximum or minimum.
HiFlipVX optimizes its filter operations based on the coefficient pattern of the kernel matrix.This can be done because the coefficients are fix at synthesis time. For example, the coeffi-cients of the Gaussian kernel are symmetrical on the x and y-axes independent from thekernel size, as shown in Equation (3.7). This symmetry gives the possibility to optimize thenumber of operations for different functions, such as the Gaussian, Sobel, Scharr, conductivityand DoH functions. Equation (3.8) shows the optimized computation of one pixel (I(x, y)) forsymmetric 1D kernels, like the Gaussian kernel B, for an input window A.

I(x, y) = B(KR) +
KR–1∑
n=0 (B(n) · (A(n) + A(KS – n – 1))) (3.8)

To avoid overflow, the various filter functions are normalized after kernel operation if needed,to prevent an overflow. The library uses shift operations to process normalization, if itsvalue is a multiple of two, like in the (e.g., Gaussian and Scharr filter). Otherwise, the libraryapproximates the normalization by multiplying (mult) and shifting (shift), to avoid a costlydivision operation (e.g., box filter). The type of normalization and its values are computedat compile time (e.g., custom convolution and Sobel filter). To compute the mult and shiftvalues for a 16 bit accurate normalization, first all kernel coefficients are summed up (sum).Then, the normalization value is computed as floating-point value. This value is shifted to themaximum value, which can be represented by a 16bit value.

mult = ⌊ 1
sum

· 2–shift
⌋

(3.9)
The coefficients of larger Gaussian and Sobel kernel matrices are computed at synthesistime by discrete convolution of the 1D kernels using the standard smoothing kernel [1 21]. Equation (3.10) gives an example of the discrete convolution. Finally, the two 1D kernelsare multiplied together to compute the 2D kernel matrix, as shown in Equation (3.7) for theseparable filters.

B = [1 2 1] ∗
[1 2 1] = [1 4 6 4 1] (3.10)

Themedian filter implementation differs from the other filters because it requires searchingfor the median value within the input window. A common algorithm for computing themedian is to sort the pixels of the input window and select the median element of the sorted

78

3.1 HiFlipVX Library Functions

array as output. Multiple sorting networks exist, such as odd-even merge-sort, bitonic-sort,and shell-sort. These networks are a good fit for FPGAs, since they can be implemented withsimple comparator networks. The library uses an odd-even merge-sort algorithm [249], sinceit requires fewer comparators than the others. Since the array size is not a multiple of two,this thesis uses a more generic implementation [250]. Different sorting networks have beenproposed by researchers for specific array sizes. Since 3 × 3 kernel sizes are the most usedones, the library implements the sorting network proposed by Aranda et al. [251] for thisspecific case.
The segment test detector is part of the FAST [37] corner detector. It has been extractedfrom the FAST to be applied to other computer vision applications. Its window size is 7×7. Inthis window it extracts 16 pixels in a Bresenham circle of radius three, as shown in Figure 2.3.An image pixel value (v) is detected as a corner if (S = 9) continuous image pixels (vi) in thecircle are:
• lighter (∀i ∈ S, vi > v + t0) or
• darker (∀i ∈ S, vi < v + t0).
Their difference must be above a certain threshold (t0). The strength or response value of adetected corner is the minimum absolute difference (ri = |vi – v|) between v and all vi. Thehardware computation consists of two parts to identify a corner and calculate its responsevalue (r). Part one first computes the direction (lighter or darker) of v to all vi. Part twofirst computes the absolute differences (ri) of v to all vi. Then part one checks if all possiblecontinuous pixels (S = 9) in the circle (N = 16) are in the same direction (16 combinations).Then part one checks if (S = 9) contiguous pixels in the circle (N = 16) are either lighter ordarker (for all 16 combinations). At the same time part two computes the minimum’s (rj) ofall ri for all these combinations. At the end, the maximum of all rj is selected, where partone identifies that it is a corner. The output of the segment test detector is an image ofresponse values. For non-corner pixels a zero is written to the output. This work has omittedthe threshold (t0) in the hardware implementation to not loose information and because itcan be applied in a later function (e.g., feature extraction or threshold).
The NMS function searches for local maxima in a squared window. A pixel with coordinates(x, y) is kept if and only if it is greater than or equal to its top left neighbors and greater thanits bottom right neighbors. Otherwise, it suppresses the observed pixel and sets it to thesmallest possible value of the data type. In addition, a kernel matrix with the same size as theobserved window can be provided by the user, to be used as a mask. This mask is passedwith the compile-time parameters.
The oriented NMS function suppresses pixels that are not a maximum depending to theirorientation. Therefore, it gets two images as input. One image of gradients and one imageof orientations. Like the NMS function it looks in a window around a pixel to see if it is themaximum. Instead of comparing with all eight pixels around the observed one, it compareswith the two pixels that are perpendicular to its orientation. For example, if the orientationshows north, the observed pixel needs to be bigger than the pixels in the east and west. Todetermine the exact direction of the orientation within the observed window, the functionneeds the quantization factor of the orientation image. The orientation image is bufferedbesides with the gradient image although it does not need to be windowed. This is done toprevent external buffers, because the images would otherwise be read at a different clockcycle.

79

3 HiFlipVX: Object Detection Library

The hysteresis filter function suppresses weak pixels that are not within the range of a strongpixel. Strong pixel values need to be above the threshold t1 and weak pixel values above thelower threshold t0. All pixels below t0 are suppressed and all above t1 are not. If a strongpixel is within the window of a weak pixel, the weak pixel will be strong. Otherwise, it will alsobe suppressed. The output image stores a zero for all suppressed pixels and the maximumpossible value for all strong values to create a binary image.
To compute the conductivity function (Lc) using the Perona-Malik diffusion, two values areneeded. The first value is the contrast factor (γ), and the second value is the absoluteimage gradient. To better detect blobs, a conductivity coefficient introduced by Perona-Malikis used that favors wide regions over small ones. It is shown in Equation (3.11) and hasbeen reformulated to reduce computational effort. Other formulas exist to calculate theconductivity function, which, however, showed worse results in the evaluation of this work.Furthermore, they are more computationally and resource intensive, since they need tocompute an exponent in addition to the division.

Lc = 1
1 + (|ΔL|

γ

)2 = γ2
γ2 + Lx2 + Ly2 (3.11)

The library uses the Scharr filter to calculate the first order derivatives. Then the absolutegradient is calculated. If its value is zero, it is rounded up to the smallest representablefixed-point value. This ensures that there is neither a division by zero nor an overflow inthe final conductivity coefficient. Three different accuracy levels have been implemented,since the computation of the gradient and division with maximum accuracy leads to a highresource consumption. The contrast factor (γ) is a scalar value. The function receives italready squared to reduce the number of operations. This is since the same contrast factorcan be used in different scale levels of a feature detection algorithm. The bit precision of thesquared contrast factor is 32bit, since γ2 is in the dividend and requires a high precision.
The FED function (Lf) describes the diffusion process of an image and needs three parametersas input. These are the input image (Lt), the conductivity image (Lc), and the step size (τ),which is passed as template parameter. The library has an optional output image for the FEDfunction. It is the forwarded Lc image, which can be used by the subsequent FED function asinput. The advantage of forwarding the Lc image is that additional buffers are saved, sincethe diffusion process consists of several consecutive FED functions, and they all need thesame conductivity image. To calculate a pixel of the output image, its four adjacent pixelsin the input image and the conductivity image are needed. For the diffusion process, thedivergence must be calculated first:

dx+ = (Lt(x + 1, y) – Lt(x, y)) · (Lc(x + 1, y) + Lc(x, y))
dx– = (Lt(x, y) – Lt(x – 1, y)) · (Lc(x, y) + Lc(x – 1, y))
dy+ = (Lt(x, y + 1) – Lt(x, y)) · (Lc(x, y + 1) + Lc(x, y))
dy– = (Lt(x, y) – Lt(x, y – 1)) · (Lc(x, y) + Lc(x, y – 1))

(3.12)

If (Lt(x + 1, y) – Lt(x, y)) is positive, the current pixel has a lower concentration than its rightcounterpart and the flow goes in direction of the current pixel. If (Lt(x, y) –Lt(x–1, y)) is positive,the current pixel has higher concentration than its left counterpart and the flow goes in

80

3.1 HiFlipVX Library Functions

direction of the neighboring pixel. If the difference is zero, no flow occurs from or to thecorresponding direction. The same applies for the neighboring pixels in y direction. The sumof the conduction coefficients defines how strong the flow in each direction is, as shown inthe following equation:
Lf (x, y) = Lt(x, y) + τi,j2 · (dx+ – dx– + dy+ – dy–) (3.13)

The division by two can be performed as a shift operation or before reading τ, since τ ispassed as a constant. The value for τ has a 16 bit fraction part, like α of the pixelwise functionsor the contrast factor γ. Tests have shown that an 8 bit fraction does not provide a sufficientlyhigh accuracy. Since τ can take values greater than one, the maximum integer fraction is setto 16bit. Since the value of τ is a compile-time constant, unnecessary bits are automaticallyremoved by the compiler. During the diffusion process, the stability condition can be violatedbetween consecutive FED functions, as far as it is stable after the last one. An evaluation hasshown that the values vary between –0.1 and 1.1. Saturating these values did not change theresult noticeably. Therefore, the library limits the range to values that are above or equalzero and less than one. This increases the precision by 2 bit, because of using fixed-pointvalues and omitting the signed bit and the integer bit.
The DoH function (Ld) is a blob detector, which is used in many feature detection algorithms.As shown in Equation (3.14), the second order derivatives are needed for its calculation. Tocompute the derivatives, the library uses the Scharr filter. This thesis provides two approachesto calculate the derivatives. In the first approach, the DoH filter gets the first order derivativesas input (Lx, Ly) and uses them to compute the second order derivatives (Lxx, Lxy, Lyy). Inthe second approach, the first and second order derivatives are performed in one step. Thisis achieved by convolving the Scharr kernel matrix with itself beforehand at compile time.Equation (3.15) shows the resulting kernel matrices (Kxx, Kxy, Kyy).

Ld(x, y) = Lxx(x, y) · Lyy(x, y) – Lxy2(x, y) (3.14)

Kxx =

9 0 –18 0 960 0 –120 0 60118 0 –236 0 11860 0 –120 0 609 0 –18 0 9

 , Kxy =

9 30 0 –30 –930 100 0 –100 –300 0 0 0 0–30 –100 0 100 30–9 –30 0 30 9

Kyy =

9 60 118 60 90 0 0 0 0–18 –120 –236 –120 –180 0 0 0 09 60 118 60 9

(3.15)

Both approaches have benefits and drawbacks. Parallel execution on FPGAs allows the secondapproach to be chosen without sacrificing performance compared to other architectures.Moreover, the deviations resulting from the normalization of the first-order derivative in thefirst approach are minimized. In contrary, the first approach allows the reuse of first orderderivatives and finer granularity to reduce fragmentation in cluster-based systems. Unlike

81

3 HiFlipVX: Object Detection Library

the other filter functions, the DoH calculates three kernels on one or two inputs, but withonly one output as a result. The function DoH takes signed 8 bit and 16bit data types asinput and supports output bit-widths of 16 bit and 32bit. To achieve the highest possibleaccuracy, the internal Scharr filters are normalized after the full DoH has been calculated.However, in the case of an 8 bit input and a 32 bit output, this means that the value is shiftedup and not down. An evaluation of the range of values showed that the values of the outputimage are between –0.25 and 0.125. This means that the value range, including the negativenumbers, can be displayed without overflow.

3.1.3 Image Conversion Functions

Table 3.4 shows the different image conversion functions of the library. Most of thesefunctions modify image attributes, such as the format, bit-width, vector size, or resolution.Other functions are more specific for the streaming approach on FPGAs, such as the scatter,gather and multicast functions.
Table 3.4: HiFlipVX image conversion functions. Non-standard are marked with F.

Channel Combine Scale Image Gather F
Channel Extract Bit-Width Conversion Scatter F
Color Conversion Data-Width Conversion F MulticastF

The channel combine function takes multiple unsigned 8 bit planes and combines them toa multiplanar or interleaved image format. Whereas the channel extract function extractsa single plane (channel) from a multiplanar or interleaved image format. The main imple-mented image formats are RGB, RGBX and grayscale (8 bit unsigned). For grayscale conversion,the library approximates to the BT.601 recommendation using multiplications and a shiftoperation.

gray = (R · 306 + G · 601 + B · 117 + 512) · 2–10 (3.16)
The color conversion function can convert between these image formats. Additionally, thechannel combine and channel extract functions support interleaving two or four 8 bit pixelsin an unspecified 16 bit or 32 bit image format. Since C++ does not define 24 bit variables, thelibrary uses 32 bit variables to store RGB values in memory (e.g., [RGBR][GBRG][BRGB]). It isdifferent for the RGBX format where the last 8 bit always remain free (e.g., [RGB0][RGB0]).
The bit-width conversion function can convert between any signed/unsigned 8 bit, 16 bit or32bit format and also supports vectorization. The data-width conversion converts betweentwo buffers with a different vector size by increasing or decreasing it. If the input vector is amultiple of the output vector, the input vector is locally buffered and divided into subvectors.These subvectors are written one by one to the output. If the output vector is a multiple ofthe input vector, it is the other way around. Therefore, the functions latency depends onthe image parameters with the lower vector size. However, the vectors do not need to bea multiple of each other. In this case it can happen that the number of input and outputpixels are not equal, since the number of image pixels must be multiple of its vector size.

82

3.1 HiFlipVX Library Functions

Therefore, the data of the bigger image needs to be aligned. In this case, the size of the localbuffer is the LCM (Least Common Multiple) of both vector sizes.
The implemented scale image function reduces the resolution of an image. It supportsnearest neighbor, bilinear and area interpolation for unsigned 8 bit data type images. Sincescaling factors are known at compile-time, the library can calculate all needed coordinatesusing multiplications and shift operations and can thus avoid divisions at runtime. Even ifnot all input pixels are needed for nearest neighbor interpolation, they still must be read inbecause of the streaming approach. The bilinear interpolation needs to buffer pixels of twoconsecutive rows in BRAM for streaming capability. While the number of buffers for the areainterpolation depends on the scale factor.
The scale image function also supports a fast area interpolation for images that are scaleddown by a scale factor (σ) of two, four or eight. All pixels in the observed window (σ × σ) aresummed and the mean is calculated by using shift operations. Unlike the other scale imagefunctions, it allows vectorization (VS) and more data types. The vectorization of the outputimage decreases according to the scale factor (⌈VS

σ

⌉). The function uses the sliding window
approach of the filter functions. With the difference that the kernel size is an even number(KS = σ), and output pixels are not written in each clock cycle. A pixel is written to the output
after every (σ) rows and (⌈ σ

VS

⌉) columns. The sliding window does not move outside the image
boundaries if the image width and height are multiples of the vector size. To support downscaling where the resolution is not a multiple of the scale, replicated borders are used forthe right and bottom image border.
Themulticast function gets an image and writes it to multiple outputs, depending on howmany are needed. A reason this function is needed is that buffers (or FIFO units) betweenstreaming functions can only have one consumer and one producer. The scatter functionsplits one input image into multiple output images and the gather function gathers multipleinput images into one output image. Both functions are needed to divide work to multipleCUs and combine their results again. Both functions currently support two modes. In blockmode, the partial images are read in or written out as whole one after the other. In cyclicmode the images are interleaved, by changing the port after reading or writing of each pixel.The second mode requires that all partial images have the same number of pixels. All threefunctions (scatter, gather and multicast) can be vectorized and allow a selectable number ofinput or output images.

3.1.4 Image Analysis Functions

In Table 3.5 the implemented analysis functions are shown. A common feature of thesefunctions is that an analysis of the whole input image is needed to calculate single pixels ofthe output and not only on a window of the input image like in the filter functions. Comparedto the other function classes, some of these functions require multiple loops to produce thefinal output. This makes them a challenge for the streaming capability.
In the integral image function, an output pixel is the sum of the corresponding input pixel
src(x, y) and all other pixels whose x and y-coordinates are lower or equal. Equation (3.17)shows the hardware optimization for the calculation of the integral image. The integral result(area) is the sum of the current row (sum) added to the integral value at position dst(x, y – 1).

83

3 HiFlipVX: Object Detection Library

Table 3.5: HiFlipVX image analysis functions. Non-standard are marked withF.
Histogram Table Lookup Mean & Standard Deviation
Equalized Histogram Integral Image Min & Max Location
Contrast FactorF Scalar Operation

Therefore, the function buffers the integral results of the previous row (buf (x, y)) in BRAM.The bit-width is 8 bit for the input image and 32bit for the output image.

sum = {sum + src(x, y) x > 0
0 x ≤ 0

area = {sum + buf (x) y > 0
sum y ≤ 0

dst(x, y) = area

buf (x) = area

(3.17)

Themin-max location function finds the minimum and maximum pixel values in an image. Ifspecified it can also output the number of pixels that have the same value as the maximumor minimum value including their coordinates. The coordinates of the minima and maximaneed to be buffered locally in separate buffers. To restrict memory usage, the library adds atemplate parameter for the buffer capacities (N). The maximum and minimum values andtheir counters can only be output after the complete input image has been processed. Tooutput its coordinates, it needs a second loop, which has a maximum of N loop iterations.The capacity is important for the worst-case execution estimations.
Themean and standard deviation function computes the mean (μ) and standard deviation(σ) of an image as shown in Equation (3.18). In a first loop the sum for the mean (μ) iscomputed. The standard deviation computation is optional and is computed in a secondloop. To prevent from using a resource-consuming division operation, the sum is multipliedby the reciprocal of the pixel amount, which is a compile-time constant. This multiplicationoperation and the square root are done outside of the loops, to not be pipelined, whichwould consume unnecessary extra resources. A challenge for the streaming capability is thatthe image must be read in twice. To simplify this and avoid unnecessary buffering of thewhole image, there is a separate port for each loop reading the input image.

μ =
IR∑
y=1

IC∑
x=1 src(x, y)
IC · IR

σ =
√√√√√√ IR∑

y=1
IC∑
x=1(μ – src(x, y))

IC · IR

(3.18)

The table lookup function takes the image input pixels to index into a LUT and stores theindexed value in the output image. It supports 8 bit unsigned and 16bit signed data types,

84

3.1 HiFlipVX Library Functions

which are equal for input, LUT and output, and sets the LUT size and offset as templateparameters. There are two loops in the implementation. The first loop reads the contentof the LUT. The second loop calculates the output pixel as shown in Equation (3.19). If theindex is out of range, the library outputs a zero as value, since it expects a complete image ina stream.

dst(x, y) = lut(src(x, y) + offset) (3.19)

The histogram function counts the number of occurrences of each pixel value within acertain range dependent of the number of bins. A pixel with its intensity value v will resultin incrementing histogram bin i as shown in Equation (3.20). The function supports 8 bitand 16bit unsigned data types, and sets the RANGE, OFFSET and BINS values as templateparameters. It is separated in three stages (loops). The first stage resets the histogramentries to zero. The second one reads one input pixel in each clock cycle and increments thecorresponding histogram entry. It increments two independent histogram buffers alternately,since incrementing a BRAM entry cannot be done in one clock cycle. The third stage sumsthe histogram bin of both buffers at position i and writes them pixel by pixel to the output.

i = (v – OFFSET) · BINS

RANGE
, OFFSET ≤ v < OFFSET + RANGE (3.20)

For the vectorization of the histogram, VS times more buffers are needed to enable enoughparallel memory access or bandwidth. This reduces the latency of the second loop by a factorof VS. Because each histogram buffer has the same size (BINS), vectorization does not changethe latency of the first loop. The latency gain from vectorizing the third loop, and thus theoutput histogram, is disproportionate to the additional resources required. This is becausethe first and third loops depend on BINS and the second on the resolution (IR · IC), which ismuch higher. The larger the vectorization, the more histogram buffers must be summed upwithin one clock cycle of the third loop. This leads to either a reduced frequency or a pipelineinterval (PI) which is larger than one. The achieved value for PI is about log2(VS), due to theadder tree for summing up the histogram buffer entries.
The equalized histogram [252] function modifies an input image so that the intensity his-togram of the resulting image becomes uniform, resulting in an enhanced contrast. Thehardware function is computed in four loops. The first two loops reset the histogram (hist(i))and create a new one from the input image using the same approach as in the histogramfunction. Equation (3.21) shows how to compute the equalized histogram (eq). The value
cdfmin is the minimum non-zero value of the cumulative distribution function (cdf (i)), whichis computed together with the histogram in the second loop. The third loop computes the
cdf (i) values on the fly, since it is the summation of the histogram entries (prefix sum), tocalculate the equalized histogram (eq(i)) from it. The computation of α is done between thesecond and third loop, since it does not depend on i and to keep resource consumptionlow. It needs the number of image pixels and the maximum possible image value (IMAX). Thecomputation is done using fixed-point numbers with a 24 bit fraction. The multiplication isdone using shift operations.

85

3 HiFlipVX: Object Detection Library

eq(i) =
((cdf (i) – cdfmin) · IMAX · 224

IR · IC – cdfmin︸ ︷︷ ︸
α

) · 2–24
 , cdf (i) = BINS∑

i

hist(i) (3.21)

The contrast factor specifies the nth percentile of the smoothed gradient histogram of aninput image. It is used for the conductivity function to indicate how many details of an imageshould be suppressed. The implemented function gets the gradient magnitude of an imageas input and computes a single value as output. First of all, the histogram of the input imageis calculated (hist). Its implementation is similar to that of the normal histogram function.There is a template parameter that specifies how many border pixels should be skipped. Thereason lies in the preceding filter functions, whose border handling can lead to non-accurateinput pixels on the image borders. However, the entire input image must still be read, due tothe streaming approach. Only pixels with a value greater than zero are considered for thehistogram. The number of considered pixels of each vector element must be counted forlater computation. In the next step these counters are added together and multiplied by thegiven percentile to obtain the required threshold (t1).

t1 = percentile ·
VC∑
n=1 counter (3.22)

The value of the percentile is passed as a template parameter to the contrast factor function.Its value consists of a 16 bit fraction part. A value greater than or equal to one would notmake sense, since it would always lead to the same result (γ = 1). Then, it is iterated over all(VC · 2) histograms in parallel and their entries are summed (sumbin) until the threshold (t1) isreached. The last loop iteration (bin) before sumbin reached t1 is used for further calculation.To compute the value of the contrast factor (γ), the library makes some simplifications, whichresults from using fixed-point numbers and a fixed histogram size.

γ = histmax · bin
binmax

≈

1966 sumbin < t1
bin · 27 8bit input
bin · 26 16bit input

(3.23)

The division is replaced by a shift operation by using a fixed histogram size and thus fixedvalues for histmax and binmax. For input images with an 8 bit data-width, it requires a histogramwith a maximum of 256 entries (8 bit). For an input image with a 16 bit data-width, 512 entrieswere sufficient to achieve a reasonable accuracy (9 bit). Using different input images andrandom numbers, it was empirically found that the value for hmax is always less than 0.5.Therefore, the gradient values were normalized to 0.5. Additionally, the final value needsto be shifted by the bit-width of the input pixel (8 bit and 16bit) and by the bit-width of theoutput variable (16 bit). For reasons of plausibility, a minimum value of 0.03 (or 1966 asfixed-point) is applied for the contrast factor [20].
The scalar operation function allows for conditional flow within the OpenVX graph. As shownin the standard it allows different logical, comparison or arithmetic operations with two inputsand one output. The function allows different integer or floating-point data types. For amodulus operation by zero the result is promoted to a zero. For a division operation by zero

86

3.1 HiFlipVX Library Functions

the result is promoted to the maximum value of the input data type. If the output type is aninteger and the input a floating-point, the result will be saturated and rounded to zero. Forall other conversions, the result is truncated.

3.1.5 Image Function Latency & HLS Directive Usage

The latency of the different image processing functions can be calculated in the same way. Alllibrary functions use the pipeline directive to optimize their throughput. Here the pipelineinterval is described by PI and the pipeline depth by PD. In case of the implemented libraryfunctions the goal for PI is always one. The pipeline depth depends on the maximum numberof sequential operations and the achieved frequency. Since all loops below the pipelinedirective are unrolled automatically, there is no need of using the unroll directive withinthese loops. Outside of these loops the library needs this directive, for example, for thecompile time computation of kernel matrices of some filter function. Additionally, all internaland callable library functions are inlined using the inline directive, to let the compileroptimize latency and resource usage.
The goal of all implemented functions is to process VS number of pixel per clock cycle.However, there is a small overhead for filling line buffers (KR) and sliding window (OC), if any.Apart from minor variations in the number of pipeline stages, the latency does not changebetween the separable and non-separable filters. The latency of a function depends on theinput or output image with the highest resolution (IR × IC). Some of the analysis functionsconsist of multiple loops. For each of these loops, the latency is calculated as follows:

Latencyloop = (IR + KR) ·
(
IC

VS
+ OC

)
· PI + PD (3.24)

For bit-widths above 64 bit and to perform vectorization, the library uses the template baseddata type shown in Listing 3.2. To allow a vectorized data type to be expanded to a signal withfull bit-width, the data_pack directive is needed. Additionally, the library uses the data_packdirective for internal buffers and FIFO units, to reduce the fragmentation of the utilizedBRAMs. In the latest toolchain of XILINX, named Vitis, the data_pack directive has beenreplaced by the aggregate directive. With the help of the global __VITIS_HLS__macro, setby the XILINX tool, the library automatically selects the correct directive.
1 template<typename T, vx_uint8 vector_size>
2 struct vx_data_pack {
3 T data[vector_size];
4 };

Listing 3.2: Generic data type used for vectorization and to data types wider than 64bit.
Since all functions are streaming capable, it is easy to connect different functions with eachother, as shown in Listing 3.3. For example, by using the dataflow and stream directives,multiple functions can be connected within one IP-core to achieve function-level or loop-level parallelism. All arrays used between these functions are converted to FIFO units atsynthesis time, to stream data. A small depth allows to use LUTs instead of BRAMs forthese FIFO units, since BRAM is often a limiting resource. The library uses this approach

87

3 HiFlipVX: Object Detection Library

to provide more complex functions like the ORB algorithm as a single library function. The
DECISION framework needs this to create an optimized CU.
1 void Example(vx_image_data<vx_uint8, 2> in[PIXELS / 2],
2 vx_image_data<vx_int8, 2> out[PIXELS / 2]) {
3 #pragma hls interface ap_ctrl_none port=return
4 #pragma hls interface axis port=in
5 #pragma hls interface axis port=out
6
7 static vx_data_pack<vx_int8, 2> lx[PIXELS / 2];
8 #pragma hls stream variable = lx depth = 8
9 #pragma hls data_pack variable = lx
10 #pragma hls resource variable = lx core = FIFO_LUTRAM
11 static vx_data_pack<vx_int8, 2> ly[PIXELS / 2];
12 #pragma hls stream variable = ly depth = 8
13 #pragma hls data_pack variable= ly
14 #pragma hls resource variable = ly core = FIFO_LUTRAM
15
16 #pragma hls dataflow
17 Scharr3x3<...>(in, lx, ly);
18 Magnitude<...>(lx, ly, out);
19 }

Listing 3.3: Example application showing how to manually connect two HiFlipVX functionswith a vector size of two. Functions operate in parallel by streaming data.
As shown in Equation (3.25), the latency, for a data_flow region consisting of multiplefunctions, is different compared to a single function. The equation consists of the trip count(TC) that includes the overhead of the line buffers and the sliding windows, a very deep pipeline,and the pipeline interval. The largest overhead comes from the row buffers, because theymust be filled before the first output pixel of the last function can be computed (∑N

i=1 KRi).Since the sliding window is refilled for each row, the function with the largest overheaddominates the other functions and limits throughput (max1≤i≤N OCi
). Since the output withinthe pipeline of a single function is usually written last, the pipeline steps of all functions can besummed without adjustment (∑N

i=1 PDi). In addition, the pipeline steps of the FIFO units that
lie between the functions must be added (∑N–1

i=1 PFi). Also, the sliding windows of all functionsmust be filled partly before the last function receives its first input pixel (∑N–1
i=1 OCi

). Pipeliningmakes it possible to calculate a pixel vector in each clock cycle, so that the overhead ofthe sliding windows can be added to the overall pipeline. A different vectorization for theindividual functions would not make sense, due to the resulting imbalance in latency of theindividual functions.

Latencydata_flow ≈ (IR +
N∑
i=1 KRi) · (

IC

VS
+ max1≤i≤N

OCi
)︸ ︷︷ ︸trip count (TC)

·PI +
N∑
i=1 PDi +

N–1∑
i=1 OCi

+ N–1∑
i=1 PFi︸ ︷︷ ︸

pipeline depth

(3.25)

For interface parameters, the library implements the vx_image_data data type. Comparedto the vx_data_pack, it contains a last and a user signal. Both signals are one bit wide

88

3.1 HiFlipVX Library Functions

and can be turned on when needed. The last signal is needed for XILINX DMA IP-cores, toidentify the end of an image or buffer. Additionally, the user signal is needed for the XILINXvideo DMA to identify the start of an image.
An interface directive is only needed in wrapper functions, which instantiate the libraryfunctions and set the template parameters. There is an example implementation for eachlibrary function inside HiFlipVX. For the SDSoC tool it sets the ap_fifo protocol for all ports.For XILINX Vivado HLS it sets the AXI4-Stream (axis) protocol as interface for the ports.Additionally, it deactivates the control port of all IP-Cores in Vivado HLS (ap_ctrl_none
port=return). This port should not be deactivated for SDSoC. The (__SDSCC__)macro isglobally set by the SDSoC tool and is used by HiFlipVX to automatically switch betweenthe two XILINX tools. Setting the ap_fifo ports and using the C99 style for arrays, thelibrary does not need any additional SDSoC directives (pragma SDS). When using an AXI4-stream interface, the different IP-cores can easily be connected in the Vivado tool. The
DECISION framework uses this approach to achieve less fragmentation and to parallelize andthus speedup the synthesis process.
In some cases the library uses a resource directive to specify, if LUTs or BRAMs shouldbe used for internal memories or FIFO units, as shown in Listing 3.3. The use of thesedirectives should be used with caution, since it can also have a negative effect. In mostcases, it is advisable to give the tool the choice, because then it can select according to thetotal resource usage, bit-widths and selected frequency. Internally, the array_partitiondirective is needed if the LUT and BRAM memories do not provide the required bandwidth.The library uses this, for example, for the LUTs of the vectorized histogram functions. Thisdirective is also used to completely partition C++ arrays into registers, like for the slidingwindow.
When using more complex tools like SDSoC instead of Vivado HLS there are some smallerrestrictions that basically affect the interfaces of the function. One of these limitations isthat only structs with a vector size bigger than one are synthesizable. This has been solvedby automatically using native data types instead of structs for these kind of interfaces,when using this tool. This is also possible, since SDSoC adds the last and user signals tothe AXI4-stream interface by itself. Furthermore, interface arrays need a known number ofelements with this tool.

3.1.6 Feature Functions

The left two columns of Table 3.6 contain all functions that create or work on a set offeatures. The right two columns list all feature detection algorithms that have been createdusing HiFlipVX. These algorithms consist exclusively of other functions from the library.In the next section of this chapter, these algorithms will be discussed in more detail. Theindividual feature functions emerged from the exploration of these algorithms. However,generic and parameterizable functions have been developed that can be used in many otherapplications.
A feature has certain properties. To increase the maximum performance on FPGAs, theindividual elements of a feature can be reduced in bit-width by using integer and fixed-pointvariables. The data type of this library is therefore only 64 bit wide. It contains the x and ycoordinates, response value (r), orientation (α) and a class ID. This ID describes either thescale (σ) of a feature or its evolution level. Figure 3.4 shows the data type and the length

89

3 HiFlipVX: Object Detection Library

Table 3.6: HiFlipVX feature functions. Non-standard are marked with F. The right twocolumns contain complex algorithms consisting of multiple library function.
Feature ExtractF Feature DeserializeF FAST Corners AKAZE ContrastF
Feature CompareF Feature Retain BestF Canny Edge AKAZE FeaturesF
Feature GatherF Feature MulticastF ORB FeaturesF

of the individual elements. For the 16 bit large coordinates, the library uses a fixed-pointdata type whose configuration depends on the image resolution. For example, for an imageresolution of 1920 × 1080 pixels, it consists of an 11 bit integer part and a 5 bit fraction part.The fraction part can be calculated, for example, using a SR, which is part of the featureextract function. The response value represents the strength of a feature and is calculatedby the feature detector. Its a 16 bit integer values, whose interpretation depends on thealgorithm itself. For example:
• blobs by the DoH function as part of the AKAZE algorithm
• edges by the Sobel function as part of the FAST corner detector or ORB algorithm
• corners by the segment test detector function as part of the Canny edge detector

x y response class ID orientation
16 bit 16 bit 16 bit 8 bit 8 bit

Figure 3.4: Fields of a feature consisting of fixed-point values with variable size.
The orientation of a feature is needed for its rotation invariance. It is usually calculatedin the descriptor, as in the FREAK algorithm, but can also be calculated beforehand, as inthe phase function. Tests have shown that quantization with up to 256 different valuesis sufficient to obtain a reasonably accurate angle for the orientation. Multiscale featureextraction algorithms introduce a scale to achieve scale invariance. The scale often resultsfrom the scale space of the algorithm. The library uses a fixed-point number, whose integerpart depends on the maximum scale size. Since 8 bit may not be sufficient, the level of thescale space can be specified instead. The real scale of a feature can then be derived fromthis value.
A challenge in implementing the individual feature functions is that the exact size of anarray of features cannot be determined at compile time. However, the calculation of thelatency and the resulting WCET (Worst-Case Execution Time) are crucial for many systems.Therefore, in all library functions, the user specifies the maximum size for the input andoutput feature arrays. However, a feature array can also consist of fewer features. In thiscase an additional feature is appended to mark the end of the array. This allows the receiverto finalize calculations and not wait forever. To distinguish it from other features, its elementsare set to the maximum possible value. In addition, it can happen that a single feature ismarked as invalid by a function and must be recognized by other functions. For example,this is necessary with the feature extract function, since it can happen with a vectorizationthat individual elements of the output vector are marked as invalid.

90

3.1 HiFlipVX Library Functions

Feature Extract

The feature extract function is needed to create the initial feature array. Therefore, it isessential for most feature extraction algorithms, regardless of the type of features (blob,edge, corner). For this reason, the library includes several functionalities in this function.As input the function gets an image consisting of response values. The response value(r) indicates the strength of a feature. Optionally, the function can accept an image withorientations (or angles) (α), which are then stored in the feature. Otherwise, the value is set tozero and calculated at a later time, for example in the descriptor. The output of the functionis an array of features consisting of the already mentioned elements. The user determinesthe maximum size of the array.
Whether an input pixel is selected as a feature is determined by a fixed threshold (t0) definedby the user. Its response value must then be above this threshold. To determine the exact
x and y coordinates of a feature from its input image, a sampling factor is needed. Thisparameter tells with which factor the input image was scaled compared to the original image.The parameter is necessary because in amultiscale algorithm there are usually several featureextract functions, which work on differently scaled image sizes. Furthermore, the actual scalevalue (σ) is needed. This can be different from the sampling factor in some algorithms, sincethe image does not need to be resized when the scale is increased. As already mentioned,the evolution level (or class ID) can also be passed here, if the bit precision of the element isnot sufficient to represent the scale. The scale can then be derived again from this ID.
Another parameter determines the minimum distance a feature must have to the imageborder. This is important because a feature has a certain scale, and it can lead to inaccuraciesthrough border handling of the preceding functions. Furthermore, the radius that mostdescriptors need to describe a feature is much larger than its scale. Thus, at this stage of analgorithm, some feature can already be sorted out to save resources on the one hand andto minimize latency on the other hand. In addition, it can otherwise happen that featuresclose to the border displace other features due to capacities and the threshold, althoughthese will be sorted out at a later point in the algorithm.
Optionally, the feature extract function can also do an NMS and a SR. One reason for theintegration of both functionalities is that they work on a window of the same input image. Inaddition, there are certain dependencies that are difficult to separate without using too manyextra resources. For example, the NMS sorts out pixels that should not be used by the SR.However, the NMS output image cannot be used for the SR as input because the SR needsthe original unsuppressed response values. At the same time, the SR creates coordinates asan output, which would have to be buffered in addition to the actual response image if theNMS would be executed after the SR.
For NMS, a pixel is kept if and only if it is greater than or equal to its top left neighbors andgreater than its bottom right neighbors. In addition, there are three options how to createthis window. The first one works on a quadratic kernel window. In the second one, the usercan specify a mask, which indicates whether the NMS should consider an element of thewindow. In the third version, a circle (σ) is specified in addition to the kernel window. Thishas the advantage that one could use, e.g., the scale (σ) of the feature, to find the strongestfeature in its range. The corresponding mask for the circle is calculated at compile time.Whether an element of the mask window is inside the circle depends on its distance fromthe center of the mask in x and y direction and the given radius.

91

3 HiFlipVX: Object Detection Library

maskx,y = {0 x2 + y2 ≤
⌊
σ2 + 0.5⌋

1 otherwise (3.26)

To increase the accuracy of the position of a feature, a SR can be calculated. To find thisposition, the Gaussian elimination method is applied to the DoHmatrix (H) as an interpolationmethod. For this purpose, the gradient values (Lx and Ly) as well as the elements of theHessian matrix (Lxx, Lyy and Lxy) are needed first. These values can be calculated using thefinite difference scheme for gradient and Hessian matrix estimation [253], which is used inboth AKAZE and SURF. To apply this scheme, it needs the surrounding elements from thematrix containing the calculated DoH.

Lx = H(x + 1, y) – H(x – 1, y)
2

Ly = H(x, y + 1) – H(x, y – 1)
2

Lxx = H(x + 1, y) + H(x – 1, y) – 2 · H(x, y)
Lyy = H(x, y + 1) + H(x, y – 1) – 2 · H(x, y)
Lxy = H(x – 1, y – 1) + H(x + 1, y + 1) – H(x + 1, y – 1) – H(x – 1, y + 1)

4

(3.27)

Having all five values the Gaussian elimination can be applied. The result of the Gaussianelimination method rx and ry is the difference between the pixel location and the subpixellocation and must be therefore added to the pixel location of the center element.

ry = ry,num
ry,den = Lx · Lxy – Ly · Lxx

Lyy · Lxx – Lxy2
rx = –Lx – Lxy · ry

Lxx
= Lx · ry,den + Lxy · ry,num

Lxx · ry,den
(3.28)

For a valid feature, the number of rx and ry must not be greater than 1, or they will no longerbe in the subpixel range. One problem when using the Gaussian elimination is that it requirestwo divisions. Since the number of fraction bits of the feature is generally quite small, itdoes not need the full precision of a division. The library splits rx and ry into their numerator(rx,num and ry,num) and denominator (rx,den and ry,den) parts. Looking at the equation, rx is nolonger directly dependent on ry , which would otherwise lead to a reduction of the accuracy,due to the division. It is easy to see that the comparison of rx/y,num ≤ rx/y,den is equivalent to
rx/y ≤ 1. The simplified division function requires bit shift, subtraction, a comparison and an
OR operation to approximate the result. For precision, the library only needs one bit to coverthe integer range from –1 to 1, and 16 – dlog2(IC)e bits for the fraction part of the final x and ycoordinates. In this case the columns (IC) of the original image must be used.

92

3.1 HiFlipVX Library Functions

Feature Deserialize

The feature deserialize function turns an input stream of feature vectors into an outputstream of single features. One reason for this function is that one of the following functionscannot operate on vectors. Furthermore, the resource consumption of the subsequentfunctions can be reduced compared to a vectorized function. Moreover, vectorization mightnot lead to a noticeable improvement in the latency of the entire algorithm. For example,depending on the maximum number of features to be processed, the feature compare andfeature retain best functions may require significantly fewer clock cycles than the featureextract function, which depends on the image resolution.
The number of maximum features may differ between the input array and the output array.One reason for this is that individual features of the input array vectors may be invalid. Also,the array sizes always represent their maximum sizes, which differ from the actual sizes. Theinvalid features are sorted out using a comparison function. The feature deserialize functionhas been written generically so that different comparison functions can be provided. For thispurpose, the data type, a comparison function and the invalid element need to be specified.In the wrapper function, these properties are passed.

Feature Compare

The feature compare function compares one feature array with itself and zero to two otherfeature arrays. If the response value (r) of a feature of the main array is greater than theresponse value of all input features within its scale (σ), then it is passed to the output.Otherwise, the feature is discarded. The maximum size of the different input arrays maydiffer. However, the maximum size of the output array must be equal to or smaller than thatof the main input array. To be able to compare features with each other, a certain number offeatures must be stored in internal buffers. The library uses a ring buffer whose maximumsize depends on certain parameters:
• number of input arrays (N)
• scale of the main input feature array (σ)
• number of columns in the sampled input image of the preceding feature extract function(IC)
• radius of the NMS of the preceding feature extract function (KR)
Its calculation is shown in Equation (3.29) The buffer size cannot be larger than the inputfeature array size. However, this is only the maximum possible size. In almost all cases, therequired buffer size is much lower, which is why the library allows to limit the buffer size.

WorstCaseBufferSize = IC

KR
· σ · N + 1 (3.29)

Since the features of the individual input arrays arrive in sorted order of their coordinates,the number of comparisons in the implementation has been greatly reduced comparedto the SoA. This is because when searching through the feature array to see if anotherfeature is within its scale, it can be aborted if the y value is out of range. This reduces the

93

3 HiFlipVX: Object Detection Library

complexity from O(n2) to O(n · log2(n)). However, the theoretical maximum possible latency ofthe implemented function depends on the actual buffer size (B), the number of input arrays(N) and internal prefetch registers. As shown in Equation (3.30), the theoretical maximumis not equal to the average case. To limit the maximum possible latency and to bring itto a reasonable value, another parameter is introduced. With this parameter the functionterminates the output of new features, so that the WCET, until the last output feature isgenerated, is predictable. However, all remaining input feature arrays must still be read toclear the buffers.

WorstCaseLatency = 1 + B · (N + 1) – ((B · (B + 1) – 6) · 2–1) (3.30)
To increase the performance of the feature extract function there is an additional parameterfor an internal parallelization. Unlike the vectorization that is available in most other libraryfunctions, this parameter does not depend on the vector size of the input and outputarrays/images. Using this parameter, the maximum number of comparisons can be increasedto two, four or eight. However, due to fragmentation, the full number of comparisons maynot be performed in each clock cycle. Like the feature extract function, a parameter thatdetermines how far a feature must be away from the border, can also be specified in thefeature compare function.

Feature Gather

The feature gather function merges several input feature arrays into one output featurearray. Like the image gather function, tt has two modes, named cyclic and block. Since thearray size of the different inputs can be either indeterminate or different, a separate functionis needed. An EOF (End of Frame) is sent for the output array only if all input arrays wereread in, but the maximum size of the output was not reached. As long as not all inputs havebeen read an input feature is read from one of the active ports and forwarded to the outputport in each clock cycle depending on the mode. The port of an input is active if it has notread all its input features. In blockmode this port changes as soon as either the maximumsize of the input array has been reached or an EOF feature has been read.
In cyclicmode the input port is changed in every clock cycle as long as there is more thanone active port. Changing the input port to be read is done in round robin manner. Whichinput port is next is determined by a bitmask. This bitmask results from the concatenation ofthe mask of active ports and the mask of all ports not yet read in this period. This mask isthen used to read from the input port with the least significant bit that is set to one. As soonas a new input has been read from all active ports, a new period begins. A port is deactivatedas soon as its entire input feature array has been read.
The latency of the function is nevertheless equal to the sum of the maximum size of theinput arrays. It is not equal to the maximum size of the output array, because all inputsmust always be read, to empty the input buffers. Thus, it can happen that after reaching themaximum size of the output array, features of the inputs are thrown away. This is a behaviorintended by the user to limit the size of feature vectors to reduce the computational cost ofthe subsequent functions.

94

3.1 HiFlipVX Library Functions

Feature Retain Best

The feature retain best function keeps the K best features from a vector of N input features.It is useful to limit and reduce the number of detected features for later processing, sincefeature detection is only one part of many computer vision applications. The proposedfunction requires four loops in its implementation. In the first loop the entries of the internalhistograms are reset to zero. In the second loop, the input features are read and a histogramis created out of the feature response values. In addition, all valid input features must bebuffered to be reused at a later stage. Two compile time parameters that determine themaximum possible (RMAX) and minimum possible (RMIN) response value are used to determinethe histogram characteristics. Equation (3.31) shows the number of histogram entries (BINS),which is between 512 and 1024, and the pointer i of a response value (r) to this histogram.

SHIFT = dlog2(RMAX – RMIN1024)e
BINS = RMAX – RMIN2SHIFT

i = r – Rmin2SHIFT
(3.31)

All values of Equation (3.31) except i are calculated at compile time. The division requiredto calculate i is a simple shift operation. The third loop calculates the prefix sum (hsum) ofthe histogram as long as its value is below or equal to the desired maximum number ofoutput features (K) and stores the corresponding bin entry (hbin). The fourth loop iteratesthrough the buffered input feature vector and writes all features whose bin entry (i) is below
hbin to the output. Additionally, (K – hsum) input features of the entry (hbin + 1) are written tothe output if hsum is below K . Equation (3.32) shows the total number of clock cycles of thisfunctions, where PD is the sum of the pipeline stages of all four loops.

Latency = 2 · BINS + 2 · (N + 1) + PD (3.32)

3.1.7 Neural Network Functions

As shown in Table 3.7, seven different neural network layers have been designed and imple-mented for the library. In addition, it contains three different modules to create the variouslayers of the MobileNets [21] algorithm. However, these modules consist of the mentionedseven functions of the library. MobileNets was not implemented in a single function becausethe resulting dataflow region is too large for the HLS tool to manage. The implementation ofthese modules will be discussed in more detail in the next section. The I/Os of the differentfunctions are the input vector, the output vector and, if required, the weights vector and thebiases vector. The remaining library function parameters are template parameters, suchas the input and output image size, kernel size, IFM (Input Feature Map) and OFM (OutputFeature Map).

95

3 HiFlipVX: Object Detection Library

Table 3.7: HiFlipVX neural network functions. Non-standard are marked withF. The Mo-bileNets modules consist exclusively of the other functions.
Batch NormalizationF 3D-Convolution Activation
Depthwise ConvolutionF Fully Connected Softmax
MobilNets Modules 1 - 3F Pooling

Like the other functions of the library, the streaming capability is the main condition. Thus,large neural networks can be executed on FPGAs without the bandwidth of the main mem-ory becoming a bottleneck. This has some advantages for FPGAs and leads to differentimplementation possibilities, but also to some limitations. A constraint to achieve maximumperformance is that all functions should be pipelined and reach a pipeline interval (PI) ofone. Nevertheless, neural networks are very computationally intensive. Therefore, this thesisexplores different approaches of parallelization, to achieve a high performance with anefficient use of resources, as shown by the implementation of the MobileNets algorithm.
All functions in the library have a built-in vectorization that can be applied to their IFM and/ortheir OFM. Unsigned and signed 8 bit and 16bit fixed-point and 32bit floating-point datatypes are possible for the inputs, outputs, weights, and biases to suit many hardware designs.The size of the fraction can be configured as a parameter of the function. Functions thatrequire trained coefficients buffer them on first use, if configured, to reduce the amountof global memory access. The fixed-point implementations include guidelines for roundingand overflow. If an overflow occurs, the data can either be truncated or saturated to itsmaximum/minimum value. For fixed-point arithmetic operations, the data can be roundedto zero or the nearest number.

3D-Convolution

The process of 3D-convolution is the most computationally intensive layer in most feedforward networks. The main goal of the proposed image and loop dimension ordering was toachieve a streaming capable function. Under this constraint this thesis developed a structurethat is optimized for performance and resource usage. Therefore, the ordering of somedimensions is different from the OpenVX standard. Listing 3.4 shows the general structureof the hardware implementation. Its total latency can be derived from the total number ofloop iterations plus the pipeline stages needed for the calculations. The order of the imagesand coefficient dimensions are:
• Input image (SRC): BATCH × SRCROW × SRCCOL × IFM

• Output image (DST): BATCH × DSTROW × DSTCOL × OFM

• Weights: OFM × IFM × KY × KX

• Biases: (0) ∨ (OFM) ∨ (BATCH × DSTROW × DSTCOL × OFM)
As shown, different sizes for the Bias are possible. Compared to the filter functions, thekernel size does not have to be quadratic (KY × KX). A stride is set if the resolution of theinput and output image differs. In the proposed implementation the stride only effects thecondition when a result is written to the output. It has no effect to the latency of the function.

96

3.1 HiFlipVX Library Functions

1 for (b = 0) to (BATCH – 1)
2 for (y = 0) to (SRCROW + ⌊ KY2 ⌋ – 1)
3 for (x = 0) to (SRCCOL + ⌊ KX2 ⌋ – 1)
4 for (ofm = 0) to (OFM

VOFM
– 1)

5 for (ifm = 0) to (IFM

VIFM
– 1)

6 ReadInputVector()
7 UpdateSlidingWindow()
8 UpdateBuffers()
9 ComputeConvolution()
10 WriteOutputVector()

Listing 3.4: General structure of the 3D-convolution function. Input Image Resolution (SRCROW
× SRCCOL), Output Feature Map (OFM), Input Feature Map (IFM), Output Vector-ization (VOFM), Input Vectorization (VIFM), Kernel Size (KY × KX)

Loop iterations could also be skipped in dependence of the stride. However, the used HLScompiler only allows "perfect loops", which can be a disadvantage when using HLS. Thegeneral equation for calculating a 3D-convolution is:

DSTy,x,ofm = IFM–1∑
ifm=0

KY–1∑
n=0

KX–1∑
m=0

(
SRC(y+n– KY2),(x+m– KX2),ifm · WEIGHTofm,ifm,n,m

) + BIASofm (3.33)

Parallelization: The performance metric for most 3D-convolution layers is the numberof multiplications processed per second. On FPGAs, mostly internal DSPs can be used toprocess the multiplications. When increasing the number of multiplications, the amount ofdata that is needed simultaneously and thus the required memory bandwidth increases. Toimplement an efficient streaming capable function, data of the input image as well as thecoefficients should be buffered locally. Usually this shifts the external bandwidth problemto the internal buffers. These buffers are typically implemented with BRAMs. BRAMs havea limited bandwidth for reading and writing data. To increase the bandwidth, data can bedistributed over several BRAMs. However, this can lead to fragmentation, if the BRAM is notfully utilized and can therefore limit the data to be stored. For this reason, fragmentationshould be kept as small as possible while increasing the number of multiplications.
Various loop variables are suitable for parallelization, as illustrated in Listing 3.4. One possibil-ity of parallelization would be in the direction of the (SRCCOL) as for the image filter functions.However, this type of parallelization would increase the bit-width of various buffers andtherefore lead to a high fragmentation of BRAM. Additional buffers would also have to beintroduced to restructure the input and output data to maintain the streaming approach.Therefore, this thesis concentrated on the parallelization of the inner loops, as shown by theparameters (VOFM) and (VIFM) in Listing 3.4. Both (OFM) and (IFM) parallelization would increasethe bit-width of the coefficient buffer. Additionally, the parallelization of (IFM) increases thebit-width of the input buffers. In some cases (VIFM) can be raised to a certain point withoutcausing additional fragmentation of the input buffer.

97

3 HiFlipVX: Object Detection Library

line buffer

line buffer

input
buffer

window
buffer

window
buffer

window
buffer

window
buffer

window
buffer

window
buffer

Figure 3.5: The input buffers for the 3D-convolution function with a KY ×KX window/kernel size(here 3×3) and an input vector size of VIFM. The input stage contains input registerson the left (white), big line buffers (dark gray), small input/window buffers (lightgray) and sliding window registers on the right (white). The process of bufferingthe input can be expressed in 4 pipelined stages. 1. reads input vector of size VIFM(dashed lines). 2. updates window registers (continuous lines). 3. updates buffers(dotted lines). 4. sends data to compute stage (dashed lines). Input Feature Map(IFM), Input Image Columns (SRCCOL).
Structure of Buffers: Figure 3.5 shows the proposed structure needed to buffer the inputdata to achieve the sliding window effect for the 3D-convolution function. It shows the sizeof the different buffers, all of which have a depth of (VIFM) elements. Additionally, the imageshows the read and write operations between the different blocks by the dashed, dotted,and continuous lines. The line buffers store complete rows of the image including all featuremaps (SRCCOL · IFM

VIFM
). Its height of ((KY – 1) · VIFM) elements is stored as one element in BRAM toreduce its usage, to reduce fragmentation. The input buffer is a small line buffer that doesnot have to store the entire image row. Instead, it is sufficient to only store the (IFM

VIFM
) elementsof the current iteration of (x). The sliding window updates its complete elements in each clockcycle because all feature maps at position x need to be calculated before the window canbe moved one element to the right. For this reason, the window buffers are needed, sinceonly one element can be read from each line/input buffer in one clock cycle. Each of the(KY · (KX – 1)) window buffers have (IFM

VIFM
) elements. The different stages of the pipeline of the3D-convolution are described below in chronological order.

1) Read Input Vector: Reads a vector of VIFM elements from the input image if the followingcondition is met: (y ≤ SRCROW) ∧ (x ≤ SRCCOL) ∧ (ofm = 0).
2) Update Sliding Window: In this stage, the data is read from the different buffers andstored in the sliding window, as shown in Figure 3.5 by the continuous lines. Each elementin the sliding window of size KY × KX contains VIFM vector elements. The entire content of

98

3.1 HiFlipVX Library Functions

the sliding window changes in each clock cycle. This is due to the different feature mapsthat must be computed before the sliding window can be shifted by one when the loopvariable (x) is incremented. The left column of the sliding window gets its data from the linebuffers and the input buffer. If (ofm = 0), new data is read from the input image instead ofthe input buffer. The other elements of the sliding window get their data from the windowbuffers. Additionally, the algorithm checks whether valid data should be present in the buffers.Otherwise, a zero is loaded into the corresponding sliding window elements, to apply zero
padding. The proposed implementation always applies zero padding of ⌊KX2 ⌋ on both sides
in x-direction and of ⌊KY2 ⌋ on both sides in y-direction.
3) Update Buffers: This stage reads the data from the window and writes it to the differentbuffers, as shown in Figure 3.5 by the dotted lines. The input buffer receives its data fromthe bottom left element in the window. Since the input data can only be read once, it mustbe buffered. The line buffer receives its data from the right column of the window in thelast iteration at (ofm = OFM

VOFM
– 1). This moves the data of the image one line up so that it isavailable again after y has been incremented. The window buffer receives its data from theleft columns of the window in the last iteration at (ofm = OFM

VOFM
– 1). The sliding window effectresults from the reading and writing between the window buffer and the window.

convolution
multipliers

weights
reader

weights
buffer

local
sum

if buffered

convert
to fixed

global
sum

convert
to float

shift &
round

add
bias overflow

biases
reader

biases
buffersum

if buffered

floating-
point only

floating-
point only

fixed-
point only

fixed-
point only

Figure 3.6: Computation stages of the 3D-convolution implementation. The input comesfrom the sliding window shown in Figure 3.5. Some stages are for floating-pointor fixed-point numbers only. Buffers for weights/biases are marked in light gray.Reader functions (dark gray) buffer weights/biases if configured. IFM = InputFeature Map; OFM = Output Feature Map; VIFM = Input Vector Size; VOFM = OutputVector Size; KX × KY = Kernel Size
4) Compute Convolution: Figure 3.6 shows the computation stage of the 3D-convolutionprocess. As stated, some of the blocks in the image are only used for fixed-point or floating-point calculations. The gray blocks show the data whose contents needs to be maintainedbetween loop iterations and stored in buffers. The weight and bias coefficients can bebuffered within the function if the user sets the appropriate parameter. On first use, theyare read from the interfaces and stored in the buffers. If the same coefficients are neededagain, they can be accessed from the buffers.
In the first step, the input data is taken from the sliding window and multiplied by thecorresponding weights. In total VOFM × VIFM 2D-convolutions of the size KY × KX are calculated.

99

3 HiFlipVX: Object Detection Library

Then VIFM 2D-convolutions of the different VOFM are added together to partially calculate the3D-convolution of each VOFM.
The operation of calculating a sum over several loop iterations violated the desired pipelineinterval (PI) of one by a factor of five when using floating-point numbers with XILINX tools.Therefore, the library converts floating-point numbers for this summation to a value that issaturated to a 32 bit fixed-point number. The user sets the parameter for the fixed-pointposition of this variable. In the next step the partial 3D-convolutions are added to the final3D-convolution until all 2D-convolutions are summed up. Then the result is converted backif the final output should be a floating-point number.
When using fixed-point numbers, the multiplication in the 2D-convolution increases thefixed-point position. Therefore, the value is shifted back to the fixed-point position, whileensuring the overflow policy. This process is done before adding the bias, because it hasthe same fixed-point position as the output. After adding the bias, the result is checked foroverflow and saturated if the corresponding policy is set.
5) Write Output Vector: Writes back a vector of VOFM elements to the output image if thecondition of Equation (3.34) is met. The condition includes the stride computation, expressedwith the modulus operation. The value for the stride must be an element of the naturalnumbers.
(
0 = ((y – ⌊KY2

⌋
) mod (SRCROW – 1

DSTROW – 1)
))

∧
(
0 = ((x – ⌊KX2

⌋
) mod (SRCCOL – 1

DSTCOL – 1)
))

∧(
ifm = (IFM

VIFM
– 1
)) (3.34)

Depthwise Convolution

The depthwise convolution can be considered as a 2D-convolution that is applied to eachfeature maps of a 3D input image separately. This layer is usually used together with a"pointwise" or 3D-convolution of size 1× 1, as in MobileNets [21]. This means that for a 3× 33D-convolution, a 3 × 3 depthwise convolution and a 1 × 1 pointwise convolution can beused. The advantage of this approach is that less multiplications and weights are requiredfor the convolution process.
The number of feature maps in the input and output image are the same. Therefore, whencomparing with the structure of Listing 3.4, the loop over OFM is eliminated. Consequently,the total latency is reduced by that factor and there is only one parallelization term (VIFM).The rest of the basic structure in Listing 3.4 remains. The total number of multiplications andweights is reduced by a factor of OFM compared to a pointwise convolution. Therefore, fewerweights must be stored in the internal buffers. On the other hand, the size of biases remainsunchanged. It is still possible to choose between the different bias sizes.
Compared to the structure in Figure 3.5 nothing changes for the buffering of the input imageand the sliding window. As pointwise convolution only performs 2D-convolution operations,Figure 3.6 omits the summation blocks. This eliminates the need for inter-loop summationand the conversions for floating-point numbers. Except for the number of weights andconvolutions, the rest of the structure in Figure 3.6 remains. The conditions when a vector is

100

3.1 HiFlipVX Library Functions

read from the input image or when it is written to the output image only changes in such away that the following conditions are omitted: (ofm = 0) for the input and (ifm = (IFM
VIFM

– 1)) forthe output. This also implies that the stride calculation remains the same.

Pooling

The purpose of the pooling layer is to reduce the spatial size of the image to reduce thenumber of parameters and calculations in the neural network. The pooling operation worksindependently on each feature map. Like the 2D-convolution a window slides over an inputimage. To calculate the output, the values in the window are either averaged or the maximumvalue is taken. With the help of a stride, pixels can be skipped so that the output imagebecomes smaller than the input image. The following equation is used to calculate thestride:

STRIDEX = ⌊SRCCOL + 2 · PADX – KX
DSTCOL

⌋
, STRIDEY = ⌊SRCROW + 2 · PADY – KY

DSTROW

⌋
(3.35)

The window (KX × KY) can have any size between 1 × 1 and SRCROW × SRCCOL. Like in theconvolution filters zero padding can be applied. The padding size (PADX) is in the range
between 0 and ⌊KX2 ⌋. The size of the stride (STRIDEX) is in the range between 1 and KX . Theoverall structure of the function is very similar to the pointwise convolution, without the needof buffering coefficients. The total latency only differs slightly, since the padding size is notfixed: (SRCROW + PADY)× (SRCCOL + PADX)× IFM

VIFM
. For average pooling, the sum of all windowelements is calculated and then multiplied for normalization. Fixed-point values need anadditional operation that shifts the result back to the desired fixed-point position (FP).

DSTx,y,ifm =

KY–1∑
n=0

KX–1∑
m=0

(
SRC(y+n– KY2),(x+m– KX2),ifm

)
·
⌊ 2FP
KY · KX

⌋
︸ ︷︷ ︸
normalization

 ·2–FP︸︷︷︸
shifting

 (3.36)

Activation

The activation layer is a crucial component in CNNs. In general, the function is connected toeach neuron in the network and determines whether it should be activated or not. Table 3.8shows the nine implemented activation functions, which have been defined by the OpenVXstandard. For fixed-point numbers, the overflow policy needs to be applied to the followingfunctions: soft relu, square and linear. In addition, an overflow can occur when calculatingthe absolute function for a signed data type. For fixed-point numbers, the rounding policymust be applied to the following functions: logistic, soft relu, square and linear. Thelogarithmic and exponential activation functions are computed using floating-point opera-tions, due to the high range of possible values and the resulting accuracy loss when usingfixed-point numbers. Therefore, conversions are needed for fixed-point input and outputimages using multiplication operations. As shown in the table, the hyperbolic tangent functionis calculated with one repeated exponential function and one division to the reduce resource

101

3 HiFlipVX: Object Detection Library

usage. The activation function can be computed in parallel (VIFM) in a SIMD manner on the3D input image. The latency of the hardware function is: SRCROW · SRCCOL · IFM

VIFM
+ PD.

Table 3.8: Implemented activation functions that compute on an input pixel at position x. aand b are compile time parameters.
Name Operation
logistic f (x) = 1

e–xhyperbolic tangent f (x) = a · tanh(b · x) = a · e2·b·x–1
e2·b·x+1relu f (x) = max(0, x)

bounded relu f (x) = min(a,max(0, x))
soft relu f (x) = log(1 + ex)
abs f (x) = |x|
square f (x) = x2
square root f (x) = √

x

linear f (x) = a · x + b

Batch Normalization

Batch normalization [254] is a technique to improve the stability and performance in neuralnetworks. The core idea is that the inputs of each layer of an image are normalized so that themean output activation is zero and the standard deviation is one. The batch normalizationcalculates a mini-batch (B) over a set of pixels values (χifm): B = {χ1, χ2, ..., χIFM}. Consideringa three dimensional input image (SRCx,y,ifm), the mini-batch would be calculated over thethird dimension of size IFM. It first calculates the mean (μ) of the pixel values, as shownin Equation (3.37). Using the the mean value, the variance (σ2) is calculated, as shown inEquation (3.38). Using the mean, variance, and a set of pretrained values (γ ifm,βifm), theoutput image pixels are calculated, as shown in Equation (3.39).

μ = 1
IFM

·
IFM∑
ifm=1

(
SRCy,x,ifm

) (3.37)

σ
2 = 1

IFM
·

IFM∑
ifm=1

(
SRCy,x,ifm – μ)2 (3.38)

DSTy,x,ifm = γ ifm ·
SRCy,x,ifm – μ

√
σ2 + ε + βifm (3.39)

A straightforward way to compute this function would be in three separate loops iterating overthe third dimension, nested in the loops iterating over the first and second dimensions. Withthis approach only one output pixel is generated every three clock cycles for a parallelizationdegree of one. Therefore, the function contains three subfunctions to compute μ, σ2 and the

102

3.1 HiFlipVX Library Functions

result, which are used in a pipelined manner inside the three nested loops. As a result, theoverall latency is as follows: (SRCROW · SRCCOL + 2) · IFM

VIFM
+ PD. Two times IFM

VIFM
additional clockcycles are required, since each mini-batch must pass through these three stages in a pipelinemanner without using the dataflow directive. The input data of a mini-batch (B) is stored ina buffer in the first stage to be used for the next two stages. Since there are three stages,three consecutive input vectors of size IFMmust be stored in buffers. The weight vectors γand β are read in the third stage at the first use and buffered for further usage.

To calculate μ and σ2 a sum of values must be computed. Like in the convolution filter, thesum is computed using fixed-point numbers, because a floating-point sum increases thelatency by a factor of five. Therefore, floating-point numbers are converted and saturated toa 32bit wide integer value. Since the normalization (1
IFM

) is a constant, it can be precomputedto replace the division by a multiplication. Both calculations are easy to vectorize, since onlythe sum needs to be parallelized. For the parallelization of the last stage which computesthe output pixel, the term 1√
σ2+ε can be precomputed once. This has a big impact on theresource usage when vectorizing the function, since the division and square root are themostresource consuming functions. Due to the accuracy, 1√

σ2+ε is calculated using floating-pointnumbers.
There are different variants of how to compute the Batch Normalization. One of themavoids the calculation of μ and σ2. In this variant, the two values are passed to the function asadditional parameters, as shown in Equation (3.40). Since both values are constants, the valueof cifm can be precalculated after training the neural network, as shown in Equation (3.40). Asa result, this variant of the batch normalization is very resource-efficient. The latency of thehardware function is: SRCROW · SRCCOL · IFM

VIFM
+ PD.

DSTx,y,ifm = γ ifm · (SRCx,y,ifm – μifm) · cifm + βifm, cifm = 1√
σ2
ifm

+ ε (3.40)

Fully Connected

The fully connected layer is an essential component of most CNNs. It is one of the lastlayers and is used for the final classification decision. Simplified, it is a 3D-convolution with a1 × 1 kernel on an image with a resolution of 1 × 1. However, the IFM and OFM can be verylarge. The weights, biases and input image are buffered on first use. However, since eachweight/bias is read only once per image, it is recommended not to buffer them if the weightmatrix becomes too large. The summation of Equation (3.41) has been implemented usingfixed-point numbers for the floating-point implementation. Therefore, the multiplicationresult is converted and saturated to a 32 bit wide number before summation and convertedback afterwards. Fixed-point numbers were used, since a summation with floating-pointnumbers increased the total latency by a factor of five. The fixed-point position is set by aparameter. Depending on the degree of parallelization, VIFM multiplications are calculatedin parallel and added together. After summation, the data must be shifted back due to thefixed-point multiplication according to the rounding policy. Then the bias is added. Whenusing fixed-point values, the result is converted back to the output format according to theoverflow policy. The latency of the hardware function is: OFM · IFM

VIFM
+ PD.

103

3 HiFlipVX: Object Detection Library

DSTofm = IFM∑
ifm=1(SRCifm · WEIGHTofm,ifm) + BIASofm (3.41)

Softmax

The Softmax layer normalizes an input vector into a probability distribution and limits theoutput to a range between zero and one. It is used to determine the probability of severalclasses at once. The calculation shown in Equation (3.42) is done in two parts. The firstpart computes the sum and stores the exponents of the inputs into a buffer. Due to thehigh range of values in this function all operations are done using floating-point numbers.However, for the same reason as in the previous functions, the summation is calculatedusing fixed-point numbers. Therefore, the exponent result is converted and saturated intoa 32bit fixed-point number before summation. For each element in the input vector, VIFMexponents are calculated, stored, and added to the summation. The second part calculatesthe division of Equation (3.42). For fixed-point numbers, the division result must be shifted(multiplied) to the correct position according to the rounding policy. Depending on theparallelization degree, VIFM output elements are computed. The latency of the hardwarefunction is: 2 · IFM

VIFM
+ PD.

DSTifm = e
SRCifm∑IFM

i=1(eSRCifm) (3.42)

3.2 Object Detection Algorithms

This section focuses on the investigation and implementation of the more complex objectdetection algorithms of this thesis. The background to these algorithms has been describedin Section 2.1. In a preliminary investigation, this thesis combined and compared differentfeature extraction algorithms. This resulted in an optimized algorithm, which is based on theAKAZE [20] feature detector and FREAK [24] feature descriptor. Based on the comparison,the ORB [19] and AKAZE feature detectors, and the FREAK descriptor stood out. First, thesethree algorithms were implemented in a highly optimized and specialized design in VHDL.With the help of this implementation, several generic HLS-based functions have been createdfor the HiFlipVX library. Using the library, five different algorithms have been implemented:FAST [37] corner detector, Canny [18] edge detector, ORB feature detector, AKAZE featuredetector and MobileNets [21] neural network. The remainder of this section will describe theoptimized feature extraction algorithm, the three VHDL-based implementations, and the fiveHLS-based library implementations.

3.2.1 Proposed AKAZE and FREAK based Feature Extraction Algorithm

This section focuses on the proposed feature extraction algorithm, which is based on theAKAZE feature detector and the FREAK feature descriptor. AKAZE is a multiscale feature

104

3.2 Object Detection Algorithms

detection and description algorithm, which creates a nonlinear scale-space using a numericalscheme called FED. The scale-space in AKAZE is divided into octaves (O), which in turn aredivided into sublevels (S). It detects features using a blob detector and describes them withthe M-LDB descriptor. This thesis compared the M-LDB descriptor of AKAZE with otherdescriptors, such as BRIEF, BRISK, or FREAK. The FREAK descriptor is generally faster tocompute, has a lower memory load, and is more robust than the other algorithms. It isinspired by the human visual system, more precisely by the retina. It computes binary stringsby comparing image intensities over a retinal sampling pattern and adds rotational invariance.The biggest advantage over the M-LDB descriptor is the low memory load. This is becausethe M-LDB descriptor must store the computed images and derivatives of all scale-spacelevels in memory, which is critical in an embedded system with limited memory resourcesand bandwidth.
Both AKAZE [255] and FREAK [256] are provided by their developers as OpenCV-basedopen-source implementations. This thesis implemented and combined the algorithms in Cwithout external libraries, such as OpenCV, so that they can be used on any embedded device.Several modifications have been made to the algorithms to reduce computation time andincrease repeatability, which was evaluated using the Oxford [257] dataset. This work addeda function that retains the best features of the feature detector to increase repeatability andreduce WCET, when computing the descriptor. Listing 3.5 shows the pseudocode of thesoftware implementation. The precalculations, which must be performed only once for allimages, are not included in this listing. The software implementation normalizes all functionsand uses 32bit floating-point for a high accuracy.
Contrast Factor: The first part of the algorithm calculates the contrast factor. First, the imageis smoothed with a 5× 5 Gaussian filter, and then the gradient magnitude is calculated usingthe first order derivatives with a Scharr filter. Then a histogram of size 1024 is created from thegradient image. The contrast factor is the index (bin) at which 70% of the gradient histogramis reached. Unlike the original algorithm, the maximum gradient value is not calculated inadvance, since this work normalizes all filter functions and thus know the maximum possiblevalue of the implementation. In the original implementation, the entire image must betraversed twice, once to find histmax and another time to fill the histogram. Instead, it isonly necessary to iterate through the image once in the modified design. Equation (3.43)describes the calculation of the contrast factor, where histmax is the maximum gradient value,
binmax is the maximum histogram value, and O is the octave. It already calculates the squareof the contrast factor to be used in the conductivity function.

contrast_squareO = (histmax · bin
binmax

)2 · 0.5625O (3.43)

Nonlinear Scale-Space: In the second part, a nonlinear scale-space is created. It com-putes a flow image (Lc) with the conductivity function using the squared contrast factor(contrast_square) and the image derivatives (Lx, Ly) computed by a Scharr filter as shown inEquation (3.44). To generate a new image (Lt) in scale-space, a number of FED time steps(N), which increase for each level, need to be processed. The image (Lt) is scaled each time anew octave begins by averaging a 2 × 2 pixel window to one pixel (fast area interpolation).Finally, the smoothed image (Ls) is created using the Gaussian kernel. For the proposedconfiguration, the number of FED-steps (N) is zero in the first two scale levels.

105

3 HiFlipVX: Object Detection Library

1 // Contrast Factor
2 Ca = Gaussian5x5(image)
3 Cb = Gradient(Ca)
4 contrast_square = ContrastFactor(Cb)
5
6 // Nonlinear scale-space
7 Ls[0] = Gaussian7x7(image)
8 Lt[1][0] = Copy(Ls[0])
9 Ls[1] = Gaussian5x5(Lt[1][0])
10 for (i = 2) to (O · S - 1)
11 Lc[i-1] = Conductivity(Ls[i-1], contrast_square[i-1])
12 for (j = 2) to (N[i-1] - 1)
13 Lt[i-1][j+1] = FastExplicitDiffusion(Lt[i-1][j], Lc)[i-1])
14 Lt[i][0] = ((i mod S) == 0) ? (Scale(Lt[i-1][N[i-1]])) : (Copy(Lt)[i-1][N[i-1]]))
15 Ls[i] = Gaussian5x5(Lt[i][0])
16
17 // Feature Detection
18 for (i = 0) to (O - 1)
19 for (j = i · S) to ((i + 1) · S)
20 Lx/Ly[j] = Scharr(Ls[j])
21 Ld[j] = DeterminantOfHessian(Lx)[j], Ly[j])
22 for (j = i · S) to ((i + 1) · S)
23 Fa[j] = FeatureExtract(Ld[j])
24 for (j = i · S) to ((i + 1) · S)
25 Fb[j] = (j == 0) ? (FeatureCompare(Fa[j])) : (FeatureCompare(Fa[j-1], Fa[j]))
26 features = FeatureRetainBest(Fb)
27
28 // Feature Description
29 integral = IntegralImage(image)
30 for (i = 0) to (features.size - 1) // Freak Algorithm
31 Da = Intensity(integral, features[i])
32 Db = Orientation(Da)
33 Dc = Intensity(integral, features[i], Db)
34 descriptor[i] = Descriptor(Dc)

Listing 3.5: Pseudocode of the proposed AKAZE-FREAK optimized algorithm. O (number ofoctaves), S (number of sublevels), N (number of Fast Explicit Diffusion time steps).

Lc = contrast_square
contrast_square + Lx2 + Ly2 (3.44)

Feature Detection: Features are detected with the DoH blob detector (Ld = Lxx · Lyy – Lxy2).The first (Lx, Ly) and second (Lxx, Lyy, Lxy) order derivatives are calculated using Scharr filters.The FeatureExtract function generates a feature if a pixel value (response) of the Ld imageis the maximum in a 3 × 3 window and above a certain threshold (t0). It also calculates SRfor more accurate coordinates. This work merges the SR with the FeatureExtract function,since both require the surrounding response values. Originally, this was the last function ofthe feature detection algorithm.
A feature passes the FeatureCompare function if its response value is maximum in a σ radius,

106

3.2 Object Detection Algorithms

to avoid replication of adjacent features. Therefore, in the original AKAZE implementation,a feature had to be compared with all other features of the same, upper, and lower level.Unfortunately, this method has a complexity of O(n2) for n features, which makes it verycomputationally intensive. The proposed implementation takes advantage of the fact thatfeatures are detected in ascending order with respect to vertical position. Therefore, adaptivesearch pointers are used to determine the beginning and end of the features to be compared.This decreases the complexity from O(n2) to approximately O(n · log(n)). This work comparesthe response values of the current level with the lower level only if it is in the same octave,and do not mix between octaves as in the original algorithm. The implemented design alsodropped comparisons to the upper scale level, since the number of matches only differs byabout 1% and this had almost no measurable effect to the repeatability. To further reducethe number of comparisons, this work performs the border check required for the FREAKretina pattern at this stage. The FeatureRetainBest function concatenates all features andpartially sorts them by their response value to get the N best features. Checking the FREAKborders before the FeatureRetainBest function improves repeatability by generating astable number of features.
Feature Description: The FREAK algorithm needs an integral image (I[x, y]) to calculate thesum of pixels (i[x, y]) needed for each retinal pattern. Instead, creating a separate integralimage from each scale level of the AKAZE algorithm did not improve repeatability. Onepossible explanation why this approach does not help, is the loss of data due to the diffusionprocess and the scaling of the image. The original algorithm for this function is shown inEquation (3.45). However, the optimized software implementation first sums each row andthen each column to reduce loop dependencies and apply parallelization.

I[x, y] = i[x, y] + I[x, y – 1] + I[x – 1, y] + I[x – 1, y – 1] (3.45)
Parallelization: To reduce the computation time of the original implementations, this workmerged loops and added OpenMP directives for parallelization, for all functions except
FeatureRetainBest and ContrastFactor. For the FeatureExtract and FeatureComparefunctions, it creates a thread for each of the (O · S) levels due to loop dependencies withinthese functions. Descriptors are created independently for each feature, which eases the loopparallelization of the FREAK algorithm. To parallelize the integral image, the implementationsplits the function into two loops, to which OpenMP loop parallelization was applied. Thefirst one computes the prefix-sum of each row independently. The second one takes thisintermediate image to create the prefix-sum of each column independently. For all otherfunctions, a standard OpenMP loop parallelization is used. The different filters replicate theborder values of their input images when their kernel is outside the image boundaries, whichimproves the repeatability of the overall algorithm. The hardware implementations of AKAZEand FREAK algorithms will be explained in more detail in the following subsections.

3.2.2 FAST Corner Detector

The FAST [36, 17] corner detector is one of the implemented feature detection algorithms ofthe HiFlipVX library. It is part of the ORB feature detection algorithm, which is explainedin a later subsection. As shown in Figure 2.3, it extracts corners from images by evaluatingthe Bresenham circle around a pixel. The hardware implementation consists of the three
HiFlipVX library functions shown in Figure 3.7.

107

3 HiFlipVX: Object Detection Library

Bit Depth
Conversion

Feature
Extraction

Non-Max
Suppression

Segment
Test Detector

Multicast Multicast

Hysteresis

Oriented
Non-Max Suppression

MagnitudePhase

Sobel

Figure 3.7: Canny edge detector (left) and FAST corner (right) detector HLS implementations.
First, the segment test detector function takes the input image and computes the responsevalues using the FAST9 method. Then the NMS function takes the response values andsuppresses pixels in a 3 × 3 window that are not the maximum in this window. Then thefeature extract function takes this image and creates a vector of features. A pixel becomesa feature if its response value is above a certain threshold (t0). Also, this pixel must have aminimum distance of four to the edges to be stored as a feature. This is due to the windowsizes of the previous filters. Therefore, the previous two filters do not require special borderhandling and can use undefined border handling to save further resources. An alternativedesign of the FAST uses the integrated NMS function of the feature extraction function tosave resources.

3.2.3 Canny Edge Detector

The Canny [18] edge detector is also a part of the HiFlipVX library. It detects and highlightsedges in images and suppresses all other information. The hardware implementation consistsof several library functions, as shown in Figure 3.7.
First, a Sobel filter is applied to the input image, which calculates the derivatives in x and ydirection and converts the image data type from unsigned to signed. Then, the magnitudeand orientation images are calculated using the derivatives. The phase function computesthe orientation to detect features regardless of their rotation (invariance). The orientation ofan edge is its direction and can be visualized as a line perpendicular to it. Due to the conceptof "one consumer and one producer", the intermediate results must be duplicated using themulticast function. Based on the orientation and magnitude values of a pixel, non-edge pixelsare suppressed from the image. The pixels are then converted to unsigned values bit-depthconversion function. Finally, the hysteresis function highlights all strong pixel values and theirweak neighbors and suppresses the rest of the pixels to create a binary image.
In addition to the hysteresis threshold value, the Sobel and hysteresis kernel sizes of themain function are parameterizable to adapt the detector to the image environment. Toreduce edge effects, the Sobel and NMS functions use replicated borders, and the hysteresisfunction uses a constant border handling. As a result, no edges can be highlighted at theborder of an image, to avoid false edge detection.

108

3.2 Object Detection Algorithms

3.2.4 ORB feature detection

This subsection will discuss the VHDL and HLS implementations of the ORB feature detectionalgorithm. This thesis replaced the BRIEF descriptor of the ORB algorithm with the FREAKdescriptor to improve repeatability and performance. The ORB detector is a FAST detectorsupplemented by a pyramid scheme that makes the detector scale invariant. Scale invarianceis needed to detect similar features in different images independent on their size.
Some changes were made to the original algorithm. Before, all configuration parameterswere evaluated in the software to tune the two algorithms. Due to the replacement of theBRIEF with the FREAK descriptor, the intensity centroid function has been removed fromthe implementation. This is due to the different calculation of the feature orientation of theFREAK algorithm. In addition, the Harris [38] detector was excluded according to the optimalconfigurations resulting from the software optimization. Additionally, it retains the k bestfeatures for every scale to reduce the maximum number of detected features, to evenlydistribute the detected features to the scales and to keep only the strong features. Thisfunction strongly increases the repeatability of the detected features.
In the following, the VHDL implementation is described first. Then, the integration of theVHDL implementation into a VPS (Video Processing System) is shown. In the last part, theresulting HLS implementation, and its differences from the VHDL implementation will bediscussed.

VHDL Implementation

In this part, the proposed VHDL implementation of the ORB feature detection algorithmis explained. Figure 3.8 gives an overview of the pipelined hardware implementation for a4-level pyramid. A single level of the pyramid scheme can be seen on the right of the samefigure. The various modules of the hardware design will be explained below.

key-point

key-point

key-point

response(11 bit)

corner(1 bit)

sof (1 bit)

pixel(8 bit)

Pyramid Level

eol (1 bit) y (11 bit)
x (11 bit)

Corner
Location

NMS

Response
Function

Pixel
Classifier

Sliding
Window

sof, eof

sof, eof

sof, eof

sof, eof

pixel
ORB Detector

key-point

Retain
Best

Retain
Best

Retain
Best

eof(1 bit)

sof(1 bit)

pixel(24 bit)

Retain
Best

Pyramid
Level 3

Resize Block

Pyramid
Level 2

Resize Block

Control
Block

Pyramid
Level 1

Pyramid
Level 0

Resize Block

RGB to Gray

Figure 3.8: Hardware design of the ORB detector. SoF (Start of Frame), EoL (End of Line)
RGB to Grayscale Conversion: This block converts the input pixels from the RGB color format(24 bit) to the grayscale format (8 bit). For its computation, the ITU-R BT.709-6 standard hasbeen chosen: g = (0.21093 · R) + (0.71484 · G) + (0.07031 · B). The coefficients consider howthe human eyes perceive the different color components. This block has a pipeline depth oftwo clock cycles and a throughput of one pixel per cycle. It has a fixed-point logic, which hasa small loss in precision.

109

3 HiFlipVX: Object Detection Library

SlidingWindow Structure: First, the 16 pixels of the Bresenham circle need to be investigated.Therefore, a 7×7 pixel window of the input frame is needed. This window scans the completeinput frame pixel by pixel. It only excludes a three pixel wide border (window radius) of theframe. During execution, the last seven rows of the frame are buffered. In every clock cycle,the read and write addresses of these buffers are incremented, while the read address isalways one higher than the write address. A row buffer is implemented using BRAMs andits depth is equal to the width of a frame minus seven (window size). Every row buffer isconnected to seven shift registers (window), which are connected to the next row buffer. Thisway, the window slides through the frame and scans it pixel by pixel. This structure causes adelay of seven clock cycles at each row change.
Pixel Classifier and Response Function: The output of the sliding window are the 16 Bre-senham circle pixels and the pixel under test. In the next step, a segment test is performedto determine whether the pixel under test is a corner or not. Therefore, the pixels of theBresenham circle are treated like a vector. From this vector, nine contiguous pixels mustsatisfy the following condition: the output is equal to 1 if (Ip→x ≥ Ip + t) or (Ip→x ≤ Ip – t), where
Ip→x is a pixel from the Bresenham circle, Ip is the value of the pixel under test and t is theFAST threshold. This is achieved by using a logical AND for every nine contiguous results.Therefore 16 AND gates are used, whose outputs serve as inputs for an OR gate with 16inputs. The final output is a signal indicating whether the pixel under test is a corner ornot. Furthermore, the score (response) of the pixel under test is calculated for the NMSstage. The value of pixel under test Ip and value of every Bresenham-vector pixel passesthrough a group of subtractors to calculate the response function. Another output signal wasimplemented to identify whether the circle is darker or brighter than the pixel under test.
NMS (Non-MaximumSuppression): In the next stage, keypoints that do not have amaximumresponse value in a 3× 3 window are suppressed. The sliding window structure as describedabove is used, but modified for a 3 × 3 window. The response of the pixel under test iscompared with the other responses in the window and suppressed if the pixel under test isnot the local maximum. The eight comparisons are executed in parallel, and the results arecombined by a logical AND.
Corner Location: The output from the previously described design is a stream of responsesand a signal that indicates whether a response is a corner or not. However, there is noinformation regarding the coordinates. The Corner Location block generates the coordi-nates synchronized with the stream of output responses. Using the SoF (Start of Frame) andEoL (End of Line) signals, the delay of the previous blocks can be calculated to generate thecoordinates of the output response. This core also generates a valid signal used in NMSblock.
Resize Block: This block scales one pyramid level into a smaller one. To reduce resourceconsumption, a simple method called fast area interpolation is used, where a 2 × 2 windowof pixels is averaged to form a new pixel. This is done by adding the values of the four pixelsand dividing the result by four (shift right by two bits). Accordingly, the width and height ofthe frame are halved (scale factor of two). The input window is obtained from the Sliding
Window block, to save resources.
Control Block: A control block is needed to integrate and control the different pyramid levels.It is responsible to generate different control signals for the pyramid levels (SoF, EoL, enableand reset). It waits for the SoF signal and then starts controlling the pyramid levels. Each levelcontains a state machine, which starts in a waiting state until the previous level launches

110

3.2 Object Detection Algorithms

the start flag after buffering two lines (Resize Block) and goes into enable state. In enablestate, the enable signal of that pyramid level is asserted (= 1). The enable state starts a groupof counters, which count the number of columns and rows of the previous level and thenumber of pixels and lines of the current level. A set of customizable parameters specifiesthe size of every pyramid level and a parameter called Stop_Num. This parameter indicatesthat the enable stops every time the counter is equal to that number (horizontal or vertical).For example (Stop_Num = 4) means that every four counts (either horizontal or vertical) theenable stops. In case of horizontal stop, the FSM (Finite-State Machine) de-asserts the enablejust for one cycle. In case of vertical stop, the FSM de-asserts the enable for one completeline of the previous level. Stop_Num can be calculated using this following equation, where SF
is the scale factor: stopnum = ⌊ SF

SF–1
⌋

Retain Best: The Retain Best block is shown in Figure 3.9. It gets (retains) the K best of Nkeypoints. This is useful to reduce the calculations for the later feature descriptor and reducethe percentage of false matches. The keypoints are filtered according to their response value.The execution is done in three stages.

finished
started
threshold

eof
corner

keypoint
w/r

data
data

response

addressw/r

keypoint (response, x, y)

Increment

Control

Compare

BRAM

FIFO

Figure 3.9: Hardware design of the Retain Best block.
In the first stage, all incoming keypoints are buffered in a FIFO. At the same time, a histogramof the keypoint responses is built. This histogram is implemented using a BRAM such thatthe response is the address of this BRAM. For each address, the value is read, incremented,and rewritten to the same address. When the last keypoint is detected, a signal called EOFis asserted. In the second stage, the histogram is scanned cell by cell, starting from themaximum possible response going downwards, while counting the number of keypoints ineach cell. The threshold response is the address of the last scanned cell, when the numberof counted keypoints reaches the number to retain. The third stage reads from the FIFOand filters the elements using the threshold response from the second stage. A keypoint ispassed to the output if its response value is greater than or equal to the threshold.

Note that several keypoints can have the same threshold response. In this case the numberof filtered keypoints can exceed N. Also, note that there is a maximum FIFO depth, whichlimits the maximum number of keypoints that can be accepted from the previous block. Theworst-case execution time of this block would be equal to the histogram depth plus the FIFOdepth (e.g., 8192). Two more signals are generated indicating the start and finish of the FIFOfiltering stage. This Retain Best block is used in every pyramid level, which gives the abilityto specify the number of retained keypoints in every level independently.

111

3 HiFlipVX: Object Detection Library

Integration into a Video Processing System

The VPS is created using the tutorials, IP-cores and codes provided by Avnet. It is a HDMI(High Definition Multimedia Interface) pass-through system that receives an input stream,stores it in frame buffers in DDR memory using a video DMA block, reads it from these framebuffers via video DMA, and sends it as an output stream. The ARM processor is used toconfigure the video DMA blocks and control memory access. The Avnet IP cores provide avideo stream in YCbCr 4:2:2 color format.
Therefore, additional blocks were added to this system to interface with the feature detectionalgorithm, since the hardware design operates in the RGB color space. The first core (Chroma
Resampler) converts the input to the YCbCr 4:4:4 representation. The second core (YCrCb to
RGB Color-Space Converter) converts its input to the 24 bit RGB representation. The thirdcore (AXI4-Stream Subset Converter) adds a dummy zero-byte, to store the RGB pixels inan aligned manner in DDR memory. The same IP-cores are used for HDMI input and outputin reverse order.
For proof of concept, the 4-level hardware design was integrated into a VPS. The optimal8-level pyramid was designed and simulated, but not integrated into the VPS. The detector isintegrated via an AXI4 stream interface to communicate with other IP-cores. As shown inFigure 3.10, the ORB detector is placed in the input stream path. To avoid buffering the image,the input video stream is duplicated. Two methods were investigated to display the detectedkeypoints on the output monitor. The first method implements an IP-core that draws thedetected keypoints on the frame in hardware. The drawback is that to draw a clear circle of areasonable size, a large number of image rows must be buffered, which consumes manyresources and causes additional delays. The second method writes the detected keypointsto DDR and performs the drawing on the ARM processor, which consumes fewer resources.Note that this would be removed when integrating the detector in a larger system.

keypoints buffer 3
keypoints buffer 2
keypoints buffer 0
output frame buffer
keypoints buffer 1

input frame buffer
ORB VPS

DDRmemorycontroller
ARMbaremetalapplication

HP1 port

ORB
VDMA

ORB VDMA

VDMA HDMI
Output

HDMI
Input

AXIS Duplicate

tready
and

tvalidtusertlasttdata
AXI4
Stream
Subset

Converter

YCrCb to
RGB Color
Space

Converter

VDMA

VDMA

VDMA

ORB to VDMA

ORB to VDMA

ORB to VDMA AXI
Inter-

connect

VDMAORB to VDMA

ORB
Detector

HP2 port

Figure 3.10: Integration of the ORB detector into the video processing system.
Figure 3.10 contains the hardware design of the second method for a 4-level pyramid. Thiswork created an IP-core that interfaces with the Retain Bestmodule of the ORB detector.This IP-core buffers the data in a FIFO and converts it to an AXI4-Stream-protocol, to beconnected to a video DMA. Both blocks are needed for each level of the pyramid scheme. TheARM processor controls the video DMA blocks and stores each level into an own frame buffer.The video DMA blocks send the keypoints through an AXI interconnect to DDR memory. The

112

3.2 Object Detection Algorithms

ARM processor performs the drawing of the keypoints, by continuously copying the inputframe into the output frame and drawing the keypoints on the output frame.

HLS Implementation

The ORB feature detector and its functions are also part of the HiFlipVX library. Figure 3.11shows its structure. It is a multiscale algorithm and therefore detects features of differentscales using the FAST corner detector, described in Section 3.2.3. Due to the generalizationof the reusable library functions, there are some differences in comparison with the VHDLimplementation. For example, the scale image function from the library has different scalingoptions (bilinear, area or nearest neighbor interpolation), whereas in the VHDL implementa-tion a fast area interpolation was used to save resources. It is not part of the ORB algorithm,but the RGB to grayscale conversion from the VHDL implementation can be solved by thecolor conversion function from the library.

Retain Best
Features

Feature
Extraction

Non-Max
Suppression

Segment
Test Detector

Scale
Image

Multicast Retain Best
Features

Feature
Extraction

Non-Max
Suppression

Segment
Test Detector

Scale
Image

Multicast Retain Best
Features

Feature
Extraction

Non-Max
Suppression

Segment
Test Detector

Scale
Image

Retain Best
FeaturesMulticast Feature

Extraction
Non-Max

Suppression
Segment

Test Detector

Figure 3.11: Overview of the ORB feature detection implementation.
In Figure 3.8, the FAST algorithm was represented by the Pyramid Level. In the HLS imple-mentation, this part is represented by the segment test detector, NMS, and feature extractionfunctions. Thereby, the Corner Location and the Control blocks, are replaced by the fea-ture extraction function. However, this makes the format of a feature more generic, since theorientation is added, and the different elements have common sizes. Due to the streamingapproach and the independent functions, no higher-level control block is needed in thelibrary approach. The Pixel Classifier, the Response Function and the Sliding Windoware part of the segment test detector. However, the library extracted the threshold fromthis function and executes it in the feature extraction function. In general, the thresholdshould be executed as late as possible, since it deletes information that is then lost. Themany additional options provided by the parameters of the library functions allow to increasethe repeatability at the cost of resources or to easily adapt the algorithm for different usecases. In addition, all functions except the feature retain best function can be vectorized,which results in higher performance. Due to the lower latency, there is no need to vectorizethis function.

3.2.5 AKAZE feature detection

In this subsection, the different implementations (VHDL, HLS) of the AKAZE algorithm aredescribed and compared.

113

3 HiFlipVX: Object Detection Library

VHDL Implementation

As mentioned earlier, this thesis reimplemented the AKAZE algorithm in software with 32 bitfloating-point numbers. However, an implementation with floating-point calculations is verycostly in terms of hardware resources. Therefore, the entire hardware implementation ofAKAZE uses fixed-point numbers. This is easily possible because all functions have beennormalized to pixel values greater or equal zero and below one. To maintain similar accuracy,all produced images have a 16 bit format, except for DoH images, which have a 32 bit format.
System Overview:

As shown in Figure 3.12, the final system can be divided into three parts: a PC platform, anARM processor, and the hardware accelerator. Both ARM and accelerator are embedded inthe Zynq-7000 chip on a ZedBoard [82]. The PC platform reads the images, sends them tothe ARM via Ethernet, and then receives back the keypoints. It also computes the descriptionand matching algorithms that use these keypoints to evaluate the system.

resized image image
imagekeypoints

interrupt 1
interrupt 2ethernetPC

stage 1stage 2
Contrast
Factor

Nonlinear
Scale-Space

Keypoints
Detector

DMAs

HP ports
ARM

DDR3

Figure 3.12: Block diagram of the complete system for the AKAZE VHDL implementation.
The accelerator consists of two pipelined stages: stage one calculates the contrast factor andstage two builds the nonlinear scale-space and detects the keypoints. The ARM sends animage (first frame) to stage one, and when it is done, it sends an interrupt to the ARM to sendthe same image to stage two. Stage two has two outputs that are stored in memory: thekeypoints of the first octave and the scaled image for the following octave. When stage twofinishes, it sends an interrupt to the ARM to send the resized image back from the memoryto stage two to detect the keypoints for the second octave. This process is repeated until allkeypoints of the different octaves have been sent to the ARM. While the second stage workswith the first image, the first stage computes the contrast factor for the second image. Thus,both stages work simultaneously, but with different images.
Window Generator: Most modules in the implemented hardware design scan the wholeimage and use a specific number of pixels as a window to generate the results of an outputpixel. The window generator consists of row buffers (BRAMs) and pixel buffers (shift registers),which are also the output of the window generator. Its implementation is shown in Figure 3.13and is also based on a sliding window approach as used in the HiFlipVX library. Somemultiplexers have been added to the pixels buffer to support horizontal and vertical replicatedborders. Additionally, it supports variable image widths to be used by different octaves. In

114

3.2 Object Detection Algorithms

the hardware design of AKAZE, there are five different types of functions that use a windowgenerator: Gaussian, Scharr, Conductivity, FED and DoH. The size of the window generatordepends on their kernel size and the scale and ranges from 3 × 3 to 17 × 17.
window sizeimage width - window size

pixelsstreampixels bufferrow buffer
Row 0

Row 1

Row 2

Row 3

MUXMUXMUXMUX

MUX
MUX
MUX

Figure 3.13: Block diagram of 5 × 5 window generator. Shows replicated border handling onthe right.
Contrast Factor: The block diagram of the contrast factor calculation is shown in Figure 3.14(left). It includes a Gaussian to smooth the image and remove noise, as well as gradientcalculation including the Scharr derivatives. One adjustment made in this implementationis to approximate the gradient calculation shown in Equation (3.46). In this calculation Lminand Lmax are the maximum and minimum values of the first order derivatives Lx and Ly at thesame pixel location.

contrastfactor

addr B

addr A
data B
data Aenablewritinginputimage +1 BRAM

Histogram
Controller

Calculate
nbin

Calculate
k

Calculate
nbin max

Calculate
h max

Approx.
Gradient

Scharr
Filter

Gaussian
7x7 Filter

1023

2
1
0

nextimage
sublevel 3

sublevel 2

sublevel 1

sublevel 0

smoothedimage

input image

resizedimage

FED (n-1)

F
I
F
O

FED (0)

Conductivity
Filter

Gaussian
5x5 Filter

NL Scale
Space (3)

Resize

NL Scale
Space (2)

MUXMUX
NL Scale
Space (1)

NL Scale
Space (0)

Gaussian
7x7 Filter

Figure 3.14: Block diagram of the AKAZE contrast factor (left) and nonlinear (NL) scale-spacecreation (right). FED (Fast Explicit Diffusion)

∇L

√
L2x + L2y ≈ |Lmax| + 1

2
Lmin · Lmin|Lmax| (3.46)

115

3 HiFlipVX: Object Detection Library

The histogram itself is a dual ported BRAM of length 1024, with one port for reading and onefor writing. Its controller is a FSM that has three states: filling histogram, reading histogramand halt. For the first state, the controller enables writing and sets both addresses A andB to the index value nbin so that the value at address nbin is incremented by one. In thesecond state, the controller reads the histogram values through address B starting from thefirst index until 68.75% percentile of the gradient histogram is achieved. Then, the contrastfactor is calculated as shown in Equation (3.47), where i = AddrB. This work redefined thecontrast factor to be 68.75% percentile instead of 70%. This replaces multiplication by 0.7to be multiplication by 0.6875, or in other words multiplication by (1/2 + 1/8 + 1/16), whichcan be achieved by adding and shifting instead of multiplying.

k = hmax · i
nbinmax

(3.47)
Nonlinear Scale-Space: The hardware is designed to build four sublevels per octave. Eachsublevel is generated by a Nonlinear Scale-Space block, as shown in Figure 3.14 (right). Thisblock consists of a Gaussian filter, a conductivity function, and several FED steps. Because thepixel stream of the flow image generated by the conductivity function and the original imagemust be presented simultaneously, a FIFO is needed before the first FED step to compensatethe delay of the window generator of the Gaussian and conductivity functions. The numberof FED steps varies according to the sublevel and octave. The flow image of the conductivityfunction is passed through the FED functions to avoid additional buffers. This is possiblebecause the flow image is already buffered in the FED function. In sublevel zero of octavezero, there are no FED steps. So, this sublevel is built by only a Gaussian filter with windowsize 7 × 7 to remove the noise of the original image. Therefore, multiplexers are used inoctave zero to choose between this Gaussian filter and the normal Nonlinear Scale-Spacestep zero block.
Keypoint Detector: As shown in Figure 3.15, the DoH is applied on each sublevel witha different scale. Taking advantage of the linearity property of the convolution process,the second order derivatives can be calculated without having to calculate the first orderderivatives independently. The second order derivative kernel is calculated by convolving thetwo derivative kernels. If more than one keypoint is present at the same time from different
Local Extrema blocks, the multiplexer chooses the keypoint with the lower sublevel first.New keypoints are compared to the keypoints stored in the buffer by using adaptive searchpointers. The keypoint is a 64 bit vector, which contains the x and y position, the sublevelnumber and the response value calculated by the DoH. According to measurements, thebuffer length is set to a maximum of 8192 keypoints.

HLS Implementation

This part will discuss the HLS implementation of the AKAZE algorithm, which is part of
HiFlipVX. All contained functions are included in the library and have been described in thefirst section of this chapter. Therefore, this part will focus more on the differences to thesoftware and VHDL implementation. In addition, the structure of the HLS implementation,which is shown in Figure 3.16, will be described.
A very big advantage of the library is the genericity of the functions. Through the many tem-plate parameters, more variations are possible and adjustments to the algorithm are easier

116

3.2 Object Detection Algorithms

sublevel 3

sublevel 2

sublevel 1

sublevel 0

keypoints

data
A

data
B

addr
A

addr
B

enable
Keypoints
Comparator

BRAM buffer

FIFO

MUX

Local
Extrema 3x3

Local
Extrema 3x3

Local
Extrema 3x3

Local
Extrema 3x3

DoH
Filter 3

DoH
Filter 2

DoH
Filter 1

DoH
Filter 0

Figure 3.15: Block diagram of the AKAZE feature detection. DoH (Determinant of the Hessian)
multiply multicast convertdepth contrast

factor
magni-
tude scharr gaussian image

multicast

multicast

multicast

multiply
constant

multicast

multicast

conduc
tivity

conduc
tivity

conduc
tivity

conduc
tivity

conduc
tivity

conduc
tivity

FED

FED

FED

FED

FED

FED

FED

FED

FED

FED

FED

FED

scale
image

convertwidth

gaussian

gaussian

gaussian

gaussian

gaussian

gaussian

gaussian

gaussian

image multicast

multicast

multicast

multicast

multicast

multicast

multicast

DoH

DoH

DoH

DoH

DoH

DoH

DoH

DoH

feature
extract

feature
extract

feature
extract

feature
extract

feature
extract

feature
extract

feature
extract

feature
extract

featuredeserial

featuredeserial

featuredeserial

featuredeserial

featuredeserial

featuredeserial

featuredeserial

featuredeserial

featuremulticast

featuremulticast

featuremulticast

featuremulticast

featuremulticast

featuremulticast

feature
compare

feature
compare

feature
compare

feature
compare

feature
compare

feature
compare

feature
compare

feature
compare

featuregather
featureretainbest

features

Figure 3.16: HLS implementation of the optimized AKAZE feature detector.
and faster to implement. For example, an adjustment of the data type or the vectorizationto address different FPGAs. In contrast, the VHDL implementation is strongly optimized forthis specific algorithm and embedded devices. Which has the advantage that many specificoptimizations can be made to save resources. For example, more specific optimizationscan be applied beyond functions. This becomes clear with the squaring of the contrastfactor and its distribution, since one must maintain the genericity in a library function. TheVHDL implementation is therefore a good reference for what is possible. What influence thishas on the repeatability, performance and resource consumption will be discussed in theevaluation.
In both hardware implementations, the contrast factor, and the rest of the algorithm workon different images. However, the HLS version calculates all octaves simultaneously, whichleads to an increase in resources, but also to a higher performance. For example, if the firstoctave has a vectorization of four and the second has none, then both can run in parallel

117

3 HiFlipVX: Object Detection Library

without one becoming a bottleneck for the other. This is because in the second octave, thepixel count is quartered. Since the scale image function only halves the vectorization, anadditional data width converter and a buffer are needed.
The HLS implementation of the Gaussian function forwards its input to the output, which leadsto a reduction of buffers. Both hardware implementations compute the DoH in one functionwithout a prior Scharr filter for the first order derivatives, to reduce resource utilization.In the software version, this would reduce performance due to larger kernels. In the HLSimplementation, an optional SR can be performed, which is not done in the VHDL version dueto resource constraints. In the VHDL version there is only one compare function, whereasin the HLS version there is one for each level. This increases resource consumption, butimproves performance. In contrast, smaller buffers can be used, since the entire featurevector must be buffered in the VHDL version.
In addition, a retain best function was added in the HLS and software version to increaserepeatability. Compared to the software version, multicast and gather functions are requiredin the HLS implementation due to the single consumer/producer approach and genericlibrary functions. A major difference between the hardware implementations is that the HLSversion is vectorizable to achieve a higher performance. Since vectorization requires moreresources and the implementation results in a very deep pipeline, it is important to verifywhich functions contribute to the bottleneck. Normally, these are the functions that work onthe image pixels, since the feature vectors should be much smaller. For example, the featurecomparison and feature retain best functions operate on feature vectors. Which is also whythis work uses the feature deserialization function before the feature comparison function,to prevent unnecessary resource consumption. To prevent the feature comparison functionfrom becoming a bottleneck, its latency and BRAM usage can be limited.

3.2.6 FREAK feature description

This subsection will describe the proposed VHDL implementation of the FREAK descriptor,and the integral image needed for the descriptor. The implementation can be easily adaptedto detectors other than that of the AKAZE algorithm.

Integral Image

The VHDL implementation of the Integral Image function differs from the software imple-mentation shown in Section 3.2.1. However, the calculation is like the HLS implementationshown in Equation (3.17), but with some differences in its implementation. An Integral
Image pixel at position (Ix,y) is the sum of (1) the prefix-sum of the current input image row
(∑i=x

i=0 Imgi,y) and (2) the Integral Image pixel of the previous row (I(x, y – 1)). In the proposed
Integral Image computation, four pixels can be calculated in each clock cycle. The top levelfunction is shown in Figure 3.17 (left). It buffers the input image and the Integral Imagestream in FIFO units.
The Controller block reads data from both FIFO units and forwards it with a valid signalthrough the prefix-sum block if the output is ready and the image FIFO is not empty. Thecontroller sends zeros instead of the Integral Image to the prefix-sum when calculatingthe first row. It also sends a write enable signal for the integral FIFO, since the last row

118

3.2 Object Detection Algorithms

CSA = Carry Save Adder

Parallel
Prefix-Sum

Integral
FIFO

Image
FIFO

Controller

reset

CSA 3:2 CSA 5:2CSA 4:2

ADD

CSA 4:2

ADD

CSA 4:2

ADD

CSA 4:2CSA 4:2

ADD

CSA 6:2

a3a2a1a0
full

ready

reset

register

register

register

register

c0 c3c2c1

a0 b3a1 a3a2a0 b2a1 a2b0a0 a0 b1a1

Figure 3.17: Integral Image top-level (left) and parallel prefix-sum of 4 pixel (right).
of the Integral Image does not need to be buffered. The Parallel Prefix-Sum blockis pipelined and gets a reset signal for the prefix-sum at the beginning of each row. Tocompute four integral pixel per clock cycle, it uses CSAs (Carry-Save Adders), as shown inFigure 3.17 (right). If several variables are added together, CSA stages can be used to reducethe summation to two variables. Instead of computing the complete prefix-sum to hand itover to the computation of the next four pixels, this work uses the intermediate result of aCSA. Using a CSA without a final adder reduces the resource usage and the latency, sinceboth would need to be computed in one clock cycle. The use of CSAs, which increases theimplementation effort, is a major advantage of VHDL over HLS, where one would have to relyon the compiler for such optimizations. The latency of a 6-to-2 CSA consists of three full
adder stages. Depending on the data bit-width of the Integral Image, either the adder orthe CSA are the critical path.

FREAK Descriptor

Figure 3.18 gives an overview of the VHDL implementation of the FREAK descriptor. It ispipelined, implemented with fixed-point numbers, and generic enough to be combinedwith any other detector. It includes the different blocks of the algorithm (black), FIFO blocks(gray) and almost full signals needed for synchronization (blue). To adapt the design fora different detector, only some constant arrays need to be adapted. The Send Keypointand Send Descriptor blocks write the results back to memory. They can be omitted if thedescriptor is integrated into a larger design. The number of image columns and rows as wellas the base addresses for integral, keypoint and descriptor are set as configuration. Thedifferent blocks are explained below.
Boundary: The FREAK reads pixels around a keypoint using a retina pattern, which hasa fixed scale, but can be rotated. The Boundary block, shown in Figure 3.19 (top), checkswhether the pattern accesses pixels that are not within the image boundaries. First, theblock buffers incoming keypoints in a FIFO and sends back the full signal. At this stage, akeypoint consists of its coordinates (xk , yk) and the corresponding scale-space level (idk). Thenext stage reads from the FIFO, if it is not empty and the Pattern (unrotated) block is notfull. If the last signal was set and the last keypoint is read, a last signal is sent with thiskeypoint. In the next stage, the idk of the keypoint is used to determine the maximum radius

119

3 HiFlipVX: Object Detection Library

image resolutionaddress offsets

4x request [43]
4x data [43]

descriptor [8]

keypoint [1]

keypoint [1]

4x data [42]
4x request [42]

keypoint [1]

intensity [43]

pattern [43], keypoint [1]

orientation [1]

pattern [42], keypoint [1]

keypoint [1]

intensity [42]

AKAZE

DMA

Send
Descriptor

Send
Keypoint

Descriptor

Intensity

Boundary

Orientation

Intensity

Pattern
(unrotated)

Pattern
(rotated)

FIFOFIFO FIFO

FIFO

FIFOs

FIFOs

FIFO

FIFO

FIFO

FIFO

Figure 3.18: Top-level hardware design of the FREAK. Number of data send for each keypoint(square brackets), FIFO flags (dashed lines).

of the pattern, which is stored in a LUT. The last stage checks if the pattern of a keypoint iswithin the image boundaries. If this is the case, it is sent as a valid keypoint to the Pattern
(unrotated) block. It also counts the amount of valid keypoints and sends it to the Send
Keypoint and Send Descriptor blocks.
Pattern (unrotated): A pattern consists of 42 coordinates (xf , yf) around a keypoint (xk , yk)including their corresponding scale (sf). The original algorithm precomputes all differentpossible patterns during initialization and then reads the needed pattern frommemory. Theycompute a pattern for each possible scale (σ) and orientation (ω) combination. The Pattern
(unrotated) block, shown in Figure 3.19 (middle), stores the incoming keypoints in a FIFO. Ifthe FIFO of the first Intensity block and the keypoint FIFO of the Pattern (rotated) blockare not full, the keypoint information can be read. In addition, a pointer is created for each ofthe 42 pattern points. The last stage gets the pattern points from a BRAM, using this pointerand the keypoint scale-space level (idk). This work stores all precomputed patterns in a BRAM.These are 42 coordinate-scale pairs for each of the twelve AKAZE scales (σ), because theimplementation only needs patterns without orientation in this block.
Intensity: The implemented Intensity block is shown in Figure 3.19 (bottom). As shown inEquation (3.48), it computes an intensity value (i) using the pattern and keypoint information.First, it calculates the four corner coordinates for each pattern (xl, xr , yt , yb). With this informa-tion, it computes the divisor of i and the address offsets needed to read the Integral Imagepixels (I). The divisor is buffered in a FIFO. The next stage gets the integral pixels, computesthe dividend (24 bit) and reads the divisor (16 bit) of the FIFO. The last stage is a radix-fourdivision unit, which outputs the 42 intensity values of each keypoint.

120

3.2 Object Detection Algorithms

DMA

FIFO

Division

FIFO Get
Integral

DividendFIFO

Generate
Address

Divisor

Compute Intensity

Read Integral

Get
Pattern

Get
InputFIFO

Check
Image

Boundary

Get
Pattern
Size

Get
Input

FIFO

full

emptyaddressenable
fullpixelenablepixelenable

empty

dividenddivisorvalid

addressenable

intensityvalid

Valid
4x Integral Pixel

emptydivisorenable
full

divisorenable

Valid
OffsetIntegral

4x Address Offset
patternkeypointvalid

pointer patternkeypointvalidkeypointvalid
full full

keypointenable
emptyfullkeypointenable

amountvalid
keypointvalid

radius
last

keypointvalid

lastlast
keypointfull

enablekeypoint valid
empty

enable
full

keypoint

Figure 3.19: Hardware design of the boundary block (top), the unrotated Pattern block (mid-dle) and the Intensity block including a DMA interface (bottom).

xl = ⌊xf + xk – sf + 0.5⌋ , yt = ⌊yf + yk – sf + 0.5⌋
xr = ⌊xf + xk + sf + 1.5⌋ , yb = ⌊yf + yk + sf + 1.5⌋
i = Iyb,xr – Iyb,xl + Iyt ,xl – Iyt ,xr(xr – xl) · (yb – yt)

(3.48)

In the lower part of the figure, a DMA interface is created to read from memory. First, theintegral addresses are created and stored in a FIFO. The full flag does not need to be checked,because the divisor FIFO is already validated. A DMA reads from this FIFO and writes theintegral values back to a FIFO if it is not full. The Get Integral stage checks if the Pattern
(rotated) block is ready and sends the integral pixels to the next unit. This thesis decidedto read the Integral Image from DDR memory due to the maximum pattern size of theproposed configuration. For smaller patterns it could also be stored in BRAM. To adapt thedesign, the integral offset is not needed, and a BRAM controller must be implemented toprovide access to the two intensity blocks.
Orientation: The Orientation block computes the orientation (θΩ) using fixed orientationpairs (Ω), dependent on the orientation amount (ω), shown in Equation (3.49) and Figure 3.20(top). The pairs (Ω) are fixed values of the FREAK algorithm, which are not changed by theconfiguration. This work changed the division from the original algorithm to be a multiple oftwo, to use a shift operation, which did not have a noticeable effect to the results. The firststage of the hardware design gathers the 42 intensity values in the Demux unit. The reasonfor the Demux unit is that the different orientation pairs need different intensity values, and itneeds to buffer the values before the next data-beat of intensity values arrives. Then the 45 δ

121

3 HiFlipVX: Object Detection Library

values are computed in parallel, based on the hardwired pairs (Ωi,Ωj). The next unit outputsthree of 45 orientation weights (Ωx, Ωy) in each clock cycle, since the Weight unit needs to befaster than the previous one. The results are first multiplied, then shifted and then summedtogether, doing three operations for each weight in parallel. This work adapted the shiftunit to calculate the same results as a division unit and round to the nearest value. Thelast unit computes the inverse trigonometric tangent function (atan) using the mathematicalfunction arctan2(dx, dy). This work implemented a non-pipelined CORDIC algorithm, since ithas minimum 42 clock cycles for one data-beat of intensity values. It has 15 bit inputs and an8bit output, since there are only 256 different orientations (ω) in the proposed configuration.To achieve the required latency, fifteen repetitions are performed with two clock cycleseach.

Final Stage

FIFO
Theta

First Stage

FIFO
Keypoint MulMul

Cordic

NegationSum

SigmaRadiusAlphaTheta

Theta
Mul
Shift
Sum

Weight

Control

DeltaDemux

theta pointer pointerpointer

yx

sin()cos()

gammasign

s

dy
validvalidvalid
thetadx

OyOx
delta

selectvalidvalid

valid

valid

valid

select
deltaintensityintensity

Figure 3.20: Design of the Orientation (top) and rotated Pattern block (bottom).

δ(n) = i(Ωi(n)) – i(Ωj(n))
αΩ = ω · atan(44∑

n=0
δ(n) · Ωx(n)128 , 44∑

n=0
δ(n) · Ωy(n)128) + 1

2
θ = [(αΩ < Ω) → bαΩ + ωc] ∧ [(αΩ ≥ Ω) → bαΩc]

(3.49)

Pattern (rotated): The Pattern (rotated) block has far more possible patterns than thethe Pattern (unrotated) block, due to the 256 orientations (ω), 43 pattern points andtwelve AKAZE scales (σ). For this configuration there would be 132096 pattern points, whichwould consume 258 BRAMs on a Zynq-7000 series FPGA. Therefore, this work created amixed design that computes the patterns using partial results, which are stored in BRAM.Figure 3.20 (bottom) shows the pipelined design of the pattern generator. First, it createspointers for the BRAMs and reads the θ value from a FIFO. The Theta BRAM splits a 360◦

circle of degrees into ω (256) entries. The Alpha BRAM contains the 43 pattern angles. The
Radius (σf) and the Sigma (sf) BRAMs contain 516 entries each. Their computation is shown

122

3.2 Object Detection Algorithms

in Equation (3.50). The patternscale constant is part of the proposed configuration. Therange of Gamma (γ = α + θ) is reduced from [0..4π] to [–π2 ..π2] in the Sum unit. It creates a
negative sign bit, if Gamma was in the range of [1π2 ..3π2] or [5π2 ..7π2]. This work has implementeda pipelined CORDIC algorithm, which computes the cosine (18 bit) and sine (18 bit) of γ (20 bit).To compute the pattern coordinates (xf , yf), the CORDIC results need to be multiplied withthe radius, which is negated in advance dependent on the signed bit. The pattern scale (sf)fits completely into the BRAM. The final stage sends the pattern with its keypoint to the nextblock.

σf (n) = radius(n) · factor(n) · patternscale
sf = sigma(n) · factor(n) · patternscale (3.50)

Descriptor: The descriptor does 512 different comparisons between the intensity values.Each comparison creates one bit of the descriptor vector. First, all intensity values aregathered, since the comparisons are crisscrossing. Then, 64 comparisons are computed perclock cycle, due to the size of the proposed DMA interface.
Send Keypoint & Send Descriptor: Both blocks are similar and buffer their output in FIFOunits. The Send Keypoint block converts the ID to the scale size of AKAZE. The keypointcoordinates and scale are packed into a 64bit wide vector. Both blocks contain an addressgenerator that takes an address offset and increments the address for each incoming data.Since these blocks create data bursts of eight 64 bit vectors, one address is created for eithereight keypoints or one descriptor. Before getting the amount of keypoints from the Boundaryblock, the maximum allowed amount of keypoints is set to a predefined value (e.g., 8190). A
last signal indicates if the last keypoint or descriptor has been read. This signal, a data FIFOand an address FIFO are the interface to the DMA.
Memory Controller: This work implemented a memory controller that includes the DMAblocks from XILINX. To interface between the FIFO blocks and the DMA blocks, AXI4-Streamwrappers have been implemented for the design. Additionally, a block that reads the input key-points for the descriptor from memory has been created. This block and the Send Keypointand Send Descriptor blocks have been connected to DMA blocks and the Integral Imageto a video DMA block. These DMA blocks are controlled by the ARM processor by an AXI4-Lite interface. The control parameters can be the base address of a memory block and itssize. The design gets more complicated, when randomly accessing the Integral Image, tocompute the intensity values. Here, the function writes the control registers of the DMAblocks from the hardware memory controller. Each one of the two intensity blocks readsfour integral pixels from four DMA blocks in parallel. Each group of DMA blocks is connectedto one high-performance port through an AXI-interconnect block.

3.2.7 MobileNets

MobileNets [21] was presented by Google and has been developed for mobile and embeddedvision applications. It is also part of the HiFlipVX library. The MobileNets architecture isbased on depthwise separable convolution. This is because a standard convolution canbe factorized into a depth convolution and a point convolution. The factorization of the

123

3 HiFlipVX: Object Detection Library

convolution layer leads to a reduction in model size and computational requirements of thealgorithm.
The first layer of MobileNets is a full convolution layer. Later layers are a combination ofdepthwise convolution and pointwise convolutions. All convolutions are followed by a batchnormalization layer and activation layer (ReLU). The final fully connected layer has no non-linearity and is followed by a Softmax layer. Before the final fully connected layer an averagepooling is used to reduce the spatial resolution. In total MobileNets has 28 layers.
Figure 3.21 shows the hardware implementation of the different parameterizable layers ofMobileNets. The different modules are directly connected to each other, resulting in a verydeep pipeline. Thereby module one contains the first layer and module fifteen contains thelast layer. The input of the first layer in module one is connected to a data-width converterand gets its data from the global memory. To optimize memory bandwidth, it receivesan, for example, 64 bit wide input and converts it to the desired vector size (VIFM) for 3D-convolution. The output vector size (VOFM) is then converted to the vectorization (VPW) for thebatch normalization and activation layers. All layers and conversion units of the pipeline areconnected via very small FIFO buffers. They are marked by a thicker line in the figure.

MobileNetsModule 2-14

MobileNetsModule 1

MobileNetsModule 15

DMA

DMA

pooling dw convertersoftmaxdw converter fully
connected

bias bufferweight buffer

dw converterdw converter

scatter

scatter

scatter

acti-
vation

batch
norm.dw converterpointwise

convolutiondw converteracti-
vation

batch
norm.

depthwise
convolution

weight buffer

dw converter

bias buffer

dw converter

weight buffer

dw converter

weight buffer

dw converter

bias buffer

dw converter

weight buffer

dw converter

acti-
vation

weight buffer

dw converter

batch
norm.dw converterdw converter 3D

convolution

bias bufferweight buffer

dw converterdw converter

Figure 3.21: Block design of the MobileNets hardware implementation. MobileNets has beenseparated into 15 modules. The modules are directly connected to each otherin the order of their numbering. Local buffers are marked in light gray. Datamovers blocks are marked in dark gray. Multiple scatter units can be connectedto the same DMA. dw = data-width.
Modules two to fourteen all have the same structure, but with different parameter settings.

124

3.3 Evaluation

Due to the 3D-convolution, the pointwise convolution requires the highest parallelizationand thus the two data-width converters to ensure that none of the module’s functionsbecomes a bottleneck. The first three layers, which include a depthwise convolution, batchnormalization and activation layer, all have the same degree of parallelization (VDW). Thepointwise convolution gets a vector size of VIFM and outputs a vector size of VOFM. The lasttwo layers have a parallelization degree of VPW . With these four vectorization parameters(VDW , VIFM, VOFM, VPW) the optimal configuration for the available number of resources can befound, as it will be shown in the evaluation. Data-width converters could also be used toconnect the different modules with each other. However, they were not needed for the finalconfiguration.
Module fifteen contains the last layer and its output is therefore connected to, for example,a 64bit wide DMA via data-width converter. This module only needs the parameter VDWfor pooling and the parameter VIFM for the input of the fully connected layer. The Softmaxlayer is not computationally intensive enough to become a bottleneck. In general, all vectorparameters must be set so that no single layer becomes a bottleneck, since the slowest layerlimits the speed of the others. The different modules contain scatter engines to distribute allcoefficients to the local buffers. This allows all coefficients to be preloaded with an optimizedutilization of the memory bandwidth. The scatter engine also reduces the number of DMAblocks needed to access memory to load new coefficients and therefore saves resources.They require data-width converters, since each local buffer has a different bit-width, whichdepends on the degree of parallelization of the corresponding layer. The HiFlipVX data-widthconverter can also convert between widths that are not multiples of each other. Therefore,the alignment of the data for the different local buffers must be adapted to the data type ofthe scatter engine in global memory.

3.3 Evaluation

One aim of this thesis is to improve feature extraction algorithms and to enable the efficientimplementation of object detection algorithms using HiFlipVX. First this section evaluatesthe individual image processing and feature extraction functions of the library, by their re-source consumption, latency, and scalability, and compares them to a related work [12,13]. Then it evaluates the proposed software, hardware, and library implementations ofthe ORB, AKAZE and FREAK algorithms by their performance, repeatability, and resourceutilization [25, 26, 22, 23]. It compares each of them to the state-of-the-art hardware im-plementations. Finally, it evaluates the neural network extension of the library based onits accuracy, performance, scalability, and resource efficiency [14]. It shows the efficientimplementation of the MobileNets algorithm and compares it with the related work. This workuses several FPGA-based development boards to evaluate the library and the implementedobject detection algorithms. Table 3.9 shows these boards, which include two Ultrascale+MPSoC and one Zynq-7000 SoC.

3.3.1 Library Functions

This subsection evaluates the individual functions of the library based on their resourceconsumption, latency, and scalability. It compares the library to a software implementation in

125

3 HiFlipVX: Object Detection Library

Table 3.9: FPGA development boards and their available resources.
Development board FF LUT BRAM URAM DSP
PYNQ-Z1 Zynq-7000 SoC (Artix 7Z020) 106400 53200 140 0 220
ZedBoard Zynq-7000 SoC (Artix 7Z020) 106400 53200 140 0 220
Ultrascale+ MPSoC ZCU102 (Kintex ZU7EV) 548160 274080 912 0 2520
Ultrascale+ MPSoC ZCU104 (Kintex ZU9EG) 460800 230400 312 96 1728

terms of accuracy due to hardware-specific optimizations. It uses the ZCU104 for evaluation,Vivado HLS 2020.1 for IP-core generation, and Vivado 2021.1 for the final design. After version2020.1, XILINX replaced Vivado HLS by Vitis HLS. However, newer Vivado tools can still useolder HLS IP cores. When using floating-point operations, XILINX uses specific IP cores, whichunfortunately can lead to errors when combining different tool versions. The evaluationuses the DECISION framework because it can create multiple IP cores in parallel and has aneasy-to-use frontend. The framework enables all available HLS optimization strategies tocreate the IP cores. To create the Vivado design, it uses the default optimization settings.It automatically creates a design, connects all IP cores, includes DMA blocks for memoryaccess and generates the bitstream. It configures an AXI4-stream interface for all IP coresand enables the last bit to connect to the DMA blocks.
Table 3.10 shows the default configuration of most parameters in the HiFlipVX library. Itserves as a basis for evaluating the various parameter settings. Input and output imagesuse unsigned values whenever possible. For example, the output images of the DoH, Scharrand Sobel functions can only have signed values. The pixel values of the image output aretruncated in case of an overflow and rounded to zero in case of an underflow, if adjustable.The framework implements the IP coreswith a target frequency of 100MHz and an uncertaintyof 20% in Vivado HLS to ensure that Vivado can generate the bitstream. Some functions,such as histogram, table lookup, or min-max-location, can specify the size, offset, and coveredarea of their internal arrays.

Table 3.10: Default configuration of the HiFlipVX library functions.
Output type 8bit
Input type 8bit
Resolution 1920 × 1080
Underflow to zero
Overflow truncate
Frequency 100MHz
Uncertainty 20%
Array bins 256
Array range 256
Array offset 0
Precision low

Vector size (VS) 1
Kernel size (KS) 3
Kernel scale (Kσ) 1
Step size 0
Border type constant
Separable true
Factor (α) 0.25
Quantization 3
Shift 0
Upper threshold 100
Lower threshold 25

126

3.3 Evaluation

3.3.1.1 Image Pixelwise Functions

Table 3.11 shows on the one hand the actual resource consumption (C) and on the otherhand the estimated resource consumption and latency from synthesis (A & B). The tableshows that the synthesis estimates of Vivado HLS sometimes deviate quite strongly from theactual results. In contrast, the results between the synthesized and the implemented designin Vivado differ only by their LUT amount. Here, the synthesis estimates a total of 11% moreLUTs than needed in the final system.
Table 3.11: Vivado HLS synthesis (A), Vivado synthesis (B), Vivado implementation (C) resultsof the pixelwise functions.

FF LUT DSP Latency
A B C A B C A B C A

Data object copy 38 80 80 148 61 53 0 0 0 2073603
Bitwise not 38 80 80 156 61 52 0 0 0 2073603
Bitwise and 38 98 98 165 78 68 0 0 0 2073603
Bitwise or 38 98 98 165 78 68 0 0 0 2073603
Bitwise xor 38 98 98 165 78 68 0 0 0 2073603
Threshold (binary) 30 40 40 148 50 45 0 0 0 2073603
Threshold (range) 31 59 59 161 64 56 0 0 0 2073603
Max 38 98 98 176 78 69 0 0 0 2073603
Min 38 98 98 176 78 69 0 0 0 2073603
Absolute difference 38 98 98 209 89 79 0 0 0 2073603
Arithmetic addition 38 98 98 172 78 69 0 0 0 2073603
Arithmetic subtraction 38 98 98 172 78 69 0 0 0 2073603
Constant mult. 36 70 70 148 58 49 0 0 0 2073603
Pixelw. mult. 38 98 98 197 119 107 0 0 0 2073603
Pixelw. mult. (saturate) 38 98 98 218 136 126 0 0 0 2073603
Pixelw. mult. (round nearest) 38 74 74 157 70 61 1 1 1 2073603
Pixelw. mult. (α = 15) 38 90 90 197 142 131 1 1 1 2073603
Weighted average 38 98 98 205 81 74 0 0 0 2073603
Magnitude 222 152 152 849 317 304 0 0 0 2073604
Phase (quantization = 3) 256 45 45 1497 59 53 0 0 0 2073604

The Phase function needs to compute a pipelined atan2 function, which is quite resourceintensive. However, the estimate differs greatly from the actual design. Due to a quantizationof three, the output pixels can only take eight different values. Therefore, a possible explana-tion for the large deviation is that the optimization phase of the tool has recognized this andstores the possible results of the atan2 function in a LUT.
Since the copy function only forwards the data, it determines how many resources theinterfaces and basic structure of the pixelwise functions consume. Most pixelwise functions

127

3 HiFlipVX: Object Detection Library

are quite simple and only need a few extra resources for their arithmetic or binary operation.It is striking that some even need less resources than the copy function. One reason for thismay be that they do not need all bits of their input(s) or output. For example, the thresholdfunction outputs only Boolean values. Also, some of the functions (copy, not, threshold andconstant multiply) have only one input. The use of DSPs can reduce the need for both LUTsand FFs. This becomes visible in the multiplication functions, which either use DSPs or not.

There are two options for the threshold function. On the one hand only a lower limit and onthe other hand a lower and an upper limit. Using the pixelwise multiplication function, thetable shows the alternative policies for overflow (saturate) and underflow (round to nearest).The resource consumption increases slightly, although this is not always visible, due to theDSP used in the function, which rounds to the nearest value. Both pixelwise multiplicationand constant multiplication multiply their input by a constant value. Changing this constantfrom 0.25 to 0.2 shows the compile time optimizations of the library, since it automaticallyreplaces multiplications which are a multiple of two by a shift operation. The magnitudeoperation has the highest computational complexity with two multiplications, one additionand one square root. Nevertheless, the resource consumption is relatively low, because thelibrary implements an optimized square root for integer values.

Figure 3.22 selects the pixelwise multiplication and magnitude functions because of theirhigher resource consumption to evaluate the scalability of some parameters. Therefore, ituses the relative consumption of LUTs and FFs compared to the default configuration. Thesmaller increase in resource consumption for the multiplication function compared to themagnitude function can have several reasons. On the one hand, because the latter requiresfewer resources for its operation compared to the rest of its function. On the other hand,because it uses DSPs for data types with a higher bit-width. Whether the tool uses DSPs orLUTs for an arithmetic operation depends strongly on the selected data type. The pixelwisemultiplication function requires one DSP for unsigned 16 bit and three for unsigned 32 bitdata types. The magnitude function requires one DSP for signed 8 bit and two for (un)signed16bit data types. All other configurations do not consume DSPs.

0
1
2
3
4
5
6
7

2 4 8 s8 s16 u16 200 300 2 4 8 u16 u32 200 300
vector size data type frequency vector size data type frequency

magnitude multiply

rela
tive

tos
tan

dar
d FF LUT

Figure 3.22: Compares relative LUT and FF utilization of pixelwise functions to default config-uration. Frequency is in MHz. Data type is unsigned (u) or signed (s).
128

3.3 Evaluation

3.3.1.2 Image Filter Functions

Table 3.12 shows on the one hand the actual resource consumption (C) and on the otherhand the estimated resource consumption and latency from synthesis (A & B). Anotherreason for comparing estimates and actual results is that the DECISION framework needsthese estimates for its middleend. There is no difference in DSP and BRAM consumptionbetween the synthesized and implemented designs in Table 3.12. This is advantageousbecause BRAM is usually a limiting factor for HiFlipVX-based implementations, along withLUTs. However, Vivado HLS overestimates the consumption by 36.4% for FFs and 184.7% forLUTs. The models of this work could integrate these variations. However, the data does notshow any regularities. For example, for a selected frequency of 300MHz, the overestimationwas at 144.9% for FFs and 154.2% for LUTs. It would be more accurate to use the Vivadosynthesis estimates since they get the same values for FF utilization and differ by only 2.6%for LUTs. For a frequency of 300MHz, the implemented design required only 43.2% moreFFs and 5.1% more LUTs for the filter functions compared to the 100MHz design.
Table 3.12: Vivado HLS synthesis (A), Vivado synthesis (B), Vivado implementation (C) results ofthe filter functions. FED (Fast Explicit Diffusion), DoH (Determinant of the Hessian)and NMS (Non-Maximum Suppression).

FF LUT BRAM DSP Latency
A B,C A B C A,B,C A,B,C A

Box 246 147 536 149 143 1 2 2076605
Conductivity 2542 1462 2660 1438 1429 1 0 2076639
Convolve 280 197 633 170 162 1 1 2076605
Dilate 246 162 580 172 164 1 0 2076605
DoH1 455 302 1125 372 359 2 2 2076605
DoH2 595 465 1682 671 652 2 5 2079609
Erode 246 162 580 172 163 1 0 2076605
FED 119 168 433 128 121 2 0 2076604
FED (forwarding) 127 200 475 162 153 2 0 2076604
Gaussian 246 162 624 138 130 1 0 2076605
Gaussian (forwarding) 280 221 684 222 212 1 0 2076605
Hysteresis 272 163 597 110 106 1 0 2076605
Median 305 224 1074 421 417 1 0 2076606
NMS 280 197 635 168 163 1 0 2076605
NMS (oriented) 201 249 892 260 253 2 0 2076604
Scharr 280 221 824 273 260 1 0 2076605
Segment test detector 1083 1005 4905 1843 1813 3 0 2082616
Sobel 280 221 760 229 219 1 0 2076605

Since all filters use line buffers, they require BRAM. On the one hand, the number dependson the number of inputs, which are two for DoH1, FED and NMS (oriented). On the other

129

3 HiFlipVX: Object Detection Library

hand, they depend on the size of the kernel, which is 5 × 5 for the DoH2, and 7 × 7 for thesegment test detector. In addition, the BRAM size can increase with larger data types andvector sizes.
There are two variants of the DoH. The second variant creates a kernel that performs bothconvolutions in one, by convolving the Scharr kernel with itself, as shown in Equation (3.15).The first variant only calculates the second order derivatives, which means that it needs anadditional Scharr filter in advance. Adding the resources of DoH1 and Scharr, they need 33fewer LUTs, 55 more FFs, 3 fewer DSPs, and 1 more BRAM than for DoH2. However, thisvariant would also require two additional FIFO blocks between the two functions, so that itneeds more LUTs and FFs. The disadvantage of the higher BRAM utilization increases whenscaling the kernel (Kσ) like in AKAZE. In this case the DoH1 and Scharr would need a total of(6 · Kσ) line buffers and the DoH2 only (4 · Kσ). Applying Equation (3.25) to the two functionsof the first variant to calculate the latency, it requires fewer clock cycles due to the smallersliding window.
The DSP consumption of the user-defined convolution is not ten as expected, that is, onefor each kernel coefficient and one for normalization. This is because the compiler decideswhether to use LUTs or DSPs for multiplications. Defining the use of LUTs or DSPs has shownthat in most cases it is advisable to let the compiler decide. Thus, it can make decisions basedon the total utilized and available resource consumption. The box filter and user-definedconvolution have the same kernel parameters set to show the difference compared to ahand-optimized filter.
As the box filter is separable, it requires a DSP for each normalization, one for the horizontalfilter and one for the vertical filter. In return for the extra DSP, it needs fewer LUTs andFFs, especially for larger kernels. The segment test detector consumes the most resources,not only because of the larger kernel, but also because it does many comparisons. This isbecause nine consecutive pixels on a circle of sixteen pixels must meet the criterion, whichopens many possibilities. Although the implementation in the table uses a low precision forthe conductivity function, the measurements of the AKAZE algorithm showed that this canbe sufficient. It calculates a Scharr filter, but also two multiplications, two additions, and onedivision, resulting in an increased resource consumption. Another special feature of thisfunction, compared to all other filter functions, is that it reads a single scalar value at runtimein addition to the input image.
Figure 3.23 evaluates the scalability of the filter functions. It uses relative values for LUTs andFFs for better readability, and absolute values for DSPs and BRAM to avoid division by zero.Besides the box filter, the Gaussian filter is the only other separable filter in HiFlipVX. Thesecond Gaussian function of Table 3.12 forwards the input to the second output. Becauseof this forwarding it cannot modify its buffered input and therefore cannot use a separablefilter. Separable Sobel and Scharr filters would be possible but would require twice as manyBRAM when calculating the derivatives in the x and y direction. The Sobel filter thereforecalculates two kernels and accordingly has two outputs. On the other hand, the FED functionhas two inputs, but only considers five pixels of the input window.
The BRAM size scales linearly with the number of line buffers, which depend on the kernel size.When using vectorization, the BRAM consumption shows the advantage of the configurabledimensions of the 18k BRAM. These are 2048 elements for 9 bit wide data, 1024 elements for18 bit and 512 elements for 36 bit. The figure shows the resource consumption of 36k BRAM,which consists of two 18k blocks. Only for a vector size of eight, the line buffers consume

130

3.3 Evaluation

0
2
4
6
8

2 4 8 5 7 9 16 32 2 4 8 5 7 9 16 32 2 4 8 16 32
vector size kernel size bit-width vector size kernel size bit-width vector size bit-width

sobel gaussian FED

rela
tive

tos
tan

dar
d FF LUT

0
4
8
12
16

2 4 8 5 7 9 16 32 2 4 8 5 7 9 16 32 2 4 8 16 32
vector size kernel size bit-width vector size kernel size data type vector size bit-width

sobel gaussian FED

BRAM DSP

Figure 3.23: Resource utilization scalability results of filter functions.
twice the amount of BRAM because the bandwidth is not sufficient. The FED filter requirestwice as many BRAM because it buffers two inputs. Increasing the data type also increasesthe overall utilization of the BRAM, since the 1920 image columns consume almost all 2048entries in the 9 bit configuration. The library packs these vectors that operate in SIMD modeusing an HLS directive to optimally use the BRAM bandwidth. Increasing the vector sizereduces the total number of clock cycles, which also provides the opportunity to lower thefrequency and perform DVFS (Dynamic Voltage and Frequency Scaling), thus saving energy[258].
As shown in the figure, the functions scale approximately linearly with an increasing vectorsize, kernel size or data type. However, the factor is smaller than the respective parameter.On the one hand, the vectorized operations do not make up all resources. On the other hand,the library implementations make use of the kernel coefficient patterns. For example, thisreduces the multiplications for the coefficients of a 9 × 9 Sobel kernel, without consideringthe zero row/column in its center, from 144 to 40. A Sobel filter with a kernel size of nineonly consumes 4.4 times more FFs and 7.8 times more LUTs, even though the sliding windowis nine times larger and contains twelve times more coefficients. For separable kernels, asused in the Gaussian implementation, the scalability is even better. The coefficient valuesare higher for bigger Gaussian or Sobel kernels. Therefore, some of the multiplications useDSPs instead of LUTs for these kernels, resulting in a reduction in LUT utilization.
Even though the median filter is quite compute-intensive, it requires relatively few resourcesdue to the optimized variant of the 3 × 3 kernel. For larger kernels, the library uses a sortingnetwork, which involves many parallel operations and a complexity of O(n · log(n)). Therefore,

131

3 HiFlipVX: Object Detection Library

it needs 11.3 times more FFs and 25.9 times more LUTs for a 9 × 9 kernel that has 9 timesmore elements than the 3 × 3 kernel.

3.3.1.3 Image Conversion Functions

Figure 3.24 shows the LUT and FF consumption of the implemented conversion functionsfor different configurations. The channel combine and channel extract functions requiremost resources when using RGB images, because they need to buffer data. Due to theC++ standard, it is not possible to define 24 bit data types for the interfaces. Therefore,both functions store their data nested into 32 bit data types (RGBR|GBRG|BRGB). The sameapplies to the color convert function. When converting from RGB or RGBX to gray, there isalso a conversion to grayscale values. Therefore, it needs three DSPs for RGB to gray andtwo DSPs for RGBX to gray.

0
50
100
150
200
250
300

2x u8tou16
4x u8tou32

3x u8torgb
3x u8torgbx

u32tou8
u16tou8

rgbtou8
rgbxtou8

graytorgb
graytorgbx

rgbtogray
rgbtorgbx

rgbxtogray
rgbxtorgb

channel combine channel extract convert color

FF LUT

0
200
400
600
800
1000
1200

cyclic block cyclic block 1 to4 u8 tos16 v2 tov3 v2 tov4 nearest bilinear area fastarea
scatter(1 to 4) gather(4 to 1) multi-cast converttype convertvector scaleimage

FF LUT

Figure 3.24: LUT and FF utilization of conversion functions.
The library implements four different interpolation methods to scale images. In the table,the first three methods scale the image down to an image resolution of 1280 × 720. Thefast area method scales it down to an image resolution of 960 × 540 since the resolutionscan only be multiples of each other. However, the fast area interpolation only requires 24%of the LUTs of the normal area interpolation. In addition, it only needs half as many BRAMblocks (0.5) compared to bilinear and area interpolation. Furthermore, only the bilinear (8)and the area interpolation (7) methods require DSPs. Therefore, an algorithm should select

132

3.3 Evaluation

fast area interpolation whenever possible. Apart from that, the chosen method dependsmainly on the available resources and the desired accuracy.
The multicast function serves as a reference for the number of additional resources neededfor the scatter and gather functions. All three functions as well as the type conversion functionand the vector size conversion function can be vectorized. Unlike the XILINX vector sizeconversion function, this one can also convert between vector sizes which are not multiplesof each other. However, the additional resources needed to buffer data is relatively small in
HiFlipVX. The latencies of the different functions mainly depend on the resolution and thevector size. The latency of the vector width conversion function depends on the smaller ofthe two vector sizes. The bilinear and standard area interpolation methods, need additionaltime to fill their line buffers.

3.3.1.4 Image Analysis Functions

Figure 3.25 shows the resource consumption of the implemented analysis functions. Thescalar operation function executes only one single operation and therefore needs only fewresources. The integral image function needs to buffer one row of its output. Since the datatype of the output image is 32bit, it requires a larger buffer.

0
500
1000
1500
2000
2500
3000

sca
lar

ope
rati

on
(mo

dul
us)

inte
gra

l

hist
ogr

am
(vec

1)
hist

ogr
am

(vec
8)

con
tras

t
fact

or
(vec

1)
con

tras
t

fact
or

(vec
8)

equ
aliz

ed
hist

ogr
am

tab
le

loo
kup me
an

me
an

and
std

dev

min
ma

x

min
ma

x
w.l

oca
tion

FF LUT

01
23
45
67
89

sca
lar

ope
rati

on
(mo

dul
us)

inte
gra

l

hist
ogr

am
(vec

1)
hist

ogr
am

(vec
8)

con
tras

t
fact

or
(vec

1)
con

tras
t

fact
or

(vec
8)

equ
aliz

ed
hist

ogr
am

tab
le

loo
kup me
an

me
an

and
std

dev

min
ma

x

min
ma

x
w.l

oca
tion

BRAM DSP

Figure 3.25: Resource utilization of analysis functions.
The histogram, equalized histogram and contrast factor functions all calculate a histogram.To achieve a pipeline with an interval of one, the histogram creation requires double buffering.The library replicates this buffer for vectorization, which increases the BRAM consumption bythe same factor. To buffer its result, the equalized histogram, needs one additional buffer.

133

3 HiFlipVX: Object Detection Library

The table lookup function also buffers its input lookup table. While the min-max-locationfunction needs to store the coordinates of the minimum and maximum, which are 32 bitwide in total.
The library calculates the final mean and standard deviation values using floating-pointnumbers. That is why the functions consume several DSPs and Vivado 2020.1 is usedinstead of 2021.1. Implementing these arithmetic operations in a separate library for fixed-point numbers would improve version independence and resource consumption. Since thestandard deviation calculation needs a square root, it requires the most resources comparedto the other non-vectorized functions A characteristic of most analysis functions compared toother image processing functions is that they iterate through several loops to compute theiroutput. For n image pixels, an internal array size of k, and a vector size of v, the complexity ofthe functions is as follows:
• integral, min-max, or mean: n
• min-max and locations, or table lookup: n + k
• mean and standard deviation: 2 · n

• histogram, or contrast factor: n
v
+ k · log2(v) + k

• equalized histogram: 2 · n + 2 · k

The histogram, equalized histogram, and contrast factor functions, first need to reset theirinternal histograms (k). Due to the vectorization of the histogram and contrast factor func-tions, the pipeline interval needs to be reduced by the factor of (log2(v)) when summing thehistograms (k), to achieve an acceptable frequency. The table lookup function first readsthe lookup table (k), and the min-max location function writes the minimum and maximumlocation array (k) to the output at the end of the algorithm. The equalized histogram functionand the mean and standard deviation function read the same image twice in a row. In general,buffering a complete image is not an option.

3.3.1.5 Feature Functions

Figure 3.26 shows the resources required by the individual feature functions, the FAST cornerdetector, and the Canny edge detector. All functions in the figure have 8192 elements intheir input or output feature array. Only for the retain best function the output array has4096 elements. The resources for the feature functions are overall higher than for the imageprocessing functions, because the feature data type is 64 bit wide and the evaluation worksmainly on 8bit grayscale images. Also, the feature functions need an additional methodto detect the end of a feature array, since its size cannot be determined at compile timeand the library needs a vendor independent method. The gather and multicast functionsin Figure 3.26 and Figure 3.24 show the resulting difference in resources. For example, thefeature gather function requires 3.5 times more LUTs for four inputs in cyclic mode than theimage gather function.
The deserialization function always converts to a vector size of one but must remove invalidfeatures. When increasing the size of the input vector, both FFs and LUTs increase by thesame factor. The retain best function requires one BRAM for the internal histogram and2 URAM (Ultra Random-Access Memory) (16 BRAM) to buffer the 8192 input features. For

134

3.3 Evaluation

0
1000
2000
3000
4000
5000
6000

in 2v=1 in 4v=1 in 4v=8 v=2 v=4 in 2 in 4 in 1 in 2 in 3 in 1s=5 in 1v=8 - NMS NMSSR NMSv=8 NMSv=1 NMSv=8 v=1 v=8
multicast deserialize gather retain compare extract fast canny

FF LUT 14440

0
5

10
15
20
25
30

in 1 in 2 in 3 in 1
s=5

in 1
v=8

- NMS NMS
SR

NMS
v=8

NMS
v=1

NMS
v=8

v=1 v=8

retain compare extract fast canny

BRAM DSP

Figure 3.26: Resource utilization of feature functions. NMS (Non-Maximum Suppression), SR(Subpixel Refinement), v (vector size), σ (feature scale), in (number of inputs)
simplicity, the figure shows BRAM instead of URAM. URAM are ideal for storing larger featurevectors, as its non-configurable size of 4096 by 64 bit fits well. The feature extraction functionreceives an input image and extracts the features. The function offers numerous options,such as an integrated NMS or SR. The function scales very well with increasing vectorizationbut requires significantly more resources for SR because of the floating-point numbers used.The evaluation of the AKAZE algorithm has shown that the operation may lose too muchaccuracy by using fixed-point numbers.
The comparison function is the most complex of the six individual feature functions. Usinga ring buffer design to store the intermediate results for comparison and the fact thatfeatures are sorted with respect to the y position, reduced the complexity from O(n2) toapproximately O(n · log(b)), with b denoting the ring buffer size and n the number of inputfeatures to compare. The function automatically sets the size of the ring buffer dependingon the number of detectable features in the search radius. The user can limit both the WCETand the buffer size since the function rarely reaches these limits. The influence of these twolimits will be evaluated later together with the AKAZE algorithm. The parallelization value (v)is only for the internal computation to increase the number of comparisons per clock cycle.The inputs and the output of the comparison function have a vector size of one. The searchradius, the number of inputs and the parallelization have an influence on the BRAM size ofthe ring buffer. Their default sizes in the table are s = 1, in = 1 and v = 8.
The last two functions consist of several individual library functions. The DECISION frameworkcreates the function graph and connects the individual IP-cores using small FIFO blocks in

135

3 HiFlipVX: Object Detection Library

Vivado. The framework does not use the dataflow directive from XILINX to connect them.The Canny edge detector consists of nine functions and the FAST corner detector consists oftwo. The next subsection will discuss the more complex functions such as ORB or AKAZE.FAST uses the integrated NMS of the feature extraction function, as this is more resourceefficient than using two separate functions. The reason for the high consumption of the FASTis mainly due to the segment test detector function. The Canny edge detector scales wellwith the vector size and requires only 3.5 times more LUTs for an eightfold vectorization.Starting from a certain vector size, the required bandwidth leads to a fragmentation of theBRAM consumption for both algorithms.

3.3.1.6 Comparison to Related Work

This part compares HiFlipVX with the xfOpenCV library from XILINX to better evaluate theresource consumption of the library. The comparison uses SDSoC 2017.4 because the toolcan generate the xfOpenCV designs more easily. The evaluation board is the ZCU102, andthe default function parameters are the same as in the previous measurements. Since SDSoChas a different architecture to stream data, this comparison uses a simpler FIFO interfacethat does not include the last signal.
Figure 3.27 compares the resource utilization between HiFlipVX and xfOpenCV for a setof selected functions. It only shows the results of BRAM or DSPs if one of the librariesutilizes these resources. In most cases, xfOpenCV complies with the default configurationof HiFlipVX and allows a vectorization of 8 or kernel sizes of 5 and 7. For most functions,
HiFlipVX allows additional kernel sizes (9 and 11), data types (16 bit and 32bit signed/un-signed), border types (replicated and undefined) or vectorization sizes (2 and 4), which makesthe library much more flexible. The border type of the median filter (replicated) and the datatype of the magnitude function (16 bit signed) is different from the default configuration,because xfOpenCV supports only this border and data type, respectively. A small differencebetween the libraries relies in the input and output data types of the Sobel and Scharr filters.In xfOpenCV the input is always u8 (unsigned 8 bit), while the output can be u8 or s16 (signed16bit). In HiFlipVX the input is always unsigned (u8, u16, u32), while the output is signed(s8, s16, s32). In general, all filter and pixelwise functions consume less FFs and LUTs forthe various configurations. Other filter and pixelwise functions show similar behavior as theselected ones. HiFlipVX consumes on average only 0.39% of FFs and 0.32% of LUTs for theselected functions compared to xfOpenCV.
The libraries performmore similarly when vectorization is enabled, and the difference is morepronounced at larger kernel sizes. The main reason is that HiFlipVX uses separable filtersor exploits the kernel coefficients. For the Gaussian kernel, xfOpenCV computes the kernelbased on a standard deviation while HiFlipVX uses the OpenVX Gaussian kernel. Supportingan arbitrary standard deviation requires usingmore bits to represent the kernel and thereforerequire more resources. Therefore, HiFlipVX provides a function that can precompute fixed-point Gaussian kernel coefficients for any standard deviation, if needed. The median filterconsumes the most resources for larger kernel sizes, which is due to the high number ofcomparisons in the sorting network. The Gaussian and box filters show the largest differencein DSP usage. The xfOpenCV Gaussian filter consumes up to 51 DSPs for the 8 bit datatypes while HiFlipVX consumes none, due to the simplified Gaussian kernel. Conversely, the
HiFlipVX box filter consumes two DSPs for each vector element, because it uses separablefilters, while xfOpenCV only uses one DSP. Therefore, HiFlipVX implements the Gaussian

136

3.3 Evaluation

0.0
0.2
0.4
0.6
0.8
1.0

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

Vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

16
bit

stan
dar

d
300

MH
z

vec
tor

8
stan

dar
d

300
MH

z
vec

tor
8

16
bit

sca
le0

.2
stan

dar
d

300
MH

z
vec

tor
8

sobel gaussian median box subtract multiply magnitude

HiF
lipV

X/
xfO

pen
CV

FF LUT

0
4
8
12
16
20

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

Vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

stan
dar

d
300

MH
z

vec
tor

8
ker

nel
7

16
bit

stan
dar

d
300

MH
z

vec
tor

8
16

bit
sca

le0
.2

stan
dar

d
300

MH
z

vec
tor

8
stan

dar
d

300
MH

z
vec

tor
8

ker
nel

7
Sta

nda
rd

300
MH

z
vec

tor
8

ker
nel

7
stan

dar
d

300
MH

z
vec

tor
8

ker
nel

7
stan

dar
d

300
MH

z
vec

tor
8

ker
nel

7
16

bit

sobel gaussian median box multiply magnitude sobel gaussian median box
DSP BRAM

HiFlipVX xfOpenCV5133

Figure 3.27: Relative FF/LUT and absolute BRAM/DSP utilization compared to xfOpenCV.
and box filter using separable and non-separable kernels. In average, HiFlipVX consumes1.42 times less BRAM for the shown filter functions than xfOpenCV.

3.3.2 Feature Extraction Algorithms

The previous subsection covered the evaluation of the individual functions of the HiFlipVX li-brary. This subsection analyzes the complex algorithms of this work in more detail andevaluates the library using some of these algorithms. The first part compares the differentcombinations of feature detection and description algorithms in software while optimiz-ing their parameters and compares them with the proposed implementation of this work.The following parts evaluate the hardware implementation of the FREAK [24] descriptor,the AKAZE [20] detector and the ORB [19] detector. In addition, both detectors use theFREAK for their evaluation. In addition to simpler algorithms such as the Canny [18] edgedetector or the FAST [37] corner detector, the HiFlipVX library has implemented both theORB and AKAZE detectors and integrated them into the DECISION framework. This enablesreusability and an easy and automated testing of different parameters. This work evaluatesall algorithms in terms of their resource utilization, computation time and repeatability, andcompares them with the related work. In addition, the comparison between the VHDL andHLS implementations allows a more accurate evaluation of the HiFlipVX library.

137

3 HiFlipVX: Object Detection Library

3.3.2.1 Software Comparison

This part compares the different combinations of feature detection and description algo-rithms, such as AKAZE, BRISK, ORB, and FREAK. It compares them to the optimized AKAZE-FREAK implementation presented in Section 3.2.1. It uses OpenCV to implement the differentalgorithms. The proposed AKAZE-FREAK optimization was written in C to be used in em-bedded systems. It uses 32 bit floating-point numbers, but no external libraries, except forOpenMP. Table 3.13 shows the combinations evaluated. To combine the AKAZE descrip-tor with other detectors would require major adjustments to the detector due to the datarequired.
Table 3.13: Comparison of repeatability and computation time of different combinations offeature detectors and descriptors. Best results of each column are bold.

Detector +descriptor(patternscaleor patchsize)

Category 1 Category 2
Time(ms)Matchratio

Inlierratio(avg.)
Inlierratio Matchratio

Inlierratio(avg.)
Inlierratio

AKAZE + AKAZE 21.6 63.3 85.4 42.5 82.2 85.0 67.0
AKAZE + FREAK (57) 23.1 57.2 84.7 46.8 83.2 86.2 70.3
AKAZE + BRISK (2.9) 19.4 59.4 87.8 46.6 85.3 88.0 77.0
AKAZE + ORB (52) 11.5 37.8 86.2 37.8 84.4 88.5 68.4
BRISK + BRISK (1) 17.3 66.1 85.1 26.4 70.6 87.7 29.9
BRISK + FREAK (26) 21.7 58.7 81.4 31.6 64.0 82.5 29.5
BRISK + ORB (39) 11.2 49.8 82.0 26.5 67.7 86.3 29.9
ORB + ORB (35) 15.0 61.2 82.2 46.6 75.9 84.8 16.0
ORB + FREAK (10) 19.3 65.8 84.9 48.2 79.3 87.8 17.7
ORB + BRISK (0.4) 16.9 66.8 85.8 44.9 81.3 89.5 25.3
Proposed (31) 23.1 70.2 87.9 60.9 87.2 92.8 24.9

This section uses the Oxford dataset [257] to measure repeatability. The dataset containseight grayscale images, each with five additional transformations. It divides the images intotwo groups depending on the type of transformation. Category one changes the imagesin scale, rotation or viewpoint and category two changes the image in luminance, blur, orcompression. The image resolution of the dataset is between 765 × 512 and 1000 × 700.This work performs the timing measurements on an Intel Core-i7 7700 CPU with compileroptimizations (O2) and OpenCV parallelization enabled.
For a fair comparison, the parameter regulating the number of detected features was set toachieve a similar value. For AKAZE, it is the detector response threshold (0.0015); for BRISK,the AGAST (Adaptive Generic Accelerated Segment Test) corner detection [259] threshold(64); for ORB and the proposed, the Retain Best function (2048). The implementation makesan exhaustive search for the parameter that controls the descriptor size, to optimize thedescriptor for the new detector. For FREAK and BRISK, it is the pattern scale and for ORBthe patch size. Changing other parameters in OpenCV, did not have such strong effects on

138

3.3 Evaluation

the results. The proposed algorithm changes additional parameters that are not available inOpenCV. It reduces: the number of octaves to 3 in AKAZE and FREAK, the scale and derivativefactor to 1.5, the threshold to 0.0005 in AKAZE, and the smallest feature size to 3 in FREAK.
The table highlights the best two results of each column. These results show the strengths ofthe proposed optimizations. The implementation uses the k-nearest-neighbor algorithm forfeature matching and the following metrics:
• The match ratio is the ratio between the number of detected and matching features oftwo images.
• The inliers ratio is the ratio between all matches and inliers (correct matches) of all imagestogether.
• The average inliers ratio takes the inliers ratio from each compared image and averagesthose values, to equally weight all cases (arithmetic mean). This measurement weights themore complicated cases stronger.
The last metric shows that the proposed optimizations mainly improve the complicated cases,as the difference to the second-best result is the largest. In addition, the table shows theaverage computation time of the combined detection and description process. The proposedimplementation achieves its maximum speedup of 3.36 when using four OpenMP threadscompared to one. Compared to OpenCV, it reduces computation time by a factor of 2.82 whiledetecting 18.5% more features. The Retain Best function reduces the fluctuation of detectedfeatures, which leads to better results in complicated cases. Looking at the geometricmean and not the arithmetic mean of the average inliers shows an even bigger difference.Considering the complete dataset, the geometric average of the proposed implementationis 72.57%. The next best results are the ORB-FREAK combination with 62.99% and theORB-BRISK combination with 62.91%.

3.3.2.2 FREAK

This part evaluates the proposed hardware implementations of the FREAK descriptor andthe needed integral image. This work implemented a VHDL design with Vivado 2018.2using fixed-point numbers and evaluated it on the ZedBoard (3.9). The maximum possibleimage resolution of the synthesized design is 2048 × 2048. Both the AKAZE and ORBimplementations in this work use the FREAK algorithm, to increase their repeatability. UsingFREAK instead of the M-LDB descriptor from AKAZE significantly reduces memory bandwidthconsumption. On the one hand, AKAZE must store the first-order image and derivativesof each scale for its M-LDB descriptor. On the other hand, FREAK only needs to buffer theintegral image.
In the synthesized design, the descriptor reaches 185MHz and the integral image 204MHz.The pipeline depth is 257 clock cycles for the descriptor and 8 for the integral image. Theintegral image would achieve 289 fps at a frequency of 150MHz and a resolution of 1920 ×1080 for grayscale images. This would result in a bandwidth consumption of 24 Gbit s–1.Goebel et al. have demonstrated that this is achievable on the evaluation board [260]. Intotal, the design reads and writes 3360 bit for each feature from memory. This numberconsists of 64 bit for the input feature, 64 bit for the output feature, 2720 bit for the inputintegral pixels and 512 bit for the final descriptor. A larger design would pass the featuresand their descriptors to the next block without storing them in main memory.

139

3 HiFlipVX: Object Detection Library

Compared to the synthesized design, the implemented design achieves 166.67MHz for thedescriptor using the DMA controller developed in this work, which uses the XILINX DMAblocks. When selecting a higher frequency, the critical path is within the XILINX interconnectionnetworks required for these DMA blocks. The design achieves 73.4 fps for 2048 feature andtheir descriptors, when measuring the total execution time including the memory accessoverhead from the ARM CPU. The main reason for the big gap to the theoretical executiontime lies in the DMA blocks, which are not optimized for the randommemory access requiredby the intensity blocks. The execution time scales linearly with the frequency from 100MHz(44 fps) to 166.67MHz (73.4 fps), which proofs that the implemented design is not memorybound.
The synthesized descriptor and integral image have a low resource utilization as shownin Table 3.14. The high resource utilization of the pattern rotated block results from thepipelined CORDIC function. For the intensity block, it comes from the pipelined divisionfunction. For the descriptor block, it is due to the high number of comparisons. The atan2function has a lower utilization because the orientation block did not have to pipeline it.Since the patterns are partially precomputed and partially computed, the pattern generatorconsumes few resources. Precomputing all patterns in software and reading them frommemory would increase resource utilization for additional DMA blocks. It would also increaselatency and triple bandwidth utilization of the intensity blocks since each integral value (32 bit)would need one pattern (64bit).
Table 3.14: Resource utilization of the FREAK and integral image hardware implementationincluding the utilization of the ZedBoard (3.9) in percent.

Module FF LUT LUTRAM BRAM DSP
Parallel sum 596 448 0 0 0
Controller 209 51 0 0 0
Integral (sum) 800 515 2 2.5 0
Integral (%) 0.75 0.97 0.01 1.79 0.00
Boundary 334 131 33 1 0
Pattern unrotated 311 12 0 2 1
Pattern rotated 1673 1570 104 4.5 3
Intensity 1183 1719 24 4.5 5
Orientation 1292 1292 1 0 6
Descriptor 2414 1837 0 0 0
Send keypoint 130 59 0 1.5 0
Send descriptor 187 67 0 1.5 0
Descriptor (sum) 8115 9133 184 19.5 20
Descriptor (%) 7.63 17.17 1.06 13.93 9.09

To verify if the proposed optimizations of the integral image computation are useful, a VHDLdesign with adders was created and the optimization was left to the compiler. When checkingthe parallel prefix sum, the minimum latency increases from 3 ns to 4ns compared to the

140

3.3 Evaluation

proposed design. At the same time, the LUT consumption decreases from 448 to 266 andthe FF consumption from 596 to 304. The frequency of the integral image design would alsodecrease from 204MHz to 172MHz.
Finally, the evaluation compares the software and hardware results using the full dataset.The inliers ratio decreases from 78.7% to 77.0%, while the average inliers ratio only de-creases from 91.4% to 90.9%. This shows the good repeatability in comparison to the othercombinations, since the inliers ratio is still better than the best ones from the OpenCV imple-mentations shown in Table 3.13 (ORB-BRISK (88.4%), AKAZE-BRISK (88.0%) and AKAZE-ORB(87.9%)). There are no changes in accuracy for the integral image since it only sums upvalues.
Table 3.15 compares the FREAK implementation of this thesis with the related work. Apartfrom the computation of the integral image, the computation time of the FREAK dependson the number of features and not on the image resolution. The proposed design hasa higher fps than the other works. However, even higher frame rates would be possiblewith optimized DMA blocks. Zhao et al. [53] require significantly more resources for lowerresolution. However, they implemented the SURF detector but have not separated its resultsfrom the FREAK. Bello et al. [52] require fewer resources but achieve a much lower frame ratewith only half as many features and do not compute an integral image. Both papers do notcompute the orientation, which is important for the rotational invariance of a feature. Theorientation computation needs a pattern rotation block, an intensity block, and an orientationblock listed in Table 3.14. These require 51.1% FFs, 50.2% LUTs, 46.2% BRAMs and 70%DSPs from the total design. In addition, there are no repeatability measurements in the otherpapers, which makes a comparison difficult.

Table 3.15: Comparison of the FREAK with the related work.
Proposed [22] Bello et al. [52] Zhao et al. [53]

FPGA family Artix-7 Virtex-5 Kintex-7
Resolution 1920 × 1080 800 × 600
Features 2048 1000
Frames per second 73.4 15 60
Frequency 166.7 108 122
FF 8915 1975 60044
LUT 9648 6706 147190
BRAM 22 4 289
DSP 20 14 139

3.3.2.3 AKAZE

This part evaluates the proposed implementations and optimizations of the AKAZE featuredetection algorithm in terms of resource utilization, computation time, and repeatability. Thefirst design implemented the algorithm in VHDL for embedded systems with low availableresources. This design was generated with Vivado 2016.4 and evaluated on a ZedBoard

141

3 HiFlipVX: Object Detection Library

(3.9). An important feature here is the reuse of hardware for different octaves to create amore resource efficient design. The second implementation uses HiFlipVX to implementthe algorithm. The design was generated with Vivado HLS 2020.1 for the IP-cores andVivado 2021.1 for the implemented design and evaluated on the ZCU104 (3.9). As the
DECISION framework integrates the AKAZE algorithm, it can easily generate a design withchanged parameters, such as the number of octaves or vector size.
Table 3.16 gives an overview of the two implementations and compares them with the relatedwork. It compares the overall resource utilization, achieved frequency and frame rate. Tomake it more comparable, it also presents the image resolution, the stages implemented inhardware, and whether the design was executed in hardware or in simulation. All designs inthe table implement two octaves of the AKAZE algorithm. Both proposed implementationsuse the FREAK to evaluate their repeatability. However, the FREAK is not part of the resourceutilization in this table.
Table 3.16: Proposed AKAZE hardware designs for a vectorization of 4 (1st column), 8 (2ndcolumn) and 1 (3rd column) compared to related work. All implemented for twooctaves.

Proposed Proposed Soleimani et al. Du et al. Jiang et al.
[23] [25] [261] [262] [51]

Device Zynq UltraScale+ Zynq-7000 SoC Kintex UltraScale Kintex-7 ASIC
(ZCU104) (7020) (KCU105) (XC7K325T) (TSMC 65nm)

Image resolution 1920 × 1080 1024 × 768 1280 × 720 640 × 480 1920 × 1080
Contrast factor 3 3 3 3 7 7

Nonlinear scale space 3 3 3 3 3 3

Detector 3 3 3 7 3 3

Descriptor (3) (3) (3) 7 3 3

Matching 7 7 7 7 3 7

Test on device 3 3 3 7 3 3

FF 79835 123944 38314 65028 157122 -
LUT 69722 127063 24945 112596 196134 -
LUTRAM - - - 72 276 28068 -
BRAM 147.5 232 108 524 291 -
URAM 4 4 - - - -
DSP 136 272 157 31 228 -
Frequency (MHz) 214.5 150 100 100 100 200
Frames per second 360 480 98 304 784 127
Million PPS 746 996 77 280 241 263

The embedded hardware design [25] stands out due to its low resource consumption and istherefore the only design that fits on a low-cost FPGA. Comparing it with the FPGA devicesused in the table, it stands up well with the achieved frequency of 100MHz. Theoreticallythere is even enough space for the FREAK descriptor on the ZedBoard. Therefore, bothVHDL implementations presented in this thesis have been combined in a separate design.Unfortunately, this combination did not have enough BRAM when adding all DMA blocks formemory access. A solution could be to create an optimized design for memory access asshown in [263]. Otherwise, the ARM CPU would need to process parts of the algorithm.

142

3.3 Evaluation

The HiFlipVX-based design [23] stands out due to its high performance. It uses a vector-ization of four and eight to achieve this performance. Considering its performance andresolution, it performs even better in terms of resources. This proves that with HLS resourceoptimized designs are also possible. The resolution has a very strong influence on the BRAMconsumption, which is usually the limiting factor.
The advantage of FPGAs over GPUs is their ability to stream data. However, there is acertain overhead for memory access and filling buffers, sliding windows and pipelines. Inthe HiFlipVX AKAZE implementation this overhead is 13.5% (17.5%) for a vectorization of4 (8), in comparison to reading an image with the same vector size (rows · cols/vector). Thisoverhead is very low considering the memory access, the numerous FIFO blocks, and theexecution of 95 computer vision functions. The reason for the lower frequency in the seconddesign is the contrast factor function, which accesses sixteen BRAM based histograms inparallel due to vectorization and double buffering.
A design with three octaves and a vectorization of four achieved 308 fps for a frequency of187.5MHz. The design consists of 163 vision functions. The overhead is only 17.2%, whichis relatively low considering that 71.6% more vision functions have to be executed than inthe implementation with two octaves. The reason for this lies in the parallel execution of thefeature detection part, whereas the creation of the nonlinear scale space is still sequential.When increasing the octaves, the gather function also becomes a limiting factor for thefrequency due to the increasing number of inputs. Using a design with a tree of multiplegather functions could remedy this, but at the cost of an increased resource utilization.
Du et al. [262] achieve a high frame rate of 784 fps but use a resolution with 6.75 timesless pixels. The HiFlipVX design achieves a measured frame rate of 1998 fps for the sameresolution. Soleimani et al. [261] achieve a frame rate of 304 fps, but also use a lowerresolution. The last metric in the table regarding the millions of calculated pixels per secondincludes the resolution. Since their work focused only on the nonlinear scale space, theylack the feature detector. Their implementation uses buffers that are twice the size of theimage to store the conduction coefficients and the FED image on-chip. As a result, their MMU(Memory Management Unit) already requires 524 BRAM, which greatly limits the scalability oftheir design.
Jiang et al. [51] are the only ones that use the same resolution but achieve significantly lessfps. Since their design is for an ASIC, it is more difficult to compare resources. They use0.95 million gates and 2.12Mbit of on-chip memory. For comparison, the Artix chip on theZedBoard has 1.3 million gates. They will need about 57.5 BRAM if they perfectly utilize the36864bit of each of them. However, FPGA designs usually suffer from fragmentation due tothe limited configuration possibilities and cannot use the entire BRAM. Furthermore, theyare LUT-based and therefore not as optimized as an ASIC.
Table 3.17 further breaks down the proposed designs by their resources. The HiFlipVX de-sign from Figure 3.16 computes both octaves in parallel, while the VHDL design computesthem sequentially. In addition, the HLS-based design processes four pixels in parallel. Thetable lists the FIFO blocks, needed between the nodes, separately. The design uses URAMinstead of BRAM, since there was a lot of unused URAM. However, BRAM would also besufficient. The connection between the Gaussian and FED function needs BRAM (in total 6edges). Otherwise, it would cause a deadlock. The connection before and after the vectorconversion function also needs BRAM (in total 2 edges). This is because the scaling functiononly outputs pixels in every second row, although it reduces the image size by a factor of

143

3 HiFlipVX: Object Detection Library

four. In addition, it is useful to use BRAM before and after the feature compare function tooptimize throughput (in total 22 edges). Almost all other buffers use LUTs instead of BRAMfor their FIFO blocks.
Table 3.17: AKAZE resource consumption of (A) embedded design (top) and (B) HiFlipVX de-sign with vectorization of 4, latency restrictions and no SR (bottom).

Stage LUT FF BRAM URAM DSP

A
Contrast factor 2704 2932 4.5 0 13
Nonlinear scale space 13803 19806 55.5 0 136
Feature detection 8438 15576 48 0 8

B
Contrast factor 3772 3295 7 0 4
Nonlinear scale space 24351 27265 49 0 0
Feature detection 41599 49275 91.5 4 132
Inter node buffers 7746 13524 0 39 0
System 7223 11634 7.5 0 0

This work tests both designs for repeatability using the Oxford dataset [257]. Figure 3.28shows a comparison between the original software implementation and the optimizedembedded hardware design, using the inliers ratio to determine repeatability. The onlydifference between the various configuration flags lies in the contrast factor. In general, themodified algorithm shows a similar behavior to the original algorithm for the different images.The software implementation achieves 76% inliers on average, while the hardware designachieves 73% for the datasets. In general, the reduction in inliers is partly due to the use offixed-point numbers in the VHDL design. The lower percentage in some datasets is mainlydue to the omitted SR.

Figure 3.28: Repeatability comparison of the embedded AKAZE design.
Figure 3.29 compares the average inliers ratio of the proposed optimizations presented inSection 3.3.2.1. It compares the software implementation against different configurations ofthe HiFlipVX implementation. While the software implementation uses floating-point values,the hardware implementation computes on 8 bit grayscale images. Only the DoH needs

144

3.3 Evaluation

to output 16 bit values, otherwise the accuracy would decrease too much. The library alsooffers to use accuracies of 16 bit for the images and 32 bit for the DoH output. However, thisdid not result in a noticeably better repeatability, but consumed significantly more resourcesin the affected functions. The figure shows the results for the hardware design with two orthree octaves, with or without an iteration constraint compare function, and with or withoutSR.

65
70
75
80
85
90
95

100

Boat Bark Graffiti Wall Bikes Leuven UBC Trees

Rep
eat

abi
lity

(%)

SW O3 SR SW O2 SR HW O3 HW O3 L HW O3 SR
HW O3 L SR HW O2 HW O2 L HW O2 SR HW O2 L SR

Figure 3.29: Repeatability comparison of the HiFlipVX AKAZE design for different configu-rations. SW = 32bit floating-point, HW = 8bit fixed-point for images and 16 bitfixed-point for DoH, O2/O3 = 2/3 octaves, L = latency restriction for comparefunction, SR = Subpixel Refinement using 32 bit floating-point for both SW andHW.

The software implementation performs best. However, the hardware implementation withSR achieves similar results. The difference is only between 0.05% to 2%. The only exceptionis the "Boat" dataset with about 2.6% for three octaves. However, they perform better thanthe hardware implementation without SR in all cases, with an improvement of up to 5.6%for the "Bikes" dataset for three octaves. The hardware has an average loss of less than 1%compared to the software if it uses SR. If it omits the SR, it loses an average of an additional2.6% for three octaves and 1.6% for two octaves. This shows that a fixed-point hardwareimplementation has the potential to produce similar repeatability results compared to a32bit floating-point software implementation. The results also show that the differencein repeatability is negligible if the developer carefully chooses the maximum number ofiterations for the comparison module. The chosen value for a comparison function is equalto that of the slowest function (DoH) in the scale space level to avoid slowing down thepipeline.

145

3 HiFlipVX: Object Detection Library

3.3.2.4 ORB

This part evaluates the proposed implementations and optimizations of the ORB algorithmin terms of resource utilization, computation time, and repeatability. More precisely, aVHDL implementation that is highly resource optimized and embedded into a VPS, anda parameterizable HLS-based implementation using the HiFlipVX library. The evaluationshows the advantages of the combination with the FREAK descriptor and a comparison withthe SoA. Both hardware designs have already been described in Section 3.2.4.
Table 3.13 showed the advantages of using the FREAK descriptor instead of the BRIEF for theORB. For a fair comparison, some parameters of the two algorithms available in OpenCV havealready been optimized with respect to their repeatability. Table 3.18 shows the fine-tunedparameter settings, of which some were only available due to the original source code of theFREAK [256]. It was determined by testing various parameters of the algorithms in nestedloops. Due to the FREAK, the ORB does not need the calculation for the orientation or theHarris detector. The configuration increases the number of pyramid levels to eight andadjusts the scale factor to 1.14. The verification of whether a feature is too close to theborder of an image was set to zero, leaving this to the FREAK descriptor. The Retain Bestfunctions therefore retain a total of 2500 features, thus leaving about 2000 features afterthe descriptor. The number of retained features per level depends on the image size anddecreases with each level. The number of FREAK octaves corresponds to the number ofpyramid levels of the ORB detector. The pattern scale for the retina pattern of the FREAK isset to 25. The size of a feature is its radius in pixels.

Table 3.18: Best configuration for ORB detector + FREAK descriptor.
ORB pyramid levels 8
ORB scaling factor 1.14
ORB boundary size 0
ORB patch size 7

ORB retain best features 2500
FREAK number of octaves 8
FREAK pattern scale 25
FREAK smallest feature size 4

Themeasurements use the Oxford image dataset [257]. As Table 3.13 shows, using the FREAKdescriptor instead of the BRIEF increases repeatability from 84.21% to 86.83%. Excluding thecalculation for the orientation and the Harris detector further reduces the total computationtime. For the same configuration, the ORB implementation of the HiFlipVX library achievedan average repeatability of 85.24%. However, it only uses unsigned 8 bit data, while thesoftware implementation uses floating-point numbers. Scaling the image for each layercauses a rounding error, which could be the reason for this difference. The combinationof ORB and FREAK achieves 91.88% repeatability for the optimized values in Table 3.18,which is comparable to the proposed AKAZE-FREAK implementation. In contrast, for thesame number of features, the AKAZE-FREAK combination finds 1.42 times more matchesand performs better for the more difficult cases, as indicated by a higher average inliers ratioof 3 percentage points. Compared to the software implementation, the HLS version achievesa value of 89.16% for the same parameters.
Table 3.19 shows the computation time of the VHDL design for a 1920 × 1080 resolutioncompared to an OpenCV implementation running on an Intel Core-i5 2400 CPU and a pure Cimplementation. The latter runs on the ARM processor of the ZedBoard (3.9) without an OSin a single thread. Each system executes the algorithm using the optimized parameters of

146

3.3 Evaluation

Table 3.18 in a four-level and eight-level design. The hardware achieves a speedup of 18 forfour levels and 27 for eight levels in comparison to the Intel CPU. It achieves high parallelismdue to the deep pipeline and streaming of data. Since all Retain Best functions share thecomputation to obtain the 2500 best features, the eight-level FPGA design is faster than thefour-level one. In addition, the VHDL implementation runs in the proposed video processingsystem and achieves the minimum requirements of 60 fps at a resolution of 1920 × 1080.
Table 3.19: Comparison of ORB execution time for a 1920×1080 resolution between softwareand hardware (VHDL).

frame time (ms) throughput (fps)
4-level 8-level 4-level 8-level

Intel Core-i5 2400 297 397 3.37 2.52
ARM Cortex-A9 431 1257 2.32 0.80
FPGA (100MHz) 15.69 14.64 63.7 68.3

Table 3.20 shows the resource consumption of the implemented design for a resolution of1920 × 1080. The VHDL implementation runs on a Zedboard with a frequency of 148.5 MHz.The HiFlipVX implementation runs on a ZCU104 (3.9) with a frequency of 214.5MHz. TheVPS results shown in the table use three frame buffers and are independent of the objectdetection algorithm. The results of the VHDL design show that it easily fits on a low-cost FPGAand even leaves enough resources for further implementations. For example, the proposedFREAK implementation from Section 3.3.2.2 would fit on the same board.
Table 3.20: Resource utilization of the proposed ORB designs.

[26] HiFlipVX

4-level 8-level VPS 4-level
FF 6272 12915 12120 13429
LUT 5700 12732 9900 13258
DSP 3 3 8 0
BRAM 60.5 95.5 4.5 14.5
URAM 0 0 0 4

The HLS implementation shown in Figure 3.11 used the integrated NMS of the feature extrac-tion function. This slightly reduced resource consumption compared to using two separatefunctions. A separation of the two functions would have an advantage in other systemswhere a fine-grained distribution to different compute nodes is needed. The additionalconsumption of LUTs and FFs in the HLS implementation is mainly due to the four segmenttest detector functions. These functions consume 62% of the LUTs needed for the design.Considering that one URAM is as big as eight BRAM, it reduces the total consumption ofmemory blocks compared to the other design. This is important because BRAM consumptionis often the limiting factor.
Table 3.21 compares the proposed design with the related work and an implementationusing HiFlipVX. Compared to the related work, this paper implements the multilevel scheme,

147

3 HiFlipVX: Object Detection Library

which is necessary for scale invariance. The resource consumption of the detector increaseswith the number of levels in the scale space. However, due to the lower resolution, it requiresslightly less resources in higher levels. On the other hand, they implement the descriptorin their work. However, Section 3.3.2.2 demonstrated the proposed implementation of theFREAK descriptor in the context of this work. The summed resources of both algorithms are14387 FFs, 14 833 LUTs, 80 BRAM and 23 DSPs. Due to the high frame rate of the FREAKimplementation, its streaming design, and low memory bandwidth consumption, it wouldnot reduce the overall performance.

Table 3.21: Comparison of proposed ORB implementation to related work.
Proposed
HiFlipVX

Proposed[26] Lee[49] Fularz[50]
FPGA (3.9) ZCU104 ZedBoard Artix-7 ZedBoard
Resolution 1920 × 1080 1920 × 1080 640 × 480 1920 × 1080
Detector 3 3 3 3

Descriptor (3) (3) 3 3

Multiscale 4-level 4-level 7 7

Retain best 3 3 7 7

Frequency (MHz) 214.5 148.5 100 100
Frame rate (fps) 103 63 100 48
Pixel rate (MP) 213.0 130.6 30.7 99.5
FF 13429 6272 6411 9543
LUT 13258 5700 31677 4118
BRAM 46.5 60.5 31 31

In addition to the multilevel design, the additional BRAM consumption is mainly due to theRetain Best function, which needs to buffer a complete feature vector and exists in eachlevel. Without this feature, the HiFlipVX design would require only 20.5 BRAM. In turn, thefunction brings several advantages. It makes computation time predictable and reducesWCET. In addition, measurements have shown that the function improves repeatability byretaining only the strongest features.

The HiFlipVX implementation requires more resources for the same configuration buthas other advantages. One of them is the numerous parameters that allow the detectorto be easily adapted to other applications or the required performance. For example, byvectorization or a different interpolation method for scaling. When taking out the frequencydifference, the performance is still about 13% higher in the HLS design. The VHDL design, inturn, embeds the ORB detector in a VPS. It processes the video stream, detects the featuresin hardware, sends them to the ARM CPU and draws them into the output video stream.

148

3.3 Evaluation

3.3.3 Neural Network Extension

The first two parts of this subsection evaluate the image processing and feature extractionfunctions and algorithms of the HiFlipVX library. This part focuses on the neural networkextension. First, this work performs a detailed evaluation of the various functions of the library.For this purpose, it evaluates various parameter settings to make general assumptions. Thelater part evaluates the design of larger algorithms using the MobileNets [21] algorithm.Finally, there is a comparison with related work. This subsection uses the ZCU104 (3.9) andthe SDSoC 2019.1 development tool from XILINX to create the various designs. It takesthe implementation results of the individual designs from the Vivado project created withSDSoC.

3.3.3.1 Library Functions

This part evaluates the single neural network layers of HiFlipVX. Table 3.22 shows the defaultconfiguration of the compile time parameters of the library functions.
Table 3.22: Default configuration of the library compile time parameters.
Batches 4
Input 64 × 64
Output 64 × 64
IFM 32
OFM 32
Bias size OFM
Kernel size 3 × 3
Pooling size 2 × 2
Padding size 1 × 1

VIFM 1
VOFM 1
Frequency 100MHz
Data type unsigned 8bit
Bias data type unsigned 8bit
Fixed-point position 8
Overflow saturate
Rounding to zero
Buffer coefficients yes

The left side of the table includes the regular parameters of a neural network, which are notFPGA specific. The library supports two pooling types and nine activation function types. Itexecutes batches (images) in a sequence and not concurrently. The input resolution can differfrom the output resolution, but it must be larger. This is only possible for the two convolutionfunctions and the pooling function to implement a stride. Only the 3D convolution and theFully Connected layers have both IFM and OFM, all other layers have only one feature map(IFM). HiFlipVX allows values from 1 to 2048 for the resolution, batch size, and feature mapsize. The bias size can be 0, OFM, or batches times OFM for the two convolution functionsand the Fully Connected layer. Both convolution functions can adapt the kernel size. It is(n × m), where (n) and (m) can differ but must be odd numbers and must be in the rangefrom 1 to 9. The same is true for the pooling size, where the numbers can also be even. Onlythe pooling function can specify its pooling and padding sizes. Its size can be between 0 andhalf of the pooling size. The convolution functions use an automatic zero padding equal to
half the kernel size (⌊Ky,x2 ⌋).

149

3 HiFlipVX: Object Detection Library

The right side of the table contains parameters that are more specific to an FPGA design, suchas changing the frequency. All functions are parallelizable by using the VIFM parameter. How-ever, only the 3D Convolution and Fully Connected layers can also use the VOFM parameter.It enhances the performance improvement possibilities and is necessary since they are themost computationally intensive layers. For both parallelization parameters, the library allowsvalues from 1 to 128. Compared to the other functions of the library, the inputs, outputs, andweights of the neural network extension can also use floating-point numbers (int8, uint8,
int16, uint16, float32). The biases can have a different data type than the other inputsif fixed-point numbers are used and also allow signed and unsigned 32 bit values. SeveralCNN implementations use this approach. The fixed-point position determines the size ofthe fraction and must be less than the number of digits of the data type. Signed data typesrequire at least 1 bit for the integer part. For arithmetic calculations, especially fixed-pointnumbers, the layers must check for overflow and apply the desired rounding method. Thisis the same as for the image processing functions of the library. It can buffer coefficients(weights and biases) on first use (buffer coefficients). In contrast, Figure 3.21 buffersthe coefficients outside of the functions to increase the efficiency of the coefficient readingprocess.
The evaluation uses the MAPE (Mean Absolute Percentage Error) of the hardware implemen-tation in comparison to a floating-point software implementation, to verify their correctness.Table 3.23 shows the results using the default configuration and quantized random inputnumbers in the range from 0 to 1, where {x ∈ R|0 ≤ x < 1}. The computation of MAPEis problematic when the divisor is zero. Therefore, the measurements do not considerindividual results where the divisor is less than 10–6. The fixed-point positions for the datatype in the table are 16 (uint16), 15 (int16), and 24 (float32). The MAPE of 0.68% forthe 3D convolution is due to the high number of multiplications and additions needed foreach output pixel. The behavior is similar for other functions that add and/or multiply manyvariables. A similar behavior is observed for other functions where many variables must beadded and/or multiplied. The float32 calculation can have a very small error for functionsthat need to calculate a sum over multiple loop iterations. This is due to the use of fixed-pointarithmetic for this summation to meet the iteration interval of one for the pipelined loops.
Table 3.23: The MAPE between the layers of the HiFlipVX neural network extension and a32bit floating-point software implementation.

Neural network layer uint16 int16 float32
3D convolution 0.3413 0.6804 0.00003
Depthwise convolution 0.0127 0.0261 0.00000
Pooling (max) 0.0000 0.0000 0.00000
Activation (relu) 0.0000 0.0000 0.00000
Batch normalization 0.0390 0.1012 0.00004
Fully connected 0.0000 0.3421 0.00000
Softmax 0.2104 0.4245 0.00001

Table 3.24 shows the resource utilization of the implemented and synthesized designs usingthe default configuration. In this table, the Softmax and Fully Connected layers have 256IFM and 256 OFM, since the resolution of these layers is 1 × 1. As shown in the table, the

150

3.3 Evaluation

difference between the SDSoC estimation and the final hardware implementation is quitelarge for FF and LUT consumption. SDSoC uses Vivado HLS in the background and thuscomes to a similar deviation. The implementation results in the table only include the IP-coreof each function and not the surrounding blocks generated by SDSoC. The consumption ofDSPs differs in the estimation because the library does not specify whether LUTs or DSPs areused for arithmetic computation, as this can vary depending on the available resources. TheFully Connected layer has many coefficients and therefore requires a lot of BRAM. Therefore,it makes sense not to buffer the weights, because the layer only needs each weight once perbatch. The 3D convolution consumes more BRAM than the depthwise convolution becauseit needs to buffer more coefficients.
Table 3.24: Resource utilization & latency of synthesized (gray) & implemented (black) designfor each layer. Fully Connected and Softmax layers have 256 IFM and 256 OFM.

BRAM DSP FF LUT Latency
3D convolution 3 3 5 9 1293 439 2114 534 4326401
Depthwise convolution 2 2 5 9 872 233 1488 407 135201
Pooling (max) 0.5 0.5 0 0 162 128 690 191 135201
Activation (relu) 0 0 0 0 26 26 118 17 131073
Batch normalization 0 0 14 13 6618 3290 6716 3532 131102
Fully connected 17 17 0 1 421 347 842 282 65537
Softmax 0 0 19 19 2568 1987 4610 2939 522

In addition, the table shows the estimated latency per batch. It is well known that the processof 3D convolution is the most computationally intensive part in many CNN algorithms andtherefore needs more parallelization. The Softmax function is the least computationallyintensive function. A hardware/software co-design would perform this function on the CPU,as it is also quite resource intensive. By adding the proposed multilevel pipelining approach,Batch Normalization can compute the three internal functions in almost the same time as theactivation layer. Because of this approach and the computationally intensive operations suchas division and square root, the function requires more resources. Depthwise convolutionand pooling require some additional cycles because of the internal line buffers.
Table 3.25 shows the resource utilization of the implemented design for the different ac-tivation functions using 16 bit unsigned values. As expected, all functions that contain anexponent, logarithm, or division in their equation consume more resources. Using expo-nential functions instead of hyperbolic functions reduced resource consumption. For thesquare root function, there is an option for a relaxed mathematical calculation to reduceresource consumption by reducing the precision of the fraction. Consequently, the accuracyis reduced to 0.37%. Because of accuracy, the function uses floating-point operations formost complex operations. However, due to quantization, a small error rate remains for thesefunctions.
Figure 3.30 shows the relative resource utilization for different parameter settings comparedto the default configuration. As expected, changing the frequency mainly increases the FFs(43% on average), but also the LUTs (8% on average). However, it has no effect on the BRAMor DSP usage. The library also supports floating-point numbers for high accuracy, for fast

151

3 HiFlipVX: Object Detection Library

Table 3.25: The MAPE and resource utilization of the implemented design of the activationfunctions for unsigned 16bit values.
BRAM DSP FF LUT MAPE

Logistic 0 15 1362 2146 0.00126
Hyperbolic 0 17 1549 2370 0.02543
Relu 0 0 26 17 0.00000
Brelu 0 0 26 25 0.00000
Softrelu 0 28 1418 2112 0.00144
Abs 0 0 26 17 0.00000
Square 0 1 28 28 0.00000
Sqrt 0 0 164 384 0.00139
Sqrt (relaxed) 0 0 113 243 0.36990
Linear 0 0 26 25 0.00000

integration, or for testing. They have no impact on the latency of the various library functions,except for additional pipeline stages, but they have a large impact on resource usage: 432%more LUTs, 784% more FFs, and 423% more DSPs. When using 16 bit fixed-point values toincrease accuracy, there is only a small increase in LUTs (25%), FFs (17%), and DSPs (2%).This again shows the importance of quantization in FPGA designs. BRAM usage always scaleswith the bit-width of the data type used. Increasing the kernel size has a similar effect for 3Dand depthwise convolution. In both cases, the DSP amount grows with the kernel size. TheBRAM increase depends on the coefficient size (ky × kx) and the line buffer amount (ky – 1).LUTs and FFs only increased by 85% and 65%, respectively, for 2.78 times the number ofweights.
This work examined the parallelization parameters in more detail, as the correct values areimportant for an efficient design. The Batch Normalization layer scales well with parallelizationbecause resource-intensive functions do not need to be calculated multiple times. Only theincrease in DSP usage approximates to a linear behavior. The used DSPs of all other functionsscale linearly with the degree of parallelization. The used LUTs and FFs of the Pooling layerscale less than linearly with the degree of parallelization. The Fully Connected layer evenshows a reduction in used FFs and BRAM through fragmentation and optimized usage.
The 3D convolution has a combined vectorization of VIFM×VOFM. Different combinations ofVIFM and VOFM were evaluated to find an optimized combination. The combined vectorizationresults in a parallelization (V) of 2 (2 × 1, 1 × 2), 4 (4 × 1, 1 × 4, 2 × 2), 8 (8 × 1, 1 × 8, 4 × 2,2×4) or 16 (16×1, 1×16, 8×2, 2×8, 4×4). This thesis makes some assumptions based onthese combinations. The greater the imbalance between VIFM and VOFM, the more resourcesare used on average. If, for the same V , VIFM is greater than VOFM, the average usage of LUTsand FFs increases slightly by 6% and 10% respectively. In addition, a high VIFM can causemore BRAM to be used if it worsens line buffer fragmentation.
Additionally, one 3D convolution layer has been implemented with a high parallelizationto show the performance improvement in comparison to a baseline implementation. TheARM CPU of the ZCU104 executed this baseline implementation with a frequency of 1.2 GHz

152

3.3 Evaluation

0
2
4
6
8
10

200
mh

z
uin

t16
floa

t32
poo

l4x
4

vec
2

vec
4

vec
8

200
mh

z
uin

t16
floa

t32 vec
2

vec
4

vec
8

200
mh

z
uin

t16
floa

t32 vec
2

vec
4

vec
8

200
mh

z
uin

t16
floa

t32 vec
2

vec
4

vec
8

pooling batch normalization fully connected softmax

LUT FF DSP BRAM

0
2
4
6
8
10
12
14
16

200
mh

z
uin

t16
floa

t32
ker

n5
x5

vec
2

vec
4

vec
8

200
mh

z
uin

t16
floa

t32
ker

n1
x1

ker
n5

x5
vec

2x1
vec

1x2
vec

4x1
vec

1x4
vec

2x2
vec

8x1
vec

1x8
vec

4x2
vec

2x4
vec

16x
1

vec
1x1

6
vec

8x2
vec

2x8
vec

4x4

depthwise convolution 3d convolution (pointwise)

LUT FF DSP BRAM25

Figure 3.30: Relative resource utilization compared to the default configuration. Value is notreported if it is zero. 3D convolution has a vectorization of VIFM×VOFM.
in release mode using the O3 optimization option. The convolution function achieved anacceleration of 260 on the real system using the default configuration with (VOFM = 8), (VIFM =8) and a frequency of 200MHz. The CPU performed the measurements without running anoperating system. The consumed resources for the convolution function are: 8858 LUTs,7679 FFs, 576 DSPs and 66 BRAM. The BRAM has increased due to fragmentation and a highdemand of on-chip bandwidth. The execution time of the hardware is 873 μs, which includesthe cache flushing and data movement between the FPGA and DMA.

3.3.3.2 MobileNets

Before implementing the different layers of MobileNets, the optimal parameters must bedetermined. When building a deep pipeline, the system is usually as fast as its slowestcomponent. Table 3.26 shows the offline calculations for an optimal setting of the differentmodules containing the MobileNets layers. All parameters not listed in the table use thedefault configuration. The algorithm defines the parameter values for the resolution andfeature maps. Section 3.1.7 already explained how to calculate the latency of the individualfunctions. The estimation does not consider the number of pipeline stages, as it has almostno impact. The maximum latency in the right column shows the bottleneck of the design.
The vectorization settings discussed in Section 3.2.7 are adapted to improve the maximumlatency, while taking the available resources for DSPs and BRAM into account. Based onthe parameters of the table, it is possible to estimate these resources, which is important

153

3 HiFlipVX: Object Detection Library

Table 3.26: Vectorization tuning for the proposed MobileNets modules. Latency is calculatedfor each layer separately without pipeline stages. Depthwise (dw) and pointwise(pw) latency of Batch Normalization (bn) and convolution are reported. Maximumlatency of all layers within a module is shown on the right.
Module Resolution Feature maps Parallelization Estimated latency (clock cycles)

ID Input Output IFM OFM vdw VIFM VOFM vpw dwconv dwbn pwconv pwbn max
1 224 × 224 112 × 112 3 16 3 8 2 101250 100368 101250
2 112 × 112 112 × 112 16 32 2 8 8 4 102152 100368 100352 100368 102152
3 112 × 112 56 × 56 32 64 4 8 8 2 102152 25104 100352 100416 102152
4 56 × 56 56 × 56 64 64 2 8 16 2 103968 100416 100352 100416 103968
5 56 × 56 28 × 28 64 128 2 8 8 1 103968 25152 100352 100608 103968
6 28 × 28 28 × 28 128 128 1 8 16 1 107648 100608 100352 100608 107648
7 28 × 28 14 × 14 128 256 1 8 8 1 107648 25344 100352 50688 107648
8 14 × 14 14 × 14 256 256 1 8 16 1 57600 50688 100352 50688 100352
9 14 × 14 14 × 14 256 256 1 8 16 1 57600 50688 100352 50688 100352
10 14 × 14 14 × 14 256 256 1 8 16 1 57600 50688 100352 50688 100352
11 14 × 14 14 × 14 256 256 1 8 16 1 57600 50688 100352 50688 100352
12 14 × 14 14 × 14 256 256 1 8 16 1 57600 50688 100352 50688 100352
13 14 × 14 7 × 7 256 512 1 8 8 1 57600 13056 100352 26112 100352
14 7 × 7 7 × 7 512 512 1 8 16 1 32768 26112 100352 26112 100352
15 7 × 7 1 × 1 512 1000 1 8 1 1 25088 64000 2000 64000

because in most cases they are the limiting resources in CNNs. The activation layer hasthe same parallelization as the Batch Normalization, but a slightly lower latency. In thetable: the depthwise vectorization (vdw) refers to the depthwise convolution (dwconv) and itsBatch Normalization (dwbn); the IFM vectorization (vifm) and OFM vectorization (vofm) referto the pointwise convolution (pwconv); the pointwise vectorization (vpw) refers to its BatchNormalization (pwbn). For module 15, dwconv refers to the Pooling layer and pwbn to theSoftmax layer.
Table 3.27 shows the implemented design executed on the ZCU104 without an OS. A baselinesoftware implementation that uses 32 bit floating-point numbers runs on the ARM processorat a frequency of 1.2GHz in release mode using the O3 optimization option. The proposedimplementation uses 8 bit unsigned numbers and runs on the FPGA at a frequency of200MHz. The timemeasurements were performed with the ARM processor. A good speeduphas been achieved for the single modules. Module 2 has the highest speedup, since it has thehighest parallelization degree and contains most functions executed in a streaming manner.For module 1 and 2 also a frequency of 300MHz was possible. When combining all modulesto a very deep pipeline this speedup would be even higher.
When comparing the FPGA computation time with the estimated time of Table 3.26, thereis some overhead for streaming multiple functions in a pipeline, for data movement to andfrom the DDR, and for cache flushing. This overhead is 90.8%, 76.6% and 52.9% for themodules 1, 2 and 15. To verify the propagation of the error, the MAPE value was computedfor 16 bit unsigned fixed-point numbers. It was 0.21%, 0.79% and 0.78% for the modules 1,2 and 15. The resources listed in the table contain only the modules and no DMA blocks.Considering the available resources on the ZCU104, these should be sufficient to place alllayers on it. In this case, the URAM would be needed, and the Fully Connected layer in module15 should not buffer its weights.

154

3.3 Evaluation

Table 3.27: Proposed MobileNets modules executed separately on the ZCU104 at 200MHz.
Module 1 Module 2 Module 15

ARM (ms) 34.17 53.22 9.94
FPGA (ms) 0.97 0.90 0.49
Speedup 35.38 58.99 20.32
LUT 11881 16914 10579
FF 13265 16660 5773
DSP 237 140 27
BRAM 1 20 263.5

3.3.3.3 Comparison to Related Work

Hassan et al. [264] presented a hardware/software co-design implementation of AlexNet onan FPGA. They performed the first layer of AlexNet on hardware and achieved approximately10.7ms when considering a frequency of 0.2 GHz. For comparison, a similar convolutionlayer was implemented using HiFlipVX with the same frequency, same parameters and 8 bitunsigned integer data types. The implemented convolution layer had a latency of 3.31ms,which is a speedup of 3.23 in comparison to their implementation. For the same layer,
HiFlipVX needs 73% less BRAM, which demonstrates the proposed library’s ability to reducethe memory consumption of large neural networks on FPGAs.
Liu et al. [265] developed a CNN accelerator for the XILINX Zynq-7100 SoC. They implementedthe layers of the SSD-MobileNets-V1 [266] algorithm as a test application for their proposedwork. Their work is also HLS-based and uses Vivado HLS 2016.4. This thesis implemented themost computationally intensive SSD-MobileNets-V1 layers and compared them with the workof Liu et al. It evaluates and executes the proposed hardware and software implementationon the ZCU102 board (3.9) using the ARM CPU for time measurements. Table 3.28 shows theCPU and FPGA results of Liu et al. and this thesis. Both implementations run at a frequency of100MHz to ensure a fair comparison. However, HiFlipVX can achieve higher frequencies.
Table 3.28: Comparison of computationally intensive SSD-MobileNets-V1 layers with relatedwork for a parallelization of the IFM (VIFM) and OFM (VOFM). Results are in ms.

Layer 1 Layer 7 Layer 27 Layer 29
ARM Cortex A9 [265] 2000.00 9000.00 5500.00 11000.00
Accelerator [265] 10.00 30.00 55.00 110.00
ARM Cortex A53 82.89 339.41 377.65 82.64
Proposed 1 (VIFM×VOFM) (3 × 2) 11.38 (8 × 8) 6.08 (8 × 8) 9.52 (2 × 4) 11.45
Proposed 2 (VIFM×VOFM) (3 × 4) 5.95 (8 × 16) 3.38 (8 × 16) 4.92 (4 × 4) 5.89

The table shows the execution time for different parallelization settings of the IFM and OFMparameters. The configuration for "Proposal 2" represents the maximum achievable if theentire algorithm is ported to the ZCU102 and the various layers are executed in one pipeline.

155

3 HiFlipVX: Object Detection Library

Comparing the results of layer 27 and layer 29 of the SSD-MobileNets-V1 network, theexecution time of this work is 11.2 times and 18.7 times faster, respectively. When computingthe entire SSD-MobileNets-V1 network, layers 1 and 27 would be the bottleneck. This isintended because layers 1, 27, 29, 31, and 33 of SSD-MobileNets-V1 are the only layers witha 3 × 3 convolution kernel. Therefore, these layers serve as roofline model, as they consumemore DSPs than the other layers.
This work proposes to use a quantization technique, such as TensorFlow post-trainingquantization [175]. This allows to use smaller parameters, thus saving resources and energy.This thesis uses unsigned 8 bit integers as data types for inputs, outputs, weights, and biases,to implement MobileNets. Wu et al. [267] studied the mathematical aspect of quantizationparameters for various neural networks. They also present an 8 bit quantization work flow thatmaintains accuracy within 1% of the floating-point baseline. Therefore, quantized parameterswith smaller bit-widths should be used instead of floating-point parameters, especially for theFPGA. This maintains reasonable accuracy, achieves higher speed, and saves resources.

3.4 Summary

HiFlipVX contains 66 computer vision functions with 42 based on the OpenVX standard and24 developed within this research. The various functions of the library are in the domainsof image processing, feature extraction, and neural networks. One benefit of the library isthat all its computer vision functions are streaming capable, which allows building a deeppipeline. Creating streaming applications with multiple nodes or layers gives FPGAs theability to achieve higher performance and power efficiency for computer vision algorithmscompared to other architectures, such as CPUs and GPUs, as shown in this thesis [9] orby Qasaimeh et al. [10]. The library is resource and performance optimized, and highlyparameterizable to improve flexibility and usability. Its various compile time parameters offermultiple opportunities for an optimized design and extensive DSE. Many functions providemore options for their parameters and additional parameters not specified in the standard.For example, the support of multiple SIMD widths, data types or kernel sizes, to increasethroughput and reduce latency.
The library and its components have been used or integrated in several publications. Forexample, in a toolchain [268] or an OS [269]. Besides the increase in performance, vector-ization has further benefits. For example, it improves the ratio of resource consumption tooperations, since a vectorization of eight does not increase resources by the same factor.In [258] we were able to show that vectorization in combination with DVFS does not onlyimprove performance, but also energy efficiency. Various vendor libraries, such as AMD’sAMDOVX or NVIDIA’s VisionWorks partially follow the OpenVX standard. Therefore, using C++for HLS with OpenVX eases the cross-platform development between different architecturesand vendors. HiFlipVX does not require any external or vendor libraries and runs on anyCPU that has a C++ compiler. This eases the integration into existing projects, the usage ofdifferent devices and the portability to other vendors. While using XILINX devices to optimizethe library, we could show vendor independence by porting parts of it to Intel FPGAs [15, 16].
HiFlipVX only contains directives for XILINX-based HLS tools like SDAccel [214], SDSoC [213]or Vivado HLS [225]. The only difference when using these tools are the interface directives,which are automatically set in the DECISION framework.

156

3.4 Summary

The image processing functions were classified into pixelwise, filter, conversion, and analysisfunctions, and a common structure was provided [12]. The latency analysis of these functionsalso helps in building the timingmodel for the DECISION framework when implementingmorecomplex algorithms such as ORB or AKAZE. The complexity analysis of the analysis functions,which differ in their timing model from most other image processing functions, shows this.Based on a default configuration, pixelwise, filter, conversion, analysis, and most featurefunctions were evaluated separately. Thereby, various library parameters were adapted andresource consumption, scalability and latency were observed. Based on the results, differentdesign choices were described. For example, where to use separable filters, as for the Sobel,based on the observation of resources. Furthermore, the advantages and disadvantages ofdifferent options were described, as shown for the derivatives in the DoH.
The library functions can also reach high frequencies. For example, all filter functions requireonly 43.2%more FFs and 5.1%more LUTs for a frequency increase from 100MHz to 300MHzon the ZCU104. HiFlipVX consumes on average only 0.39% of FFs and 0.32% of LUTs fora set of functions compared to the xfOpenCV library from XILINX. The difference is morepronounced for larger kernel sizes and is due to the various optimizations, such as usingseparable filters, exploiting kernel coefficients, and providing an integer square root. Ingeneral, the library takes care of optimizing the use of BRAM considering the availablebandwidth to reduce fragmentation. On average, HiFlipVX consumes 1.42 times less BRAMthan xfOpenCV for the selected filter functions.
A unique feature of HiFlipVX are the feature type functions, which were extracted from thenumerous algorithms [13, 23]. Beforehand, all possible combinations of feature detectionand description algorithm were compared in software regarding their performance andrepeatability using optimized parameters. An implementation optimized in this work, whichrelies on the AKAZE detector and FREAK descriptor, achieved an inliers ratio (repeatability) of72.57%, while the next best combination only achieves 62.99%, when using the geometricmean, which gives a stronger weight on the more complex cases. Compared to the originalAKAZE-FREAK implementation, the proposed optimizations reduce the computation time bya factor of 2.82 while detecting 18.5% more features. Since the input feature vectors of theAKAZE compare function arrive sorted by their coordinates, the proposed implementationreduces its complexity from O(n2) to approximately O(n · log2 b) for n features and a buffersize of b elements. The ORB [26], AKAZE [25] and FREAK [22] were implemented in a resourceand performance optimized design using VHDL, which is ideally for embedded systems.These implementations were used to design and implement generic HiFlipVX functionsand algorithms not included in the OpenVX standard. Comparing the repeatability of theoptimized hardware designs of ORB, AKAZE and FREAK with those of the other softwarecombinations, they are still better on average, despite the use of fixed-point numbers. Using
HiFlipVX and the DECISION framework, it is possible to implement and test designs withlittle effort, without sacrificing repeatability or performance compared to VHDL designs.
The ORB algorithm is ideally suited for smaller embedded systems, due to its low computa-tional overhead, low resource consumption and good repeatability. Using the FREAK and anextensive examination of various parameters, the ORB could also improve its repeatabilityby 7.67% in software. The retain best function makes the computation time of the detectorand descriptor predictable and reduces the WCET, while improving repeatability, especiallyfor more complex problems. A key feature of the proposed hardware implementation ofthe FREAK is the pattern generator since patterns are partially precomputed and partiallycomputed. This reduces the required bandwidth of the intensity calculation by a factor of

157

3 HiFlipVX: Object Detection Library

three with minimal resource overhead. This allows it to write significantly more featuresper second than achieved by other researchers. The inliers ratio decreases from 78.7% to77.0%, while the average inliers ratio only decreases from 91.4% to 90.9%, in comparison tothe software implementation. The AKAZE algorithm requires more computation and FPGAresources than others but can outperform all other algorithms in terms of repeatability.The HiFlipVX implementation of AKAZE reaches 480 fps for a 1920 × 1080 resolution andcomputes between 3.56 and 4.13 times more PPS (Pixels Per Second) than achieved by otherresearchers on an FPGA. Thereby, the overhead for all buffers, pipelines, sliding windows andmemory access for the execution of 95 compute nodes is just 13.5% if computing four pixelsper clock cycle is the baseline. At the same time, the resource consumption is comparableto that of optimized VHDL designs. This proves the resource efficiency and performance of
HiFlipVX on the one hand, and the capabilities of HLS in general on the other.
HiFlipVX contains seven streaming capable neural network layers to create large designs [14].The evaluation shows the low error rate, high performance, scalability, and resource effi-ciency of the library. Compute intensive layers, such as 3D convolution, get an additionalparallelization option to maximize performance while optimizing bandwidth and thus usingresources efficiently. Using MobileNets as an example, the evaluation showed how to tunethese parameters for a larger design and how to optimally load coefficients into the design.By adding a multi-level pipelining approach, batch normalization can compute the threeinternal functions in almost the same time as the activation layer for the same parallelizationdegree. The comparison with related work shows speedups of up to 18.7 for individual layersof the MobileNets algorithm. At the same time, an AlexNet layer achieved a speedup of 3.23in comparison to a related work, while consuming 73% less BRAM. The next part of this thesisevaluates the DECISION framework, which integrates the HiFlipVX library and contains twotoolchains.
Thanks to the high parameterization of the individual functions, optimized designs for em-bedded or HPC systems can be developed. To automate the design for such systems and toaddress different architectures, the DECISION framework, described in the next chapter, wasdeveloped. Its frontend is based on OpenVX and integrates the HiFlipVX library. It hidesimplementation details from the user and automatically generates IP-cores and a graphrepresentation from the application.

158

4 DECISION: Vision Framework

The goal of this thesis is the application distribution and efficient programming of objectdetection algorithms on FPGA-based heterogeneous systems. Two of the core contributionsare the APARMAP application distribution algorithm and the HiFlipVX object detection library.A third core contributions is the simple and efficient programming of heterogeneous FPGA-based systems. To achieve this, the DECISION framework was designed.
This framework consists of two toolchains that share the same frontend to implementcomputer vision applications. This frontend is based on the OpenVX standard and abstractsaway the implementation and hardware details from the developer. The High-PerformanceVision toolchain targets x86-based HPC systems, which can consist of CPUs, GPUs and FPGAs.It maps the application to devices, creates a heterogeneous schedule using profiles andestimates, creates a memory model, and handles synchronization to create a performance-optimized runtime system at design-time. The Embedded System Vision toolchain targetspartition-basedmesh-like FPGA topologies. It uses a NoC as the communication infrastructureto interconnect PRRs to generate a scalable, adaptable and flexible architecture. It usesthe APARMAP algorithm, described in the next chapter, to distribute applications and createan application-specific hardware architecture. Both toolchains use the HiFlipVX objectdetection library to target FPGAs.
Section 4.1 will give an overview of the components of the DECISION framework and theirusage in the two toolchains. In Section 4.2 the common frontend of both toolchains will bedescribed. This work uses OpenCL to address non-FPGA devices due to its high availability.Section 4.3 will examine the architecture dependentOpenCL kernel optimization for CPU, GPUand FPGA devices. Section 4.4 will investigate the automatic OpenCL kernel code generationusing source-to-source compilers. Section 4.5 will describe the High-Performance Visiontoolchain and Section 4.6 the Embedded System Vision toolchain. Section 4.7 will evaluateboth toolchains, and the optimization of OpenCL kernel and their automatic generation. Thelast Section will give a summary of this chapter.

4.1 Overview

The two toolchains of the DECISION framework consist of various components [27]. Inaddition to the various components, a robust and efficient framework requires certaincharacteristics. Two of these characteristics are the modularization of components andabstraction of models. The modularization of a framework leads to a better reusability and

159

4 DECISION: Vision Framework

simpler exchangeability of the different components. Regardless of the type of toolchain, afirst rough partitioning almost always consists of a frontend, a backend and a middleend.
Figure 4.1 shows a simplified structure of the proposed framework, which consists of differentcomponents that form the two toolchains. The models serve as interfaces between themodules and are explained in more detail together with the toolchains. The figure shows theorder of execution of the different modules and by which toolchains they are used.

Application
OpenVX

Frontend
graph creation

Library
HiFlipVX

OpenCL functions
NoC extension

models
Profiling

OpenCL device & kernel
-

Middleend
mapping & scheduling
application distribution

binaries

models
Backend

program creation
hardware creation

modelsbinaries
Runtime

C++ & OpenCL
-

0

1

2

3

4

5

main flow
library usage
module

High-PerformanceVision toolchain
Embedded SystemVision toolchain

Figure 4.1: Overview and flow of the DECISION framework, which includes the High-Perfor-mance Vision toolchain and Embedded System Vision toolchain.
Frontend: OpenVX is used as a common frontend to implement computer vision applicationsand to build a model from the input application and verify that it is valid. The applicationmodel is expressed as a graph in the form of a DAG. One advantage of this abstraction isthat regardless of the target platform, the user does not have to learn any new concepts orinput languages. Another advantage of this approach is that the user does not have to dealwith the underlying hardware architecture. The frontend is realized in the OpenVX GraphCreation module, which will be presented in Section 4.2.
Library: The main part of the Library module is HiFlipVX. For each of its functions thereis an entry in the frontend so that the user can call it. However, the OpenVX standardmakes it possible to integrate libraries from different vendors or developers, to addressother architectures. The High-Performance Vision toolchain examined and added differentOpenCL-based libraries, to also target GPU and CPU devices in x86 architectures. The Em-bedded System Vision toolchain needs additional components, to build an adaptable andflexible NoC-based architecture.
Since a library which consists of a set of functions cannot provide everything, an additionalmethod is required to create and integrate custom accelerators. In Section 4.4 the UserFunction Creation module, which supports the generation of custom functions using OpenCLand C/C++, is described [28]. Implementing custom OpenCL kernels is not trivial and candiffer greatly between different architectures. In Section 4.3, this difference is described forCPU, GPU, and FPGA devices, to help implementing own optimized vision functions [9].

160

4.2 OpenVX Graph Creation Module

Middleend: In themiddleend various transformations are processed on the application graph.These transformations refer to the different subareas of the application distribution process,which was presented in Section 2.3.6. Which parts of the described subareas are requireddepends on the respective target architecture and its flexibility. The High-Performance Visiontoolchain implements a heterogeneous mapping and scheduling algorithm to distributeapplications to GPUs, CPUs, and FPGAs in x86-based architectures. The Embedded SystemVision toolchain uses the APARMAP algorithm to schedule and map the application graphto physical nodes, and then cluster and place those nodes on the PRRs of the NoC-basedarchitecture.
Profiling: In addition to the application model, a platform model is needed to describe thetopology of the architecture and its components. For an optimal application distribution, theapplication and platform models must be annotated with information regarding resourceconsumption, computation time and communication costs. For the FPGA, this information isobtained from the synthesis estimates generated by the OpenVX Graph Creation module.The High-Performance Vision toolchain implements a Profiling module to profile OpenCLkernels and devices on CPU and GPU architectures.
Backend: The final program and architecture are created in the backend based on the resultsof the application distribution process. As intermediate language C++ and OpenCL are usedto create the respective binaries with the help of the vendor tools. For the High-PerformanceVision toolchain, the Program Creationmodule is used, to create a runtime optimized OpenCLprogram. For the Embedded System Vision toolchain, the Hardware Creation module is used,to create a runtime adaptive hardware architecture.
Runtime: Even though this work mainly deals with design time optimizations, a minimalruntime system is needed to run the final program. For the High-Performance Vision tool-chain, an OpenCL-based runtime system was realized. The corresponding Runtime Systemmodule excels by its high parallelism and a low overhead. For the Embedded System Visiontoolchain, a runtime adaptive NoC-based architecture, which is created in the HardwareCreation module, was realized.

4.2 OpenVX Graph Creation Module

This work exploits the OpenVX standard as a common frontend to address different archi-tectures. This has resulted in the OpenVX Graph Creation module, which allows the userto implement a computer vision application without knowledge about the underlying hard-ware. This module is used in the High-Performance Vision toolchain to target x86-basedsystems consisting of CPUs, GPUs, and FPGAs. It is also used in the Embedded System Visiontoolchain to address pure or ARM-based FPGA systems. To change the target architectureonly a flag needs to be changed. The module integrates the HiFlipVX library to addressFPGA-based architectures.
The main goal of the OpenVX Graph Creation module is to create an application graph andgenerate the required meta-data for its nodes (tasks) and edges (transactions). Furthermore,IP-cores are generated using the HiFlipVX library functions. The next subsection explainsthe OpenVX Graph Creation module and its flow, using a simple example application. Thesubsequent subsections deal with the generation of the IP-cores and models for bothtoolchains.

161

4 DECISION: Vision Framework

4.2.1 OpenVX Application Flow

Listing 4.1 shows a small code example of an edge detection algorithm implemented withthe OpenVX Graph Creation module. The developer implements an algorithm in C++ andinserts images (edges) and nodes (vision functions) into the OpenVX context and graph. The
vx_context contains the overall structure of the implemented OpenVX program. It stores allexisting references to objects and is responsible for garbage collection. It can contain one ormore vx_graph objects, each expressing the data flow of an application.
1 // Context and graphs
2 vx_context context = vxCreateContext();
3 vx_graph graph = vxCreateGraph(context);
4
5 // Images (edges). Virtual image info is set during verification
6 vx_image images[] = {
7 vxCreateImage(context, 1920, 1080, VX_DF_IMAGE_U8),
8 vxCreateImage(context, 1920, 1080, VX_DF_IMAGE_S8)};
9 vx_image virts[] = {
10 vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT),
11 vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT),
12 vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT),
13 vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT)};
14
15 // Vision functions (nodes)
16 vxGaussian3x3Node(graph, images[0], virts[0]);
17 vxSobel3x3Node(graph, virts[0], virts[1], virts[2]);
18 vxMagnitudeNode(graph, virts[1], virts[2], virts[3]);
19 vxHysteresisNode(graph, virts[3], images[1]);
20
21 // Verify and process graph
22 vx_status status = vxVerifyGraph(graph);
23 if (status == VX_SUCCESS)
24 status = vxScheduleGraph(graph);

Listing 4.1: OpenVX example code for an edge detector.

Nodes and Images

A vx_node object is an instantiation of a computer vision function using its standard parame-ters. When creating the node, the specified parameters are automatically verified. For allother parameters default values are set. These parameters can be changed individuallybefore the graph is executed. Additional parameters for the HiFlipVX functions which arenot part of the standard, or additional object detection functions, have been incorporated.Apart from that, the implementation is compliant with the OpenVX standard.
The vx_image object stores the image information, such as the width, height, format, andvector size. The vector (SIMD) size can be seen as an additional hint for the compiler. It isnot an additional dimension, as it would be the case for a tensor. When changing the vectorsize or format, the resolution does not need to be adjusted by the user as this is managed

162

4.2 OpenVX Graph Creation Module

internally along with other properties. For example, an RGB image format with 24 bit data typeis internally interleaved to 32 bit data types (RGBR|GBRG|BRGB). Virtual images must have asource and do not need to specify their parameters. They are edges between nodes and canonly be written by nodes, which prevents an indeterminate order of data dependencies.
Vision functions that consist of more than one function are internally split into their subfunc-tions. Each of these subfunctions is added as a node to the graph. If necessary, additional(virtual) images are created. These functions are, for example, the feature detection algo-rithms: FAST corners, Canny edge, AKAZE and ORB. In the HiFlipVX library these functionsalso exist as single IP-cores, which use the dataflow and stream directives to connect thesubfunctions.
The breakdown into separate functions has several advantages. It enables a more fine-granular application distribution within the subsequent modules of the middleend. Thisreduces fragmentation, when placing the IP-cores into PRRs. It also reduces the synthesistime, as the different IP-cores can be generated in parallel. Furthermore, an exponentialincrease in synthesis time was observed with an increasing number of functions when usingthe dataflow directive. It was also observed that in some cases the achieved latenciesdeteriorated when using the dataflow directive. On the other hand, a slight improvement inthe utilized resources was observed when using the dataflow directive, since each IP-corerequires an interface. However, this advantage is minimized by the optimization phase duringbitstream generation.

Graph Verification

The vxVerifyGraph function creates a graph and verifies if the constructed graph satisfiesthe formalism defined by the OpenVX 1.2.1 standard. The graph must be a DAG and bipartite,but not all nodes must be connected. It must not contain cycles, and each virtual image usedin the graph must be preceded by nodes with a real image as input. The verification processchecks various attributes required by the computer vision functions. This ensures that thefunctions call images with correct sizes and data types, but also that the attributes of thefunction output are applied to virtual or real images.
When iterating over the nodes of the graph, their parameters are checked or set dependingon the kernel function. First, its input parameters are verified. Certain kernels only allow aspecific resolution, format, or vector size. Additionally, it is verified that the different inputparameters of a kernel are compatible to each other. Next, the output parameters are eitherverified or set if they are virtual. Resolution, vector size or format are set based on theprovided parameters. For example, the data-width converter changes the vector size basedon a mandatory function parameter. Another example is that the resolution may changeaccording to the step size of the filter functions. However, there are functions that do notallow virtual output parameters. For example, the resolution of the scale function or theformat of the bit-width and color conversion functions need to be specified.

Graph Scheduling

The application of a graph can be scheduled using the vxScheduleGraph function aftersuccessful verification. However, due to the nature of FPGAs and the design time optimiza-

163

4 DECISION: Vision Framework

tions of this work, there are some deviations in how this function has been implementedinternally. As input, a simple configuration file is required, which contains the FPGA partnumber and the targeted clock period to synthesize the IP-cores of the vision functions. Inthe vxScheduleGraph function an IP-core is generated for each node. Depending on thetarget architecture, the different models for the subsequent modules of the two frameworksare generated and stored in files. For this purpose, the information from the graph andthe generated synthesis results are used. In the following, the creation of the IP-cores andextraction of the data for the models will be discussed. The models will be described alongwith all other models in the sections of the respective frameworks.

4.2.2 Data Extraction

Depending on the target hardware, different output information is needed. One reason forthis is the use of OpenCL in the runtime system of the High-Performance Vision toolchain.On the one hand, OpenCL needs additional kernel information. On the other hand, theintegration of IP-cores into the hardware design is done by the vendor toolchain, whichrequires less information.

Embedded System Vision toolchain

The output for the Embedded System Vision toolchain is the applicationmodel, which consistsof tasks and transactions. Its graph will be scheduled and mapped to physical nodes, whichare clustered and placed to a platform model, within APARMAP to create a runtime-adaptivearchitecture. It is possible to bypass APARMAP to directly map each task to a node and trans-action to an edge and create a pure AC-based design. In this case a simplified architecturalmodel is generated, which can be used by the Hardware Creation module. All the mentionedmodels will be described in more detail in Section 4.6.2.

Timing Calculation Prior to the model generation, some information needs to be extractedfrom the synthesis results to calculate or estimate the various parameters of the model. Oneof these parameters is the task latency (Ltask), which is the sum of all non-concurrent loops ofa task. The latency of each loop can be calculated by its trip count (TC), pipeline interval (PI)and pipeline depth (PD). Before executing a pipelined loop, an initial clock cycle is requiredfor control.

Ltask ≈
i<N∑
i=0
(
TCi · PIi + (PDi – 1) + 1) (4.1)

For the calculation of other parameters, the functions of the HiFlipVX library must beexamined more closely. All functions of the library are streaming-capable, which leads toseveral simplifications. Some functions, like the histogram, consist of more than one loop,which need to be executed in a sequential manner. The trip count of a single loop can becalculated from the image columns (IC), image rows (IR), kernel size (KS) and vector size (VS).

164

4.2 OpenVX Graph Creation Module

TCi ≈
(
IRi + KRi) ·

(
ICi

VSi

+
⌈
KRi

VSi

⌉)
(4.2)

KR = ⌊ (KS – 1) · σ + 1
2

⌋
(4.3)

The kernel radius can be calculated from the scaled (σ) kernel size (KS). The memory accesspattern of the library functions is quite similar. Reading the input starts at the beginning ofa pipeline and writing the output at the end of a pipeline. In addition, the start of the writeprocess is delayed by the time it needs to initially fill the line buffers and sliding window. Basedon Equation (4.1) and Equation (4.2), the latency of a transaction, and its offset compared tothe start of the associated tasks, can be calculated.

WriteOffj ≈
i<j∑
i=0
(
TCi · PIi + PDi) + KRj ·

(
ICj

VSj

+
⌈
KRj

VSj

⌉)
· PIj + PDj (4.4)

ReadOffj ≈
i<j∑
i=0
(
TCi · PIi + PDi) + 1 (4.5)

Ltransj ≈ IRi ·
(
ICi

VSi

+
⌈
KRj

VSj

⌉)
· PIi (4.6)

There are two types of functions that have an additional influence on transaction latencyand offset. The scatter functions influence the sender, and the gather functions the receiver.In block mode the latency is divided by the scatter/gather factor (Ltransj/SG). The associatedoffset is shifted depending on the index (sg) of the function ((Ltransj/SG) · sg). In cyclic mode,the adjustments are minor. The latency is reduced by (sg – 1) and the offset is shifted by(sg – 1).
Latencies and offsets of transactions and tasks are needed by middleend for a more precisetime behavior. For example, it is needed for the calculation of the bandwidth usage. Theestimation of the different latencies is very accurate if the functions are not memory bound.The consideration, whether a function is memory bound, is made in the middleend, sincea statement concerning this problem can only be made when considering the completeapplication and architecture. All further parameters do not need any further preliminarycalculations and are described together with the application model.

Buffers and DMAs Additionally, it is possible to skip the middleend and create an architec-ture model to generate a pure AC design. However, for this the minimum size of the buffersbetween the ACs (nodes) must be calculated. These buffers are needed to avoid deadlocksand to achieve an optimal data throughput. For this purpose, an ASAP (As-Soon-As-Possible)schedule is created using the calculated latencies and offsets to get the time stamps of thetransactions. The transactions between tasks are synchronized with each other to updatetheir timestamps.

165

4 DECISION: Vision Framework

The buffer size results from the number of elements of a transaction, which are written bythe sender before the receiver starts reading. This imbalance can occur, for example, when anode operates on two input images, but one image arrives much earlier. Figure 4.2 illustratesthis problem using a small part of the AKAZE algorithm. Because of the line buffers in thefilter functions, there is a delay between the inputs of the FED (Fast Explicit Diffusion) function.Therefore, a buffer is needed for the second input.

Multicast

Gaussian Conduc-
tivity

FEDFIFO
Figure 4.2: Small application graph illustrating the buffering problem.

In the described case, a deadlock would occur without a larger buffer. In many other cases, alarger buffer would not improve performance and would only consume additional resources.The synchronization between two nodes can, however, have an influence on the start timesof transactions of specific tasks and thus on the buffer sizes. This includes gather and scattertasks and tasks that consist of more than one loop. These are mainly functions of the analysisclass: histogram, contrast factor, equalized histogram, table lookup, retain best, mean andstandard deviation, and min-max location.
Due to the fixed buffer sizes of the XILINX IP cores, the number of calculated elements isscaled to a multiple of two. The minimum size is 16 and the maximum 32768. For edgeswith no successor or predecessor, a DMA is created and connected. The associated buffer ofthe DMA can be set to a default size large enough for bursts transfers (e.g., 32 elements).

Synthesis For creating synthesis results, a wrapper function is created to instantiate the
HiFlipVX function, as shown in Listing 4.2. This wrapper function sets the template parame-ters and adds directives to create an AXI4-stream interface (axis). It is a simple handshakinginterface to stream data between different functions. This thesis only uses its valid (1 bit),ready (1 bit), last (1 bit) and data signals (n bit). In the final hardware design, the global memorywill be accessed through DMA units. Therefore, no control port is needed (ap_ctrl_none
port = return).
1 void Gaussian0(vx_image_data<vx_uint8, 1> p0[2073600],
2 vx_image_data<vx_uint8, 1> p1[2073600]) {
3 #pragma HLS interface ap_ctrl_none port=return
4 #pragma HLS interface axis port=p0
5 #pragma HLS interface axis port=p1
6
7 const vx_border_e border = static_cast<vx_border_e>(49153);
8 const vx_bool separable = static_cast<vx_bool>(1);
9 ImgGaussian<vx_uint8, 1, 1920, 1080, 5, border, separable>(p0, p1);
10 }

Listing 4.2: Instantiation of a HiFlipVX-based accelerator.
The IP-cores of the different functions are synthesized in parallel using a TCL (Tool commandlanguage) script. This script uses Vivado HLS internally and reads the configuration file to

166

4.2 OpenVX Graph Creation Module

set the required parameters such as the target platform, clock frequency, and optimizationlevels. An IP-core is generated for each function and can be reused by the later toolchains.For example, the Hardware Creation module of the Embedded System Vision toolchain in-corporates them into the final hardware design. The parallelism and fine-grained schedulingare done using OpenMP directives (for schedule(dynamic, 1)).

High-Performance Vision toolchain

In this work, the SDAccel tool from XILINX is used to create FPGA kernels (ACs) for the High-Performance Vision toolchain. Even though SDAccel uses OpenCL for the host code, thereare different languages to implement a kernel. For example, a kernel can be written in C++,which enables the usage of template-based libraries like HiFlipVX.
In comparison to the Embedded System Vision toolchain, there are several changes to thewrapper function of the kernel that need to be applied. This is mainly because SDAccelautomates the creation of the hardware design needed for kernel execution. The followingdescribes the realization of the C++ wrapper for a HiFlipVX-based AC, to allow an optimalusage of the memory bandwidth and fully utilize the available performance of the kernel.
As the function requires direct access to memory and is not controlled via an additional DMA,AXI4 interfaces are required (m_axi). To increase the performance one interface per portshould be used and only one input and one output port should be combined in one bundle.The drawback of this approach is an increased resource consumption of the final system.
To set the different kernel parameters by the host an additional AXI4-lite interface is needed(s_axilite). The same interface is used to set all parameters, by collecting them in onebundle. In contrast to AXI4, AXI4-lite is a simplified interface that cannot do burst transfers.
To utilize the full bandwidth, the m_axi interfaces can be up to 512 bit wide. However, this cancause a bit-width mismatch when connecting it to the vision function. Therefore, additionaldata-width converters are generated in the kernel for each input and output. These consistof nested loops and are also part of the HiFlipVX library.
Different functions are parallelized using the dataflow directive and buffers are generatedout of intermediate images using the stream directive. Since accessing global memory fromthe kernel can have a high latency, it should be done in bursts. These bursts are also enabledby using the data-width converters. The additional converters and wider interfaces also leadto an increased resource consumption.
Two outputs are generated for the High-Performance Vision toolchain. These are the ap-plication model and its extended version, which already contains the mapping of tasks tocompute devices. The first one is sent to the Mapping & Scheduling module and the secondone is sent to the Program Creation module. The latter one can be used to skip the Mapping& Scheduling module or to change the mapping manually.
Both models will be described in more detail together with the High-Performance Visiontoolchain. Most of their required data can be extracted from the OpenVX graph. Only theextended application model requires further information that needs to be extracted. Forthis, it is searched for all OpenCL-capable devices within the system and OpenCL/C++ basedkernels within the library. Furthermore, a default device is selected, based on its setting in theconfiguration file. A target device of a node can also be selected in the OpenVX application.

167

4 DECISION: Vision Framework

4.3 Architecture Dependent OpenCL Kernel Optimizations

OpenCL allows the use of different architectures from different vendors using the same API.It provides code portability, but the kernel code still needs to be optimized specifically forthe various architectures. The previous section presented the OpenVX-based frontend. Itintegrates the HiFlipVX library to provide optimized kernels for FPGAs. However, kernelsimplemented and optimized by the user can also be integrated. Thus, this section describesdifferent optimization strategies to implement custom kernels.
This sections compares the different optimizations for different architectures, such as CPUs,integratedGPUs, GPUs, and FPGAs, usingOpenCL. This thesis also investigated the capabilitiesof the SDAccel [214] tool for streaming applications on XILINX FPGAs. A part of the AKAZE [46,20] algorithm has been chosen as use case, since it shows better repeatability than otheralgorithms. The implemented design, shown in Figure 4.3 consists of two parts: nonlinearscale-space creation (left) and feature detection (right). To have a fair comparison, differentoptimization strategies have been investigated and implemented for the observed OpenCLdevices. More general information of the original algorithm can be found in Section 2.1. Theproposed and optimized AKAZE implementation of this thesis can be found in Section 3.2.1.

Image

Compare
Features

Compare
Features

Extract
Features

Extract
Features

Extract
Features

Compare
Features

Compare
Features

Extract
Features

DoH

DoH

DoH

DoH

Scharr
3x3

Scharr
3x3

Scharr
3x3

Scharr
3x3

Gaussian
5x5

Gaussian
5x5

Gaussian
5x5

Gaussian
7x7

FEDFEDFED

FEDFED

Conductivity

Conductivity

Figure 4.3: Task graph of the AKAZE feature detection implementation. FED (Fast ExplicitDiffusion), DoH (Determinant of the Hessian)
The streaming capability and maximum bandwidth consumption of the FPGA were exploredusing the SDAccel tool. In OpenCL, streaming between kernels is realized using pipes, whichis part of the 2.0 specification. The connected kernels can be executed in parallel on FPGAs,since OpenCL gives the opportunity of out-of-order execution. In comparison to other HLSmodels that use C/C++, SDAccel needs nearly no extensions or directives for the FPGA code,due to the rich set of instructions of OpenCL. Even loop unrolling is part of the 2.0 specification.Only one XILINX specific attribute for loop pipelining was needed in the implementation ofthis study.
Using the OpenCL drivers of different vendors, allows the execution of different deviceswithin a single program using only one programming model and one toolchain. This easesthe distribution of an application between several devices. The FPGA kernels are precompiledusing the XILINX OpenCL compiler. This compiler can be executed using a Makefile or a TCLscript. For this work the second option has been chosen and the other vendors are linkedwithin the same TCL script. With this approach one can also integrate OpenCL devices of

168

4.3 Architecture Dependent OpenCL Kernel Optimizations

other vendors into the SDAccel tool. Therefore, kernels of all devices can be executed inparallel within one application.

4.3.1 FPGA Bandwidth and Kernel Optimization

Since kernels are typically memory or compute bound, it is important for the programmerto determine the limitations, when optimizing an algorithm. One approach for FPGA kerneldesign is to first determine the maximum achievable bandwidth by removing all code notrelated to memory access, and then increase the computation speed with respect to themaximum bandwidth. In the following, various optimization strategies for windowed OpenCLfunctions are described in chronological order.
• Baseline: The baseline OpenCL implementation is a partially optimized convolution filter,with a work-group and work-item size of one. This function has loops for x and y directionand a body for the computation of the filter.
• Loop pipelining: The first optimization step is loop pipelining, which is provided by SDAcceland applied to the inner loop. Its compiler requires that all kernel code, which is betweenthe two loops, must be moved to the inner loop.
• Line buffers: Line buffers are used to reduce multiple global memory accesses to thesame data. Using line buffers data only needs to be prefetched once into local memory(BRAM). If each line buffer row is stored in an own BRAM, a 7 × 7 kernel needs four clockcycles to read data, since each BRAM only has two data access ports.
• Array Partitioning: By partitioning each line buffer into multiple BRAM in a cyclic approach,the number of clock cycles for data access can be reduced with an increase in BRAM usage.
• Sliding window: A better solution is to use registers for the convolution kernel and combinethem with line buffers in a sliding window as shown in Figure 4.4 for a 3 × 3 kernel. Withthis approach, it is possible that the pipeline processes one pixel per clock cycle. Thereis only a small overhead in computation time to fill the sliding window with data, whichdepends on the kernel radius. A big advantage of the sliding window approach is that thecomputation time hardly depends on the kernel size of the convolution filter in comparisonto CPU or GPU implementations.
• Separate memory access kernels: To optimize parallelism of computation and memoryaccess, separate kernels are used for reading, writing and computation. These kernels areconnected via FIFO blocks using OpenCL pipes and executed concurrently, since OpenCLprovides out-of-order execution. The computation speed of the FPGA implementation isnow comparable to the speed of a single threaded and optimized CPU implementation. Thedifference is that the FPGA is faster for larger kernels, due to the sliding window approach.If the amount of memory buffers that are accessed in parallel increases, it is recommendedto increase the burst size of the memory operations, if possible, to decrease the switchingamount in the DDR memory.
• Vector operations: Vector operations can be used for computations and for memoryoperations, to further increase the memory throughput and the computation speed.OpenCL provides a maximum vectorization of 16. The optimal vectorization depends onthe maximum achievable bandwidth or the available resources.

169

4 DECISION: Vision Framework

• Fixed-point numbers: While GPUs are very good for floating-point computations, FPGAshave their strengths using fixed-point numbers, due to the reduced resource utilization.Therefore, all filter calculations have been normalized and reduced from 32 bit floating-point data to 16 bit fixed-point data, which also reduces the utilized memory bandwidth.To reduce the loss of accuracy caused by using fixed-point numbers, higher bit-widthsare used inside of a kernel. By halving the bit-width, the function requires only half thebandwidth. This leads to an almost twice as high computational speed if there are enoughresources for a higher vectorization.
• Data Packing: Since the 512 bit memory port of the FPGA is not fully utilized using OpenCLsmaximum vector size of 16 and 16 bit fixed-point numbers, memory is accessed with a32bit data type containing two 16bit fixed-point numbers.
• Data Streaming: Data only needed by subsequent kernels is streamed between themto avoid global memory access and reduce latency. This streaming capability also com-pensates the lower global memory bandwidth of most FPGAs compared to equivalentGPUs.

sliding windowline buffer

write
to
pipe

gather
and
pack
data

kernel
function

read
from
pipe

convert
data
width

unpack
data

check
borders

Figure 4.4: Windowed (3 × 3) function implementation on an FPGA.

4.3.2 FPGA Example Implementation

Figure 4.3 shows the implemented algorithmof this study. The input image is an 8 bit grayscaleimage, and each feature extraction function writes a feature vector to the output. The chosenvector size and bit-width is 4 times 16 bit for computations and 16 times 32 bit for memoryaccess. The vector size for the computation is lower, since the implementation got memorybound. Therefore, the vector size has been reduced to lower the resource consumption. Ingeneral, if the usable memory bandwidth, the achieved frequency, and the overhead to fillthe sliding window is known, it is possible to calculate the desired vector size beforehand.All interim results are streamed between the different kernels. Some functions needed tobe combined in one kernel, since SDAccel 2016.1 only allows a maximum of ten CUs. Loopfusion was used to combine functions since loop-level parallelism is not possible within asingle kernel in SDAccel’s OpenCL implementation. There is one unit for global memoryaccess, five for nonlinear scale-space and four for detection. The feature extraction functionoutputs maximum two features in one clock cycle, because there can only be a maximum ofone extreme value for two neighboring pixels. This work uses a shared kernel for readingand writing, since the output is relatively small.
Figure 4.4 shows the different steps of the implemented windowed functions, which have asimilar structure. First data is read vector by vector from the input pipes. If a pipe is connectedto a read or write kernel, the input is one 16 times 32 bit vector and scattered into eight 2times 32bit vectors. These vectors are written one after the other into line buffers, where

170

4.3 Architecture Dependent OpenCL Kernel Optimizations

data remains packed to reduce BRAM usage. Then data is unpacked from a 2 times 32 bit toa 4 times 16 bit vector. The example implementation duplicates border pixels if the windowis outside of the image boundaries. Duplicating the borders achieved the best results interms of repeatability for the feature detection algorithm. The sliding window moves onevector in each clock cycle from one register to the other and provides parallel access to thecomplete window. If results are written to DDR memory, eight 4 times 16 bit vectors mustbe gathered and packed to a 16 times 32 bit vector. Otherwise, data is packed to a 2 times32bit vector to reduce the BRAM utilization of the pipes.

4.3.3 CPU and (integrated) GPU Kernel Optimization

This subsection will describe different OpenCL optimization strategies for CPUs, integratedGPUs, and GPUs. Four different strategies have been implemented for a fair comparison tothe FPGA implementation.
OPT0: To create fast and simple convolution filters, different device independent optimiza-tions have been applied, like using built-in functions and compiler optimizations. The numberof computations within the OpenCL kernel has been reduced and branches are replacedby built-in functions (e.g., min, max and clamp operations). Kernel parameter qualifiers like
restrict, const, read_only and write_only are used to optimize memory access. But nolocal memories, barriers or vector operations have been used.
OPT1: In this strategy, various CPU-based optimizations are applied, which make use of Intel’sOpenCL optimization guide [270] as well as own methods. An advantage of the OpenCLvector instructions is the possibility of using Intels SIMD operations without using theirintrinsic instructions. Since CPUs generally use caches as local memory, there is no needof exploiting optimization strategies for utilizing the OpenCL local memory. Data can bebuffered directly within the registers, and in case of register spilling, the L1 cache is usedautomatically. Figure 4.5 illustrates the implementation using this type of buffer. For a 3 × 3convolution filter, the first two rows are loaded into registers, taking the image boundariesinto account. Then, within a loop the next row is loaded, the output vector is computed, andthe observed window is updated, by moving the pointers down one row. Every work-itemprocesses an 8 × 8 grid of pixels, using a vectorization of eight and processing eight rows ina sliding window approach, which achieved the best results. The work-group size is left tothe compiler.

border pixel

non-borderinput pixels

observedwindow

Figure 4.5: Example for the input pixels of a register buffer for an 8 × 4 grid.

171

4 DECISION: Vision Framework

OPT2: This strategy loads data into local memory before computation, to reduce globalmemory access. It is a typical GPU optimization method. Data is read into local memoryof size (m × m = (n + 2 · r) × (n + 2 · r)), which depends on the work-group size n × n andthe radius r of the input window. The input is split into four areas, which are read by thework-items in four separate operations, if (2 · n ≥ m), due to the image borders.
OPT3: The last strategy is like OPT1, but without vectorization. It loads the input windowinto registers, which are used as sliding window. Since input data is marked as read_only,
constant and restrict, the read only cache of the device can be used. Due to the SIMDstructure of GPU architectures, the cache creates a line buffer, and each input pixel of awork-group is only loaded once. In comparisons to OPT2, no extra commands are needed toprefetch data into the local memory.
Extract Features: The implementation of this function contains three stages. The first stagedetects the features of the image in parallel. It writes features of each row in an own vectorusing a global counter for that row, since features only need to be sorted by their y coordinate.The second stage computes the parallel prefix-sum, to sum the resulting row counters, todetermine the position of a feature in the resulting vector. This is computed for each work-group (e.g., three to four) independently. The third stage gets the results of all parallelprefix-sums and writes the features to the correct position in memory. The CPU versioncomputes the prefix-sum in simple loops, due to its architecture and the small number ofCUs.

4.4 Automatic OpenCL Code Generation

The previous section looked at how OpenCL kernels can be implemented and optimizedfor different architectures and vendors. However, architecture dependent optimization canbe very time consuming. Therefore, this thesis examines how this process can be partiallyautomated or supported. This section will investigate the automatic conversion of existingC++ code to OpenCL code to be offloaded to accelerators in heterogeneous systems. Withthis approach, existing program code can be reused. The OpenCL model is well suited forthis task since it follows a platform-independent approach, is supported by several vendors,and can decide at runtime on which hardware code should run. In principle, the code canrun on any OpenCL-capable hardware but may not achieve the same speedup. Therefore,OpenCL kernels need to be customized specifically for the different hardware architectures,as described in the previous section. A major advantage of this approach is that sourcecode can be easily analyzed, evaluated and modified by the developer. This would not be asproductive if the developer had to do this using an intermediate language, since source codeis more human-readable.
Therefore, this work proposes a source-to-source compilation toolchain, which recognizesprofitable program parts in C/C++ code and automatically generates OpenCL host and kernelcode from it. It processes on the IR language of the LLVM toolchain. The polyhedral model,which is based on Polly [203], is used to analyze the IR code. The provided informationis transferred to the PPCG [206] since Polly has been designed for CPUs. PPCG itself isa transpiler but works on the AST of the Clang frontend and can only process C-code asinput.

172

4.4 Automatic OpenCL Code Generation

The approach of using the IR for the code transformation enables C++ as input language. Itis also possible to process other input languages by changing the frontend (Clang). PPCGis optimized for GPUs and can generate OpenCL and CUDA source code. In this work, thisfunctionality is used to generate OpenCL code together with the generated IR code. A maincontribution is the creation of valid and human readable C (OpenCL C99) code from LLVM-IRbasic blocks and regions. Furthermore, an LLVM module for recognizing and transforminglocal variables has been created.
The next subsection will give an overview of the proposed toolchain and briefly describesthe different parts that have been adapted or added. The subsequent subsections will thendescribe the different parts of the toolchain in more detail.

4.4.1 Overview

This work developed a tool that uses Polly [203] to create a polyhedral model [197] andPPCG [206] to optimize it for OpenCL [144]. They are based on the ISL [196] library, allowingmigration of the polyhedral model. Figure 4.6 shows the combination of the mentioned toolsthat have already been described in Section 2.5.1. The green boxes and lines highlight theproposed flow and the red boxes highlight parts that have been added in this work. SincePPCG is a transpiler that converts from C to OpenCL, CUDA and OpenMP, it already includesa way to convert the polyhedral model to source code. The Polly-ACC project integratedPPCG into Polly, to optimize the polyhedral model for GPUs and to generate LLVM-IR codefrom the new schedule.

OpenCL

OpenMPOpenCLCUDA

LLVM-IR
POLLY

Code
GenerationLLVM-IR

C / C++

PPCG

C-Code
PET

AST SCoP
Detection

and
Generation

Clang(Frontend)
...

...

SCoP
Clang(Frontend)

Code Generation

Figure 4.6: Overview of the combined Polly and PPCG tool design.
However, in this work, the source code is generated back from the LLVM-IR. PPCG can outputthe polyhedral model of Polly and generate valid C code for the OpenCL kernel, wherestatements are modeled as function calls. To generate functional code, the contents of thestatements must also be converted from LLVM-IR code to C-code. However, during theoptimization of the SCoP, PPCG does not analyze or touch the contents of the statements.
This work created a class called CWriter that can convert LLVM-IR into C code. In addition,the PPCG version 0.04 was replaced with the newer version 0.07. This offers "Live-RangeReordering" [207] to resolve dependencies with local variables (false dependencies) and

173

4 DECISION: Vision Framework

assign them to a new data area. Thus, SCoPs that use local variables and have write-after-readdata dependencies between loop passes can be converted. This can tell PPCG if storagearea exists locally and if data is needed outside of the SCoP.
Polly creates a separate memory access with separate variables for each PHI instruction,which leads to the Loop-Closed SSA form. However, this creates unnecessary memory accessto local variables that converge from one loop to another. Therefore, this work created a passto analyze PHI instructions of loops according to the Polly Canonicalize pass and transformpotential local variables into memory accesses with load and store instructions.
Figure 4.7 shows the structure of the proposed tool. The red blocks indicate the mod-ules developed in this work. The LocalVar2Mem class converts relevant PHI instructionsinto load and store instructions, creating local variables. The PPCGSourceCodeGenerationclass converts the SCoP information into the PPCG format, performs dependency analyzes,does the scheduling, and generates the OpenCL code using the OpenCLWriter class. The
OpenCLWriter class is integrated in the PPCGSourceCodeGeneration class and generatesthe OpenCL host and device code using the new schedule. The CWriter class is integrated inthe OpenCLWriter class and creates the statements. The different modules will be describedin more detail in the following subsections.

OpenCL host& device code

LLVM-IR

ScopPass

ScopPass Manager

PPCGSourceCodeGeneration
transfer of data from Polly to PPCGdependency analysis and scheduling

generation of OpenCL host & device code
OpenCLWriter

generation of C-code from LLVM-IR
CWriter

creates a polyhedronmodel for valid regions
ScopInfo

detection of themaximum SCoPs
ScopDetection

convert PHI instructionto local variable
LocalVar2Mem

canonizes & normalizesLLVM-IR code
PollyCanonicalize

Figure 4.7: LLVM to OpenCL: Modifications of Polly and PPCG.

4.4.2 PPCG Source Code Generation

The PPCGSourceCodeGeneration class extracts needed information from the Polly SCoP. Itstores all statements and their restrictions on the available parameters and their memoryaccess relation (may-write, must-write, and may-read). It contains functionality to influencethe optimization of the schedule. For example, the tile size for GPUs can be adapted orthe use of the private and local memory can be activated. In addition, tagged variants ofeach memory access relation are created. These include a relation from a statement to aunique reference for a memory access. For example, tagged relations are used in PPCGas a reference to decide whether data areas need to be transferred to or from a device.To use the "Live Range Reordering" feature, memory access relations, in which the data ofthe memory location is only used within the SCoP, are collected. Additionally, all memory

174

4.4 Automatic OpenCL Code Generation

locations, which can be accessed outside the SCoP, are collected. Since Polly does not createkill statements for local variables and PPCG cannot detect if these variables are used outside.Using the information of the memory access relations, the dependency relations and dataflow relations are created.
The class also transforms the statements and array sizes from Polly and analyzes the memoryspace of arrays that can be considered persistent to the SCoP. Then it creates a new scheduleand marks the loops that can be parallelized. It also creates markers to initialize the device,transfer data and start kernels. Then the schedule is converted from PPCG to an AST. Thefunction also creates new expressions (e.g., from A[i][j] to A[t0 + b0][t1 + b1]), which are storedin a hash table and used in the CWriter class, of the memory accesses for the statements.Lastly, the created OpenCL host and device code is stored in files. Many of the featuresdescribed for this class have been taken from the Polly-ACC project and adapted for the newPPCG version.

4.4.3 Creating OpenCL Device and Host Code

The OpenCLWriter class creates the OpenCL host and device code. It manipulates the ASTby using functions from the ISL library and converts them into OpenCL source code. TheISL library offers the possibility to transform ISL expressions and structures into strings. Itsupports the C syntax and YAML, which is based on XML, as output. The different SCoPs areprocessed one after the other.
Functions for creating OpenCL host code have been adapted and automatic performancemeasurements of OpenCL kernels have been added. Additionally, function headers for theOpenCL host code are created since this did not exist in PPCG. The arguments of OpenCLhost functions are created by iterating over the list of arrays of a SCoP and by consideringparameters defined outside of the SCoP. Comment lines are stored for host and kernelfunction headers using information of the original source code. This includes the location ofthe original file in the file system, SCoP line numbers and original function names. If debuginformation is available in the LLVM-IR, the SCoPs function name is extracted from it. Anice feature that was achieved through this is that the tool can also manage C++ templatefunctions, which is used in the HiFlipVX library. The square brackets of the function namemust be removed beforehand.
Code for initialization, data transfer, kernels and kernel calls need to be created. The initializa-tion generates code for the OpenCL context, program compilation and command queue. If itis not an initialization or data transfer, it is to determine if statements need to be created thatPPCG has not assigned to the kernel. This can happen if the statements perform invariantcalculations and do not need to be executed in the kernel. Together with the CWriter class, Ccode is generated from the LLVM-IR. Then the kernel code and calls in host code are created.Strings are set for OpenCL barriers and instructions are generated for copying data to orfrom local storage. Polly does not hold all variables that converge from the outside into theSCoP, since only arrays and loop limiting parameters are detected. If parameters are loopinvariant, they are only cached if they occur in a domain entry. Other invariant variablesused in the loop body are not captured. These parameters are created by the CWriter classduring the analyzes of the LLVM-IR.

175

4 DECISION: Vision Framework

4.4.4 Conversion from LLVM-IR to C-Code

The LLVM-IR statements are converted into valid C-code in the CWriter class using the print-
Stmt function. First, the hash table LoopToSCEV, which is for the new iteration variables of thestatements, is filled. Function arguments must be cached to generate the statements in thehash table. They are needed to replace the previous iteration variables in the LLVM-IR code,since they change for the OpenCL code generation. With SCEV (SCalar EVolution) expressions,the new term can then be determined for an iteration variable. SCEV [271] is a technique tomodel memory accesses within loops so that they can be represented in terms of iterationvariables. For each argument, a C-code term is generated using the ISL library. Then, allread operations in the statement are analyzed, to be stored in the ValueToString hashtable. Each memory access in Polly has a unique ID and points to an isl_ast_expr in thehash table, which contains the new expression for the memory address. The isl_ast_expris created as a string in C syntax and stored in the hash table for the corresponding readaccesses in the LLVM-IR.
If the statement is a basic block, printInst is called for each instruction of the basic block andthe write accesses to PHI instructions are processed. To prevent redundant code, printInstchecks if an instruction is used more than once in its basic block. In this case, a local variableis created and the contents of the ValueToString hash table are replaced with the name ofthe local variable for the instruction. In addition, an investigation takes place whether theinstruction represents a write access in the current statement. For a write access, the contentof the variable from ValueToString is formed with the isl_ast_expr as an assignment in anew program line and converted into a string.
If the statement is a region, a function is called recursively until the own region cannot bedivided any further. A region consists of a single-entry and single-exit area. It can exist ofseveral basic blocks, which are coupled to each other with conditions. The next step is toparse the region by iterating from the inbound to the outbound basic block. At the end of abasic block, the branch instructions are checked and created.

4.4.5 Converting PHI Instructions

The Polly Canonicalize pass modifies the LLVM-IR to match the Loop-Closed SSA form. The
ScopInfo pass generates separate memory accesses for each store, load, and PHI instruc-tion. Thus, information about a possible local variable is lost, which might have enabled abetter optimization of the SCoP. The PPCG optimizer can no longer recognize if there aremultiple memory accesses to the same data because the contents of the statements arenot considered. These are only used with the printStmt function after the scheduling. In
localvar2mem, it is iterated over all regions of a function, and it is tried to translate PHIinstructions into local variables. This is done by replacing the PHI instructions with load andstore instructions.
However, PHI instructions cannot be easily changed into memory accesses. Only onememorylocation should be used for the representation of a local variable. Therefore, only those PHIinstructions are transformed, in which the register of the PHI instruction is used only withinthe same basic block. To convert the relevant PHI instructions, single-entry single-exit regionsare recursively searched for the beginning of a loop. After a region is found, it will be iterated

176

4.5 High-Performance Vision Toolchain

over its basic blocks. Within the basic blocks, PHI instructions are examined, which do notrepresent iteration variables and are only used within the block.
Valid PHI instructions are stored in a list. For an observed PHI instruction, it is examinedwhether it is already assigned in the list to a local variable. To translate the PHI instructionsinto load and stores, it is iterated over each entry in the list. First, the store instructions forthe PHI inputs are generated for the basic blocks. Then, the load instructions are generatedand the use-define chain of the PHI instruction are replaced with these instructions. Lastly,the PHI instruction is cleared and removed from the basic block.

4.5 High-Performance Vision Toolchain

This section presents the High-Performance Vision toolchain, which is one instantiation of the
DECISION framework. Using this toolchain, users can implement computer vision algorithmsfor x86-based systems consisting of CPUs, GPUs, and FPGAs without having to deal withthe underlying hardware architecture. The toolchain automatically distributes the functionsto the different architectures. OpenVX is used as frontend, OpenCL for the backend andruntime system, and HiFlipVX as library for FPGA devices. For all other devices, OpenCLlibraries can be included, which will be shown using OpenCV and AMDOVX as examples. It isalso possible to include self-optimized or automatically generated kernels as described inthe last two sections.
Using OpenVX in the frontend has the advantage of a well-defined standard for computervision, a good level of abstraction, and a graph based approach which is ideal for the distri-bution of applications. Another advantage is that there are already several OpenVX-basedlibraries that can be integrated. HiFlipVX has been integrated, which has the advantage ofbeing performance- and resource-optimized and offers many possibilities for fine-tuningthrough various parameters. The middleend focuses on the mapping and scheduling prob-lem, which is solved with the help of FPGA synthesis estimations and CPU/GPU profilingresults. OpenCL is used as main low-level API, since it is very comprehensive and supportsnumerous vendors and devices. However, other C++ based languages can also be integratedinto the runtime environment through native kernels. The backend and runtime system aredesigned to allow for simple and fast execution on multiple devices without the boilerplatecode overhead that comes with the OpenCL API. This includes the creation of data transfersand synchronization points as well as the preparation of the final program which is executedon the OpenCL-based runtime system.
The following subsection gives an overview of the developed modules and models, theirconfiguration, and the FPGA integration. In the later subsections, the individual modules areexplained in more detail.

4.5.1 Overview

Figure 4.8 gives an overview of the modules, the models, and the tool-flow of the High-Per-formance Vision toolchain. It can run OpenVX graphs on multiple OpenCL-capable devices(CPUs, GPUs, and FPGAs) from different vendors. It supports and integrates XILINX FPGAsincluding bitstream generation. The toolchain is composed of several modules that have

177

4 DECISION: Vision Framework

been separated from each other by using well-defined models. This simplifies the addition ofnew libraries, scheduling algorithms and APIs. They communicate with each other via filesthat either describe the models or contain other data, such as profiling results or binaries.The programmer can modify the models at design time, which provides an easy way of testing,debugging, or making own customizations, such as changing the mapping.
LibraryHiFlipVX & OpenCL

Graph Creationfrontend
Applicationtasks & buffers
ProfilingOpenCL device & kernel Binariesplatform & application

Platformdevices & kernels
Mapping & Schedulingmiddleend

Extended Applicationtasks, buffers & mapping

Program Creationbackend

Executioncommands & memories Binarieskernel

RuntimeC++ & OpenCL
ApplicationOpenVX 0

1

2
3

4

5

joint flow
main flow

minimal flow
library usage

module
model
data

Figure 4.8: Overview of the proposed High-Performance Vision toolchain.
The dotted lines show the use of the library consisting of HiFlipVX for FPGAs and OpenCL-based functions for other devices. The dense dashed lines show the main tool flow, whereasthe loosely dashed lines represent an alternative, where the user can decide on which devicethe vision functions should be executed. The solid line shows the part that is the same inthe main flow and in the minimal flow. The following gives a brief overview of the differentmodules and models and their use within the tool flow. After that, the configuration optionsof the toolchain and the integration of the FPGA are described.

Module Overview

Library module: The task of this module is to integrate the HiFlipVX library for FPGAs,and OpenCL capable libraries for other devices. Important for the selection of the OpenCLlibraries is that the contained functions are conform with the OpenVX specification. For thispurpose, the extraction of OpenCL functions from different vision libraries was examined.A list of OpenCL kernels is read by the OpenVX Graph Creation module and stored for allother modules within the platform model. This approach allows an easier integration of newlibraries or functions. Additionally, the OpenCL kernel source code can directly be used bythe Profiling module or the Runtime System module to create the binaries at design-timeor runtime, respectively. The HiFlipVX library is directly integrated into the OpenVX GraphCreation module to create the IP-cores.
OpenVX Graph Creation module: This module is needed by the user to implement anOpenVX application consisting of nodes and images. Using this module, the various kernelsfrom the Library module can be utilized. It provides many functionalities of the standardand integrates the HiFlipVX library. Its main functionalities are, the creation and verificationof the application graph, and the creation and synthesis of the IP-cores for the FPGA. Itgenerates the application model from the application graph including synthesis results andstores the IP-cores for the Profiling module.

178

4.5 High-Performance Vision Toolchain

Additionally, the module can search for all available OpenCL platforms and devices of thesystem. Besides this information, the module scans the Library module for OpenCL files(programs) and lists the defined kernels. All information obtained by the module is stored inthe platform model and provided to the OpenVX Graph Creation module and the ProgramCreation module. With the help of this information the OpenVX Graph Creation module cancreate an extended application model for the Program Creation module, which can beadapted by the user.
Profiling module: First, the available OpenCL devices are evaluated in terms of memorybandwidth and PCI-e transfer rates. Then, all available OpenCL kernels are executed onthe CPU/GPU devices to obtain their latencies. For FPGA devices, the HLS synthesis reportsforwarded by OpenVX Graph Creation module are used for the latency estimation. At theend, the obtained profiling data and extracted synthesis results are passed to the Mapping& Scheduling module including the application and platform models.
Mapping & Scheduling module: In this module, tasks are mapped to devices and a scheduleis created to estimate the total execution time and achieve an optimized mapping. It isdesigned in such a way that new scheduling and mapping algorithms can easily be addedand used. In this work, the HEFT algorithm was implemented to select devices for tasksbased on their properties. Since FPGAs have special properties that are very different fromCPUs and GPUs, the algorithm had to be adapted. Among them are the limited resourcesand TLP enabled by pipelining kernels. After scheduling and mapping, all new IP-cores andthe bitstream are generated. The binaries of all devices are then forwarded to the RuntimeSystem module.
Program Creation module: The task of this module is to take the solution of the Mapping &Scheduling module and to generate the OpenCL program needed by the Runtime Systemmodule. Its goal is to simplify and optimize the execution with regards to the utilized OpenCLAPI calls and required memory transactions. It also implements a memory abstraction layerincluding a MSI (Modified Shared Invalid) protocol to increase runtime performance andreduce code complexity. For this purpose, all data transfers between devices are calculated,synchronization points are generated, and additional memory objects are created.
Runtime Systemmodule: The task of this module is to execute the final program. It has beenoptimized to achieve high-performance by reducing computational overhead and parallelizingexecution. It executes the OpenVX applications of the OpenVX Graph Creation module thatwere translated into an OpenCL program by the Program Creation module. The final programis divided into system and application functions. The system functions are executed onlyonce to initialize or terminate the program and build all kernels. The application functionsrun an OpenVX graph and can be executed multiple times. In addition, the user can executeown functions or access the memory objects of the generated program.

Model Description

As shown in Figure 4.8, there are various models which are used as interfaces betweenthe different modules. There are three important models, which are described in moredetail below: (1) the platform model describes the system architecture, consisting of thevarious compute nodes, (2) the application model describes the application to be executedin the form of a DAG, and (3) the execution model describes the program flow including datatransfers and synchronization points. In addition, there is further meta-data including the

179

4 DECISION: Vision Framework

FPGA IP-cores and their synthesis results, the OpenCL profiling results, and the generatedbinaries.
Platform Model: The platform model is generated by either the OpenVX Graph Creationmodule or the Profiling module and consists of two parts. The first part of the model includesthe available OpenCL platforms (e.g., AMD, NVIDIA, XILINX, or Intel) and the usable devices(e.g., CPU, GPU, or FPGA) of each platform. To use the devices of a platform a context iscreated in OpenCL. All OpenCL objects belonging to a platform are stored in its context. Asshown in Figure 4.9 on the left, there are three different types of devices. The advantage of thehost device is that it can also execute native C/C++ functions within the OpenCL framework,which are not compiled with an OpenCL compiler. To execute native functions a specificnative command queue is needed, and its arguments (buffers) need to be mapped into hostspace. The IACCs (Integrated Accelerators) share memory with the host, while the DACCs(Dedicated Accelerators) have their own memory. The second part of the model contains allOpenCL programs (files) and their kernels (functions) that can be executed on the devices. Italso includes the native C/C++ kernels.

Device Type Queue Type Node Type

Host

IACC

DACC

Sync

Native

Device

Device

Read
Device
Write

Home(Native)

Local(OpenCL)

Remote(OpenCL)

Remote

Home

Local

Remote Remote

context 1

context 2

read write

unmap map
copy copy

read
write

read
write

Figure 4.9: Relation between device, queue, and node types (left) andOpenCL datamovementcommands (right) needed to transfer data in a SVM system.
Application Model: The application model consists of two parts, which are generated byeither the OpenVX Graph Creation module or the Mapping & Scheduling module. The firstpart of the model includes the different buffers, e.g., OpenVX (virtual) images, and their size.It is also necessary to know whether the data should be accessed before or/and after theOpenVX application. Since this information is not always apparent without the interventionof the user, default parameters are set in the OpenVX Graph Creation module, which can bemodified by the middleend. Thus, all buffers that have no source are marked as writable,and all buffers that have no destination are marked as readable. One effect of this approachis that input data is automatically copied to the respective computing devices and outputdata is copied back to the host. Another effect is that the buffers can be reused for otherpurposes after an application . Furthermore, the application graph can be executed multipletimes in a loop.
As shown in Figure 4.9, three different node types have been defined for a SVM (SharedVirtual Memory). Each DACC that uses a buffer has its own remote OpenCL memory object.All IACC and the host share a local OpenCL memory object. The home memory object andthe local OpenCL memory object point to the same physical memory address. However, thehome memory object can also be accessed from outside the OpenCL application. Due to

180

4.5 High-Performance Vision Toolchain

the limitations of compute nodes in standard x86-based systems, a few restrictions can bemade. Only one home node can exist per compute node. Furthermore, there can be multiplecontexts within one compute node. However, only one of these contexts can have a localnode. This context can have multiple IACCs and DACCs, but only one host. All other contextscan only consist of DACCs. On multisocket systems, all CPUs within one compute node willappear in OpenCL as a single CPU with multiple CUs. In the case of a cluster consistingof multiple compute nodes, an additional layer would be needed in the system, e.g., usingMPI.
The second part of the model includes all tasks without data transfers and synchronizationpoints. Tasks are instantiations of kernels with a given configuration, which are executed atruntime using command queues. As shown in Figure 4.9 on the left, each device has its owncommand queue to ensure that the execution is as parallel as possible. Additionally, the hosthas a special command queue for native C/C++ functions. This allows functions that havebeen parallelized using a different method, e.g., using OpenMP, to be integrated into theOpenCL runtime system. The DACC has two additional command queues to allow parallelreading and writing of data over the PCI-e bus, which is full duplex. All computation anddata transfer kernels, which are executed on the same command queue will be executedin-order. The different command queues are synchronized with each other via OpenCLevents. OpenCL also allows out-of-order execution within command queues, but this wouldrequire additional synchronization points, which is an unnecessary overhead. For this reason,there is one additional sync command queue, which is used to copy data between differentcontexts via the home node.
A task needs several parameters for its execution. On the one hand on which device andplatform it is executed. On the other hand, which kernel is executed from which program.Additionally, the size of the NDRange and the argument list (function parameters) are needed.For most devices, the NDRange is equal to the resolution of the input image. However, forall FPGA functions the size is one, because the parallelization is done explicitly inside ofthe kernel. Each argument needs the buffer ID, size, and offset, and a flag for the accesspattern of each argument (read, write or both). This access type also depends on the targetdevice and its kernel implementation. For example, the optimized Gaussian accelerator of
HiFlipVX only writes to its output image, whereas a simple implementation would read andwrite from/to the output image. The device and platform information are only included inthe extended application model, as it must be generated either by the user or Mapping &Scheduling module. All transactions that occur will be generated by the Program Creationmodule out of the buffers, the task parameter lists and the available platforms and devices.
Execution Model: The execution model is generated by the Program Creation module andconsists of two parts. In the first part, all information that is processed in the initializationphase of the Runtime System module is stored, to reduce the OpenCL-related overhead.First, it contains the platforms and their devices, which are used by the applications. Second,it contains the programs and their kernels, which are used within the applications. Third, itcontains the utilized buffers and their size. Each buffer has a list of devices that accesses thebuffer. This entry contains the node type, the host and device access flags to the memoryobject and to which device it belongs. However, there can only be maximum one entry forthe local node and maximum one entry for the home node.
The second part of the model stores the application(s) including all OpenCL commandsneeded for execution and synchronization. It contains a list with one entry for each commandqueue that executes kernels for computation, data transfer or synchronization. This entry

181

4 DECISION: Vision Framework

contains its context ID, device ID and queue type. For each of these command queuesthere is a list of commands which are necessary to execute the application. Each entry inthese lists is linked to a kernel command (native or NDRange) or copy command (copy, reador write). Other command queue commands, like map, unmap or barrier are integratedwithin the corresponding entry of the list since they can only occur together with the othercommands. Depending on the queue type (native, device, read or write) different data needsto be stored. These are: (1) the program and kernel, (2) the NDRange, (3) the buffer IDsand sizes (parameter list), (4) the input events and output event, and (5) the unmap and mapcommands. The events are used to profile each command on the command queue and tosynchronize kernels between the different in-order command queues.
An additional list contains all events and their connections to each other. This is becausecommands of different contexts are synchronized with each other by connecting normalevents with user events, and multiple user events can be triggered by one normal event. Thelast list of themodel stores the initial state of each buffer for a particular application. Since thisinformation is application-bound, it cannot be included in the buffer list for the initializationphase. Storing the initial state is important to allow the Runtime System module to restorethis memory state, e.g., when executing the application multiple times.

FPGA Integration

OpenCL provides two API functions to program compute devices. The first one expects astring of OpenCL C code which is compiled at runtime. The second one expects precompiledbinaries of device-specific code or an implementation-specific IR. FPGA devices are onlycapable to use precompiled binaries, since bitstream generation is very time consuming.Since the Profiling module for CPUs and GPUs must generate all binaries for profiling, thesecond approach can also be adopted for these architectures. In terms of performance,using precompiled binaries did not cause any disadvantage.
The generation of the bitstream for the FPGA is triggered after executing the Mapping &Scheduling module. If multiple kernels, which are consecutive in the graph, have beenmapped to the same FPGA, new IP-cores are automatically generated that combine theminto one kernel. To connect multiple concurrent functions in one IP-core, the dataflowand stream are needed. The rest of the IP-core generation has already been explained inthe OpenVX Graph Creation module in Section 4.2. After bitstream generation, all binariesneeded to run the application are prepared for the Runtime System module.
To integrate XILINX FPGAs into the rest of the OpenCL program, the vendor toolchain needsto be integrated. This toolchain is named SDAccel until version 2019.1 and Vitis thereafter.The FPGA itself can be programmed using the integrated xocc compiler. To do this, eachkernel is compiled independently into an (.xo) object file, and then linked together to createthe binary (.xclbin). One advantage of this tool flow is that besides OpenCL, also C/C++ canbe used to implement an FPGA kernel.

Configuration

An incremental Makefile was created to combine the different modules of the High-Per-formance Vision toolchain. It can be used to compile and execute the different modules of

182

4.5 High-Performance Vision Toolchain

the toolchain in the correct order. The Makefile enables linking against numerous OpenCLimplementations, either directly or by using the ICD (Installable Client Driver) loader. It alsointegrates the XILINX FPGA toolchain (Vitis or SDAccel). In addition, there is a set of parameterswhich allow the user to configure the toolchain.
• PREFERRED_OCL_PLATFORM: Selects the desired platform from the platform model.
• PREFERRED_OCL_DEVICE: Selects the desired device from the platform model.
• DIRECTLY_WRITE_SCHEDULE: Allows to create the application graph and map the visionfunctions that are used in the Program Creation module, according to the preselectedplatform and device. The output can be used to skip the Profiling module and the Mapping& Scheduling module, or to manually create the mapping. Setting the parameter wouldalso make sense if, e.g., there is only one accelerator, and it should execute all visionfunctions.
• PROTO: Creates the application graph as protobuf output for the Profiling module.
• GENERATE_XO: Switches between the IP-core generation methods of the two toolchains inthe DECISION framework. If set, it generates the required .xo files for the SDAccel (Vitis)tool from XILINX.
• USE_PRECOMPILED_BINARIES: Required by the Runtime System module to indicate if thebinaries generated by the Profiling module should be used to program the devices. Other-wise, the source files of the Library module are used to create the binaries at runtime.

4.5.2 Library Module

An important part of the High-Performance Vision toolchain are the various kernel implemen-tations from different computer vision libraries. A major component of the Library module isthe HiFlipVX library, which allows addressing FPGAs. Since OpenVX is an open specification,there are many vendors that provide compatible devices and compliant implementationsthat can be added to the Library module. The conformance of these libraries makes OpenVXapplications portable and allows them to run on the devices of the same vendor. Some ofthese libraries use OpenCL to implement their kernels. To make use of these libraries andovercome the vendor binding, this thesis investigated the automatic extraction of OpenCL ker-nels for OpenVX functions. In addition to OpenVX-compliant vendor implementations, thereare also numerous other vision libraries that use OpenCL and provide similar functionality.
As described in Section 2.4.2.2 there are several libraries that are either OpenVX compliantor implement a similar functionality. As a proof of concept, the AMDOVX library has beenpartially integrated into the Library module. Therefore, for each of the inserted libraries(AMDOVX & HiFlipVX), there is an entry with the functions contained in it. As a fallbacksolution, the Library module contains a set of default function that are not representedby one of the integrated libraries. In the current state it consists of four simple OpenCLimplementations which should be executable on every OpenCL capable device.
Besides AMDOVX, AMD also offers the newer MIVisionX library, which requires PCI-e 3.0atomics and therefore cannot be used by all available GPUs of this work. Therefore, thiswork use the AMDOVX library. Since no changes to the library were necessary, the packagesprovided by the distribution’s package manager has been used. Unfortunately, the AMDOVX

183

4 DECISION: Vision Framework

library implements OpenCL kernel only for GPUs, while it provides highly optimized x86 codefor CPUs. To use them, the High-Performance Vision toolchain provides the possibility to runnative C++ kernels.
As described in Section 2.4.2.2, AMDOVX consists of several tools. The RunVX tool generateskernels with additional control parameters, which makes its kernels incompatible with theHigh-Performance Vision toolchain. To create compatible kernels, the tool source codewas adapted to extract the control parameters and define them as internal variables withinthe kernel source code. To use the AMDOVX implementation, the required functions aregenerated before they are used in the Profiling module. A patched fork of the repository hasbeen created [272].
The rich feature set of OpenCV makes it a perfect candidate to develop computer visionapplications. Fortunately, some of its functions support OpenCL device acceleration. Sincethese functions have been optimized according to their algorithm, they are perfect forkernel extraction, which can then be used within the toolchain. Unfortunately, the OpenVXspecification is not fully covered by the available OpenCL kernel implementations. Beforethese kernels can be used in the Library module, their function headers must be adaptedin a similar way to what has been done with the AMDOVX library. Since OpenCV does notprovide a command line interface to easily use these kernels, this is a manual task.

4.5.3 Profiling Module

Tomake an accurate distribution in theMapping & Scheduling module, the system, its devices,and the application kernels need to be evaluated. In the Profiling module this is done byprofiling the devices within the systemwith respect to their available bandwidth, PCI-e transferrate, and execution overhead. Additionally, the kernel execution times are determined forCPU and GPU devices via profiling and for FPGAs using estimations.
The Profiling module starts by reading the application model and the synthesis results. Theavailable platforms and devices are then detected and stored in the OpenCL context. Fromthis the platform model is generated. Then the devices and PCI-e are evaluated. Next, thekernels are read, compiled, and profiled. In addition, it verifies if an OpenCL source fileimplementing that function is available. The available kernels are stored together with theplatform model. Finally, the profiling data and the models are passed to the Mapping &Scheduling module.

OpenCL Devices

One overhead of dedicated devices is that data must be transferred between host and devicevia the PCI-e. To calculate reliable timing data, the bandwidth and latency of each deviceconnected via PCI-e needs to be profiled. Due to different drivers and hardware architectures,different devices can achieve different transfer rates even over the same PCI-e. There arethree different types of transfers: host-to-device, device-to-host, and device-to-device.
Inside the Profiling module there is a function which measures the transfer rates betweendevice and host using the OpenCL functions. By using prepared buffers with a size of 1 kB to256 kB in 1 kB steps, it measures the transfer rate of the device. For the measurement on the

184

4.5 High-Performance Vision Toolchain

FPGA, the xbutil dmatest command line utility from XILINX was used. However, it can onlytransfer buffer sizes that are a multiples of two, which reduces the available measurementpoints. The process is repeated several times to calculate the average transfer rate. A linearfunction for the transfer rate, consisting of the latency and bandwidth, is derived from themeasurements.

transfer_ time [μs] = latency [μs] + buffer_ size [kB]
bandwidth [GB s–1] . (4.7)

CPU and GPU Kernels

All kernels of in the input application graph require profiling data. Therefore, every kernel isexecuted on all available CPU and GPU devices to get the timing results. For this purpose,each kernel is compiled and stored as a binary file, which can be reused later in the RuntimeSystem module to execute the function. The program code of this module is also well suitedto execute the kernels on the devices. Additionally, the Profiling module checks if there is akernel implementation in the Library module for the respective device. This can be, e.g., ageneric or vendor specific implementation.
To make a reliable prediction, each kernel is executed several times. As metric two differentmethods can be chosen to catch the outliers. In the first method the median value is taken,so outliers in both directions can be avoided. In the second method the average value of the
N percentile best results is chosen. Both methods try to filter the upper outliers, which canoccur through background work of the OS.

FPGA Kernels

Since bitstream generation would be too time-consuming for the FPGA, the synthesis resultsfrom the OpenVX Graph Creation module are used to estimate the execution time. If thekernel is not memory bound, the determined execution times from the synthesis tool arevery accurate. They are only missing the additional latency, needed for the data transferto and from DDR memory of the FPGA, and for starting the OpenCL kernel. The streamingcapability and similar structure of the HiFlipVX functions, allows a simplified estimation ofthe overhead. The overhead of the data transfer results from two delays: (1) Transfer timeneeded for the first data until the function has started (ttransferstart). (2) Transfer time of the lastbyte after the function has finished (ttransferend). The overhead to start kernel execution alsohas a constant factor (tkernel) that increases with the amount of kernel parameters that needto be transferred (tparameter). The total overhead can be determined for the respective device,independently of the kernel. It only needs to be determined once per system and does notneed to be recalculated for each kernel or application.
toverhead = ttransferstart + ttransferend + tkernel + N · tparameter (4.8)

If the function is bandwidth limited, the total latency calculated by the synthesis tool changesby a certain factor. This is a very rough estimation of the bandwidth limitation, which isaccurate enough for most vision functions. Since the data transfer of a function cannot

185

4 DECISION: Vision Framework

always be divided evenly over the duration of the function, a more accurate model would beneeded for those cases. Therefore, the execution of a function would need to be dividedinto time intervals. An example of this is the histogram function, which consists of severalloops. Equation (4.9) shows the effect of the bandwidth limitation and for a function that hasbeen divided into several time intervals.

testimated = toverhead +
N–1∑
i=0 (tlatencyi · min(1, bandkerneli

bandmemory
)) (4.9)

4.5.4 Mapping and Scheduling Module

In the preceding modules, an application graph and model were created from an OpenVXapplication. In addition, its nodes were profiled on CPU and GPU devices, or estimatedmetrics were derived from FPGA synthesis results. This subsection discusses the generationof an optimized mapping and schedule using an adaptation of the HEFT [112] algorithm.While the HEFT algorithm schedules the nodes of the application graph on common OpenCLdevices such as CPUs and GPUs, some adaptations and limitations must be considered forFPGA architectures.

FPGA-based Constraints and Characteristics

One major constraint that limits computational performance is the limited amount of FPGAresources. To make the best use of resources, the user can consider several factors. Forexample, when using HiFlipVX, these would be the vector size, or the number of functionsbeing executed concurrently. Thus, the trade-off between memory and computational effortmust be considered.
A major difference compared to common CPU and GPU approaches is the simultaneousexecution of different kernels running in a pipelined manner, resulting in a higher utilizationof hardware resources, as shown in Figure 4.10. This approach is enabled by the pipeliningand streaming capability of the HiFlipVX library functions, where data can be streamed fromone function to another and directly processed. The streaming of functions is mainly enabledby using a sliding window approach, which also reduces the utilized memory bandwidth.

function A
function B
function C

code

function A function B function C . . . function A
function B

function C
Function A

function B
function C

. . .

clock

functionexecution

no dataflow pipelining dataflow pipelining

15 cycles 8 cycles
Figure 4.10: Dataflow pipelining latency effects, adapted from [214].

186

4.5 High-Performance Vision Toolchain

The estimated latency of a single function can easily be calculated from the synthesis resultsusing the trip-count, depth, and interval of the pipeline. The trip-count can also be calculatedusing the vector size, image resolution, and sliding window size. The estimated executiontime for executing multiple streaming-capable functions in a pipeline can be derived fromaforementioned variables. The overhead of executing multiple functions results mainly fromfilling the line buffers and the sliding window, and from the resulting pipeline.
As shown in Equation (3.25), increasing the vectorization reduces the overall latency almostto the same extent. It can also affect the pipeline depth and the achieved frequency, basedon the dependencies of the implemented algorithm. Resources are affected almost linearly.However, due to compiler optimizations and shared logic, they usually increase at a lowerfactor than the vectorization level. In addition, there is an overhead for interfaces and controllogic.

Algorithm

The focus for the selection of nodes in the FPGA-based mapping algorithm is the pipeliningof functions. The algorithm aims to create the longest possible pipeline, and thus achievethe highest possible parallelization to increase maximum performance. First, the entire DAGis placed on the FPGA, since this eliminates all additional data transfers to main memory,except for the initial input and final output. If the entire graph cannot be placed on the FPGAdue to resource constraints, subgraphs are created.
If no subgraph could be created, the first node of the longest path in the DAG is chosenas starting point for the algorithm. The main reason for this approach is that starting fromthis point the longest pipeline can be created and thus the highest degree of parallelizationcan be achieved. If no subgraph meeting the resource constraints can be created, it willbe iteratively split into smaller subgraphs. After each division, the resource constraints arechecked again. If still enough resources are available, the subgraphs are extended by furthernodes to utilize the available resources and reduce the total make span. It must be notedthat a 100% utilization of the FPGA can lead to problems with the place and routing processor minimize the maximum achievable frequency.
Subgraphs refer to a part of the original OpenVX DAG that is only connected to the rest ofthe graph via maximum one input and one output point. This procedure reduces the neededbandwidth and prevents possible deadlock situations. During the iterative expansion of thesubgraphs, the algorithm ensures that these conditions are still met. For each of the resultingsubgraphs the corresponding execution time is calculated, as shown in Equation (3.25). Usingthe HEFT algorithm, the remaining nodes are distributed on other available devices, and thetotal execution time is calculated. Finally, the distribution with the lowest execution time isselected.
For the described approach, the HEFT algorithm had to be adapted to detect concurrentdata transfers and include them in its scheduling decision. While the original order of nodeswas not changed, additional delays were introduced. When a data transfer occurs, a paralleltransfer is executed with the rest of the available bus bandwidth if other transfers are takingplace.

187

4 DECISION: Vision Framework

4.5.5 Program Creation Module

The task of the Program Creation module is to take the results of the Mapping & Schedulingmodule and to generate the complete information needed by the Runtime System module.The goal is it that the Runtime System module needs to perform as few as possible additionalcomputations to manage the execution of the application. One focus is on the generationof a virtual memory system, which creates the inter-device data transfer. For this purpose,all data transfers, synchronization points (OpenCL events) and additional memory objectsare generated. Thereby it is important that the path with the shortest latency is chosen fordata transfer. Using synchronization points, the amount of data transfers can be reduced formultiple readers of the same buffer. Although the OpenVX Graph Creation module in thefrontend and avoid multiple readers when using the FPGA, this is done to be usable on awider scope. In general, the Program Creation module also works without the Mapping &Scheduling module. In this case, the user can either set the mapping manually or adjust itbased on the application and platform models generated by the OpenVX Graph Creationmodule.

Shared Memory System

Table 4.1 compares the five different access patterns a kernel argument can have. In thiswork, a MSI protocol was implemented to ensure coherence, since there can be one memoryobject of the same buffer on different nodes. For this purpose, a reader-writer model wasrealized, where there can be either one writer or several readers of the same buffer at thesame time. The buffer is in shared state if there is only one writer (owner) and no reader. It isin shared state if there is at least one reader. If an owner makes a read access to the samememory object in a subsequent kernel after a write access, the state also changes to theshared state.
Table 4.1: The different actions for the access patterns a kernel argument can have. Howdoes the protocol change (modified, shared, invalid)? What happens to the othermemory objects of the buffer (bus action)? What happens to the owner and thereaders of the buffer? How is the kernel access during execution? How is thememory mapped into host space if it is a native kernel?

read only createwrite only createread write updatewrite only updateread write
Modified shared - - modified modified
Shared shared - - modified modified
Invalid - modified modified - -
Bus action bus-read bus-create bus-create bus-update bus-update
Owner - create create update update
Readers add - - clear clear
Kernel access read only write only read write write only read write
Host map flag read invalidate invalidate write write

188

4.5 High-Performance Vision Toolchain

Depending on the access of a kernel to a buffer, a bus action is triggered. There are threedifferent types of bus actions. A bus-read adds a new reader to the list of readers andthe buffer goes into the shared state. A bus-create creates the new owner and can onlyoccur if the buffer has not yet been used. A bus-update first reads the data, deletes allprevious readers after they are finished reading, and creates a new owner. The "kernelaccess" represents the access from a kernel to its own memory object. When accessing thehome memory object from the host side, the local memory object must be mapped intohost space (read, write, or invalidate). The reason for the detailed observation is because theOpenCL runtime system can perform its own optimizations depending on the access patternof the mapped memory object.

Program Flow

The first part of the Program Creation module generates the lists for the initialization phaseof the Runtime System module. The second part generates the command queues, events,and updates the memory objects. Listing 4.3 shows a rough program flow of the second part,which takes the application model as input and creates the execution model as output. Amain task of Program Creation module is to keep the buffers between the devices coherentand to create the required data transfers, synchronization points and additional memoryobjects. This is done by iterating over the execution list of the input (line 2). Each elementin this list represents a native or NDRange kernel that should be executed by the RuntimeSystem module via the command queues. For each argument of a kernel the requiredtransactions, synchronization points and additional memory objects are generated in the
compute_transactions() function (line 3-4). If data needs to be copied over the PCI-e bus,additional kernels to copy data are added to the output (line 3). Finally, the kernel, with allits synchronization points (events), and map, unmap and barrier commands, is added to theoutput (line 6). The second loop iterates over the memory list to copy all data needed afterthe application back to the home node (line 9). If data needs to be sent via PCI-e, copy kernelsare added to the command queue (line 10-11). A final home kernel is added if data needs tobe mapped from the local node to the home node (line 12).
1 // Create commands for application
2 loop: execution_list
3 loop: argument_list
4 compute_transactions()
5 add_copy_kernels_to_queue()
6 add_device_kernel_to_queue()
7
8 // Copy needed data into host space
9 loop: memory_list
10 compute_transactions()
11 add_copy_kernels_to_queue()
12 add_sync_kernel_to_queue()

Listing 4.3: Programflowof the ProgramCreationmodule to generate all commands executedon the command queues and the synchronization points between them.
The compute_transactions() function can be divided into several steps. In the first step,

189

4 DECISION: Vision Framework

when a buffer is used for the first time, it is checked which state it had before the execution ofthe application. For example, if the buffer was written prior to the application, the state is setto shared state and the home node is set as owner. If the buffer has a local node, its memoryobject must be mapped into host space. In addition to this, the required memory object forthe home node must be created. In the next step, the memory objects that are necessaryfor the memory access of the kernel are created. Then, the type of bus action, needed toaccess the data, is calculated (create, update, or read). In case of a bus-read or bus-update,the data must be read from the closest owner or reader. In case of a bus-create no dataneeds to be read.

Transaction Distance/Latency Calculation

The next step of the compute_transactions() function calculates the nearest memoryobject of a buffer to read from in case of a bus-read or bus-update. For this purpose, thedistance to the owner, the readers and all other events that were created while copying datais calculated. As synchronization point for reading, the output event of an owner or the inputevent of a reader is used. The distance that the data has already traveled to a reader or copyevent is added to the final distance. Distance refers to the latency required to transmit thedata.
The right side of Figure 4.9 shows the commands for transferring data between the differ-ent nodes. Various operations are included in the calculation of the distance (or latency).Commands like map and unmap or synchronization events have a lower latency. However,a distinction must be made between inter and intra context events. Since there are nobindings between the platforms of different vendors, it is not possible to synchronize withnormal OpenCL events between command queues of different contexts. Therefore, specialmechanisms were realized in this work, which are explained in more detail within RuntimeSystem module.
The map and unmap commands are usually zero copy commands if the buffers are configuredand aligned properly. They ensure that memory access between host space and devicespace is coherent. The copy commands, which send data via the PCI-e bus, thereforerequire more time. Measurements have shown that depending on the transfer direction andOpenCL command, different bandwidths and latencies can be achieved. In some systemsand configurations higher transfer rates can be achieved with the OpenCL copy commandthan with the OpenCL read or write commands. Therefore, this work prefers the path fromremote node to home node via the local node, if it exists, compared to the direct path usingthe read command.

Kernel Transaction and Synchronization Creation

In the last step of compute_transaction() function from Listing 4.3, all commands neededfor a transaction are generated. Figure 4.11 shows an example system consisting of threecontexts to represent all different data transfer possibilities within one compute node. Inthis case, d1 – d2 could be a CPU, which can be used as a host or as a device, d3 could be anintegrated GPU, and d4 – d8 could be dedicated GPUs and FPGAs. While d1 computes onthe home node, d2 – d3 compute on the local node. All other devices have their own remotenode. Each node represents a memory object in the same buffer. Memory objects are only

190

4.5 High-Performance Vision Toolchain

created if they are accessed. In total, this work identified 18 different transfer patterns forthe example system of Figure 4.11. Three further transfer patterns arise when the local nodeand devices d1 – d3 are omitted. A detailed examination of the transfer patterns can befound in Appendix A.1.

remote remote remote remote remote local home

dacc
dev

d6

dacc
dev

d7

dacc
dev

d8

context 1context 2context 3
dacc
dev

d5

iacc
dev

d3

host
hst

d1

host
dev

d2

dacc
dev

d4

Figure 4.11: Example system to cover all possible types of data transfer.
For synchronization of data movement and kernels there is a series of events (e1 – e5), suchas inter context events (e1) and intra context (e2). Barriers are used inside of device and hostqueues to wait until all input events of all transfers have been generated so that the kernelcan be executed (e5). In case of a bus-update, the system additionally waits until all readersof the buffer are finished. After a bus-read, read commands can then read from these events(e3). If the data is copied via another node during transfer, additional synchronization pointsare generated from which data can be read (e4). A closer look at these points reveals thatthey occur either on the local or on the home node, which is used for further simplification.
There is a set of conditions (c1– c6) for the execution of several commands. For a bus-update,the barrier waits until all readers have finished reading or the owner has finished writing(c3). Only then data can be written to the memory object. Memory objects that have been
mapped for reading into the host space can be read from the local node without an unmapcommand. However, an unmap is necessary to read from the local node if the data was
mapped for writing (c2). Conversely, it would also not be possible to copy data from a remotenode to a local node if it was mapped to host space for writing. However, this case will notoccur because the home node is closer to the local node as compared to the remote nodes.For a bus-update, an unmap is also needed if the data is mapped for reading before it can bewritten to the buffer (c1). If the host’s map flags change, the unmap and map commands areneeded to change these flags (c4). For example, after the flags have been changed fromwrite to read, the local node could read from the same memory object in parallel without an
unmap. It can happen that data was written to the home before the application was executed.In these cases, there is no input event for synchronization (c5). It makes a difference whetherthe source is the device itself or whether it is an event that occurred on the home node bycopying data to it (c6).
For all transfers that go via the host, without it being the destination, the map/unmap commandsare executed on an extra command queue. This queue is necessary so that on the one handthe host queue is not blocked and on the other hand the map/unmap commands are notblocked. If data has been copied over a node without being explicitly used by a NDRange ornative kernel, an additional memory object must be created for the Runtime System module.If necessary, the flags of the other memory objects within the buffer also need to be updated.It updates the OpenCL memory access pattern, which show if a buffer is used for reading,writing or both. This information gives the OpenCL runtime system the opportunity to dosome optimizations.

191

4 DECISION: Vision Framework

For read, write, or map commands, the memory access patterns need to be updated. Fora read command from a remote to the home memory object, the home access pattern isupdated for writing. Additionally, the remote access pattern is updated for reading. For awrite command from the home to a remote memory object, the home access pattern isupdated for reading. Additionally, the remote access pattern is updated for writing. For a
map command, the access pattern needs to be updated depending on its flags.
At the end of the compute transaction function from Listing 4.3, the memory is updateddepending on the bus action (read, update, or create). First, the MSI protocol of the buffer isupdated, and second, the map flags for the home memory object are updated. A bus-readadds a new reader to the list if the device is not already on the list. Otherwise, the existingreader is updated. During a bus-update, all readers and additional synchronization pointsfor reading are deleted. In addition, an owner is set in case of a bus-update or bus-create.

4.5.6 Runtime System Module

The generated application is executed by the Runtime System module. It is optimized toachieve high performance by reducing computational overhead and parallelizing variousprocesses. The Runtime System module executes the OpenVX applications of the OpenVXGraph Creation module that were translated into an OpenCL program by the ProgramCreation module. Listing 4.4 shows an example program flow, which executes the sameapplication several times in a row. The program can be divided into system and applicationfunctions. The system functions are executed only once for all OpenVX graphs, while theapplication functions can be executed multiple times. The system is like the OpenVX contexts,whereas an application executes a single OpenVX graph. In addition, the user can executeown functions or access memory objects of the OpenCL program.
System functions: First, a system object is created (Listing 4.4 line 3). Next, the system isinitialized using the execution model (line 4). It creates the OpenCL contexts including allneeded platforms, devices, and command queues. It builds all needed programs and theirkernels. It builds all needed memory objects. In addition, it creates one thread for eachcommand queue needed for the devices, as shown in Figure 4.9 on the left. In the terminationfunction, all of these threads are terminated after they finished, and the profiling results areevaluated (line 13). After the initialization function and before the termination function, thecreated memory objects can be used in user defined code.
Application functions: The user can access certain memory objects before and after theexecution of the application (line 7). For this purpose, the user had the opportunity in theOpenVX Graph Creation module to mark all memory objects which are used by the userbefore or after the application. To ensure that the memory objects can be used properlywithin the application, they must first be set to their initial state (line 9). In the Application-
Run() function, the graph created by the Program Creation module is executed. For thispurpose, all commands for the command queues are sent to the individual threads forexecution.
During execution, the event objects are created. These events are used to synchronize thecommands between different command queues. They cannot be created during initializationbecause they are created by the command queue commands and cannot be reused. If theappropriate flag is set, the events are also used for profiling. After all commands have been

192

4.5 High-Performance Vision Toolchain

1 #include "../ocl_config/config_mapper_ovx.h"
2 int main(void) {
3 FrontendRunner runner; // System object
4 runner.ApplicationInit(kOclConfigInitialization); // System Initialization
5 // USER CODE
6 for (int i = 0; i < N; ++i) {
7 runner.ApplicationReset(kOclConfigApplication); // Reset application memory
8 // USER CODE
9 runner.ApplicationRun(kOclConfigApplication); // Run application graph
10 // USER CODE
11 }
12 // USER CODE
13 runner.ApplicationExit();// System termination
14 }

Listing 4.4: Complete program flow of the Runtime Systemmodule that executes one OpenVXapplication graph multiple times.

executed, the profiling results will be saved. Besides the profiling flag, there is a debuggingflag, which gives additional information during the execution of the program. The followingwill explain the content of the four Runtime System module functions shown in Listing 4.4.

System Initialization

In the ApplicationInit() function (Listing 4.4 line 4) the execution model is used to createthe majority of the needed OpenCL objects. One goal is to create all objects that can becreated before the execution of the OpenCL applications to minimize the overhead of theOpenCL runtime system. Thereby, the contexts, command queues, programs, kernels, bufferobjects, and platform and device IDs are stored. In addition, the required amount of memoryis allocated in host space to minimize requests to the OS.
After all OpenCL objects are created, a thread is created for each command queue. Executingeach command queue in a separate thread increases the performance, by reducing thewaiting time in the host program. These threads wait in an infinite loop for new commandsto be executed on their command queues. After all applications have been executed, the
ApplicationExit() function (Listing 4.4 line 13) sends a termination message to all threadsso that they can be terminated. If the profiling flag is set, all profiling results and timingmeasurements are evaluated and reported. In the following paragraphs the creation of thedifferent OpenCL objects is described.
First, an OpenCL contextsmust be created for each used platform. Contexts are used by theOpenCL runtime to manage command queue, buffer, program, kernel, and event objects. Acontext is created for all devices of a platform that will be used by the applications.
Second, for each device, a certain number of command queues is created. Figure 4.9 showsthe number of command queues needed for the different device types. An additional synccommand queue is created for the home node if there is at least one IACC or host device inthe overall system. This command queue is in the same context as the IACCs and the host andis used as default command queue. A default command queue is set to reset the mapping

193

4 DECISION: Vision Framework

of OpenCL buffer objects and for synchronizing data transfers between different contexts.All command queues in this work are created for in-order execution and use profiling if thecorresponding flag is set. Creating multiple command queues and using in-order executionensures an optimized performance while keeping the amount of synchronization eventssmall.
Two pieces of information are needed, to determine the device type shown in Figure 4.9.The first is to identify if the device shares memory with the host (CL_DEVICE_HOST_UNIFIED-
_MEMORY). The second is to determine whether the device can execute native kernels (CL-
_DEVICE_EXECUTION_CAPABILITIES). Due to differences over the OpenCL versions, somefunctions are deprecated in newer versions or not available in older versions. These versionconflicts can partially be managed by using the preprocessor macros of the host headerfiles. Additionally, the OpenCL version of each device must be checked, as they may have adifferent OpenCL version, even within the same platform. A good example is the clCreate-
CommandQueueWithProperties command, which is used for all versions starting from 2.0,while the clCreateCommandQueue command is used for all lower versions.
Third, all OpenCL programs are created, built, and linked. An OpenCL program object can becreated from source or from binary. For the first variant the programs are compiled at runtimeand for the second variant precompiled binaries are used. For FPGAs, precompiled binariesmust be used since bitstream creation is a very time consuming task. The precompiledbinaries are created by the Profiling module for non-FPGA devices and after the Mapping &Scheduling module for FPGA devices. Within the execution model the program informationis separated by contexts and devices. This allows programs to be built for specific devicesand not for all devices of the same context. This separation is also important since it reducesthe compilation time and since compiling OpenCL programs is the most computationallyintensive operation in the initialization phase.
Fourth, all OpenCL kernel objects that are needed for the various applications are created.Separating the programs by devices has the advantage that kernels can be optimized forspecific devices. For example, device specialized compiler flags can be used to optimize akernel. Native C/C++ functions (or kernels) are not compiled using the OpenCL compiler.
Fifth, all OpenCL buffer objects are created, and host memory is allocated if necessary. Tosimplify the usage of memory and to hide data transfers, a SVM has been developed. SVMalready exists in OpenCL. However, it did not exist before version 2.0. Since at the time ofthis work there are still some vendors, like XILINX or NVIDIA, that do not have a full OpenCL2.0 support, it is not used. For each buffer in the execution model, there is one entry foreach device that uses it. It is possible that an entry exists if the buffer is used by the homenode. For example, this is the case if the buffer needs to be used by the host before or afterthe application. Maximum one memory object is created for all IACCs and the host, and onememory object is created for each DACCs.
When creating a memory object, the correct flags must be set. For this purpose, the deviceand host flags of the memory objects are read from the execution model and updated foreach device that uses the same object. These flags determine whether the host or deviceaccesses a memory object either for reading, writing, reading and writing, or not at all. Anoptimal configuration of the memory object allows OpenCL to make specific optimizations. Amemory object can be accessed either by NDRange or native kernels, or by map, unmap, reador write commands. If a memory object is used by an IACC, the host or the home node itself,a home memory object is allocated in host space. The CL_MEM_USE_HOST_PTR flag must be

194

4.5 High-Performance Vision Toolchain

set for the local node to use this memory object. This has several advantages. The memoryobject can be used before the application without any problems. The memory object willbe allocated beforehand and not when it is used for the first time. When allocating thehome node, the cache line size is used so that OpenCL can achieve optimal transfer rates(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE).

Application Execution

The ApplicationRun() function (Listing 4.4 line 9) executes an application, which can berepresented as an OpenVX graph. Figure 4.12 shows an example of the methodology usedwithin this function. The goal of this methodology is to execute the OpenCL kernels withthe lowest possible time overhead. In the main thread, the messages created by the Pro-gram Creation module are forwarded to the respective threads via message queues withoutneeding to change them. A message contains a pointer that points to the command list that istargeted for a particular queue. A lock-free single-consumer, single-producer architecture isused to manage themessage queues [273]. The threads iterate through the list of commandsto process them one by one and to queue the necessary commands on their commandqueues. In addition, some synchronization mechanisms are used, which are described in thenext paragraph.

HOSTIACCDACC

mainthread

CPUGPU

messagequeues

commandqueues

FPGA

homethreadhostthreaddevicethreaddevicethreadreadthreadwritethreaddevicethread

Figure 4.12: Multithreaded OpenCL runtime system to execute OpenVX graph applications.
Synchronization Mechanisms: One task of OpenCL events is the synchronization betweendifferent commands that are executed in command queues. A normal event object can havefour different states: queued, submitted, running or complete. When an event is used asoutput of a command, it is created with state queued after the command is placed in thecommand queue. If one or more events are used as input, the command cannot be executeduntil all input events have reached the complete state. The synchronization of normal eventsis managed by the OpenCL runtime system.
Since each thread has its own command queue, it can enqueue its commands independentlyof the other threads. However, since events are not created until a command is enqueued,it can happen that a command is enqueued without having its input events being created.

195

4 DECISION: Vision Framework

Since this would lead to a runtime error, additional synchronization mechanisms are usedbetween the threads to prevent this. These synchronization mechanisms work as simplebarriers using a consumer producer principle. For this a simple atomic operation is usedusing store and load operations, which allows a lock-free synchronization. Each event hasits own synchronization variable.
If the consumer thread has to wait, it is suspended by a yield command after each unsuc-cessful query so that it is returned to the OS scheduler. This is done to avoid that the threadutilizes the host unnecessarily by performing a busy-wait cycle. Measurements have shownthat this method is significantly faster than releasing the host using a sleep or wait command.On the other hand, this method is less energy efficient than a sleep or wait command becausethe host is still fully utilized. Since performance is a higher ranked goal of this work, the yieldmethod was chosen.
Since an event is bound to a context, it cannot be used for synchronization between differentcontexts. To solve this problem OpenCL user events are used in this work. User events arecreated and modified by the user, in contrast to normal events. At creation, a user event hasthe status submitted. This can be explicitly changed by the user to the state complete.
It needs two events to synchronize two commands running on different contexts. Theproducer command creates and controls a normal event. The consumer command gets auser event as input. A callback function responds after the normal event is set to completeby the producer. In this callback function, the user event from the consumer is set to
complete so that the consumer can execute its command. Since callback functions requireadditional time, it must be avoided that an unnecessary amount of such functions is executed.Therefore, the callback function acts as a multicast that controls all consumer events thatdepend on a producer event.
Command Execution Order: Figure 4.13 shows the different operations and commandqueue commands that can occur during the execution of a message. There are five differenttypes of command queues. Depending on the queue type, different operations can beperformed. The operations with the dotted lines have suboperations, which are shown onthe right side of the figure (blue boxes). All commands executed on the command queue arewritten in bold letters (green boxes). The producer/consumer synchronization points wereexplained in the previous part and are needed to synchronize events (orange boxes).
The first operation in all queues is a barrier that waits for all input events. Before an OpenCLcommand can be enqueued into a command queue, it must wait for the input events to becreated (sync consumer). The OpenCL command used to enqueue the barrier is clEnqueue-
WaitForEvents (up to version 1.1) or clEnqueueBarrierWithWaitList (from version 1.2).The enqueue barrier command could also wait for the complete list of events and not foreach event separately. However, this is not always possible since multiple barriers could bewaiting for the same event and the enqueue barrier command needs a consecutive list ofevents.
Next, the map/unmap functions for the buffer are executed. The commands are only neededif arguments of the kernel must be switched between host and device space. In case there isan input event, it is also necessary to wait for the events to be created.
After queuing the map/unmap commands, the set events function first sets the synchroniza-tion point for the output event (sync producer). This allows waiting threads to enqueue theircommands in their command queues. If the output event needs to be connected to other

196

4.6 Embedded System Vision Toolchain

device queue native queue sync queue read queue write queue barrier unmap

set events

map

barrier
unmap

NDRangearguments
enqueue
NDRange

set events
flush

barrier
unmap
map

enqueue
native

set events
flush

barrier
unmap
map

flush

barrier

enqueue
read

set events
flush

barrier
unmap

enqueue
write

set events
flush

syncconsumer
enqueue
barrier

syncconsumer
enqueue
unmap

set events
syncproducer
createuser event
syncproducer

set eventcallback

syncconsumer
enqueue
map

set events

Figure 4.13: All operations processed during the execution of a message for the five queuetypes. Dotted lines mark that subfunctions exist (shown on the right). Bold lettersmark enqueue commands for the command queue.
contexts, the required user events and their synchronization points are created. Finally, a
callback function is created for all user events that should respond to the same event.
The set events function is also executed for all other enqueue commands shown in boldletters. For the NDRange command, however, the kernel arguments must be set in theOpenCL runtime (red boxes). Setting the kernel arguments cannot be done in the initializationphase, because the same kernel can be executed with different arguments. All enqueuecommands are enqueued in a non-blocking mode in the command queue.
Finally, the enqueue commands are flushed to the command queue to ensure that they havebeen submitted (red boxes). The set events function is executed before flushing the com-mand queue to allow faster synchronization between the functions. Timing measurementscould not show whether it is faster to flush or to set the events first. After all commands ofa message are enqueued in the command queue, the system waits for the next message.Additionally, a flag is set that indicates that the thread can be terminated.

4.6 Embedded System Vision Toolchain

The previous section introduced the High-Performance Vision toolchain. It uses OpenCLto distribute applications on x86-based heterogeneous architectures. Another part of the
DECISION framework is the Embedded System Vision toolchain, which will be presentedin this section. Both toolchains have a shared frontend, which is based on OpenVX andimplemented by the OpenVX Graph Creation module from Section 4.2. One advantage is thatthe application implemented by the user is independent of the target platform. However,the Embedded System Vision toolchain aims to build a runtime-adaptive computer visionarchitecture. This architecture should be efficient, flexible, and capable of running multipleapplications.

197

4 DECISION: Vision Framework

Another similarity between the two toolchains is that they use the HiFlipVX library to createcomputer vision IP-cores optimized for FPGAs. Like the High-Performance Vision toolchain,the self-optimized or auto-generated kernels that have been discussed in Section 4.3 andSection 4.4 can be integrated. The two toolchains differ in both the middleend and thebackend. The Embedded System Vision toolchain uses the Application Distribution mod-ule (APARMAP) in the middleend. It distributes the application graph onto a partition-basedmesh-like topology, thus creating a heterogeneous NoC-based architecture. This architectureis generated for the FPGA in the backend using the Hardware Creation module. It alsoincludes the additional components, such as buffers, converters, routers, NIs, DMA controllerand a MA that orchestrates everything.
The following subsection gives an overview of the toolchain and its modules. This is followedby a description of the various models, which are used as interfaces between the modules.Next, the additional hardware components are described. They are needed to build theadaptive architecture and are part of the Library module. Finally, the Hardware Creation mod-ule is described, which creates the final architecture based on the results of the applicationdistribution process.

4.6.1 Module Overview

An overview of the Embedded System Vision toolchain is shown in Figure 4.14. The figureshows the order of execution of the different modules in the two different tool flows. Thedifferent modules can operate independently from each other to increase abstraction andinterchangeability. Their inputs and outputs are represented by models and saved in files.First, the user implements an OpenVX application in C++ using the OpenVX Graph Creationmodule. This module takes the implemented application and creates the application modelusing the HiFlipVX library. Then the Application Distribution module maps & schedulesthe tasks of the application model to physical nodes, which are then clustered & placedinto the platform model to create the architecture and execution models. If necessary, theuser can restrict or precise the predefined platform model. Last, the Hardware Creationmodule creates the final system by adding all physical nodes, connecting them with eachother and creating the bitstream.
The Library module uses HiFlipVX to implement various accelerators for object detection. Itis integrated into the OpenVX Graph Creation module to create the tasks of the applicationmodel and the IP-cores that execute them. To create a runtime-adaptive, mesh-like, andpartition-based system that uses a NoC as communication infrastructure, further nodes areneeded.
• Routers, to set up the communication of the physical nodes between the different partitionswithin the NoC.
• NIs, to connect the routers with CUs (physical nodes).
• CUs, which can be ACs, PUs or I/Os.
• DMA controllers for direct access to global memory.
• MA, to orchestrate task flow and configure components, like NIs and DMA controllers.

198

4.6 Embedded System Vision Toolchain

ApplicationOpenVX Graph Creationfrontend

Applicationtasks & transactions
Platformtopology & partitions

Application Distributionmiddleend

Executiontasks & transactionsArchitecturenodes & edges

Hardware CreationbackendBinariesbitstream

LibraryHiFlipVX & NoC extension0 1

2

3

joint flow
main flow

minimal flow
library usage

module
model
data

Figure 4.14: Overview and flow of the Embedded System Vision toolchain.
The OpenVX Graph Creation module abstracts away all hardware related code and givesthe user an OpenVX conform interface to implement object detection applications for FPGA-based systems. First, the module creates a graph from the implemented application andverifies whether this graph is OpenVX-compatible. Then it synthesizes the utilized visionfunctions of the HiFlipVX library using wrappers that set the parameters and interfaces. Thegenerated IP-Cores will be used by the Hardware Creation module for the final hardwarearchitecture. At the end, the OpenVX Graph Creation module takes the task graph andcalculates all parameters to create the application model for the Application Distributionmodule. These parameters also include the latencies and resource consumption of thesynthesis results. Moreover, the module can bypass the Application Distribution module andcreate a simplified architecture model for the Hardware Creation module, which is a pureAC-based design.
The Application Distribution module distributes the partitioned application described bythe OpenVX application model onto the platform model to generate the architecture andexecution models. In the first step it maps the task graphs of the application model tophysical nodes and creates a schedule. The physical nodes are clustered and placed into thepartitions of the predefined platform model. The partition-based and mesh-like topology ofthis model can be irregular and heterogeneous. Each partition, or PRR, can have a differentnumber of resources and can either be a region of an FPGA or an entire FPGA. Multiplephysical nodes can be placed in a partition, depending on the available resources. Thesenodes (CUs) can be ACs, PUs, or I/Os.
Additionally, the user can add restrictions to this model if needed, e.g., place a node on aspecific partition or execute a task on a specific node. The module outputs two models.The architecture model determines the placement of the various physical nodes inside themesh-like topology and how they are interconnected. The execution model specifies theexecution flow of the applications, consisting of tasks and transactions, which are stored inthe MA and executed on the physical nodes.
The Hardware Creation module generates a runtime adaptive architecture, which uses a NoCas communication infrastructure, from the distribution results. To realize this architecture,

199

4 DECISION: Vision Framework

several components have been designed and realized. They were implemented using HLSand will be explained in more detail later. These components include intelligent and runtimeconfigurable NIs, MAs that configure the NIs and monitor the schedule, and DMA controllerto directly access the global memory. The entire architecture is designed for computer visionapplications with high data rates and low synchronization overhead. An advantage of theapproach is the reusability of ACs and I/Os in different application scenarios, while preservingthe performance of fully application-specific accelerator designs. In addition, the platformmodel opens the possibility for DPR to efficiently utilize FPGA resources. Alternatively, theHardware Creation module can also create a pure AC design from the results of the OpenVXGraph Creation module.
First the module adds the existing repositories, consisting of routers and CUs. Then itcreates the needed IP-cores for the NIs, MAs and DMA controllers. Then it generates thehardware block design using the Vivado tool from XILINX. Therein it adds all the physicalnodes and connects them with each other. Additional system components, such as buffersand converters, are also added if needed.
In comparison to the overall picture of the DECISION framework of Figure 4.1, not all modulesare needed in the Embedded System Vision toolchain. Since the current realization ofthe Hardware Creation module is limited to FPGAs, and the synthesis results and furtherestimations are generated in OpenVX Graph Creation module, no further Profiling mod-ule is required. Furthermore, no runtime module is needed to execute an application, sinceprogram flows are stored in the MA to control the runtime adaptive architecture.

4.6.2 Model Description

This subsection describes the various models needed for the Embedded System Visiontoolchain and the Application Distribution module. It consists of an application model, aplatform model and an architecture model as shown in Figure 4.15. Additionally, there is anexecution model that describes the application running on the architecture.
A C D B

1 2 2

P P

P P

R R

R R

IO

AC

NI IO

PU

NI

AC

AC AC

NI MA

1

2 3

4 5 6

7

8

IO

AC

AC AC PU

AC

IO

Figure 4.15: Application distribution model for mesh-like partition based architectures. Ap-plication task graph (A) is mapped & scheduled (1) to a node graph (C), whichis clustered & placed (2) into platform model (B) to create final architecture(D) containing additional components. AC (Accelerator), I/O (Input/Output), PU(Processing Unit), NI (Network Interface), MA (Manager), R (Router), P (Partition).

Application Model: The application model is described as a task graph, which is a data flowgraph, containing tasks and transactions. The required parameters of the application model

200

4.6 Embedded System Vision Toolchain

(Figure 4.15.A) are generated in the OpenVX Graph Creation module and are partly based onthe synthesis results.
• Tasks are functions of the input application that are executed on a node (CU) and can haveinput and output streams of data. As information they require:
– The resources for each resource type. The number of resource types is determinedin the platform model. For the application distribution algorithm, it does not matterwhether these are FPGA resources, such as LUTs or FFs, or a different type of resource.
– The latency in clock cycles for each CU type on which the task can be executed. The CUtypes are determined in the platform model. One of these CU types is the generated ACfrom the OpenVX Graph Creation module. Another CU type could be a PU or an I/O.
– The IP name for the Hardware Creation module.

• Transactions are data messages which are sent between two tasks and can contain a singlevariable or a complete image. As information they require:
– The IDs and ports of the sender and receiver tasks, to connect them with each other inthe final hardware design.
– The total latency of the transaction.
– The size of an element (bit-width) and the total amount of elements, to calculate theaverage bandwidth consumption.
– The latency offsets in relation to the start of sender and receiver tasks, to estimate thebuffer sizes and average bandwidth consumption at a given time.

Platform Model: In addition, each task and transaction requires a unique ID. The platformmodel (Figure 4.15.B) describes of a 2D mesh-like topology consisting of partitions.
• The topology can be homogeneous or heterogeneous since different types of links (band-width) and partitions (resources) are possible (Figure 4.16). Additionally, not only regular(rectangular) 2D mesh-like topologies are supported. The only limitation is that no emptyspaces are allowed within a single row or column of partitions, due to the adapted XY-routing algorithm.
• The partitions are PRRs and can be complete FPGAs or regions on FPGAs, which can differin the number of available resources.

(a) heteroge-neous (b) irregular (c) irregular (d) not allowed
Figure 4.16: Example platform model topologies. A row or column is not allowed to have anempty space.

201

4 DECISION: Vision Framework

Architecture Model: Task graphs are first mapped and scheduled to a set of CUs, whichcreate the node graph (Figure 4.15.C). This graph is then clustered and placed into theplatform model to create the architecture model (Figure 4.15.D). This model mainly consistsof physical nodes and edges.
Nodes are IP-cores that can be placed on the FPGA. Therefore, it stores its unique IP-nameand the partition it should be placed on. There are different types of nodes:
• CUs can be placed on partitions and run multiple tasks in sequential order. The resourceconsumption of a CU is either fix for PUs and I/Os, or the maximum of all ACs mapped tothat node. In addition to the resource consumption, the maximum available bandwidthmust be defined.
– PUs can be a processing architecture, like RISC-V [274] or MicroBlaze [275]. They canexecute different tasks and, unlike ACs, delay the start time of a task execution.
– ACs are custom IP-cores, like in HiFlipVX. They can either perform the same taskmultipletimes or perform different tasks multiple times by using DPR. Compared to PUs, theycan only react to their input.
– I/Os can be, for example, a DMA or an HDMI that can be used to communicate externally.

• NIs can connect multiple CUs to a router and schedule transactions between the CUs andthe router. They synchronize ACs with each other, avoid deadlocks and are configurable atruntime.
• MAs control the program flow and configure DMA controller and NI nodes, to start tasksincluding their transactions. It is possible to have multiple MAs in one system to counteractpossible bottlenecks.
• DMA controllers are configured by the MAs to give CUs direct access to main memory.
• Routers can transfer data between different partitions.
The NI, MA and DMA controller nodes are part of the NoC extension of the Library mod-ule shown in Figure 4.14 and have been implemented using HLS.
Edges are connections between nodes and transfer transactions. They are full duplex whenconnected to a router. An edge can be off-chip when connected to a router. It needs theIDs and ports of the sender and receiver node. Additionally, its bit-width and buffer (FIFO)size, if connected to a CU. Buffers are needed to increase the throughput and preventfrom deadlocks. The needed amount of buffer elements is calculated in the OpenVX GraphCreation module or Application Distribution module.
The architecture has a static and a dynamic part. The static part contains routers and theirinterconnections, as well as controllers and decouplers needed for DPR. All other units can beplaced on a static or dynamic region (partition). This includes CUs, NIs, MAs, DMA controllers,buffers, and converters.
To provide the user with a more granular control over the final architecture, there are a fewadditional configuration options, which are not mandatory. They can be useful, for example,if the user wants I/Os to be placed on certain partitions. Or whether a fixed architecture,such as a GPU, should be connected to the remaining architecture via the NoC.
• A maximum buffer size can be defined for all FIFO components used to connect CUs.

202

4.6 Embedded System Vision Toolchain

• CU types can be predefined for PUs and I/Os.
• CUs can be predefined, and certain tasks can be bound to them.
• CUs can be bound to specific partitions.
• Partitions can be blocked for CUs that are not bound to them.

Execution Model: The execution model describes the flow of the applications (OpenVXgraphs), with respect to the final architecture, including their tasks and transactions. It isstored on the MA node and used to configure the NIs and DMA controllers to control theapplication flow. More details are described in the next subsection together with the MAnode.

4.6.3 Library Module

The final hardware architecture requires several components to create a runtime-adaptivesystem in addition to the CUs. For the communication between different partitions, therouters of RAR-NOC [65] are used . Additionally, three different components have beendeveloped for the final architecture.
• Programmable intelligent NIs that can connect multiple components to a router to processor create the routing information.
• DMA controller, which provide direct access to main memory by the various CUs.
• MAs to control and configure thementioned components, and to orchestrate and schedulethe execution of the applications.

Message Types and Interfaces

ROUTERS

PART NI
RX

TX
flags

AC

AC

AC ctrl

PARTNI
RX

TX

CTRL

DMA

SM
EoM

flags

rd req

wr req

data

data

ctrl

len

Figure 4.17: Example architecture, which shows the use of the NIs (Network Interfaces) andthe DMA controller (CTRL) on the basis of two partitions (PART). Further partitionsand the router connections are omitted for simplicity. AC (Accelerator), EoM(End of Message), SM (State Machine).

203

4 DECISION: Vision Framework

These components communicate with each other via control messages: to synchronize,to maintain the schedule and to avoid deadlocks. Each message begins with a header flitcontaining the x and y coordinates of the router and the output port of the RX unit, whichis part of the NI, as shown in Figure 4.17. The remaining data flits of the message containthe control data, as shown in Figure 4.18. The bit-widths of the different fields in the flit areparameterizable. They depend on the bit-width of the NoC, its maximum size in x and ydirection, and the maximum number of ports of the RX and TX units.
init: initial NI configuration

strt1: starts task at NI

strt2: starts task at NI

dma1: configure DMA access

dma2: configure DMA access

recv: src information for dst

pause: pauses sending of src

ready: resumes sending of src

stop: task finished at NI

ma src max may marx pkgsize
ma src dstx dsty dstrx 0 srctx
ma src taskid
ma ctrl address
ma ctrl length
src dst srcx srcy dstrx 0 srctx
dst src 0 srctx
dst src 0 srctx
src ma taskid

Figure 4.18: Control flits transferred between MA, TX and DMA control units. src/dst(source/destination of transaction), x/y (coordinates of router), rx/tx (receive/-transmit port number of NI), ctrl (DMA controller), pkgsize (maximum packagesize transferred over the NoC).
Most units in the architecture send data using the AXI4-stream protocol, which is representedby the solid lines in Figure 4.17. This is a simple protocol that includes the valid and readybits for handshaking, as well as the data bits. A last bit, which is optional, is used to determinethe end of a package or the end of a message. For all signals where it is not necessary, it isnot included to save resources (gray arrows). Between routers, or routers and NIs the lastsignal is used for the end of a package. Between CUs, or CUs and NIs the last signal is usedfor the end of a message. A message is split into multiple packages within the wormholeNoC to avoid high latency. There are other optional signals in the AXI4-stream protocol, butthey are neither needed nor used in this work. The AXI4-lite protocol, represented by thedotted lines of Figure 4.17, is needed to configure registers within the IP-cores. The MA isconfigured by the ARM and the DMA by its controller. The DMA is connected to the DDRcontroller via the AXI4-full protocol, which enables burst reads and writes (dashed lines).

Manager

On system setup the MA sends an init message to all NIs (Figure 4.15). It contains thecoordinates of the MA and the maximum packagesize for data transfer, which can be sendover the NoC. All messages that are larger are automatically split into multiple packages bythe NIs.
The MA contains lists for the coordinates of all partitions and the available applicationsincluding their tasks, transactions and memory accesses. Each application points to its first

204

4.6 Embedded System Vision Toolchain

and last task in a task list. The tasks store the number of transactions, their NI-ID, and thedirect predecessor and successor tasks. Each task points to its first element in a transactionlist. The transactions store their receiver coordinates and transmitter port. If a transactionincludes a memory access it points to its entry in the memory access list. This entry storesthe address and length of the transaction, the DMA controller port for the request, and if it isa read or write transfer.
The user can start an application by sending the application ID and a start bit to the MAover its AXI4-lite port. After an application is started, the MA iterates through the list of tasksthat belong to the application until it reaches a barrier. A barrier can be reached if a taskneeds to wait until its predecessor task, which is executed on the same CU, is finished. Tasksmapped to different CUs are executed in parallel if possible. Since all CUs are streamingcapable, they start processing a task as soon as data is available.
For each new task, the MA sends a message to the corresponding NI, containing the strt1and strt2 flits for each transaction contained in this task. strt1 contains the destinationcoordinates (x, y, rxport) of a transaction, which is send from the txport . strt2 contains the
taskid of that transaction. If the MA reaches a barrier, it waits for the stopmessages comingfrom the NI containing this taskid. A stopmessage is sent by the NI after a transaction hasfinished. If all transactions of a task have finished, the successor task of the same node canbe executed, and the MA continues iterating over the task list. A done bit is set in the MAwhen the application is finished, to inform the user.

Network Interface

The NI consists of an RX and a TX unit, as shown in Figure 4.17. If the RX unit receives apackage, it first takes the header flit to configure the output port and then sends all followingflits of the same package to this port. All control messages are sent to the TX unit. The RXunit is connected to its CUs via BRAM-based FIFO units to maximize the throughput. Allother buffers in the NI only need small LUT-based FIFO units, to maintain the data-flow. Theoutput ports of the RX units or the input ports of the TX units can have different bit-widths,which need to be a multiple of two. Therefore, data-width converter units are used fordown-conversion after a FIFO and for up-conversion before a FIFO connected to an RX unit.For the TX units it is exactly the opposite, since it receives the data. This approach was themost efficient one, which did not create an additional bottleneck for data-width conversion.Packing multiple data (e.g. pixels) into one flit, utilizes the NoC more efficiently. In most casesthe NoC should have a higher data-width than the CUs, to not limit the performance of theapplication.
The TX unit transmits the transaction data and sends & receives the control messages. Totransmit a transaction, it generates the header-flits and sets the last bit for the tail of apackage. It stores the destination address of each input port to which a job was assigned viathe control message from MAs. After receiving the strt flits for a transaction, it sends a recvmessage to its receiver. This message contains the sender coordinates and the receivers
rxport . The TX unit iterates over all input ports, which are not connected to the RX unit, in around robin manner. It selects a port if a job was assigned to it and the input FIFO is notempty. Then it sends a package of maximum packagesize data flits to the receiver. The packagecan be smaller if it receives a last signal at its input port indicating the end of a message(transaction).

205

4 DECISION: Vision Framework

Additionally, the TX unit monitors the programmable almost empty (emptya) and almost full(fulla) flags of the FIFO units, which are located between the RX unit and the CUs. If a fullaflag is set, a pause message will be sent to the sender of the transaction. The sender willthen pause the corresponding job until it gets a readymessage, which is send after the FIFO
emptya flag is set. To maintain a high performance, these flags could be set, for example, to75% of the FIFO elements for fulla and 25% for emptya. The pause and readymessages areused to prevent deadlocks, which can occur due to a high congestion of the NoC. Duringevaluation, the flag signals of the XILINX FIFO units were not stable in the first clock cyclesafter a reset signal. Therefore, its port must be ignored for the first few clock cycles after asystem reset.

DMA Controller

If a transaction requires memory access, a message is sent by the MA to the DMA controller,in addition to the configuration message for the TX unit. Its two data flits contain the startaddress of a memory access and its length in bytes. The controller can configure the DMAfor both read and write accesses. As shown in Figure 4.17, it has separate ports for read andwrite requests, since the DMA can send and receive data in parallel. With only one requestport, it could happen that a longer read request blocks several write requests or the otherway around.
For a read request, the data is sent directly from the main memory to the receiver via theDMA and NoC. For a write request, the data is sent directly from the sender via the NoCand DMA to the main memory. Based on the length of a write request, the DMA controllersets the last signal so that the DMA can accept a new request. This additional block isused, because the last signal is already used for the individual packages of a message. Analternative would be to send an additional flit via the NoC, which marks the end of a message.However, data flits would need to be buffered, which increases resources and latency, sincethey would arrive after the last data flit of a message. Additionally, it would increase thenumber of flits sent. There is no additional FIFO after the EoM (End of Message) unit sincedata is already buffered before this unit and within the DMA.
The internal state machine of the controller can accept new read and write requests in parallelbut can only configure one at a time. After getting a new requests it reads the correspondingcontrol registers of the DMA. When the DMA is ready for a new request and the previousrequest is done, its control registers are written. In addition, the length flit is sent to the EoMunit if it is a write request.
Unlike the other data ports of the RX unit, the flags of the request FIFO units are notmonitoredby the TX unit. This is because in the configuration of the proposed architecture, only a limitednumber of requests can be sent, which is also related to the maximum number of executabletasks within the TX unit. A higher number of buffered requests would only be possible if theTX unit could cache more requests. This could lead to a slight reduction in latency, but wouldincrease the required resources, and increase the complexity of the scheduler inside of theMA. Therefore, only small FIFO units are needed.

206

4.6 Embedded System Vision Toolchain

Discussion

The proposed architecture focuses on image processing applications with large data transfersand heavy loads. With the multiport NI approach a high data throughput can be achieved.Due to the buffers and pause & ready messages, the overhead for synchronization canbe reduced. The MA overhead is low, since it only maintains the schedule, by startingtask transactions including memory accesses, and being notified when they finish. Anotheradvantage is that ACs can easily be reused by different applications and send data to differentlocations.
A notable feature of the individual units described above is their modularity and their potentialuse in different architectures. Since the responsible MA of a NI can be updated at runtime,there are several possibilities for redundancy. In larger networks it would be possible to haveseveral MAs for multiple applications. Depending on the load of the NoC, the MA can changethe maximum package size send via the NIs. The DMA controller was designed in a genericway so that it can also be used in other types of architectures. The independent queue forread and write requests enables a high throughput. The controller does not have to be usedonly for external DDR memory but could also be used for a shared on-chip BRAM.

4.6.4 Hardware Creation Module

This module creates the final architecture and bitstream for the FPGA. The execution modeland the architecture model generated in the Application Distribution module serve as input.In addition to the two models, the system configuration, which was also used in the OpenVXGraph Creation module, is imported. It contains the maximum package size that can be sentvia the NoC, the target clock period and the FPGA part number.
The module currently supports two types of XILINX platforms (Zynq-7000 SoC and ZynqUltrascale+ MPSoC). The various identifiers and interface names for the individual platformsare each contained in a separate struct. This simplifies the incorporation of further platforms.Due to the programming of the DMA controller by the MA, the architecture itself is not boundto SoC designs. There is only one AXI4-lite connection between the ARM and the MA. Thiscan be exchanged by three signals: (1) application ID, (2) start bit and (3) ready bit. The onlyother external links are the signals for the clock, the reset, and the DDR memory controller.
In the first step, the additional components needed for the NoC-based architecture arecreated using Vivado HLS. This step is skipped if the Application Distribution module wasbypassed, and the OpenVX Graph Creation module created a simple AC-based design. Therequired components are the RX and TX units of the NIs, the MAs, and the state machineand EoM units of the DMA controller. When creating the wrapper for the MA, its programmemory is created, which contains the flow of the applications (execution model). Thismemory contains the MA and NI coordinates, and the applications with its tasks, transactions,and memory accesses. Depending on the size of each list, either LUT memory or BRAMmemory is used for them separately. To generate the IP cores, C++ wrappers are created inwhich the parameters and interfaces are specified. A TCL script takes the file containing thewrappers and creates a solution for each component. The different solutions are synthesizedin parallel and exported as IP-core.

207

4 DECISION: Vision Framework

In the second step, the architecture is constructed. Therefore, a TCL script is generated, whichcreates a Vivado project for the selected FPGA. It loads all repositories and adds all IP-cores,which were created in OpenVX Graph Creation module and Hardware Creation module. Ifnecessary, it adds data-width converters and buffers when connecting the components. Italso sets buffer sizes, buffer types (BRAM, LUT memory), flags (programmable empty & full),packet mode, and a last signal if needed.
To connect the DMA IPs with the memory controller of the ARM, smartconnects are used.One smartconnect for each memory port. Due to the number of limited high-performanceports to the DDR memory and the maximum number of smartconnect ports, the numberof DMA IPs is limited. Since each smartconnect has a maximum of 16 single direction ports,a maximum of 32 DMA blocks, which can both read and write, are possible for four DDRmemory ports. The DMA IPs are distributed evenly over the smartconnects. Names andversion numbers of all IP-cores from the vendor are stored in a configuration file. This makesit easier to adapt the design to new tool and IP-core versions. At the end of the TCL script,the address space is set and the individual steps to create the bitstream are performed.
To debug the architecture, a simulation design can be created automatically by setting a flag.It replaces the connection between the ARM and MA by the three signals described above. Itrelocates the clock and reset signals and adds a simple VHDL testbench. Additionally, a BRAMis used instead of the connection to the DDR memory and the smartconnect is replaced bya BRAM controller. However, care should be taken in the design that the BRAM is significantlysmaller than the DDR.

4.7 Evaluation

Using OpenCL, developers can program different architectures, such as CPUs, GPUs andFPGAs using the same API. Section 4.7.1 compares the implementations of different op-timization strategies on various architectures in terms of their performance and energyconsumption [9]. For FPGAs, detailed measurements have been performed to create aroofline model and make accurate estimates of its performance to balance between memoryand compute bound kernels. Section 4.7.2 evaluates the automatic detection of parallelizableregions, the generation of human-readable C code from LLVM-IR and the optimization ofthis for GPUs, which are done to simplify the programming of OpenCL kernel [28]. Thereby,the generated code has been examined and the performance gain has been analyzes fordifferent devices.
This thesis proposes a toolchain for x86-based systems that can integrate the user imple-mented or automatically generated kernels for the different architectures [27]. This toolchainperforms heterogeneous scheduling and program generation, implements a performanceoptimized OpenCL runtime system, and integrates vendor libraries. Section 4.7.3 examinesthis toolchain and its individual modules with respect to their performance and overhead. Thetoolchain is part of a larger framework, called DECISION, which uses OpenVX as a commonfrontend and integrates HiFlipVX as a library for XILINX FPGAs. The second toolchain of thisframework aims at designing an application specific architecture on FPGA-based systems.It automatically creates an adaptive NoC-based architecture developed from a dataflow-based application graph. Section 4.7.4 evaluates this system and its HLS-based componentsin terms of its overhead, resource consumption and performance. Both toolchains have

208

4.7 Evaluation

an OpenVX-based frontend that integrates the HiFlipVX library evaluated previously. Thesecond toolchain uses APARMAP, which will described in the next chapter, to distribute theapplication graph on a mesh-like and FPGA-based topology.

4.7.1 Architecture Dependent OpenCL Kernel Optimizations

Section 4.3 described the optimization and implementation of vision kernels for differentOpenCL-capable devices. On the one hand to include other architectures and on the otherhand to give developers the possibility to implement their own OpenCL-based kernels. Thissubsection compares and evaluates these optimizations in terms of performance, resourceutilization and energy consumption.
Table 4.2 shows the devices of the test system, including a CPU with integrated GPU, adedicated GPU, and an FPGA. This evaluation includes devices with a similar technologyprocess to have a fair comparison for the energy measurements. It uses the SDAccel 2016.1toolchain from XILINX for the FPGA. A TCL script integrates the compilation of the OpenCLkernels for the different devices.

Table 4.2: Test system components.
Device Vendor Model Technology [nm] Bandwidth [GB s–1]
FPGA XILINX Virtex-7 XC7VX690T 28 10.7
GPU NVIDIA GTX 780 28 288.0
CPU Intel Core-i7 4770k 22 25.6
iGPU Intel HD Graphics 4600 22 25.6

Table 4.3 shows the estimated FPGA resource utilization and the achievedmemory bandwidthfor an application that copies data between two locations in global memory. The implementa-tion contains two kernels, one for reading and one for writing. Kernels stream data betweeneach other using a FIFO and the async_work_group_copy command to maximize bandwidthusage. The input and output images consist of 2048 × 2048 pixels with a data width of32 bit. The maximum bandwidth achieved is 83% of the theoretical possible bandwidth fromTable 4.2, which is very high.
Table 4.3: Resource usage and memory bandwidth for 1 read and 1 write DMA kernel.

32 bit 64 bit 128bit 256bit 512bit
FF 2095 2205 2357 3141 4713
LUT 2537 3128 3122 3700 4850
BRAM 12 16 24 48 92
Bandwidth [MB s–1] 740 1450 3170 6290 8899

Table 4.4 shows the computation time of a Gaussian filter for different port widths andvectorization degrees. The resolution of the input and output images is 1280 × 720 with adata width of 16 bit. The estimated computation time of the kernel shown in Equation (4.10)

209

4 DECISION: Vision Framework

and a similar memory copy kernel used in Table 4.3 serve as roofline model. It includes thenumber of columns (IC) and rows (IR) of the image, the kernel radius (KR) of the Gaussian filter,the vector size (VS) and the pipeline depth (PD).
Table 4.4: Compute time [ms] for different memory port widths of a 5 × 5 Gaussian kernel.

No computekernel Gaussian
Vector 4 Vector 8

128bit 0.829 1.686 1.688
256bit 1.107 1.101 1.175
512bit 0.829 0.836 1.171
Estimated - 0.851 1.159

Estimated computation time = (IR + KR) ·
⌈
IC+KR
VS

⌉ + PD
frequency

(4.10)
The measured time approaches the roofline as expected, which makes the computationtime of the functions predictable. The resource utilization increases with the bit-widthbecause the compute kernel, and not the copy kernel, does the unpacking and packing ofthe data to maximize memory throughput. It takes about 15 μs to offload a kernel withoutany functionality and with only one kernel parameter to the device. Each additional kernelparameter increases the time by about 15%.
Fusing multiple kernels (loops) into one, not only reduces the number of kernels, which thetool limits to ten, but also reduces the utilized resources. However, it is more challenging forthe tool to meet the timing constraints when fusing loops. Most likely, this is due to the largerregion that needs to be controlled by the FSM of the loop. SDAccel also provides the VivadoHLS tool flow that uses C++ instead of OpenCL for its kernels. This allows parallel executionof multiple functions in one kernel by enabling loop-level parallelism using their dataflowdirective. Section 4.7.3 investigates this method when integrating the HiFlipVX library intothe High-Performance Vision toolchain.
Figure 4.19 shows the computation time of the best optimization strategy for each device.The computation time is based on the average of 3072 runs, and the image resolution is1280 × 720. The labels in the figure show the selected optimization strategy. The impactof an increasing window size is less than for the single-threaded CPU implementation. Forthe CPU, opt1 achieves the best performance for larger kernels. This is due to the optimalutilization of the registers as sliding windows and the caches as line buffers. For small kernelslike the FED or kernels with sparse input like the DoH and Scharr filters, opt0, which benefitsgreatly from auto-vectorization and compiler optimizations, achieves the best results. Thisshows the strength of the Intel compiler, which defeats the strategy of its own optimizationguide [270].
For the GPU and integrated GPU, opt3 shows the best results. This is because caching datain the read-only memory saves computational overhead compared to opt2, which explicitlyloads data into local memory. opt3 achieves a bandwidth of 409GB s–1 on the GPU for a7×7 kernel. This proves that the GPU caches the data, since the bandwidth is higher than the

210

4.7 Evaluation

opt1

opt1 opt1
opt0

opt0 opt0

opt3
op3

opt3

op3 op3

opt0

opt3 opt3 opt3 opt3 opt3 opt3
0

100
200
300
400
500
600
700
800
900

gaussian 7x7 gaussian 5x5 conductivity FED Scharr DoH extract feature

us
OpenCL CPU
OpenCL iGPU
OpenCL GPU

Figure 4.19: Computation time for different devices for a resolution of 1280 × 720.
theoretical one shown in Table 4.2. The sliding window of opt3 or opt1 additionally reducesmemory access. The feature extraction function achieves a speedup of 3.88 on the CPU,1.76 on the integrated GPU and 13.32 on the GPU, in comparison to the single thread CPUimplementation.
Table 4.5 shows the results of the computer vision application chosen for evaluation. It isa partial OpenCL implementation of the AKAZE algorithm containing 27 vision functions.Figure 4.19 has already evaluated the functions individually for the CPU and GPU devices.The image resolution of the algorithm is 1280 × 720 (1920 × 1080). The feature comparisonfunction remains on the host and needs 130 μs (255 μs) using OpenMP. The CPU can processthis function in parallel to the execution on a dedicated device, such as a GPU or FPGA. Thefeature extraction and feature comparison functions are simplified implementations of theones of the HiFlipVX library. The power consumption was measured for images with aresolution of 1280 × 720.
Table 4.5: Comparison of the implemented algorithm for different devices and resolutions.

Device API Resolution16:9 Computationtime [ms] Speedup Power[W] Energy[mJ]
CPU none 720p 80.22 1.00 23.77 1906.9

1080p 183.48 1.00 - -
CPU OpenMP 720p 23.60 3.40 65.74 1527.9

1080p 53.60 3.42 - -
CPU OpenCL 720p 15.57 5.15 66.86 1040.7

1080p 37.69 4.87 - -
iGPU OpenCL 720p 13.26 6.05 29.31 388.6

1080p 30.92 5.93 - -
GPU OpenCL 720p 2.135 37.58 222.69 475.4

1080p 4.290 42.77 - -
FPGA OpenCL 720p 1.467 55.14 30.45 44.67

1080p 2.923 62.77 - - 1

211

4 DECISION: Vision Framework

The average time it takes to send an image to the devices and read back the approximate4464 features, is 430 μs (770 μs) for the dedicated devices. The FPGA achieves the highestspeedup and is 1.46 times faster than the GPU, due to the efficient use of its memorybandwidth enabled by streaming. The evaluation measures the entire system power withall its components since host and components like the DDR memory are also part of theexecution. It measures power by executing the application for ten minutes, calculating theaverage power consumption, and subtracting the idle from the total consumption. Theintegrated GPU is only 1.17 times faster than the CPU, but 2.68 times more energy efficient,due to its parallel structure and lower frequency. The speedup of the FPGA increases withthe resolution, showing its good scalability.
To check whether the application is memory bound or not, this work estimates the memoryoverhead of the application. One assumption here is that starting a new kernel takes longerthan the overhead for filling the internal line buffers of the preceding kernel in the pipeline.The estimate is the sum of the ten kernels (165.5 μs) and the execution time of the last kernel.For a frequency of 200MHz the application would need 1343 μs (2780 μs). The discrepancyto the values in the table is caused by the overhead for writing back the results. An own copykernel for the output would optimize this but exceed the limit of the ten CUs the tool canmanage.
The final FPGA design consumes 46.1% LUTs, 19.6% FFs, 8.1% DSPs and 44.8% BRAM. Itachieves 342 fps for a resolution of 1920 × 1080. If copying data between host and deviceis not parallelized to the computation it would still achieve 271 fps. This measurementuses an accelerated OpenMP version of the FREAK descriptor. Section 3.3.2 shows theevaluation of this descriptor. The host executes the feature comparison function and theFREAK descriptor with 324 fps. A heterogeneous design could execute them on the CPUin parallel to the proposed implementation on the FPGA or GPU. The implementation thusachieves a higher performance than the related work in Table 3.16. However, most of therelated work implement eight sublevels instead of four.
The following subsection will discuss the automatic generation of kernels using a source-to-source compiler. With the support of this compiler, it should be possible to reuse existingcode without having to implement it from scratch, when using a different architecture. Thegenerated code should be as human-readable as possible, to apply own optimizations, asdescribed in this subsection.

4.7.2 Automatic OpenCL Code Generation

The last subsection evaluated the hand optimized implementations of OpenCL kernel fordifferent devices and vendors. This should not only show the differences of the architecturesin terms of optimization strategy, performance, and energy consumption, but also assistwith the implementation of own kernels. This subsection will evaluate the source-to-sourcecompilation toolchain explained in Section 4.4, to automatize a part of the OpenCL kernelcreation. The compiler toolchain contains Polly and PPCG to generate source code fromLLVM-IR using polyhedral optimization. Polly detects suitable code sections in the LLVM-IR.PPCG uses this information and optimizes it for the target architecture.
This work evaluated the source-to-source compilation toolchain using a variety of examples.One of these examples is the matrix multiplication function of Listing 4.5. The source-to-source compiler successfully built the valid OpenCL kernel shown in Listing 4.6. Additionally,

212

4.7 Evaluation

1 void matmul(int n, int m, int o, float A[n][o], float B[o][m], float C[n][m]) {
2 for(int i = 0; i < n; i++)
3 for(int j = 0; j < m; j++)
4 float sum = 0;
5 for(int k = 0; k < o; k++)
6 sum += A[i][k] * B[k][j];
7 C[i][j] = sum;

Listing 4.5: Example C++ matrix multiplication function.

it inserts comments, which contain information about the origin of the source code, abovethe header. The parameters are the same as in the original code. It marks memory pointerswith MemRef. The example does not use a tiling strategy to avoid overloading the code in thelisting. However, the use of tiles is possible, as the performance results will show.
PPCG adds defines, barriers, and additional iteration variables, and gets the thread IDs togenerate the OpenCL kernels. The proposed CWriter class created the statements, whichare the lines of code inside the for and if statements, from the LLVM-IR code. The variablesof private_MemRef_C show that the tool has successfully transformed the PHI statementsinto local variables. Therefore, it does not require additional access to global memory orvariables. In addition, the evaluation verified that the compiler processes C++ templates orregions consisting of multiple basic blocks.
One contribution of this work is the conversion of the existing PPCG integration in Pollyto a newer version that uses the "Live Range Reordering" feature. Another contribution isthe generation of valid and human-readable C source code from LLVM-IR and the correctgeneration of OpenCL host and device code. This approach can transform code from LLVM-IR,which provides the possibility to use different programming languages. PPCG, on the otherhand, uses the AST of the Clang frontend and can only manage C code. This makes someanalyzes easier to implement because the LLVM toolchain provides several capabilities, suchas pointer alias analyzes, that are difficult to implement on an AST. The approach allowsfor better debugging, as it is easier to detect compiler optimizations in source code thanin LLVM-IR. In addition, the developer can use any available OpenCL compiler if it supportsthe kernel version. Whereby the supported versions of kernel and host code in OpenCLcan differ. Otherwise, the developer would need a backend for each architecture from eachvendor. Furthermore, some analysis is easier with Polly, such as detecting loops that do nothave a standard structure.
Figure 4.20 shows the performance capability of the generated matrix multiplication ofListing 4.5 for different matrix sizes. The test system consists of two CPUs (Xeon E5-2690v2) with ten cores (20 threads) each and one GPU (Tesla K20c). For evaluation, the compilergenerated OpenCL kernel with and without a local memory approach for both GPU andCPU. An implementation which uses OpenMP directives serves as a comparison. The figureshows the speedup for the different settings in comparison to the sequential execution ofthe matrix multiplication. The measurement only considers kernel execution times and nooverhead for initialization or data transfer. However, the effort is less worthwhile for smallermatrices when considering the overhead. Unlike the CPU, the GPU can benefit from localmemory usage for any test size. This is because GPUs have a much simpler structure and donot implement multilevel caches. For large amounts of data, the CPU also benefits from thelocal memory approach due to the limited cache memory.

213

4 DECISION: Vision Framework

1 // Function: matmul(), File: /home/test_polly_ppcg/matmul.cpp
2 // Line start: 56 ,end: 65
3 __kernel void kernel0(__global float *MemRef_C, __global float *MemRef_A,
4 __global float *MemRef_B, int n, int m, int o) {
5
6 int b0 = get_group_id(0), b1 = get_group_id(1);
7 int t0 = get_local_id(0), t1 = get_local_id(1);
8 float private_MemRef_C[1][2];
9
10 #define ppcg_min(x,y) ((x) < (y) ? (x) : (y))
11 #define ppcg_fdiv_q(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))
12 for (int c0 = 0; c0 <= (n - 32*b0 - 1) / 8192; c0 += 1) {
13 for (int c1 = 0; c1 <= (m - 32*b1 - 1) / 8192; c1 += 1) {
14 if (n >= 32*b0 + t0 + 8192*c0 + 1 && m >= 32*b1 + t1 + 8192*c1 + 1) {
15 private_MemRef_C[0][0] = 0;
16 if (m >= 32*b1 + t1 + 8192*c1 + 17)
17 private_MemRef_C[0][1] = 0;
18 for (int c2 = 0; c2 <= ppcg_fdiv_q(o - 1, 32); c2 += 1) {
19 for (int c3 = 0; c3 <= ppcg_min(31, o - 32*c2 - 1); c3 += 1) {
20 private_MemRef_C[0][0] = private_MemRef_C[0][0] + (
21 MemRef_A[(32*b0 + t0 + 8192*c0) * o + (32*c2 + c3)] *
22 MemRef_B[(32*c2 + c3) * m + (32*b1 + t1 + 8192*c1)]);
23 if (m >= 32*b1 + t1 + 8192*c1 + 17)
24 private_MemRef_C[0][1] = private_MemRef_C[0][1] + (
25 MemRef_A[(32*b0 + t0 + 8192*c0) * o + (32*c2 + c3)] *
26 MemRef_B[(32*c2 + c3) * m + (32*b1 + t1 + 8192*c1 + 16)]);
27 } }
28 MemRef_C[(32*b0 + t0 + 8192*c0) * m + (32*b1 + t1 + 8192*c1)] =
29 private_MemRef_C[0][0];
30 if (m >= 32*b1 + t1 + 8192*c1 + 17)
31 MemRef_C[(32*b0 + t0 + 8192*c0) * m + (32*b1 + t1 + 8192*c1 + 16)] =
32 private_MemRef_C[0][1];
33 }
34 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
35 } } }

Listing 4.6: Generated OpenCL matrix multiplication kernel.

The next subsection will evaluate the proposed OpenCL-based toolchain for distributingOpenVX-based graphs on heterogeneous and x86-based systems consisting of GPUs, CPUs,and FPGAs. The toolchain can integrate both the automatically generated kernels from thissubsection and the self-optimized kernels from the previous one to increase the number ofavailable vision functions. In addition, the next subsection looks at the extraction of OpenCLkernels from existing libraries, such as OpenCV and AMDOVX.

4.7.3 High-Performance Vision Toolchain

The last two subsections focused on the evaluation of the OpenCL kernel generation. Thefirst part evaluated different optimization strategies on different architectures and compared

214

4.7 Evaluation

0
10
20
30
40
50
60

100x100 1000x1000 10000x10000

spe
edu

p

matrix size

OCL CPU OCL CPU shared OCL GPU
OCL GPU shared OpenMP CPU

Figure 4.20: Matrix multiplication speedup compared to a single-threaded CPU execution.
them with each other. The second part evaluated the automatic generation of OpenCLkernels in terms of their performance and readability. This subsection evaluates the High-Performance Vision toolchain from Section 4.5, which further simplifies the implementationof heterogeneous architectures and enables the automatic distribution of applications onthem.
The toolchain allows the user to implement OpenVX compliant applications for heterogeneousx86-based systems without knowledge about the underlying hardware. It distributes theapplication to the available devices, creates a runtime-optimized program including datatransfers and synchronization mechanisms, and executes it. Its design is modular to allowadaptions to different architectures, programming models or applications. This simplifiesthe addition of new libraries, own kernel implementations, scheduling algorithms and APIs.The programmer can modify the models at design time, which provides an easy way to test,debug, or customize the application.
Setup: The evaluation verifies the efficiency of the framework and the individual modules,which operate in an automatedmanner and interact with the user only when explicitly wanted.Table 4.6 shows the devices used in the different measurements. It contains one GPU fromthe upper and one from the middle segment from each vendor. GPU1 and FPGA1 are partof one system, while the other devices are part of another one. The TDP (Thermal DesignPower) and the technology process help to better interpret the results. The FPGA designs runat a clock frequency of 300MHz. Due to limited support, the toolchain uses the Intel OpenCLdriver to program the AMD CPU, since both are x86-based architectures. For all other devices,the toolchain uses the OpenCL drivers of the respective vendors. The toolchain runs theapplication 2048 times and takes the average of the 50th percentile to filter out variationscaused by the operating system. The image resolution of the applications is 1920 × 1080,and the data width is 8 bit.
Profiling Module: Table 4.7 shows the calculated bandwidths and latencies of the Profilingmodule. It is important to emphasize that different vendors prefer different methods formemory transfer and memory allocation to achieve the maximum bandwidth. With thevarious OpenCL versions available, it is a complex task to choose the optimal method foreach vendor. The device profiling in the table illustrates the meaning of this measurement,which can change depending on the method, driver, and tool version. To measure actualbandwidth and latency of FPGAs, the toolchain would need to generate a bitstream containinga bandwidth measurement kernel for each device. To prevent this, the toolchain integratesthe xbutil program from XILINX, which contains pregenerated kernels and methods for

215

4 DECISION: Vision Framework

Table 4.6: Devices used in the different measurements.
ID Device name TDP [W] Technology [nm]
CPU1 AMD 3900X 105 7
FPGA1 XILINX Alveo U50 75 16
GPU1 NVIDIA 1080TI 250 16
GPU2 AMD 5700XT 225 7
GPU3 AMD 560RX 60 14
GPU4 NVIDIA GTX 1650 75 12

measuring bandwidth. CPUs and GPUs can also compile their kernels at runtime, unlikeFPGAs. Measurements have shown that the selected method (runtime or design time) hasno influence on the execution time of the kernel. The toolchain already creates most binariesin the Profiling module to determine their execution time. It creates the FPGA binaries basedon the mapping, as it may need to create a dataflow region with multiple image processingfunctions in one kernel.
Table 4.7: Device profiling results calculated with Equation (4.7).

Host to device Device to host

Device Theoreticalbandwidth[GB s–1]
Measuredbandwidth[GB s–1]

Measuredlatency[μs]
Measuredbandwidth[GB s–1]

Measuredlatency[μs]
GPU1 15.754 13.036 4 5.412 4
FPGA1 15.754 11.384 11 6.892 12

LibraryModule: Table 4.8 compares the execution time of the integrated libraries on differentdevices. A single function without vectorization requires only a few resources on the FPGA,which is why it has a comparatively low performance here. The executed function has onlya small influence on its execution time compared to other devices. The reason for this isthat the execution time depends mainly on the image size and frequency (1920 · 1080 ·3.33ns · 10–3 ≈ 6905μs) and increases only slightly with the kernel size of the windowedfunctions. Measurements show an additional dependency on the number of inputs andoutputs, without being memory bound. Most likely, the AXI4 interfaces used, and the datamovement system generated by Vitis cause this behavior, as it is a different approach thanthe one used by the Embedded System Vision toolchain. Reading data seems to have aslightly higher impact than writing data to memory.
The advantage of the base implementation is that it is portable and serves as a fallbacksolution. It also serves as a basis to evaluate the performance of the individual libraries.A comparison between the GPUs shows that the acceleration of the kernels can be quitedifferent. This shows that the performance of a kernel depends not only on the respectiveimplementation, but also on the architecture and compiler. AMDOVX achieves, on average,2.93 times the performance on the GPUs compared to the base implementation. More

216

4.7 Evaluation

Table 4.8: Comparison of devices and kernels without data transfer in [μs].
Device CPU2 GPU4 GPU1 GPU2 GPU2 GPU3 GPU3 FPGA1

Library Base Base Base Base AMDOVX Base AMDOVX HiFlipVX

Gaussian 719 128 49 97 46 225 116 7172
Median 2218 573 205 148 47 1495 140 7139
Sobel 932 131 56 107 51 251 173 7358
Magnitude 142 104 37 31 30 105 138 7454

complex functions like the median filter show an even better optimization, when using thislibrary. OpenCV is 2.04 times faster than AMDOVX on the AMD GPUs for a Gaussian filter.This demonstrates the strength of OpenCV, as it does not limit its kernels to AMD GPUs. On
CPU2, the OpenCV Gaussian filter is 4.11 times faster compared to the base implementation.The base implementation achieves similar performance as a simple OpenMP implementationon the same CPU.
FPGA Optimizations: Due to the unused resources on the FPGA, various optimizations canbe applied to reduce its execution time.
• Pipelining: Since the FPGA can overlap consecutive functions, its runtime does not increaseas fast as the GPU runtime for multiple consecutive tasks. There is at most a deviation ofabout 5% to the latency estimation of the scheduling algorithm, including data transfers.
• Vectorization: The FPGA can also increase its SIMD-size at the cost of increased resourceutilization. The vectorization factors of 2, 4 and 8 are available in HiFlipVX. Dependingon vector size, data width, number of inputs and outputs, and available bandwidth, thefunction can become memory bound.
• Kernel size: Even though the OpenVX standard just defines 3 × 3 kernel sizes, larger onesare frequently used. For some windowed functions, two consecutive 3 × 3 kernels dothe same as one 5 × 5 kernel. However, this can lead to a slightly lower accuracy. Whilethe FPGA mainly requires more resources, the kernel size has a strong influence on theruntime of other devices.
Figure 4.21 shows the total execution time for several consecutive functions on GPU1 and
FPGA1 to illustrate the mentioned optimizations. It does not include CPU measurementsbecause its performance was not comparable. With a filter size of 5 × 5, GPU performancedecreases. Kernel pipelining allows parallelization on FPGAs with only a small overheadfor filling buffers. To pipeline multiple functions within a kernel, the toolchain uses HLSdirectives and automatically builds a single kernel according to the output of the schedulingalgorithm. This is different to the Embedded System Vision toolchain, which creates anIP-core for each function of the dataflow graph and connects them via AXI4-stream ports.Each additional node executed sequentially in a pipeline increases the runtime of the FPGAby about 9μs. On the GPU, it needs the entire runtime per additional task since it alreadyuses its full computing capacities for a single function. For a vectorization factor of 8, resourceutilization only increases by about 1% per kernel. When combining all three optimizations,the FPGA can outperform the GPU. While the quality of the GPU OpenCL kernel leaves roomfor optimizations, it highlights the FPGA as accelerator for image processing pipelines.

217

4 DECISION: Vision Framework

0 5 10 15 20 25 30 35 400

0.5

1

1.5
·104

consecutive 3 × 3 filter applications

exe
cut

ion
tim

e[μ
s] GPU1 meas.GPU1 fitGPU1 5 × 5 meas.GPU1 5 × 5 fitFPGA1 meas.FPGA1 fitFPGA1 5 × 5 meas.FPGA1 5 × 5 fitFPGA1 vector 8 meas.FPGA1 vector 8 fitFPGA1 5 × 5 vector 8 meas.FPGA1 5 × 5 vector 8 fit

Figure 4.21: Median kernel pipelined and vectorized execution time for different devicesincluding data transfer time. One 5 × 5 kernel equals two 3 × 3 kernels.
Program Creation and Runtime Modules: The Program Creation module precomputes allOpenCL command lists. The Runtime System module already includes them during compila-tion to minimize the additional overhead. Thus, OpenCL almost exclusively determines theoverhead of the runtime system. Only the consumer/producer commands needed to waitfor the creation of an event can in worst case produce an overhead of 100 ns to 200ns bythe yield command, according to measurements on CPU2. However, this is low comparedto the OpenCL overhead. In all other cases, the program can enqueue the commands in theOpenCL command queues in advance.
Table 4.9 shows the average duration between the execution of two dependent functions,depending on whether they are on the same device or in the same context. It shows theoverhead caused by the OpenCL runtime, including synchronization with (user) events andcallback functions. The program takes the kernel start and end times of OpenCL events whenprofiling is enabled. The results show a non-negligible overhead between different devices,which complicates the scheduling of dependent tasks. It also takes some time to offload akernel without considering its computation time, as shown by the overhead between twokernels on the same device. A copy between two GPUs of the same context has similar latencyand performance as a read command. However, it has the advantage that it copies directlybetween two devices of the same context without going via the host memory. Transferringvia host memory would require a read and a write command, which would approximatelydouble the total latency. The map and unmap commands require at most 1μs.

Table 4.9: OpenCL synchronization and kernel offloading overhead.
Device Context Time [μs]
Same Same 3.7
Different Same 56.9
Different Different 128.2

Scheduling Module: This work evaluates the Mapping & Scheduling module using an ORB-like application, similar to Figure 3.11, which consists of 22 tasks. The application replaces

218

4.7 Evaluation

some functions with similar ones, since some kernels are not available in any of the OpenCLlibraries. The resulting graph contains several parallel and sequential parts of varying sizes.The baseline maps all tasks to GPU1. This work artificially reduced FPGA resources to force aheterogeneous schedule when including FPGA1. Using 3×3 kernels and a vectorization factorof 8 on the FPGA, the speedup is only marginal (1.01) when using GPU1 and FPGA1. Withoutresource constraints, the toolchain schedules the entire graph on the FPGA, resulting in aspeedup of 2.38. Using 7 × 7 kernels and a vectorization factor of 8 instead, the speedupof the heterogeneous schedule is 1.63. Without resource constraints the speedup is 13.39,executing the entire graph on the FPGA. Executing the graph with one CPU and one GPUmerely reduces the total runtime by about 4%, since it uses the CPU for only one task due tothe performance differences.
The focus of the scheduling algorithm is on application performance and full utilization ofFPGA resources. To create a representative schedule: the device profiles from Table 4.7,the kernel profiles from Table 4.8, the FPGA dataflow characteristics of Figure 4.21, andthe OpenCL synchronization overhead of Table 4.9 need to be considered. Heterogeneousschedules can be seldom due to the widely varying execution times of different devices.High data transfer latencies compared to short function execution times can amplify thiscircumstance. In terms of energy consumption, FPGAs and integrated GPUs can furtherexploit their advantages, as shown in Section 4.7.1.
OpenCL: OpenCL provides a good base and low-level API to address as many devices aspossible. Using native kernels, it can incorporate other C++-based parallelization methods forCPUs. This work could show with the help of HiFlipVX that it is possible to integrate kernelsimplemented in C++ for XILINX devices with SDAccel (Vitis). While the OpenCL overheadis not negligible, it allows the use of different vendor-optimized drivers in one programwithout having to use multiple programming languages or APIs. A driver update or usingdifferent OpenCL versions did not cause any problems. To further reduce synchronizationoverhead, the toolchain would have to replace the OpenCL environment with a customimplementation.
The next subsection evaluates the Embedded System Vision toolchain and discusses theadvantages of the OpenVX Graph Creation module. It shares the frontend and HiFlipVX li-brary with the High-Performance Vision toolchain, which is another advantage of the modulardesign. On the other hand, it uses a different architecture and topology, and therefore needsa different middleend and backend.

4.7.4 Embedded System Vision Toolchain

This subsection evaluates the Embedded System Vision toolchain from Section 4.6 and thegenerated architecture. This includes the OpenVX Graph Creation module, the HardwareCreation module and the additional HLS-based NoC components from the Library module.The OpenVX Graph Creation module allows the user to implement an application withouthaving to deal with the underlying hardware or implementation details of the algorithm. Itbuilds the application graph and uses HiFlipVX to build IP-cores and extract the necessaryinformation. APARMAP creates an application-specific and adaptive NoC-based architecturefrom this graph. The Hardware Creation module creates and configures the componentsrequired for the NoC design, which include the TX and RX units of the NIs, the DMA controllers,and the MA. Alternatively, it can take the application graph and create a pure AC design.

219

4 DECISION: Vision Framework

Based on the final design, it connects all components and adds buffers, converters, DMAblocks, etc. and generates the bitstream.
The design of the toolchain and the modular structure of the framework have several ad-vantages. The well-defined OpenVX interface, graph verification, default parameter setting,parameter propagation, and IP-core creation significantly speeds up the implementationof object detection algorithms. Thanks to the modular structure and well-defined models,customizations are easier to manage for both the user and the developer. This can be,for example, the addition of new library components, the development of new applicationdistribution methods or the support of new architectures and platforms.
The total computation time of the toolchain mainly depends on the synthesis time of thedifferent IP-cores and the final bitstream generation. Therefore, both modules use OpenMPwith dynamic scheduling to generate all HLS IP-cores in parallel, which significantly speedsup the design process. For example, the tool needed only one minute to synthesize the 19IP-cores of the ORB on an AMD 3900X CPU with 24 threads. The same design took fourminutes when the tool synthesized a single IP-core containing all vision functions in a largedataflow region. For larger designs, the difference becomes more apparent. For the parallelsynthesis of the IP-cores and the creation of the entire block design, including the automaticconnection of the cores based on the graph description, the design of AKAZE needed about32 minutes for 95 IP-cores and 43 minutes for 163 IP-cores. Packing all vision functions inone IP-core using the HLS dataflow directive had to be aborted.
Figure 4.22 shows a small architecture that demonstrates the benefits of the proposedtoolchain and architecture. This architecture contains a 5 × 5 Gaussian (G), a 3 × 3 Sobel (S),a magnitude (M), a 7 × 7 segment test detector (F) and a 3 × 3 hysteresis (H) function. Thesegment test detector detects the corners of the FAST detector and outputs an image ofresponse values. The hysteresis function, which is part of the Canny edge detector, has alower and an upper threshold. The output value of an input pixel is true if the value is abovethe upper threshold (strong), or above the lower threshold (weak) and a strong pixel is in theneighborhood. The architecture in Figure 4.22 implements five different applications thatshare the mentioned functions:
• smoothing filter (G)
• segment test detector (F)
• smoothed gradient magnitude (G + S +M)
• edge detector (S +M + H)
• corner detector (F + H)
The Hardware Creation module allows developers to easily add new development boardsand exchange or upgrade XILINX-specific IP-cores. It currently supports the PYNQ-Z1 andZCU104 (3.9). However, designs should run without adjustments on any device of the ZynqSoC and Ultrascale+ MPSoC family. The test configuration for the following evaluation usesthe ZCU104 and Vivado 2019.1.
• FPGA frequency: 100MHz
• image dimensions: 1920 × 1080 × 8 bit
• node SIMD width: 1

220

4.7 Evaluation

partition
node
system
NoC

R R

R R

DDRDNIMAARM

S

F M

NI G

H

NI

Figure 4.22: Embedded vision example architecture. R (Router), MA (Manager), NI (NetworkInterface), D (DMA), G (Gaussian), S (Sobel), M (Magnitude), F (Fast), H (Hysteresis).
• maximum number of data flits per package: 8
• NoC bit-width: 32
The first test evaluates the latency overhead of the proposed architecture against a basedesign that includes the five example applications. This base design does not have a NoC asa communication infrastructure, nor do the applications share functions or DMA blocks. Thefirst test runs both architectures in the Vivado simulator without DMA or the proposed DMAcontroller. For a resolution of 1920 × 1080, the proposed architecture increases the latencybetween 107 and 168 clock cycles (133 on average), which corresponds to an overheadof 0.006%. Time measurement starts when the MA receives the start signal to execute anapplication and ends when it receives the end signal. There are two reasons for the smallincrease in latency. The first reason is the initial configuration of the NIs by the MA. Thesecond reason is the increased pipeline depth, since a pixel must additionally pass throughthe various routers and NIs.
The second test executes the proposed architecture in a real system setup. In this setup,the ARM CPU controls the MA and DMA and measures the time. Time measurement startsbefore the CPU sets the MA start signal and configures the DMA blocks. It ends after theCPU has detected the stop signal using a busy wait routine. The system runs all applications100 times and selects the fastest execution of each application to minimize the impact ofthe CPU. The goal of this measurement is to determine the DMA and memory overhead.The latency of the real system increases by an additional 280 to 304 clock cycles (293 onaverage) compared to the simulated architecture. This is an additional latency overhead of0.014%. The result shows that there is no additional interference to the architecture whenused outside of the simulation. The additional latency is due to the access time of the CPU,the access time to the main memory and the configuration time of the DMA blocks.
The third test adds the DMA controller to the design to evaluate its usefulness. This allowsthe MA to control the DMA directly and can thus save time. Compared to the system withouta controller, it saves an average of 106 clock cycles. Thus, the additional overhead caused byCPU, DMA and memory access is only 187 clock cycles compared to the simulation. Anotheradvantage of the DMA controller is that the system becomes more independent of the CPU,which also makes pure FPGA designs possible.
The previous examples did not use the caches. However, if the CPU executes an applicationin a hardware/software co-design, it may need to flush the caches. This process increases

221

4 DECISION: Vision Framework

the latency by an average of 41 869 clock cycles, which means an increase in execution timeby 2.026% compared to the third test.
Table 4.10 divides the resource usage of the example architecture from Figure 4.22 intothree parts. The NoC includes the NIs, routers, MA, DMA controllers, and all buffers andconverters. The application nodes are the OpenVX-based vision functions, which have avery low resource consumption due to the efficiency of HiFlipVX. When designing biggerapplications, the benefits of this architecture get more visible. The system part containsthe interconnection networks required for the DMA and the peripherals, the DMA, and thereset signal. Since the proposed architecture reuses functions for different applications, itsaves about 50% of the resources for the application nodes. In addition, the NoC gives theopportunity to reuse the same DMA block for the different applications, which saves a lot ofresources. One reason for the higher resource consumption of the DMA controller is theAXI4 interface generated with the HLS tool. The IP-core for the interface consumes 554 FFs,628 LUTs, and 1 BRAM.
Table 4.10: Resource utilization of the implemented design for the embedded vision exampleapplication using the NoC-based architecture.

LUT FF BRAM DSP
Routers 1205 626 0 0
Manager 263 275 0 0
RX/TX units 1029 1794 0 0
DMA controller 803 1788 1 0
Buffers/converters 1972 3305 4 0
NoC 5272 7788 5 0
Gaussian 227 206 2 0
Sobel 237 219 1 0
Magnitude 230 183 0 1
Segment detector 1835 922 3 0
Hysteresis 120 159 1 0
Application nodes 2649 1689 7 1
System 5542 8215 5 0
Total 13 463 17692 17 1

The next test increased the frequency to 300MHz to evaluate the impact on execution timeand resource consumption. For three times the frequency, the execution time increased by afactor of 2.9998. The reason for the small difference is that the frequency of the CPU and theDDRmemory have not changed. The entire NoC architecture, including all buffers, converters,routers, NIs, MA, and DMA controllers, needed only two additional LUTs compared to the100MHz design.
The next test evaluates the maximum throughput of the router within the NoC by settingthe data width of the application to 16 bit, which increases the amount of data transmitted

222

4.8 Summary

in the NoC by a factor of two. The execution time of the applications increased by at least50% compared to the 8 bit application and by 64% on average. This is because the routercan send data at most every two clock cycles and has an additional overhead for sendingthe header flit and creating the route. Changing the data width of the application had nosignificant impact on the resource utilization of the NoC and the system-specific components.Increasing the package size minimizes the overhead by increasing the maximum throughputbut decreasing the response time. Increasing the package size from 8 to 16 (32) increasedthe execution time by 32% (16%) on average and 25% (12%) on minimum. The minimumoccurs when using an application with only one function, since the NoC utilization is lowesthere.
The next test creates a design from the example application using the Embedded SystemVision toolchain that contains only ACs. In this design, applications do not share nodes orDMA blocks. Table 4.11 shows the resource consumption for this system. The high additionalresource consumption of the system is mainly due to the many interconnection networksand additional DMA blocks. There is one peripheral interconnect to control all the DMAblocks, four smart interconnects to connect to the memory controller, and five DMA blocksfor the ten application nodes. Due to the 128 bit memory interface of the ZCU104, the DMAblocks use a relatively large amount of BRAM.
Table 4.11: Resource utilization of the implemented design for the embedded vision exampleapplication as pure AC design.

LUT FF BRAM DSP
Nodes 5279 3358 14 2
Buffers/converters 2295 5273 0 0
DMA blocks 10970 16290 25 0
Smart interconnects 10 388 17240 0 0
Peripheral interconnect 1444 1477 0 0
Total 30 380 43671 39 2

Both systems have their advantages and disadvantages. On the one hand, the pure AC designcan run all applications in parallel. On the other hand, the NoC design requires significantlyfewer resources. The MA and DMA controllers simplify the start of individual applicationsconsiderably, since the user only needs send the application ID and a start bit. A generaladvantage of OpenVX Graph Creation module is that it requires only 25 lines of code tocreate the AC design, including the five different applications. This is twelve lines of code forthe nodes and their configuration, seven lines for the edges, and six lines for the rest of theOpenVX-based system.

4.8 Summary

This chapter presented a framework that consists of two toolchains that share a commonfrontend and HiFlipVX as library. Its design is modular to allow adaptions to differentarchitectures, programming models or applications. This simplifies adding new libraries,

223

4 DECISION: Vision Framework

scheduling algorithms and APIs. The programmer can modify the models at design time,which provides an easy way to evaluate, debug, or customize the application.
The joint frontend provides users with anOpenVX-compliant interface to implement computervision applications. It is used for different platforms without needing to learn new conceptsand languages or understand the underlying hardware and implementation. It checks theapplication graph and its parameters to detect possible user errors at an early stage. Defaultparameters are automatically set, and image properties are propagated through the graphto ease application development. Larger vision functions are divided into their sub-functionsto achieve less fragmentation in the distribution of the application. It generates IP-cores andapplicationmodel for the selected toolchain from synthesis and analytical estimates. To createsynthesis results, wrapper functions are generated that instantiate HiFlipVX functions. Thesynthesis of individual IP-cores is parallelized to achieve a significantly faster flow comparedto the advanced XILINX tools. A schedule is created to determine exact buffer sizes betweennodes to avoid deadlocks and increase throughput.
Besides the integration of HiFlipVX for FPGAs, this work investigated the integration ofexisting libraries to support other devices. OpenCL has been used because it allows toaddress most architectures. To overcome vendor bindings, this work looked at the automaticextraction of OpenCL kernels for OpenVX functions. The AMDOVX library implements OpenCLkernels for their GPUs, while providing optimized x86 code for CPUs. To use the CPU code,the High-Performance Vision toolchain provides the possibility to run native C++ kernels. Tocreate compatible GPU kernels, the AMDOVX code was adapted to extract control parametersand define them as internal variables within the kernel code. A similar approach was used tointegrate functions of the OpenCV library, which is a good candidate due to its rich featureset, OpenCL acceleration, and vendor independence. One advantage of OpenCL is that ithas a rich set of instructions, and thus requires only few vendor-specific constructs, suchas XILINX directives or Intel intrinsic operations. However, C++ is better suited for librariesbecause of templates, as shown with HiFlipVX.
Since it is not possible to cover everything with libraries, this work explored the manualoptimization of OpenCL kernel for various architectures [9]. For this purpose, four differentoptimization strategies for CPU and GPU devices have been implemented. Furthermore,this thesis provides a step-by-step optimization of windowed functions for the FPGA tomaximize performance, minimize global memory access and eliminate bottlenecks. It usesloop pipelining, line buffers, sliding windows, array partitioning, vector operations, fixed-pointnumbers, data packing, streaming between functions, and separate memory access andcomputation in different kernel. In the evaluation, a roof line model was created for theFPGA to make the computation time of a kernel more predictable. Therefore, the achievablememory bandwidth was measured when using separate memory access kernels. In addition,the time required to offload a kernel to a device wasmeasured, as well as the time required foreach additional kernel parameter. The evaluation also shows the best optimization strategyof each vision function for each OpenCL device to make general assumptions about the beststrategy. The FPGA achieves the highest performance for the test application and is 1.46times faster than the GPU, which is due to the efficient use of its memory bandwidth bystreaming data. Due to its low power consumption, it needs 10.6 times less energy than theGPU. The integrated GPU is only 1.17 times faster than the CPU, but 2.68 times more energyefficient, which is due to its parallel structure and lower frequency. The speedup of the FPGAincreases with the resolution, which shows its good scalability compared to other devices.

224

4.8 Summary

This thesis developed a source-to-source compilation tool, which recognizes profitableprogram parts in C/C++ code and automatically generates OpenCL host and kernel codefrom it, to assist the implementation of custom kernels or acceleration of existing code [28].The detection and transformation of suitable code is implemented in Polly using polyhedraloptimization. This information is then transferred to PPCG and optimized for the targetarchitecture. One contribution is the conversion of the existing PPCG integration in Pollyto a newer version that uses the "Live Range Reordering" feature. In addition, a module torecognize and convert local variables has been created. Furthermore, the generation of validand human-readable C code from LLVM-IR. The proposed approach opens the possibility toeasier debug optimization passes or to use existing OpenCL drivers and toolchains withoutcreating and updating a backend. It also provides the possibility to use other programminglanguages than C as input. In addition, some analysis is easier, such as detecting loops thatdo not have a standard structure, and own optimizations can be made to the code. Theproposed source-to-source compiler successfully built an OpenCL kernel and transforms
PHI statements into local variables. The generated code achieves a speedup of up to 60 on adual CPU system with 20 cores (40 threads) and the tiling optimization strategy enabled.
The High-Performance Vision toolchain uses OpenCL as a low-level API to distribute andexecute an application implemented in OpenVX on heterogeneous x86-based systemsconsisting of CPU, GPUs, and FPGAs [27]. The modules of the toolchain are independentfrom each other and can be used in a larger scope. For example, the Program Creationmodule and Runtime System module also work for non-streaming applications. In additionto the integration of HiFlipVX, OpenCL functions are automatically scanned to be accessibleto the user. Thus libraries, self-optimized kernels, or even automatically generated kernelscan be integrated more easily. To build a heterogeneous schedule from an application graph,the device and kernel profiles/estimates, the FPGA function-level parallelism characteristics,and the OpenCL overhead must be considered. Therefore, in addition to the FPGA synthesisresults, all devices are profiled in terms of their bandwidth and all CPU/GPU kernels areprofiled in terms of their execution time. From this schedule, a program is created at designtime that takes care of finding the shortest transfer paths, maintaining data coherence, andsetting up synchronization mechanisms, even between different vendors. Due to theseprecomputations and the parallelization of the different device queues in the runtime system,it can execute the applications with the lowest possible overhead. For an application similarto the ORB algorithm, the toolchain was able to achieve speedups of up to 13.39 usingmultiple optimizations on the FPGA in comparison to a GPU. In a heterogeneous schedulewith constrained FPGA resources, it achieved a speedup of 1.63 when using both devices.
The Embedded System Vision toolchain allows easy programming of object detection algo-rithms and the creation of a runtime-adaptive NoC-based architecture or a pure AC designbased on an application. Its well-defined OpenVX interface, graph verification, default pa-rameter setting, parameter propagation, and automatic creation of a complete hardwaredesign significantly improve the design process. Its modules use OpenMP with dynamicscheduling to generate all HLS IP-cores in parallel to further improve the design process. Thegenerated architecture with all its components (CUs, NIs, MA, DMA units, DMA controller,routers, converters, and buffers) is automatically created for the FPGA in the backend. Todesign a flexible architecture, the following generic HLS-based components have been devel-oped: (1) Configurable NIs, which connect CUs to the NoC, receive, send, or create packages,and integrate mechanisms to prevent deadlocks that occur when buffers overflow. (2) DMAcontroller that allow shared DMA units to be configured directly over the NoC. (3) A MA, whichorchestrates the application and configures the mentioned NIs and DMA controller for a

225

4 DECISION: Vision Framework

specific application flow. The APARMAP algorithm, which will be presented in the next chapter,distributes the application graph onto a partition-based mesh-like topology, thus creatingthe heterogeneous NoC-based architecture. It is optimized for streaming data, efficient interms of resource consumption, flexible, and capable of running different vision applications.The evaluation showed that the generated architecture has a high potential to reduce theresource utilization. For an example application and a resolution of 1920 × 1080, the over-head of the NoC-based architecture in terms of performance is just 0.006% in simulation. Inthe real system, the overhead increases to 0.015%. The small increase is due to the latencyfrom the ARM to the MA, and the latency from the DMA to the main memory using the DMAcontroller. The example design also runs at a high frequency of 300MHz on the ZCU104without performance loss. With the help of the generated MA and the DMA controller, theuser can easily run whole applications.

226

5 APARMAP: Application Distribution
Algorithm

This chapter describes the proposed application distribution algorithm [29, 30]. Its task is todistribute application graphs on a partition-based and mesh-like FPGA topology. It is alsopart of the Embedded System Vision toolchain, which has been described in Section 4.6.Figure 4.14 shows the usage of the algorithm within this toolchain including the interfaces.
Figure 5.1 shows all steps of the application distribution algorithm. The different steps havebeen described in Section 2.3.6 together with the related work. The partitioning of an ap-plication into a task graph and the tuning of its parameters is done in the OpenVX GraphCreation module of the Embedded System Vision toolchain by utilizing the HiFlipVX library.The proposed algorithm uses multiple heuristics and load balancing techniques in a multi-threaded and grid-based approach to achieve scalability for both the application and thearchitecture. It balances between exploitation and exploration to find a near-optimal solutionin a reasonable and scalable amount of time and not get stuck in local minima.

LibraryHiFlipVX

Graph CreationPartitioning & Tuning

Application Distribution
APARMAP

Clustering & Placement
(multithreaded)

Mapping &Scheduling Load
Balancing

Optimization(heuristics)

Figure 5.1: Overview of the APARMAP algorithm within the DECISION framework.
This thesis keeps the developed models and methods as general as possible, to be applicableto a wide range of use cases, applications, architectures, and topologies. This makes thealgorithm independent of the toolchain and vendor. The used models and allowed topologieshave been described in more detail in Section 4.6.2. Both analytical approaches as well assynthesis or simulation results can be used to calculate the data of these models. Thiswork uses a composite of synthesis results complemented by analytical models based onthe implemented library (HiFlipVX) as one possible instantiation. Figure 4.15 describesthe algorithm using these models, as an application distribution of a task graph (A) into apartitioned and meshed topology (B) to create an application-specific hardware architectureat design time (D).

227

5 APARMAP: Application Distribution Algorithm

5.1 Overview

The application model is a data flow graph consisting of tasks and transactions (A). First,these tasks are mapped and scheduled to a flexible set of physical nodes (2). This schedulecontains timing behavior including the information needed for DPR. The physical nodes spanthe node graph consisting of CUs, which can be dedicated ACs, general purpose PUs or I/Os(C). The platform model allows heterogeneous architectures with an irregular structure, fora high flexibility (B), as shown in Figure 4.16c. A NoC can be used for inter- and intra-chipcommunication. Its routers are connected via NIs to PRRs, which can be an entire FPGA or aregion on an FPGA. This shows the applicability of the proposed algorithm for a single-chipsystem as well as for a large FPGA cluster.
The focus of the algorithm is the clustering and placement of the node graph (C) into theplatform model (D) in a multithreaded approach. It is an NP-hard problem [11] if one ofthe two graphs is an irregular graph. Therefore, this thesis makes use of load balancingand different heuristics like TS and SA, in a multithreaded grid-based approach to find anear-optimal solution. To not lose optimality, clustering and placement is performed inone process. The first phase maps the node graph into the platform graph within a two-dimensional Euclidean vector space using load balancing techniques. Load balancing is agood technique to find a reasonable solution within a predictable and scalable amount oftime.
The second phase optimizes the solution using various heuristics. The algorithm balancesbetween exploitation and exploration, while iterating through the search space. This workuses a gradient descent method as search function to find possible solutions. A multi-objective function evaluates the quality of the solutions by calculating a fitness value. Themainconstraints and objectives are the FPGA resource utilization, the NoC bandwidth consumption,the NoC hop count and the computational speed of the toolchain. The solution space isdivided into a grid to prevent threads from calculating the same solution.
SA allows solutions to get worse up to a certain value, which decreases from time to time. TSuses a smart and multithreading capable history to prevent solutions from being repeated.Additionally, it is also possible to preconfigure parts of the architecture by:
• binding tasks to specific nodes
• binding nodes to partitions
• excluding all nodes from partitions other than those bound to them
Section 5.2 describes the proposed concepts and heuristics and Section 5.3 explains thecomplete algorithm. The variables and constants used in the equations of this chapter aresummarized in Table 5.1 and Table 5.2. The assigned values of the constants will be discussedin more detail in the evaluation in Section 5.4. Section 5.5 gives a summary of this chapter.

228

5.2 Heuristics and Concepts

Table 5.1: Variables of the application distribution algorithm.
P partition amount
N node amount
Pgrid partition groups in grid
Ngrid node groups in grid
Pres partition resource
Nres node resource
A,B coordinates
norm normalization factor
act(x, c) activation function
O fitness value
U utilization

Upart max partition utilization
Rad radius of resource
Bi fitness value of single link
Bt utilized bandwidth of time stamp
Bs bandwidth usage of edge
Bs available bandwidth of link
Fedge edge force
Frange range of force
Fstrength strength of force
Fnode node force
Fpart partition force

Table 5.2: The different parameters and their default values of the proposed algorithm.constraints (upper); load balancing phase (middle); optimization phase (lower).
C00 = 0.8 max allowed resource utilization per partition
C01 = 0.8 max allowed bandwidth utilization per link
C02 = 0 max allowed number of hops per transaction
C03 = 8 number of parallel working threads
C04 = 64 number of load balancing iterations
C05 = 16 load balancing rotation quantization (step 1)
C06 = 0.35 load balancing edge Force Fedge (step 3)
C07 = 0.65 load balancing edge Force Fedge (step 3)
C08 = 0.8 load balancing node force Fnode (step 4)
C09 = 0.2 load balancing partition force Fpart (step 5)
C10 = 1.0 load balancing partition force Fpart (step 5)
C11 = 16 number of best solutions stored during load balancing (step 6)
C12 = 1.2 initial simulated annealing factor after load balancing
C13 = [4..16] max number of STM elements per LTM element
C14 = [32..255] max number of MTM elements per LTM element
C15 = [4..16] max number of MTM elements allowed to deteriorate

5.2 Heuristics and Concepts

The proposed algorithm contains three phases to find a near-optimal solution: Scheduling &Mapping, Load Balancing and Optimization. This section describes the proposed heuristicsand concepts that will be used. To distinguish the different solutions in terms of quality,they are rated by a multi-objective function described in Section 5.2.1. The main objectives

229

5 APARMAP: Application Distribution Algorithm

are: resource usage, bandwidth usage and hop count. Various strategies address thedilemma between exploration and exploitation. A gradient descent method searches fornew solutions in the neighborhood of a solution using the objective function, as described inSection 5.2.2. The solution space is divided into a grid, as described in Section 5.2.3. Thisallows several threads to work in parallel in the same solution space without collision. TheSA approach described in Section 5.2.4 allows solutions to get worse up to a certain value,which decreases from time to time. Section 5.2.6 describes the TS algorithm, which uses ahistory (Section 5.2.5), to prevent solutions from being repeated. Additionally, solutions areonly allowed to get worse for a certain number of steps. Then a different path needs to bechosen in solution space.

5.2.1 Objective Function

To evaluate a solution, the fitness value (O) is calculated, as shown in Equation (5.1). This thesisconsiders three main objectives, which are considered with descending importance. First, thefitness value (Opart) is calculated, which includes the maximum and average resource usage ofall partitions. If the constraints ofOpart are notmet, the resource usage is too high, or the placeand routing might fail. If they are met, Opart is zero and the fitness value Oband, which dependson the maximum and average bandwidth usage of all links, is calculated. If the constraintsof Oband are not met, this would affect the execution time of the distributed application. Ifthey are met, Oband is zero and the fitness value Ohops, which depends on the maximum andaverage number of hops of all transactions, is taken. Ohops mainly have an impact on thelatency. However, for data flow applications with large packages, e.g., in image processing, anadditional latency of, e.g., three, can be negligible. Additionally, a reduced average hop countdecreases the dynamic energy consumption of the communication [123].

O =

Opart + 1 Opart > 0
Oband Opart = 0 ∧ Oband > 0
Ohops – 1 otherwise

(5.1)

As shown in Equation (5.2), this work uses themaximumand average fitness values to calculatethe fitness values for the partition (Opart), bandwidth (Oband), or hop count (Ohops). Thesevalues are normalized by (normi) to lie within the value range between 1 and 0. To calculate asingle fitness value, an activation function is used (act(x, c)), as shown in Equation (5.3) and inFigure 5.2a. This function gets a lower (c) and an upper (1) limit and the input value (x). If thevalue is below the limit, all the requirements of the objective are met. If the value lies betweenthe limits, the result may be of reduced quality. For Opart either the place and routing step ofthe CAD tool can fail, or a high clock frequency cannot be reached. For Oband the overhead forthe header of a package and the setting of routes in the NoC must be considered. In addition,the package size and number of packages from different sources can have an impact on thelimits (c).

Oi = max1≤j≤J
act(xi,j,Ci) + 1

J
·

J∑
j=1 act(xi,j,Ci)

 · normi (5.2)

230

5.2 Heuristics and Concepts

act(x, c) =

0 x < c
x–c1–c c ≤ x < 1
x 1 ≤ x

(5.3)

0 c 1
x0

1

a(x,c)

(a) activation function

c

transaction 1
transaction 2

transaction 3

t0 t1 t2 t3 t4 t5
timeb0

b1

b2

b3
bandwidth

(b) bandwidth consumption
Figure 5.2: Activation function getting a fitness value (x), a lower (c) and upper (1) boundary(left). Consumed bandwidth of a link with three transactions mapped to it and alower boundary (c) (right).
The fitness value for Opart is calculated in two loops. In the first loop, the node placementof a solution calculates the resource usage of each resource type of each partition. For allsubsequent solutions, only the resource usage of the migrated nodes needs to be updated.In the second loop, the maximum resource usage (U) of all partition types is calculated foreach partition. For all subsequent solutions, only the maximum resource usage of partitionswith a different node placement is updated. The activation function (act(x, c)) is applied on
U and uses C00 as the lower limit for the desired maximum resource usage of all partitions.The normalization value (normi) is 12 .
The fitness value for Oband is calculated from a precomputed list of events, which containsthe time stamps for the start and end of all transactions. The list is created while computingthe schedule using the synthesis results. The list, which is sorted by time stamps, is traversedin ascending order. Each event belongs to a transaction that has a path from its senderto its receiver node. The fitness value of each link to which the path of the transaction ismapped will be updated. First, the utilized bandwidth (Bti) of the current time stamp (i) isupdated by determining the available link bandwidth (Bs(l)) and the requested transactionbandwidth (Bs(e)), as shown in Equation (5.4). Then the fitness value (Bi) of the link is updatedby calculating the time product, as shown in Equation (5.5).

Bti(e, l) = {Bti–1 + Bs(e)
Bs(l) StartOfTransaction

Bti–1 – Bs(e)
Bs(l) EndOfTransaction

(5.4)

Bi = Bi–1 + (ti – ti–1) · act(Bti–1,C01) (5.5)
An example of three transactions mapped to one link including the time stamps t0 to t5 andthe bandwidth of the link, is shown in Figure 5.2b on the right. C01 is the lower limit for thedesired maximum bandwidth usage of all links. After traversing over the list of events, thereis a fitness value for each link. The final fitness value (Oband) is calculated using the maximumand average fitness values of all links (Equation (5.2)). In parallel to Oband, the hops fitnessvalue (Ohops) is calculated using the same equation. Therefore, the number of hops of each

231

5 APARMAP: Application Distribution Algorithm

event is counted and the average and maximum are calculated. Oband and Ohops are bothnormalized (normi) to ensure a value below 1.
In this work, an XY-routing algorithm was implemented, which had to be adapted for irregularmesh-like topologies. Thereby, routing is still done in X direction first. If this is not possible,it is routed by 1 position in Y-direction, then again in X-direction. This is repeated untilthe X-coordinate is correct. Then it is routed to the Y-direction. This works since irregularmesh-like topologies are not allowed to have gaps between two partitions within a row orcolumn.

5.2.2 Local Search Function

The search function calculates new possible solutions during the optimization phase. Startingfrom the fitness value of the current solution, a gradient descent method calculates newpossible solutions. Depending on the fitness value (Equation (5.1)) of the current solution,one of three search functions is selected. They try to improve the maximum and average:partition resource usage (Opart), bandwidth usage (Oband) or hop count (Ohops). During theoptimization phase it is also possible to choose between two modes.
In the first mode all observed nodes (i) can be moved by exactly one hop to a neighboringpartition. This creates multiple solutions. However, each of these solutions can have onlyone node, which has been migrated. To optimize Opart , all nodes placed to the partition withthe highest resource usage are observed. To optimize Oband, all nodes connected to an edge(transaction) that is routed via the link with the highest bandwidth usage are observed. Ifthis link connects a router with a partition, nodes communicating over this link are movedaway from the partition or towards it if the number of hops is one. If this link connects tworouters, there are two possible movements for the connected nodes since this work uses anXY-routing algorithm. If it communicates via a horizontal axis, the sender node is moved upor down by one. If it communicates via a vertical axis, the receiver node is moved one to theleft or right. To optimize Ohops, all nodes connected to an edge whose hop count is equal tothe maximum hop count of all edges are observed.
The second mode increases the radius of the gradient descent method if needed. In thismode all nodes j connected to i are also moved. For each combination of i and j, a solutionis created that moves two nodes. The number of hops between these nodes may increaseby a maximum of one for the search functions of Opart and Oband. The number of hops isnot allowed to increase for the search function of Ohops, since it should reduce the numberof hops. For both modes, the new fitness value is calculated if the migrated nodes are notbound to a partition. A solution is stored in a list if the fitness value is below the current SA.The list has a maximum of C13 solutions and is sorted by its fitness values. Moving two nodesinstead of one increases the probability of finding a solution that meets the SA.

5.2.3 Grid-Based Solution Space

The solution space consists of all possible distributions of the nodes on the partitions. For
P partitions and N nodes there are PN possible solutions. The flits (flow control units) arealways routed over the same path through the NoC, because an XY-routing algorithm is used.Depending on the number of partitions and nodes, the solution space is divided into a grid.

232

5.2 Heuristics and Concepts

The partitions are grouped into Pgrid elements by numbering them line by line. Each grouphas its own ID (PgridID). The first (P/Pgrid) partitions belong to element one, the next (P/Pgrid)partitions to two and so on. This approach simplifies clustering partitions for irregular graphs.The grid ID (GridID) is calculated for a subset of nodes (Ngrid) by determining on which clusterof partitions each node is placed to. This leads to a grid with PgridNgrid elements, as shown inEquation (5.6).

GridID = Ngrid∑
n=1 PgridIDn · (Pgrid)n–1 (5.6)

A subset of nodes (Ngrid) could also be selected by choosing nodes with a large distance toeach other, e.g., by using the Gray code. The solution space of each grid element can only beheld by one thread. If a thread finds a solution for an element that is not owned by anotherelement, it gets that grid element. If it finds a solution for an element that is already owned,it passes that solution to the owner. This approach allows exploration, prevents duplicatesolutions from different threads and is used in the optimization phase.

5.2.4 Simulated Annealing

The SA approach allows to deteriorate new solutions until the fitness value has reached acertain threshold. This threshold decreases when the TS memory is full, which limits theamount of data stored by the TS algorithm. This approach is used to increase the explorationof the search space and reduce the overall computation time. The initial threshold is C12 timesthe fitness value of the initial node placement stored after the load balancing phase. Eachthread has its own SA value. A fitness value is stored for each solution of the optimizationphase. After C14 solutions the median value of all solutions is taken as new value for thethreshold. All solutions with a higher fitness value are deleted from the TS and SA history asthey can no longer occur. A global SA value that is the maximum of all SA values is used inthe local search function, since it is also possible to find solutions for other threads.

5.2.5 History

The TS algorithm needs a history to prevent solutions from being recalculated or from endingin circles in the solution space. To manage multiple threads working on the same history, thisthesis proposes a smart memory, as shown in Figure 5.3. Each thread has an LTM elementthat stores the history of its solutions. It stores the complete initial and last (current) solution(distribution) of the nodes. The MTM stores the intermediate solutions. The elements containthe changes between the different solutions. The STM stores the C13 best solutions that havebeen calculated by the search function but have not been taken so far. The elements aresorted by their fitness value and contain the change to the corresponding MTM element orto the initial distribution.
Additionally, the best achieved fitness value of all MTM elements is stored. The deteriorationcounter counts the last consecutive solutions that did not lead to an improvement. If thisvalue exceeds C15, the best element from the STM is taken as the next solution to balanceexploitation and exploration. The migration counter counts the number of moved nodes

233

5 APARMAP: Application Distribution Algorithm

last solution
initial solution

LTM

best fitness value

deterioration counter
migration counter

MTM MTM MTM
STM STM STM

Figure 5.3: Structure of the LTM (Long-Term Memory) in the history. Each thread has oneLTM (Long-Term Memory) for the TS algorithm. The MTM (Medium-Term Memory)elements are the taken solutions. The STM (Short-Term Memory) elements arethe N best calculated but not taken solutions.
between the initial and final node distribution. It is needed to determine whether a solutionof an MTM/STM element must be created from the initial or the last distribution. There is a
mutex for the STM because other threads can insert STM elements into this memory. TheMTM and STM elements store the fitness value of the solution, which nodes moved betweenwhich partitions, the corresponding grid ID and their migration counter. If the SA changes, allMTM/STM elements below the new threshold are deleted.

5.2.6 Tabu Search

Each thread executes the TS algorithm independently. It stores the solutions in its historyto prevent solutions from being taken more than once (Section 5.2.5). It works on a grid-based solution space to prevent other threads from working on the same solution space(Section 5.2.3). It uses SA to limit its solution space and memory consumption (Section 5.2.4).It takes the possible solutions calculated by the local search function as input (Section 5.2.2).

Main Algorithm

The candidate solutions have been presorted according to their fitness value. They aretraversed by the TS algorithm in ascending order, to find the next solution (MTM) and bufferfurther valuable solutions (STM). Listing 5.1 gives an overview of the algorithm. First the gridelement and the owning thread is calculated (line 1). If no thread owns this grid element, it isobtained by the observing thread. The next step is to check whether the solution satisfies theSA of the owning thread (line 2). If the grid element belongs to another thread, an attempt ismade to store the solution in the STM of the other thread (line 3-4). If it belongs to the ownthread, the deterioration counter did not reach the threshold and no new MTM element hasbeen added, the history of the MTM is checked (line 5-6). If this solution does not yet exist inhistory, a new MTM element is added (line 7).
Otherwise, if the deterioration counter is reached or a new MTM element has already beenadded, it will try to add the solution to its own STM if this is not already full (line 8-9). If nonew STM element can be added, the STM will be marked as full for the following solutionsin the candidate list, since all of them will have a higher fitness value. The grid element canbe released if the observed solution could not be added to an STM or MTM (line 10). Afterall solutions have been traversed, it is checked whether an MTM element has been added

234

5.2 Heuristics and Concepts

1 Obtain grid element if not owned by other
2 if (SA of thread holding grid element is met)
3 if (Grid element belongs other thread)
4 Try to add element to remote STM
5 else if (No MTM element has been added) & (deterioration count not reached)
6 if (Check MTM history (hamming distance))
7 Add element to local MTM
8 else if (STM not full)
9 Try to add element to local STM
10 Release grid element if no own STM/MTM added
11 if (No MTM element has been added)
12 Try to add MTM from STM elements
13 if Maximum number of MTM reached
14 Update SA and cleanup LTM

Listing 5.1: Main structure of the TS (Tabu Search) algorithm.

(line 11). If no MTM element has been added so far, it must be created from the STM (line12). When a new MTM element has been added, the LTM and SA are updated. The last stepchecks whether the maximum number of MTM elements has been reached (C14) (line 12). Ifso, the SA is updated and the LTM is cleaned up accordingly (line 14).
Add MTM Element (line 7): When adding a new MTM element, it is added at the end of theMTM containing its data, and the last (current) solution of the LTM is updated. All threads gettheir memory elements for the STMs and MTMs from a shared pool to reduce the memoryusage.
Add STM Element (line 4 & 9): An STM is always locked by a mutex during access. The STMhas a maximum number of elements (C13) and is sorted by its fitness values. Based on thefitness value of a solution, an attempt is made to insert it as an STM element into the STMat the correct position. If a new STM element is added to an STM that already contains itsmaximum elements, the element with the highest fitness value is exchanged for the newelement. The grid element of a deleted STM is released if it is free. If the STM is not full, thenew STM element is taken from the pool. When adding an STM element to the STM of theown thread, the element is created by the observed solution. When adding an STM elementto the STM of another thread, the element is created from the difference of the initial solutionof the other thread and of the observed solution.
Add MTM Element from STM (line 12): If no new MTM element has been found in thecandidate solution list, it is tried to create an MTM element using the STM. Therefore, it istraversed through the STM in ascending order. First, the solution of an STM element needsto be created. It starts from the nearest solution, which is the initial or last solution fromthe LTM and then create the STM by updating it using the MTM elements. After the solutionhas been created, the history is checked if it already exists. If it exists, the STM elementis transferred to the end of the MTM, and its information is update. Otherwise, the STMelement is given back to the pool and the grid element is released if it is free.
Check History (line 6): Whether the current solution already exists in history is checkedby traversing through all MTM elements of the LTM and comparing them with the currentsolution. The grid-based solution space has the advantage that a thread only needs to checkthe MTM elements of its own LTM. For comparison, this work uses a Hamming distance bit

235

5 APARMAP: Application Distribution Algorithm

vector. Each bit indicates whether the distribution of a node is the same (0) or different (1)between the current solution and theMTM element. The total Hamming distance is calculatedusing Equation (5.7). It checks whether the old solution (M_oldi(n)) of a migrated node (n) inthe observed MTM differs from the current one (M_new(n)). This value is subtracted by thecurrent Hamming distance (M_hami(n)) of the node to update the total Hamming distance(Hi+1). All migrated nodes of an MTM element are traversed before checking if the currentsolution is a duplicated one, which is the case if the Hamming distance is zero.

Hi+1 = Hi + (M_oldi(n) 6= M_new(n)) –M_hami(n)
M_hami+1(n) = M_oldi(n) 6= M_new(n) (5.7)

Cleanup History (line 14): The history must be cleaned up when the maximum number ofMTM elements per LTM is reached (C14). First, the SA of an LTM is updated using the medianof the fitness values of all MTM elements as described in Section 5.2.4. Then all STM elementswith a fitness value higher than the SA are deleted and free grid elements are released. AllLTM data, except the MTM and STM elements, is reset. The LTM is updated while traversingthrough the MTM elements starting from the initial solution. If an MTM element does notmeet the SA, all STM elements that point to it shall point to the predecessor MTM element.Additionally, these STM elements and the successor MTM element are updated, the observedMTM element is deleted, and its grid element is released if it is free.

5.3 Algorithm

The proposed algorithm optimizes the application distribution for three different objectives.It attempts to reduce the maximum and average: resource usage of all partitions, bandwidthusage of all links, and number of hops of all transactions. The algorithm contains threephases that are executed one after the other.
1.The Scheduling & Mapping Phase takes the input application graph and maps its tasks tonodes. It also creates the schedule that is needed to determine the bandwidth usage ofthe links for a given time period.
2. In the Load Balancing Phase, this node graph is distributed to the host graph withinthe two-dimensional Euclidean vector space using load balancing techniques. The phasecomputes several initial node placements in parallel.
3. In the Optimization phase, the final clustering and placement is created by optimizing theinitial placement using the heuristics described in Section 5.2 in a multithreaded algorithm.

5.3.1 Scheduling & Mapping Phase

Before nodes can be placed to partitions, the schedule must be created. One job is to maptasks to nodes. Tasks can be bound to specific nodes in the configuration file. In addition,the schedule for the timing behavior of transactions is required. The timing of nodes is notimportant for their assignment to partitions since a node always exists and only the tasks on

236

5.3 Algorithm

this node will change. However, mapping transactions to links requires timing behavior tosee which bandwidth is needed for which time period.
The schedule is calculated in two steps. The first step is to calculate the ALAP (As-Late-As-Possible) schedule where nodes are executed as late as possible. Then all source nodes(CUs) that are either I/O or PU are fixed to this calculated time. A source node is a node thatonly transmits data and does not receive any. After that, the ASAP Schedule is calculated inwhich the precalculated time of the fixed nodes is maintained. The reason for this type ofscheduling is that the latencies between tasks are reduced and thus smaller buffers (FIFOs)can be used. This is possible because nodes like PUs can have wait states, whereas ACs canonly react to their input.
The ASAP Schedule is calculated by processing a list of tasks ordered in the sequential orderof their execution. When this list of tasks (send) is processed, the start time (strt) of each task(recv) which receives data from the sender is updated as shown in Equation (5.8). The latencytime between the start of a task and the start of a transaction is represented by the offsets(off). If two tasks run on the same node, they are executed one after the other. An additionaldelay can be added between these tasks if DPR needs to be performed.

strtrecv = max(strtrecv , strtsend + offsend – offrecv) (5.8)
When DPR is used, an entire partition, including all its nodes, will be reconfigured. Thishappens because this work uses a common interface to the router, which makes the DPReasier. Therefore, only reconfigurable nodes can be assigned to a partition that should bereconfigured. In addition, the scheduler must take the reconfiguration time into account.Furthermore, if the maximum possible buffer size is used, the scheduler can recognizewhether deadlocks may occur due to too small buffers. This is done by calculating the delaytime of a transmission between a sender task and a receiver task. From this information thenumber of required buffer elements can be calculated.

5.3.2 Load Balancing Phase

The second phase of the algorithm does the load balancing to create an initial clusteringand placement. It is a deterministic process that will output the same result for the sameinput. It takes the node (guest) graph, which consists of nodes and edges (transactions), asinput. In the initial phase, the guest graph is mapped into a two-dimensional Euclidean vectorspace. This is done by calculating the distances between one node and all other nodes usingthe Dijkstra algorithm. The distance between two nodes is the minimum number of edgesbetween them. If another node is selected as the starting node, a different initial graph iscreated. This way several initial graphs are created, as described in Section 5.3.2.1.
Each thread applies load balancing on a different initial graph independently from each otherand in parallel to each other. During this process, the guest graph is expanded within theboundaries of the host graph in the Euclidean vector space. Figure 5.4 shows a guest graphthat was mapped to a host graph using load balancing. The main goal of the load balancingprocess is to reduce the maximum resource usage of each partition in the host graph orto get it below a certain value. In addition, the maximum length of the edges in the guestgraph is kept small to reduce the maximum number of hops required for the communicationbetween different nodes. The load balancing algorithm iteratively optimizes the solution in

237

5 APARMAP: Application Distribution Algorithm

Figure 5.4: Plot of the node graph after load balancing it into a 3 × 3 host graph for twoindependent threads. Bars show maximum resource usage of partitions.
six steps, which will be described in more detail later. The different steps are only active for acertain period of iterations, as shown in Figure 5.5.
• Step 1: The guest graph is inserted into the host graph by scaling and rotating.
• Step 2: Nodes that are only connected to two others are centered between them.
• Step 3: Nodes that are connected to each other are forced towards each other.
• Step 4: Nearby nodes are forced apart from each other according to their resource usage.
• Step 5: Nodes are forced to adjacent partitions depending on their resource usage.
• Step 6: The current solution is stored depending on the fitness values.

period1 2 3 4 5 6 7 8

step

12
34
56

Figure 5.5: Shows which steps of the load balancing process are executed in which iterationperiods. Steps 4 and 5 increase their strength until they are applied at full strength.

5.3.2.1 Initial Guest Graphs

Initial guest graphs need to be created in a two dimensional Euclidean vector space usingthe node graph, before load balancing can take place. To determine the coordinates of thedifferent nodes in the guest graph, the distances between these nodes are calculated usingthe Dijkstra algorithm. The distance between two nodes is the minimum number of edgesthat lie between them. To obtain different starting points in the solution space, each thread(t) needs its own guest graph.
To achieve a distinction between the different guest graphs, different nodes are chosen as 1.
reference point (A). This reference point is placed in the center of the coordinate system, as

238

5.3 Algorithm

shown in Figure 5.6. To determine coordinates for the other nodes that are as accurate aspossible, three reference points are required.

x

y

A B

C

Dab
ac bc

Figure 5.6: Computation for the initial node coordinates (A, B, C and D) of a guest graph. Thedistances ab, ac, bc are the minimum amount of edges between these nodes.
The 2. reference point (B) is the node with the furthest distance to the first one. As shown inFigure 5.6 this point is located on the x-axis of the coordinate system. To avoid duplications,such as ab, ba, twice as many reference pairs as threads (t ·2) are calculated. Duplicated pairsare deleted and the best pairs in terms of maximum distance are selected for the differentthreads. Each thread computes its guest graph based on its reference pair (A, B).
The 3. reference point (C) is selected based on its distances to A and B. The node with thehighest result for (xi = aci · bci) is chosen as the reference point. The coordinate of the thirdreference point is calculated using the following equations:

Cx = cos (±α) · ac
Cy = sin (±α) · ac

α = cos–1
(
ac2 + ab2 – bc2
2 · ac + ab

) (5.9)

The same equation is used to calculate the coordinates of all other nodes (D). As shownin Figure 5.6, it is possible that there are multiple intersections when the coordinate of Dis calculated. The final coordinate of D is the center of the smallest possible triangle thatcan be formed from these intersections. To increase the accuracy of the guest graph, thecoordinates of all nodes are computed several times, using reference points A and B witha different C. Therefore, the results of the equation (xi = aci · bci) for all possible referencepoints C are stored in a vector and then partially sorted. The best (t · 2 – 2) results are usedto determine the different nodes for C. The average value of the calculated coordinates istaken as the final coordinate.

Load Balancing Steps

After the initial guest graphs have been computed, they can be unfolded in the variousthreads in the host graph using load balancing. In step 1, the guest graph is rotated andscaled to fit best into the host graph. For this purpose, the guest graph is rotated in a certain

239

5 APARMAP: Application Distribution Algorithm

number of steps (C05) by a total of 180◦. For each rotation, the area of the smallest rectanglethat fits around the guest graph is calculated. The rotation where the rectangle covers thelargest area is chosen as the best solution. If the host graph is a rectangle, the longer side ofthe guest graph rectangle is scaled to the longer side of the host graph rectangle. The guestgraph is then rotated according to this solution and scaled to fit within the limits of the hostgraph. If the host graph is an irregular graph, it is extended to a minimally large rectangulargraph that fits around the irregular host graph. The new area (partitions) in this extendedhost graph is marked as not valid. This simplified process is done to reduce the computationtime.
In step 2, nodes that are only connected to two other nodes are centered between themto achieve equally long edges. In step 3, all interconnected nodes are pulled towards each
other. Both nodes are pulled with the same force (−−−→

Fedgej), which depends on the distance
(dist(−→a ,−→b)) between the node coordinates (−→Aj &−→

Bj), as shown in Equation (5.10). All distancesand the maximum distance shown in the equation are computed first. Because nodes canhave multiple forces, all forces of a node are summed before its coordinates are updated.The coefficients C06 and C07 are used for fine-tuning.
−−−→
Fedgej = (−→Aj – −→

Bj)2 · min(dist(−→Aj ,−→Bj) · C06
max0≤k<K (dist(−→Ak ,−→Bk)) ,C07) (5.10)

In step 4, nearby nodes are forced apart from each other according to their resource usage.The algorithm uses a grid-based approach to detect collisions between two nodes, whichreduces the complexity of computations from O(n2) to approximately O(n · log(n)). The gridsize is the maximum radius of all nodes for each resource type (e.g., LUT, FF, DSP, BRAM) oneach partition type. Equation (5.11) calculates the radius for a resource type of a node on apartition type, where the resource usage of a node is Nres, and the available resource of apartition is Pres. The coefficient C00 defines the maximum resource usage a partition shouldhave after the entire distribution process.

Radk(l) = √1
π

· Nres(l)
Pres(l) · 1

C00 (5.11)

The node coordinates are stored in a sorted sparse matrix to reduce memory usage and easethe collision detection by using adaptive search pointers. For nodes that are in adjacent gridcoordinates it needs to be checked if they collide. They collide if the total range of the force
(Frangej) is smaller than the distance (dist(−→Aj ,−→Bj)) between them. This range is calculated bythe maximum of the ranges of all resource types of a node, as shown in Equation (5.13). Thestrength (Fstrengthi) of this force depends on the iteration (i) of the load balancing processand increases between iteration t0 and t1, as shown in Equation (5.12) and in Figure 5.5.

Fstrengthi = { i–t0
t1–t0 t0 ≤ i < t1
1 i ≥ t1 (5.12)

Frangej = max0≤k<K (Radk(Aj) + Radk(Bj)) · Fstrengthi (5.13)

240

5.3 Algorithm

The total force acting on a node (Fnodej) in a collision depends on the distances betweenboth nodes and the range of their forces, as shown in Equation (5.14). The coefficient C08is the tolerance factor of this force to prevent the effect of hysteresis between two nodes.Because nodes can have multiple forces, all forces are summed for each node before thenode coordinates are updated.
−−−−→
Fnodej = (−→Aj – −→

Bj)2 ·
(Frangej – dist(−→Aj ,−→Bj)) · C08

dist(−→Aj ,−→Bj) (5.14)

In step 5, nodes are forced to adjacent partitions depending on their resource usage. Thefirst part of this algorithm moves all nodes inside of the extended host graph. Additionally,it precomputes the resource usage of each partition using the new node coordinates. Thesecond part of the algorithm calculates the total force applied to the node by the adjacentpartitions. If the node is bound to a certain partition, it is only pulled by the center of thatpartition. Otherwise, the node is pulled to the center of its current partition and to the 4adjacent partitions, independently of each other. Of course, a partition can only be pulled bya valid partition. If there is no partition that pulls the node, it will be pulled to the center of thehost graph. Because nodes can have multiple forces, all forces are summed for each nodebefore the node coordinates are updated. Equation (5.15) shows the force by which each
separate partition acts on the node (−→Aj). In this function, −→Bj is the center of the partition or
host graph. Upartj is the maximum resource usage of all resource types in case −→

Bj would be
mapped to the pulling partition. A single partition force (−−−→

Fpartj) is only computed if (Upartj < 1),to let only partitions force a node, which have available resources. The strength Fstrengthihas different values for t0 and t1, as shown in Figure 5.5, where the lighter box marks theperiod between t0 and t1. The coefficients C09 and C10 are used for fine-tuning.
−−−→
Fpartj = −→

Bj – −→
Aj2 · min(C09

dist(−→Aj ,−→Bj) · (Upartj)2 ,C10) · Fstrengthi (5.15)

In step 6, the current solution is stored depending on its fitness values. The fitness value isobtained by computing the objective function on the current solution (Section 5.2.1). Thedistribution is obtained by converting back from the Euclidean vector space and placing thenodes to the nearest valid partitions. The best solutions of all threads are stored into a listof solutions. To achieve a better exploration the entire solution space is divided into a grid(Section 5.2.3). Therefore, if multiple solutions are in the same grid of the solution space,only the best of them is stored into the list. Storing a solution in each iteration of the loadbalancing process from multiple threads has several benefits. The threads will find differentvaluable solutions, depending on their start in the solution space. Solutions can also getworse during load balancing process. Multiple starting points can be created in solutionspace for a better exploration in the optimization process.

5.3.3 Optimization Phase

After all threads have completed the load balancing phase, the optimization phase begins. Inthis phase a multithreaded heuristic approach finds a near-optimal solution depending on

241

5 APARMAP: Application Distribution Algorithm

the objectives. The different heuristics and concepts used are described in Section 5.2. Inthe first step, initial solutions are assigned to each thread. The intermediate solutions fromthe load balancing phase are used for this purpose. The C11 best solutions were stored inthe previous phase, whereby only one solution per grid element was allowed. The solutionsare sorted by their fitness value and distributed in ascending order to the threads as initialsolution. After each thread has received a solution, the process starts again. However, allfurther solutions are stored in the STM of the respective thread. Furthermore, a thread ownsthe grid elements of the solutions assigned to it. If the load balancing process could not finda solution for each thread due to the grid fragmentation, random solutions are assigned tothe threads that did not receive a solution.

[else] [else] [else]

[else]
sm = 1

[termination
criterion met]

[no MTM
added

[sm == 1]
sm = 2

[memory
cleanup]
sm = 1

[sm == 1 & no
solution found]

sm = 2SearchFunction TS & SA

Figure 5.7: Optimization algorithm for clustering and placement process. sm = search mode
After the initial solutions of all threads are stored, the threads calculate new ones iterativelyand in parallel, as shown in Figure 5.7. In the first step, the search function calculates possiblenew solutions, as described in Section 5.2.2. If no solution was found and search mode1was selected, the next iteration starts with search mode2, which increases the radius of thegradient descent method. Then the TS algorithm takes the candidate solutions to find a newsolution, as described in Section 5.2.6. If the limit of MTM elements is reached, the history iscleaned up and the next iteration starts with search mode1. If no new solution was found andsearch mode1 is selected, search mode2 is selected and the next iteration begins. If searchmode2 is selected and no solution was found, the thread is terminated. If a new solutionwas found and all constraints are met, the thread is terminated. If a new solution was foundand the constraints are not met, search mode1 is selected and the next iteration is started.The constraints depend on the three objectives: maximum resource usage (C00), maximumbandwidth usage (C01) and maximum number of hops (C02). Due to the SA the algorithmwill always terminate. After all threads have terminated, the clustering and placement of thebest fitness value of all threads is created and saved in the output file. The algorithm in theoptimization phase is not deterministic, because the collaborative work between the threadscan lead to a different final solution.

5.4 Evaluation

This section evaluates the C++ implementation of APARMAP. It is an application distributionalgorithm for partition-based and mesh-like FPGA topologies. It is part of the EmbeddedSystem Vision toolchain evaluated in the previous section, but it can cover a much widerscope, which is why this section examines it separately. It uses several heuristics and loadbalancing techniques in a multithreaded and grid-based approach to find a near-optimalsolution.

242

5.4 Evaluation

This work has created several application graphs to evaluate the distribution of applicationson different topologies for various parameter settings. The key performance metrics are thefitness values of the final solution and computation time of the algorithm. Other goals ofthe algorithm are its scalability, optimality, and multithreading capability. The computationtime of the algorithm does not play a role in the execution time of the application since itdistributes the application at design time. However, the computation time of the algorithm isnot negligible and should scale with the problem size. This work uses an exhaustive searchmethod to determine the values of the algorithm parameters under the constraint of theirreasonability and by using visualization methods.

5.4.1 Default Parameters

Table 5.2 shows the default values of the algorithm parameters. The first three parametersin the table are the constraints and objectives of the algorithm. A resource utilization of lessthan 100% is beneficial to meet the timing constraints of the routed design. The maximumbandwidth utilization depends on the overhead of a package sent via the NoC. This overheadcan be the header information of a package. The algorithm starts reducing the maximumand average hop count when the distribution satisfies the bandwidth and resource utilizationconstraints. Decreasing the number of hops improves the computation time of the applicationand reduces the energy consumption of the communication infrastructure. Therefore, thedistribution algorithm only indirectly considers the execution time of the algorithm. However,the developer can update the objectives by adding the calculation for the fitness value andthe search function.
The algorithm divides the load balancing phase into six steps. Each step is active only for acertain number of iterations. C04 shows the total number of iterations in this phase. The firststep rotates the guest graph with a quantization of C05 and maps its best fit to the host graph.Higher quantization would increase the accuracy, but also the computation time since thisprocess is quite computationally intensive. However, further increasing the quantization didnot result in a better fitness value. The algorithm has two parameters to adjust the calculationof the edge force (Fedge) and the partition force (Fpart) respectively. The tolerance factor C08prevents a hysteresis effect between two nodes caused by the node force (fnode). The loadbalancing phase stores the C11 best solutions. Thereby, each grid element can only store amaximum of one solution to improve the exploration. The value of C11 must be higher thanthe number of parallel threads (C03). Here the selected value is always twice the number ofthreads.
The initial SA value for the optimization phase is C12 times higher than the worst fitness valueof the C11 initial solutions stored in the load balancing phase. Each thread has one LTM witha maximum of C13 STM elements and C14 MTM elements. Only C15 MTM elements in a rowcan have a worse fitness value than the previous one. The parameter values of C13 and C14depend on the number of nodes in the guest graph. Their value has an upper bound to limitmemory consumption and computation time, as shown in Equation (5.16). The parametervalue of C15 follows the same calculation as the value of C13. The offset was determined bymeasurements and is a trade-off between computation time and achieved fitness value.

243

5 APARMAP: Application Distribution Algorithm

C13 = min(16, 4 + blog2(N)c)
C14 = min(255, 32 + ⌊log2(N)2⌋) (5.16)

5.4.2 Measurement Methodology

This section evaluates the algorithm using eight parallel threads (C03) on an AMD 3900XCPU that has 12 cores and 24 threads. The algorithm uses the 80th percentile of 256measurements to measure the execution time and filter the deviations caused by the OS.It averages 100 runs to determine the fitness value since the multithreaded optimizationphase is not deterministic. However, there are no boxplots of the fitness values because thevariance of the results is too small to be visible.
The default host graph in this evaluation is regular, homogeneous, and has a 3 × 3 topology.Therefore, all partitions have the same number of available resources. The applicationgraphs are heterogeneous and consist of 24, 36, 48, 60, 72, 84 or 96 nodes. They shoulddemonstrate the differences between the different objectives. Figure 5.8 shows three ofthese application graphs. For a large partition with the same number of resources as theentire host graph, the application graphs would consume exactly 60% of the resources ofeach resource type. The number of resources a node needs from each resource type varies.This leads to fragmentation when distributing the nodes across the different partitions. Eachnode has an average of 2.5 edges connected to it. A transaction utilizes 25% of the availablebandwidth of the NoC and has a duration of 3000 time units. The total execution timeof the different application graphs would be between 8000 and 11600 time units if therewere no bandwidth constraints and no additional delays introduced by the NoC. Therefore,only the number of hops affects the total latency if the distribution meets the bandwidthconstraints.

5.4.3 Memory Usage

Table 5.3 shows the total memory consumption of the proposed algorithm. It includesthe main object of the algorithm and the memory that is dynamically allocated during theapplication distribution process. All memory is allocated as a large chunk and memorymanagement takes place within the algorithm. The table shows the memory consumptionfor a given number of threads and nodes, since these are the variables that have the greatestimpact. As the table shows, memory consumption scales linearly with the number of threadsand nodes in the application graph. For each MTM or STM element in the TS algorithm, thememory consumption increases by 553 bytes. In summary, the table shows the low andscalable memory consumption of the implemented algorithm.

5.4.4 Load Balancing & Optimization Phase Comparison

Figure 5.9a shows the average fitness value for an application graph with N nodes distributedon a host graph with 3 × 3 partitions. There are three different configurations: only the

244

5.4 Evaluation

Figure 5.8: Example graphs with 24, 36 and 48 nodes.
Table 5.3: All dynamically allocated memory in kB of the proposed algorithm.

Nodes 1 thread 2 threads 4 threads 8 threads
24 18 27 47 86
48 25 38 66 121
72 31 49 85 156
96 38 59 101 186

load balancing phase (LB), only the optimization phase (OPT) or the complete algorithm(LB+OPT). All three configurations include the sequential part between LB and OPT phase,which stores the initial solutions and distributes them to the threads. This part generatesrandom solutions when there is no load balancing. Processing the load balancing phasealone already meets the resource constraints for 2 out of 7 application graphs. Processingthe optimization phase alone always satisfies the resource constraints. However, it satisfiesthe bandwidth constraints only for one graph. The fitness values show that finding a goodinitial solution using load balancing always improves the results of the multithreaded TS/SAalgorithm. The reason for the outliers of some graphs is that the resource consumption ofeach node is different, resulting in various constellations. Graphs with more nodes are morelikely to have less fragmentation, which can lead to better results.
Figure 5.9b shows the computation time for the same configuration. The load balancingphase computes faster than the optimization phase. It also reduces the computation time ofthe optimization phase for an increasing number of nodes. This means that load balancingalso improves the scalability of the computation time with respect to the number of nodes.In addition, the computation time of the load balancing phase is predictable because it is

245

5 APARMAP: Application Distribution Algorithm

-0.8
-0.4
0.0
0.4
0.8
1.2
1.6

LB OPT LB+OPT
(a) fitness value (lower is better)

0
10
20
30
40
50
60

LB OPT LB+OPT

ms

24 nodes
36 nodes
48 nodes
60 nodes
72 nodes
84 nodes
96 nodes

(b) computation time
Figure 5.9: Application graphs with N nodes placed on a 3 × 3 mesh for LB (load balancingphase only), OPT (optimization phase only) and LB+OPT (complete algorithm).
deterministic.

5.4.5 Amount of Threads

Figure 5.10a shows the fitness values of four application graphs distributed to the host graphdepending on the number of parallel threads. The number of nodes must be twice thenumber of threads. Therefore, there is no result for 24 nodes and 16 threads. A highernumber of threads does not always lead to a better result. One observation is that themore nodes there are in the graph, the more likely it is that a larger number of threads willcontribute to find a better solution. Increasing the number of threads improves explorationand minimizes the possibility of getting stuck in a local minimum. Another fact that may causethe algorithm to get stuck in a local minimum may be related to the maximum number ofSTM and MTM elements and SA, which forces the algorithm to terminate.
As shown in Figure 5.10b, the number of threads has a direct impact on the computation time.However, it does not increase linearly with the number of threads. The smallest increase isfor the graph with 72 nodes. In this graph, 16 threads require only 2.7 times the computingtime of one thread. The largest increase is in the graph with 48 nodes. In this graph, 16threads require 8.4 times the computation time of one thread. The computation time of theload balancing phase is shorter than that of the optimization phase. The ratio between thecomputation times of the two phases increases with an increasing number of nodes, but notwith an increasing number of threads.
Figure 5.10c evaluates whether an increase in threads causes the optimization phase to addmore MTMs per time unit to the LTMs. As the number of threads increases, the optimizationphase computes an increasing number of MTMs per ms. However, the ratio does not increaseat the same rate as the number of threads. 16 (8) threads compute on average 4.4 (2.9) moreMTMs. This is partly due to the sequential part of the algorithm, but also because differentthreads need to access shared elements. Furthermore, an increasing number of nodes alsocomputes fewer MTMs per ms. This is because the algorithm has to place more nodes onthe same partition on average. Therefore, the gradient descent method must compute morepossible solutions per step.

246

5.4 Evaluation

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0
0.1

24 nodes 48 nodes 72 nodes 96 nodes
(a) fitness value (lower is better)

04
812
1620
2428
3236

24 nodes 48 nodes 72 nodes 96 nodes

ms

(b) computation time

0
50
100
150
200
250
300
350
400

24 nodes 48 nodes 72 nodes 96 nodes

mtm
per

ms 1 thread
2 threads
4 threads
8 threads
16 threads

(c) MTM elements taken per ms in the optimization phase
Figure 5.10: Application graphs with N nodes placed on a 3 × 3 mesh using T threads.

5.4.6 Load Balancing Phase Iterations

Figure 5.11a shows the achieved fitness value in dependence of the number of iterationsin the load balancing phase. It shows the average of the best fitness values achieved by allapplication graphs after the load balancing phase or the complete algorithm. The fitnessvalue does not correlate with an increasing number of nodes in the application graph. Forexample, application graphs with more nodes do not require a higher number of iterations toachieve a good fitness value. The result also shows that after a certain number of iterations,further iterations do not improve the results.

-0.8
-0.4
0.0
0.4
0.8
1.2
1.6

8 16 32 64 128 256
iterations

LB LB+OPT

(a) fitness value (lower is better)

0.00.5
1.01.5
2.02.5
3.03.5
4.0

8 16 32 64 128 256

rela
tive

iterations

LB LB+OPT

(b) relative computation time
Figure 5.11: Average value for application graphs of size (24, 36, 48, 60, 72, 84, 96) placed ona 3× 3 mesh after I iterations in the load balancing phase. Results shown for LB(load balancing phase only) and LB+OPT (complete algorithm).

247

5 APARMAP: Application Distribution Algorithm

Figure 5.11b shows the average computation time of the different application graphs inrelation to the computation of eight iterations. The factor in computation time between8 and 256 iterations is 2.25 for 24 nodes and 5.03 for 96 nodes. The smaller increase inthe 24-node application graph is due to the sequential part. If the number of iterations issmall, the impact on the total computation time remains small. The fact that eight iterationsrequire more time is because the load balancing results are worse, and the optimizationphase calculates more solutions. Furthermore, Figure 5.11a shows only the best fitness valueafter the load balancing process, but not the initial values of the other threads.

5.4.7 Load Balancing Complexity

To obtain a scalable algorithm, it is important that the computational complexity is low. Thehighest complexity of the load balancing algorithm is the collision detection in the fourthstep of the algorithm. This step forces nodes that are close to each other away from eachother according to their resource consumption. A naive method would calculate the distancefrom each node to every other node. This work uses a grid-based method to reduce thenumber of observations. The algorithm stores the grid elements in a sparse matrix to keepthe memory requirements linear. Unfortunately, the sparse matrix must be sorted, whichhas a complexity of O(n · log2(n)). Figure 5.12 compares the complexity of the naive methodwith the grid-based method. The collisions curve shows the average number of detectedcollisions, which is the same for both methods. The complexity is linear for an increasingnumber of nodes. The check if in grid curve describes the average number of nodes in thesparse matrix for which the algorithm checks if they are neighbors in the grid. The number ofobservations that check if a node is within the grid depends on the number of collisions:

observations ≈ collisions · log2(n) (5.17)
4608

991
1891460500

1000
15002000
25003000
3500
40004500

24 36 48 60 72 84 96

obs
erv

atio
ns

nodes

naivemethod
check ifin grid
check ifcollision
collisions

Figure 5.12: Compares the amount of observations of a naive method and a grid-basedmethod for the collision detection in the load balancing phase.
The check if collision curve describes the average number of distances that the algorithmcalculates to determine whether a grid collision is really a collision. This is the most computa-tionally intensive part of the algorithm. On average, there are 30% more grid collisions thantrue collisions for the example application graphs. The difference between real collisions andgrid collisions depends on the different capacity utilization of the different nodes.

248

5.4 Evaluation

5.4.8 Optimization Phase: MTM and STM amount per LTM

Figure 5.13a shows the average fitness value achieved by the different application graphsdepending on the size of the STM and MTM. The measurement did not consider the 96-nodeapplication graph because a size four STM did not produce results. A larger MTM size alsoleads to a better result. For a larger MTM size, a larger STM size further improves the fitnessvalue. This indicates a correlation between the MTM and STM sizes.

-0.68
-0.66
-0.64
-0.62
-0.60
-0.58
-0.56
-0.54

32 mtm 64 mtm 128 mtm 255 mtm
4 stm 8 stm 16 stm

(a) fitness value (lower is better)
0
1
2
3
4
5
6
7

32 mtm 64 mtm 128 mtm 255 mtm
rela

tive

4 stm 8 stm 16 stm

(b) relative computation time
Figure 5.13: Average value for application graphs of size (24, 36, 48, 60, 72, 84, 96) placed ona 3 × 3 mesh. Evaluated for a different number of MTM and STM elements.
Figure 5.13b shows the corresponding computation time with respect to the smallest configu-ration of MTM and STM elements. The size of the MTM has a greater impact on computationtime than the STM. As theMTM becomes larger, the STM has a greater impact on computationtime. As the number of nodes in the application graph increases, the influence of the MTMsize on the final fitness value also increases. Therefore, Equation (5.16), which calculates thenumber of STM (C13) and MTM (C14) elements, depends on the number of nodes.

5.4.9 Irregular and Heterogeneous Topologies

This part evaluates the influence of the topology on the fitness value and computation time.It uses the standard 3× 3 host graph, an irregular graph (Figure 4.16b) and a heterogeneousgraph (Figure 4.16a). The irregular graph results in one less connection and a more difficultgraph to place the application graph. The heterogeneous graph has the same total amountof resources as the other two topologies. However, the partition in the center has 2.6 timesas many resources as the standard partition and the ones in the corners only 0.6 times.
Figure 5.14a compares the fitness values. Due to the missing link and irregularity, it is moredifficult to meet bandwidth requirements for the irregular topology. The heterogeneoustopology achieves the best fitness value on average. This can be due to the middle partitionwith the most links also has most resources, and the corner partitions with fewer links havethe least. Figure 5.14b compares the computation time. On average, the irregular topologyrequires the least amount of time. The heterogeneous topology, which is composed of threedifferent types of partitions, takes most time. However, it is not possible to tell from themeasurement results whether the increase follows a certain regularity.

249

5 APARMAP: Application Distribution Algorithm

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0
0.1

24 36 48 60 72 84 96 avgnodes
(a) fitness value (lower is better)

06
1218
2430
3642
4854

24 36 48 60 72 84 96

ms

nodes

standard
irregular
heterogeneous

(b) computation time
Figure 5.14: Application graphs with N nodes placed on 9 partitions using different topologies.
5.4.10 Verifying Optimality and Scalability

This work created a set of application graphs whose optimal placement is known a priori toverify the optimality of the algorithm. The associated platform models for this experiment allhave a square topology (P×P), but different sizes. An optimal placement would place fournodes on each partition. Each node connects to a node of the neighboring partitions (north,west, east, or south), if any. Figure 5.15b shows an example graph with 36 nodes. Each nodehas a random number of resources. However, each node has at least 15% of each type ofresource. Thus, the optimal placement consumes 75% of the resources of each type on eachpartition. This is a higher resource utilization than the 60% from the previous measurements.On the one hand, this makes it more difficult to find a near-optimal solution. On the otherhand, it makes it easier to evaluate the optimality of the final solution. The only configurationparameters that changed in this measurement are the number of threads (C03 = 16) andload balancing iterations (C04 = 512). For this type of graph, a higher number of iterationsled to better results.

0
1
2
3
4
5
6

9|36 16|64 25|100 36|144 49|196 64|256

nod
esp

erm
s

partitions|nodes
(a) relative computation

32
3433

36

28
3029

31

24
2625

27

20
2221

23

16
1817

19

12
1413

15

8
109

11

4
65

7

0
21

3

(b) 36-node application graph
Figure 5.15: Relative computation time per node of different application graphs placed ondifferent sized platform models.
Figure 5.15a shows the relative computation time required by the algorithm per node ofan application graph to compute its final solution. Increasing C04 by a factor of eight didnot increase the total calculation time much. The results show the good scalability of thealgorithm in terms of the number of nodes and partitions. The algorithm found the intended

250

5.4 Evaluation

optimal node placement for the first five application graphs. Only for the largest examplewith 64 partitions and 256 nodes this was not the case. This example achieved a fitnessvalue of 0.0055, showing that the algorithm could satisfy the resource criterion but not thebandwidth criterion. Considering that the resource criterion is 80%, this is still a very goodsolution.

5.4.11 Real Application

This part evaluates the proposed application distribution algorithm using the AKAZE featuredetector [20] as a real application example. The implementation is based on the HLS designfrom Section 3.2.5, but for four octaves, which makes the graph larger. The OpenVX GraphCreation module generated the application graph, which contains all HLS-based IP-cores andDMA blocks. In total, the application graph has 271 nodes and 441 edges. It is irregular dueto the nonlinear diffusion process of AKAZE.
The two source nodes and the one sink node are DMA blocks that read the input imagesand write the output feature vector. The input is a grayscale image (8 bit) with a resolutionof 1920 × 1080. The output consists of 2048 64 bit wide features. The platform model isa 3 × 3 mesh consisting of nine PYNQ-Z1 FPGA boards (3.9). Without fragmentation, theapplication graph would consume 79.6% LUTs, 30.5% FFs, 24.9% DSPs, and 63.5% BRAMsof the complete host graph. The most utilized resources of a single node on a single FPGAwould be: 18.6% LUTs, 13.1% FFs, 19.0% DSPs, or 47.1% BRAMs.
The maximum resource utilization C00 is set to 0.85 because the application graph wouldrequire almost 80% of the available resources without fragmentation. The proposed algo-rithm needs an average of 149ms (minimum 134ms) until it terminates. The final distributionsatisfies the resource constraints. Considering the complex graph and the low possibilityof fragmentation, this is a very good result. Due to the streaming application, where almostall nodes stream their data through the network simultaneously, 32 bit wide connectionsare not sufficient to meet the bandwidth requirements. Assuming that the bandwidth canonly be a multiple of two, the communication infrastructure needs a 256 bit wide interfaceto meet the requirements. With this approach, the developer can easily adapt the requiredcommunication infrastructure to the application. With the 256 bit wide link bandwidth, thedistributed application has an average hop count of 0.6149. When increasing the resourceconstraints to 91%, a link bandwidth of 128bit would be sufficient.

5.4.12 Comparison to Previous Work

This part compares the proposed algorithm with a previous approach [30] to show theadvantages of certain concepts. To compare both algorithms, certain parameters were set tothe same value: maximum capacity utilization (C00 = 0.85), maximum bandwidth utilization(C01 = 1000), maximum hop count (C02 = 1) and threads (C03 = 4). The computation of thefitness value for the bandwidth is partially commented out because the bandwidth is notconsidered in [30]. Both algorithms distribute the application graphs used in this evaluationto a 3 × 3 mesh topology and the irregular graph from Figure 4.16b.
On average, the proposed algorithm needed 1.19 times the computation time for the regulargraph and 1.34 time for the irregular graph for a hop count of one. One difference between

251

5 APARMAP: Application Distribution Algorithm

the algorithms is that [30] first improves the hops (dilation) and then the maximum capacityutilization. This leads to results with a maximum of two hops. On average, the proposedalgorithm required 1.17 times less computation time for the regular graph and 1.54 timesless for the irregular graph for a hop count of two. The proposed algorithm shortens thecomputation time for the irregular host graph by using a simplified algorithm that enclosesthe host in a square instead of trying to fit the graph into the irregular shape. The reasonthat the computation time for (C02 = 1) is longer is that the proposed algorithm continues tocompute until it finds no more improvements and does not stop after 256 iterations [30].
The next test adjusts the parameters for the maximum capacity utilization (C00 = 0.6) andthreads (C03 = 8). The test should show which algorithm achieves a better result on theregular host graph if it has enough memory resources or time available. For this purpose,the number of MTMs and STMs per LTM in the proposed algorithm was set to 255 and 16,respectively. Additionally, the number of iterations in [30] was set to 512 to achieve a similarcomputation time for both algorithms. The proposed algorithm obtained a better result interms of maximum capacity utilization for all application graphs. It achieves a value that is onaverage 1.65 percentage points better than [30]. The next test sets the maximum numberof iterations to 16384, since [30] does not terminate. In this case, the proposed algorithmachieved either better or equally good results for the application graphs. On average, themaximum utilization was 0.814% lower than in [30], although the computation time in [30]was 90 times higher.
There are further advantages compared to [30]. The load balancing phase achieves betterresults, due to the step that considers the utilization of the partitions. The load balancingphase requires fewer iterations, and the number of iterations required does not increase withthe number of nodes in the application graph. The threads work in a grid and communicatewith each other to avoid duplicate solutions and improve exploration. In addition, memoryconsumption is lower because the TS algorithms cleans up its history depending on the MTMsize and SA. The algorithm does not discard the best intermediate solutions not taken andstores them in the STM. Furthermore, the load balancing phase stores intermediate solutions.The algorithm considers the bandwidth of the communication infrastructure. This has animpact on the execution time of applications running on this architecture. The algorithmconsiders not only the maximum values of the objectives, but also the average values. Interms of hops and bandwidth, it has the advantage that the communication infrastructurehas a lower dynamic energy consumption.

5.5 Summary

To distribute the application graph on partition-based and mesh-like FPGA topologies, thisthesis proposes APARMAP [29, 30]. It covers a much wider range of use cases and usesseveral heuristics and load balancing techniques to find a near-optimal solution. There-fore, this work examines and evaluates the algorithm and its concepts separately from the
DECISION toolchain with respect to its optimality, performance, scalability, topology andmore.
Thanks to the multilevel memory design, the proposed algorithm achieves a low memoryfootprint that scales linearly with the number of threads and nodes in the application graph.Finding a good initial solution by load balancing always improves the achieved fitness values

252

5.5 Summary

of the optimization phase. It also reduces the computation time of the optimization phasefor an increasing number of nodes and makes the algorithm scalable. The computationtime of the load balancing phase is predictable because it is deterministic. Its complexity is
O(n · log2(n)), due to a grid-based collision detection method.
The more nodes there are in the application graph, the more likely it is that a larger number ofthreads will find a better solution, as this improves exploration and minimizes the possibilityof getting stuck in a local minimum. The algorithm computes 4.4 (2.9) times more MTMelements with 16 (8) threads. This is partly due to the sequential part of the algorithm, butalso because different threads need to access common elements. As the number of nodesin the application graph increases, the influence of the MTM size on the final fitness valuealso increases. There seems to be a correlation between the MTM and the STM size.
The evaluation showed that the algorithm can deal with heterogeneous and irregular hostgraph topologies. Depending on the distribution of partitions and their resources, a regularand heterogeneous topology can achieve a better fitness value but takes a bit more timedue to the different partition types. The results show the good scalability of the algorithm interms of computation time for an increasing number of nodes and partitions. The algorithmwas able to achieve an optimal placement for a set of example graphs up to a size of 196nodes on host graphs of up to 49 partitions. For a real application with 271 nodes and 441edges, the algorithm was able to achieve a distribution with low resource fragmentation inan average time of 149ms.

253

6 Conclusion and Outlook

6.1 Summary of Contributions

This thesis has addressed the efficient programming of object detection algorithms onFPGA-based heterogeneous systems. Thereby, it reduces the research gap with its threemain contributions. HiFlipVX enables the implementation of performance-optimized andresource-efficient object detection applications on FPGAs. In addition, this thesis investigatedmethods for optimization, automatic generation, and extraction of vision kernels usingOpenCL for CPU, GPU, and FPGA architectures. APARMAP enables the efficient distributionof application graphs over heterogeneous FPGA-based mesh-like topologies in a scalablealgorithm. The DECISION framework contains several modules that integrate APARMAP and
HiFlipVX, abstract the underlying hardware and implementation details, and automate thegeneration of software and hardware code for two different types of platforms.
HiFlipVX is an open-source, resource and performance optimized HLS-based FPGA librarycontaining 66 computer vision functions for object detection algorithms. It consumes onaverage only 0.39% FFs and 0.32% LUTs for a set of image processing functions, compared tothe xfOpenCV (2017.4) library. It consumes on average 1.42 times less BRAM than xfOpenCV(2017.4) for selected filter functions. The many compile-time parameters make the libraryvery parameterizable and are ideal for optimized designs and extensive DSE. Achieving afrequency of at least 300MHz for all filter functions on the ZCU104 demonstrates its latencyoptimizations. Besides the increase in performance, the vectorization of its functions hasfurther benefits. It improves the ratio of resource consumption to operations and enablesthe creation of an energy-efficient design using DVFS. Although it uses XILINX devices tooptimize the library, it does not require any external libraries and puts effort into being asvendor independent as possible, as shown for Intel devices. The neural network extensionfeatures two parallelization options to balance between resource efficiency and performance.It shows speedups of up to 18.7 for individual layers of the MobileNets algorithm comparedto the related work. Furthermore, an AlexNet layer achieved a speedup of 3.23 compared toa related work, while consuming 73% less BRAM.
A unique feature and contribution of the library is its extension for feature detection algo-rithms. It contains six individual feature-based functions based on the Canny, FAST, ORBand AKAZE feature detectors. For example, the feature extraction function includes severalselectable functionalities, such as NMS, SR, and more. In addition to the library extension,this work also contributes to the improvement of feature extraction algorithms. An opti-mized implementation based on the AKAZE detector and the FREAK descriptor achieves arepeatability of 72.57%, while the next best combination of algorithms achieves only 62.99%

255

6 Conclusion and Outlook

when using the geometric mean, which weights the more complex cases stronger. The
HiFlipVX implementation of AKAZE computes between 3.56 and 4.13 times more PPS thanachieved by other researchers on FPGAs. At the same time, the resource consumption iscomparable to that of optimized VHDL designs. Since the input feature vectors of the AKAZEcompare function arrive sorted by their coordinates, the proposed implementation reducesits complexity from O(n2) to approximately O(n · log2 b) for n features and b buffer elements.The feature retain best function makes the execution time of the algorithm more predictablewhile reducing the computation time of the descriptor and improving repeatability. Usingthe FREAK descriptor and an extensive examination of various parameters, the ORB couldalso improve its repeatability by 7.67% in software. A key feature of the FREAK hardware im-plementation is its pattern generator, which reduces the required bandwidth of the intensitycomputation by a factor of three with a minimal resource overhead.
DECISION is a modular framework for FPGA-based embedded and high-performance systemsthat enables efficient programming with an OpenVX-based frontend that integrates HiFlipVX.This frontend gives the user an easy-to-use interface to implement applications withoutgetting involved with the underlying hardware and implementation details. To further improveefficiency, it creates and verifies the application graph, automatically sets and propagatesparameters, computes a schedule to determine buffer sizes. To further speedup the designprocess it creates and synthesizes all IP-cores in parallel. The framework consists of twotoolchains that target different hardware platforms, which is possible due to the modularand model-based design. The Embedded System Vision toolchain can create an applicationspecific and adaptive NoC-based architecture or a pure AC design. It uses APARMAP tocreate the NoC-based architecture and automatically creates the hardware design includingadditional IP-cores. The streaming-optimized architecture enables the reusability of visionfunctions by multiple applications to improve the resource efficiency while maintaining highperformance. Its adaptable NIs allow the reusability of ACs by different applications and aconfigurable DMA controller gives them direct memory access. The application flow andconfiguration of these components is orchestrated by a MA. For a set of example applications,the resource consumption was more than halved, while its overhead was only 0.015% interms of performance for a resolution of 1920 × 1080. The example design also runs at ahigh frequency of 300MHz on the ZCU104 without performance loss.
The High-Performance Vision toolchain targets x86-based HPC systems, which can consist ofCPUs, GPUs, and FPGAs. To create a representative schedule, this work considers deviceprofiles, kernel profiles and estimates, FPGA dataflow characteristics, and OpenCL synchro-nization overhead. It takes care of finding the shortest transfer paths, data coherence andsynchronization mechanisms at design time, even between different vendors. This and theparallelization of the command queues make the overhead of its runtime system negligiblecompared to OpenCL. For an application similar to the ORB algorithm, the toolchain was ableto achieve speedups of up to 13.39 on an FPGA in comparison to a GPU. In a heterogeneousschedule with constrained FPGA resources, it achieved a speedup of 1.63 when using bothdevices. Additionally, this thesis looks at the integration of OpenCL-based libraries, automaticOpenCL kernel generation, and OpenCL kernel optimization and comparison for differentarchitectures. The framework enables an easy integration of OpenCL-based libraries, whichit demonstrated using OpenCV and AMDOVX. OpenCV is 2.04 times faster than AMDOVXon the tested AMD GPUs for a Gaussian filter, while at the same time not being limited to avendor platform. This thesis implemented and compared different optimization strategies forOpenCL kernel on CPU, GPU and FPGA architectures to make general assumptions about thebest strategy. The FPGA achieved the highest performance for the example application and

256

6.2 Future Work

is 1.46 times faster than the GPU, which is due to the efficient use of its memory bandwidthby streaming data. The proposed source-to-source compiler successfully built an OpenCLkernel from C++ code and transforms PHI statements into local variables. The generatedcode achieves a speedup of up to 60 on a dual CPU system with 20 cores (40 threads) andthe tiling optimization strategy enabled. A comparison of the DECISION framework with theSoA in Table 2.11 shows that no other work simultaneously: (1) has such a high abstractionlevel, (2) has such a rich set of vision functions, (3) addresses CPUs, GPUs, and FPGAs, (4)provides heterogeneous scheduling and mapping with automatic device and kernel profiling,(5) and includes a memory model and runtime system.
APARMAP is a scalable application distribution algorithm for partition-based and mesh-liketopologies that uses load balancing techniques and heuristics in a multithreaded grid-basedalgorithm to generate an application-specific hardware architecture. Its constraints andobjectives are the FPGA resource utilization, NoC bandwidth consumption, NoC hop count,and execution time of the proposed algorithm. The evaluation showed that using the pro-posed load balancing techniques to compute an initial solution has several advantages. Itimproves the achieved fitness values of the overall algorithm, reduces its computation timefor an increasing number of nodes, and makes the algorithm scalable. The computationtime of the load balancing phase is predictable and has a complexity of O(n · log2 n), sinceit is deterministic and based on a grid-based collision detection method. The proposedmultilevel memory design has a low memory footprint that scales linearly with the numberof threads and nodes in the application graph. As the number of nodes in the applicationgraph increases, the influence of the MTM size on the final fitness value also increases. Inaddition, the evaluation shows a correlation between MTM and STM size.
The proposed grid-based multithreaded approach not only computes more solutions persecond, but also improves the exploration of the algorithm, minimizing the possibility ofgetting stuck in a local minimum. Themore nodes there are in the application graph, themorelikely it is that a larger number of threads will find a better solution. The algorithm computes4.4 (2.9) times more MTM elements with 16 (8) threads. It does not scale completely withthe number of threads, due to the sequential part of the algorithm and the shared regions.The evaluation shows the good scalability of the algorithm in terms of computation time foran increasing number of nodes and partitions. It also demonstrates its ability to manageheterogeneous and irregular host graph topologies. The algorithm was able to achieve anoptimal placement for a set of example graphs up to a size of 196 nodes on host graphs of upto 49 partitions. For a real application with 271 nodes and 441 edges, the algorithm was ableto achieve a distribution with low resource fragmentation in an average time of 149ms. Thecombination of APARMAP with HiFlipVX and DECISION is the only work that deals at the sametime with the problem of partitioning, tuning, mapping, scheduling, clustering, and placementof application graphs on reconfigurable devices compared to the SoA in Table 2.4.

6.2 Future Work

One problem with HLS estimates is that they can be quite inaccurate in terms of resourceconsumption. The Vivado synthesis results of the individual functions are significantly moreaccurate, but the additional time would be enormous. Therefore, more accurate and fasterestimates of the resource consumption of the HiFlipVX functions could be very helpful forthe middleend of the toolchains. These could be generated, for example, using analytical

257

6 Conclusion and Outlook

approaches, trained neural networks, or a combination of both. The DECISION frameworkcould be used to automatically generate the data for training the neural networks.
APARMAP considers the scheduling and mapping of virtual tasks to physical nodes and thesubsequent clustering and placement of these nodes on hardware separately. A future workcould bring these processes closer together and merge them into one algorithm. However,changing the mapping of virtual tasks, while placing their physical nodes, is a complex task.This would further drive the creation of application-specific architectures. In addition, theprocess of tuning application parameters and partitioning them into a task graph could beintegrated into this algorithm to further maximize system utilization.
The DECISION framework uses two toolchains with the same frontend to address differentarchitectures from the embedded and HPC domains. A future work could bring these twodomains closer together, by distributing applications among them. This could enable thedistribution of applications between small edge-devices and large cloud computing systems.For example, a base station could more easily take over the computations of a drone tomake it more energy efficient and reduce its weight. On the other hand, existing resources invarious embedded systems could be better utilized by using them for other computations.
The use of OpenCL allows the use of a wide range of compute devices. However, there areother C++-based APIs that are worth integrating into the framework and its runtime system,to improve kernel performance and add more vision-based libraries. On one hand wouldbe CUDA for NVIDIA GPUs. On the other hand, it requires standards like MPI to drive largercompute clusters consisting of many compute nodes. Furthermore, there are many efficientC++-based extensions for parallel programming on CPUs.

258

Bibliography

[1] T. Kalb, L. Kalms, D. Göhringer, C. Pons, F. Marty, A. Muddukrishna, M. Jahre, P. G.Kjeldsberg, B. Ruf, T. Schuchert, I. Tchouchenkov, C. Ehrenstrahle, M. Peterson,F. Christensen, A. Paolillo, C. Lemer, B. Rodriguez, G. Bernard, F. Duhem, and P.Millet. “TULIPP: Towards Ubiquitous Low-Power Image Processing Platforms”. In:
International Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation (SAMOS). IEEE, July 2016, pp. 306–311. DOI: 10.1109/SAMOS.2016.
7818363.

[2] L. Kalms, J. Rettkowski, M. Hamme, and D. Göhringer. “Robust Lane Recognitionfor Autonomous Driving”. In: International Conference on Design and Architectures
for Signal and Image Processing (DASIP). IEEE, Sept. 2017, pp. 1–6. DOI: 10.1109/
DASIP.2017.8122130.

[3] B. Ruf, S. Monka, M. Kollmann, and M. Grinberg. “Real-Time on-Board ObstacleAvoidance for UAVs Based on Embedded Stereo Vision”. In: International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (July2018), pp. 363–370. DOI: 10.5194/isprs-archives-XLII-1-363-2018.

[4] T. Kalb, L. Kalms, D. Göhringer, C. Pons, A. Muddukrishna, M. Jahre, B. Ruf, T.Schuchert, I. Tchouchenkov, C. Ehrenstråhle, M. Peterson, F. Christensen, A. Paolillo,B. Rodriguez, and P. Millet. “Developing Low-Power Image Processing Applicationswith the TULIPP Reference Platform Instance”. In: Hardware Accelerators in Data
Centers. Springer, Aug. 2018, pp. 181–197. DOI: 10.1007/978-3-319-92792-3_10.

[5] S. Said, L. Kalms, D. Göhringer, and M.A.A. El Ghany. “Hardware/Software-Codesignfor HandGestures Recognition using a Convolutional Neural Network”. In: INTelligent
Embedded Systems Architectures and Applications Workshop (INTENSA). ACM, Oct.2019, pp. 23–28. DOI: 10.1145/3372394.3372395.

[6] M. Hernández, A. Del Barrio, and G. Botella. “An Ultra Low-Cost Cluster Basedon Low-End FPGAs”. In: Computer Simulation Conference (SummerSim). Society forComputer Simulation International, July 2018, pp. 1–12. DOI: 10.22360/summersim.
2018.scsc.034.

[7] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr.“Accelerating Recurrent Neural Networks in Analytics Servers: Comparison of FPGA,CPU, GPU, and ASIC”. In: International Conference on Field Programmable Logic and
Applications (FPL). IEEE, Sept. 2016, pp. 1–4. DOI: 10.1109/FPL.2016.7577314.

259

https://doi.org/10.1109/SAMOS.2016.7818363
https://doi.org/10.1109/SAMOS.2016.7818363
https://doi.org/10.1109/DASIP.2017.8122130
https://doi.org/10.1109/DASIP.2017.8122130
https://doi.org/10.5194/isprs-archives-XLII-1-363-2018
https://doi.org/10.1007/978-3-319-92792-3_10
https://doi.org/10.1145/3372394.3372395
https://doi.org/10.22360/summersim.2018.scsc.034
https://doi.org/10.22360/summersim.2018.scsc.034
https://doi.org/10.1109/FPL.2016.7577314

Bibliography

[8] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T. Liew,K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh. “Can FPGAs BeatGPUs in Accelerating Next-Generation Deep Neural Networks?” In: International
Symposium on Field-Programmable Gate Arrays (FPGA). ACM, Feb. 2017, pp. 5–14.DOI: 10.1145/3020078.3021740.

[9] L. Kalms and D. Göhringer. “Exploration of OpenCL for FPGAs using SDAccel andComparison to GPUs and Multicore CPUs”. In: International Conference on Field
Programmable Logic and Applications (FPL). IEEE, Sept. 2017, pp. 1–4. DOI: 10.1109/
HPCA.2016.7446058.

[10] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones. “ComparingEnergy Efficiency of CPU, GPU and FPGA Implementations for Vision Kernels”. In:
International Conference on Embedded Software and Systems (ICESS). IEEE, June 2019,pp. 1–8. DOI: 10.1109/ICESS.2019.8782524.

[11] A. Bhatele and L. V. Kale. “Heuristic-Based Techniques for Mapping Irregular Com-munication Graphs to Mesh Topologies”. In: International Conference on High Per-
formance Computing and Communications. IEEE, Sept. 2011, pp. 765–771. DOI:
10.1109/HPCC.2011.109.

[12] L. Kalms, A. Podlubne, and D. Göhringer. “HiFlipVX: an Open Source High-LevelSynthesis FPGA Library for Image Processing”. In: International Symposium on Applied

Reconfigurable Computing (ARC). Springer, Apr. 2019, pp. 149–164. DOI: 10.1007/
978-3-030-17227-5_12.

[13] L. Kalms and D. Göhringer. “Accelerated High-level Synthesis Feature Detection forFPGAs using HiFlipVX”. In: Towards Ubiquitous Low-power Image Processing Platforms.Springer, Jan. 2021, pp. 115–135. DOI: 10.1007/978-3-030-53532-2_7.
[14] L. Kalms, P. Amini Rad, M. Ali, and A. Iskander D. Göhringer. “A Parametrizable High-Level Synthesis Library for Accelerating Neural Networks on FPGAs”. In: Journal of

Signal Processing Systems (JSPS) 93.5 (May 2021), pp. 1–27. DOI: 10.1007/s11265-
021-01651-5.

[15] M. A. Davila-Guzman, R. Gran Tejero, M. Villarroya-Gaud, D. Suarez Gracia, L. Kalms,and D. Göhringer. “A Cross-Platform OpenVX Library for FPGA Accelerators”. In: Eu-
romicro International Conference on Parallel, Distributed and Network-based Processing

(PDP). IEEE, Mar. 2021, pp. 75–83. DOI: 10.1109/PDP52278.2021.00020.
[16] M. A. Davila-Guzman, L. Kalms, R. Gran Tejero, M. Villarroya-Gaud, D. Suarez Gracia,and D. Göhringer. “A Cross-Platform OpenVX Library for FPGA Accelerators”. In:

Journal of Systems Architecture (JSA). Elsevier, Feb. 2022, pp. 1–12. DOI: 10.1016/j.
sysarc.2021.102372.

[17] E. Rosten and T. Drummond. “Machine Learning for High-Speed Corner Detection”.In: European Conference on Computer Vision (ECCV). Springer, May 2006, pp. 430–443.DOI: 10.1007/11744023_34.
[18] J. Canny. “A Computational Approach to Edge Detection”. In: Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) (Nov. 1986), pp. 679–698. DOI: 10.1109/
TPAMI.1986.4767851.

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An Efficient Alternativeto SIFT or SURF”. In: International Conference on Computer Vision (ICCV). IEEE, Nov.2011, pp. 2564–2571. DOI: 10.1109/ICCV.2011.6126544.

260

https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/HPCC.2011.109
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1007/978-3-030-17227-5_12
https://doi.org/10.1007/978-3-030-53532-2_7
https://doi.org/10.1007/s11265-021-01651-5
https://doi.org/10.1007/s11265-021-01651-5
https://doi.org/10.1109/PDP52278.2021.00020
https://doi.org/10.1016/j.sysarc.2021.102372
https://doi.org/10.1016/j.sysarc.2021.102372
https://doi.org/10.1007/11744023_34
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/ICCV.2011.6126544

Bibliography

[20] J. Nuevo P. F. Alcantarilla and A. Bartoli. “Fast Explicit Diffusion for AcceleratedFeatures in Nonlinear Scale Spaces”. In: British Machine Vision Conference (BMVC).BMVA Press, Sept. 2013, pp. 1–11. DOI: 10.5244/C.27.13.
[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,and H. Adam. “MobileNets: Efficient Convolutional Neural Networks for MobileVision Applications”. In: ArXiv (Apr. 2017), pp. 1–9. DOI: arXiv:1704.04861.
[22] L. Kalms, M. Hajduk, and D. Göhringer. “Efficient Pattern Recognition AlgorithmIncluding a Fast Retina Keypoint FPGA Implementation”. In: International Conference

on Field Programmable Logic and Applications (FPL). IEEE, Sept. 2019, pp. 121–128.DOI: 10.1109/FPL.2019.00028.
[23] M. Nickel, L. Kalms, T. Häring, and D. Göhringer. “High-Performance AKAZE Imple-mentation Including Parametrizable and Generic HLS Modules”. In: International

Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE,July 2022, pp. 139–147. DOI: 10.1109/ASAP54787.2022.00031.
[24] A. Alahi, R. Ortiz, and P. Vandergheynst. “FREAK: Fast Retina Keypoint”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2012, pp. 510–517.DOI: 10.1109/CVPR.2012.6247715.
[25] L. Kalms, K. Mohamed, and D. Göhringer. “Accelerated Embedded AKAZE FeatureDetection Algorithm on FPGA”. In: International Symposium on Highly Efficient Ac-

celerators and Reconfigurable Technologies (HEART). Best Paper. ACM, June 2017,pp. 1–6. DOI: 10.1145/3120895.3120898.
[26] L. Kalms, H. Ibrahim, andD. Göhringer. “Full-HD Accelerated and Embedded FeatureDetection Video Systemwith 63fps usingORB for FREAK”. In: International Conference

on ReConFigurable Computing and FPGAs (ReConFig). IEEE, Dec. 2018, pp. 1–6. DOI:
10.1109/RECONFIG.2018.8641706.

[27] L. Kalms, T. Häring, and D. Göhringer. “DECISION: Distributing OpenVX Applicationson CPUs, GPUs and FPGAs using OpenCL”. In: International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, May 2022, pp. 84–91. DOI: 10.
1109/IPDPSW55747.2022.00023.

[28] L. Kalms, T. Hebbeler, and D. Göhringer. “Automatic OpenCL Code Generation fromLLVM-IR using Polyhedral Optimization”. In: 9th Workshop and 7th Workshop on
Parallel Programming and RunTime Management Techniques for Manycore Architec-

tures and Design Tools and Architectures for Multicore Embedded Computing Platforms

(PARMA-DITAM). ACM, Jan. 2018, pp. 45–50. DOI: 10.1145/3183767.3183779.
[29] L. Kalms and D. Göhringer. “Clustering and Mapping Algorithm for ApplicationDistribution on a Scalable FPGA Cluster”. In: International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). Best Paper. IEEE, May 2016, pp. 105–113. DOI: 10.1109/IPDPSW.2016.75.
[30] L. Kalms and D. Göhringer. “Scalable Clustering and Mapping Algorithm for Ap-plication Distribution on Heterogeneous and Irregular FPGA Clusters”. In: Jour-

nal of Parallel and Distributed Computing (JPDC) (Nov. 2019), pp. 367–376. DOI:
10.1016/j.jpdc.2018.02.033.

[31] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An Open-Source SLAM System forMonocular, Stereo, and RGB-D Cameras”. In: Transactions on Robotics (T-RO) (Oct.2017), pp. 1255–1262. DOI: 10.1109/TRO.2017.2705103.

261

https://doi.org/10.5244/C.27.13
https://doi.org/arXiv:1704.04861
https://doi.org/10.1109/FPL.2019.00028
https://doi.org/10.1109/ASAP54787.2022.00031
https://doi.org/10.1109/CVPR.2012.6247715
https://doi.org/10.1145/3120895.3120898
https://doi.org/10.1109/RECONFIG.2018.8641706
https://doi.org/10.1109/IPDPSW55747.2022.00023
https://doi.org/10.1109/IPDPSW55747.2022.00023
https://doi.org/10.1145/3183767.3183779
https://doi.org/10.1109/IPDPSW.2016.75
https://doi.org/10.1016/j.jpdc.2018.02.033
https://doi.org/10.1109/TRO.2017.2705103

Bibliography

[32] R. Giduthuri and K. Pulli. “OpenVX: A Framework for Accelerating Computer Vi-sion”. In: International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH). ACM, Sept. 2016, pp. 1–50. DOI: 10.1145/2988458.2988513.

[33] D. Göhringer, M. Birk, Y. Dasse-Tiyo, N. Ruiter, M. Hübner, and J. Becker. “Recon-figurable MPSoC versus GPU: Performance, power and energy evaluation”. In:
International Conference on Industrial Informatics (INDIN). IEEE, July 2011, pp. 848–853. DOI: 10.1109/INDIN.2011.6035003.

[34] B.S. Manjunath, C. Shekhar, and R. Chellappa. “A New Approach to Image FeatureDetection with Applications”. In: Pattern Recognition (Apr. 1996), pp. 627–640. DOI:
10.1016/0031-3203(95)00115-8.

[35] A. I. Awad and M. Hassaballah. Image Feature Detectors and Descriptors. Springer,Feb. 2016. DOI: 10.1007/978-3-319-28854-.
[36] E. Rosten and T. Drummond. “Fusing Points and Lines for High Performance Track-ing”. In: International Conference on Computer Vision (ICCV). IEEE, Oct. 2005, pp. 1508–1515. DOI: 10.1109/ICCV.2005.104.
[37] E. Rosten, R. Porter, and T. Drummond. “Faster and Better: A Machine LearningApproach to Corner Detection”. In: Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) (Jan. 2010), pp. 105–119. DOI: 10.1109/TPAMI.2008.275.
[38] C. Harris and M. Stephens. “A Combined Corner and Edge Detector”. In: Alvey Vision

Conference (AVC). Alvety Vision Club, 1988, pp. 147–152. DOI: 10.5244/C.2.23.
[39] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Interna-

tional Journal of Computer Vision (IJCV) (Nov. 2004), pp. 91–110. DOI: 10.1023/B:
VISI.0000029664.99615.94.

[40] H. Bay, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features”. In:
European Conference on Computer Vision (ECCV). Springer, May 2006, pp. 404–417.DOI: 10.1007/11744023_32.

[41] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. “BRIEF: Binary Robust IndependentElementary Features”. In: European Conference on Computer Vision (ECCV). Springer,Sept. 2010, pp. 778–792. DOI: 10.1007/978-3-642-15561-1_56.
[42] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua. “BRIEF:Computing a Local Binary Descriptor Very Fast”. In: Transactions on Pattern Analysis

and Machine Intelligence (TPAMI) (Nov. 2012), pp. 1281–1298. DOI: 10.1109/TPAMI.
2011.222.

[43] S. Leutenegger, M. Chli, and R. Y. Siegwart. “BRISK: Binary Robust Invariant ScalableKeypoints”. In: International Conference on Computer Vision (ICCV). IEEE, Nov. 2011,pp. 2548–2555. DOI: 10.1109/ICCV.2011.6126542.
[44] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T.Kadir, and L. Van Gool. “A Comparison of Affine Region Detectors”. In: International

Journal of Computer Vision (IJCV) (Oct. 2005), pp. 43–72. DOI: 10.1007/s11263-005-
3848-x.

[45] D. Dwarakanath, C. Griwodz, and P. Halvorsen. “Robustness of 3D Point Positionsto Camera Baselines in Markerless AR Systems”. In: International Conference on
Multimedia Systems (MMSys). ACM, May 2016, pp. 1–12. DOI: 10.1145/2910017.
2910611.

262

https://doi.org/10.1145/2988458.2988513
https://doi.org/10.1109/INDIN.2011.6035003
https://doi.org/10.1016/0031-3203(95)00115-8
https://doi.org/10.1007/978-3-319-28854-
https://doi.org/10.1109/ICCV.2005.104
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.5244/C.2.23
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/TPAMI.2011.222
https://doi.org/10.1109/TPAMI.2011.222
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1007/s11263-005-3848-x
https://doi.org/10.1007/s11263-005-3848-x
https://doi.org/10.1145/2910017.2910611
https://doi.org/10.1145/2910017.2910611

Bibliography

[46] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. “KAZE Features”. In: European Conference
on Computer Vision (ECCV). Springer, Oct. 2012, pp. 1–14. DOI: 10.1007/978-3-
642-33783-3_16.

[47] M. Song, Y. Cao, C. Yu, J. An, and C. Chang. “Solar ImageMatching Based on ImprovedFreak Algorithm”. In: International Conference on Machine Learning and Cybernetics
(ICMLC). IEEE, July 2018, pp. 126–131. DOI: 10.1109/ICMLC.2018.8527012.

[48] P. L. Rosin. “Measuring Corner Properties”. In: Computer Vision and Image Under-
standing (Feb. 1999), pp. 291–307. DOI: 10.1006/cviu.1998.0719.

[49] K. Y. Lee. “A Design of an Optimized ORB Accelerator for Real-Time Feature Detec-tion”. In: International Journal of Control and Automation (IJCA) (Mar. 2014), pp. 15–61.DOI: 10.14257/IJCA.2014.7.3.20.
[50] M. Fularz, M. Kraft, A. Schmidt, and A. Kasiski. “A High-Performance FPGA-BasedImage Feature Detector and Matcher Based on the FAST and BRIEF Algorithms”. In:

International Journal of Advanced Robotic Systems (IJARS) (Oct. 2015), pp. 1–15. DOI:
10.5772/61434.

[51] G. Jiang, L. Liu, W. Zhu, S. Yin, and S. Wei. “A 127 Fps in Full Hd Accelerator Based onOptimized AKAZE with Efficiency and Effectiveness for Image Feature Extraction”.In: Design Automation Conference (DAC). ACM, June 2015, pp. 1–6. DOI: 10.1145/
2744769.2744772.

[52] E. D. Bello and P. A. Salvadeo. “An ImageDescriptors ExtractionHardware-ArchitectureInspired on Human Retina”. In: Southern Conference on Programmable Logic (SPL).IEEE, Nov. 2014, pp. 1–6. DOI: 10.1109/SPL.2014.7002205.
[53] J. Zhao. “Masters Thesis: Video/Image Processing on FPGA”. Apr. 2015, pp. 1–81.
[54] K. Y. Lee and K. J. Byun. “A Hardware Design of Optimized ORB Algorithm withReduced Hardware Cost”. In: Dec. 2013, pp. 58–62. DOI: 10.14257/ASTL.2013.

43.11.
[55] C. He, A. Papakonstantinou, and D. Chen. “A Novel SoC Architecture on FPGA forUltra Fast Face Detection”. In: International Conference on Computer Design (ICCD).IEEE, Oct. 2009, pp. 412–418. DOI: 10.1109/ICCD.2009.5413122.
[56] H. Lai, M. Savvides, and T. Chen. “Proposed FPGA Hardware Architecture for HighFrame Rate (100 fps) Face Detection Using Feature Cascade Classifiers”. In: Interna-

tional Conference on Biometrics: Theory, Applications, and Systems (BTAS). IEEE, Sept.2007, pp. 1–6. DOI: 10.1109/BTAS.2007.4401930.
[57] J. Svab, T. Krajnik, J. Faigl, and L. Preucil. “FPGA based Speeded Up Robust Features”.In: International Conference on Technologies for Practical Robot Applications (TePRA).IEEE, Nov. 2009, pp. 35–41. DOI: 10.1109/TEPRA.2009.5339646.
[58] S. V. Chakrasali and S. Kuthale. “Optimized Face Detection on FPGA”. In: International

Conference on Circuits, Controls, Communications and Computing (I4C). IEEE, Oct. 2016,pp. 1–6. DOI: 10.1109/CIMCA.2016.8053269.
[59] L. Wanhammar. “11 - Processing Elements”. In: DSP Integrated Circuits. Elsevier,1999, pp. 461–530. DOI: 10.1016/B978-012734530-7/50011-8.
[60] R. Buyya, C. Vecchiola, and T. S. Somasundaram. “Chapter 2 - Principles of Paralleland Distributed Computing”. In: Mastering Cloud Computing. Elsevier, 2013, pp. 29–70. DOI: 10.1016/B978-0-12-411454-8.00002-4.

263

https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1109/ICMLC.2018.8527012
https://doi.org/10.1006/cviu.1998.0719
https://doi.org/10.14257/IJCA.2014.7.3.20
https://doi.org/10.5772/61434
https://doi.org/10.1145/2744769.2744772
https://doi.org/10.1145/2744769.2744772
https://doi.org/10.1109/SPL.2014.7002205
https://doi.org/10.14257/ASTL.2013.43.11
https://doi.org/10.14257/ASTL.2013.43.11
https://doi.org/10.1109/ICCD.2009.5413122
https://doi.org/10.1109/BTAS.2007.4401930
https://doi.org/10.1109/TEPRA.2009.5339646
https://doi.org/10.1109/CIMCA.2016.8053269
https://doi.org/10.1016/B978-012734530-7/50011-8
https://doi.org/10.1016/B978-0-12-411454-8.00002-4

Bibliography

[61] A. K. Singh, A. Kumar, T. Srikanthan, and Y. Ha. “Mapping Real-Life Applications onRun-Time Reconfigurable NoC-Based MPSoC on FPGA”. In: International Conference
on Field-Programmable Technology (FPT). IEEE, Dec. 2010, pp. 365–368. DOI: 10.
1109/FPT.2010.5681427.

[62] J. Delorme and D. Houzet. “A Complete 4G Radiocommunication Application Map-ping onto a 2D Mesh NoC Architecture”. In: North-East Workshop on Circuits and
Systems (NEWCAS). IEEE, June 2006, pp. 93–96. DOI: 10.1109/NEWCAS.2006.250955.

[63] S. Bayar and A. Yurdakul. “An Efficient Mapping Algorithm on 2-D Mesh Network-on-Chip with Reconfigurable Switches”. In: International Conference on Design and
Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, Apr. 2016, pp. 1–4.DOI: 10.1109/DTIS.2016.7483808.

[64] D. Göhringer,M. Hübner, V. Schatz, and J. Becker. “Runtime AdaptiveMulti-ProcessorSystem-on-Chip: RAMPSoC”. In: International Symposium on Parallel and Distributed

Processing (IPDPS). IEEE, Apr. 2008, pp. 1–7. DOI: 10.1109/IPDPS.2008.4536503.
[65] J. Rettkowski and D. Göhringer. “RAR-NoC: A Reconfigurable and Adaptive RoutableNetwork-on-Chip for FPGA-Based Multiprocessor Systems”. In: International Confer-

ence on ReConFigurable Computing and FPGAs (ReConFig). IEEE, Dec. 2014, pp. 1–6.DOI: 10.1109/ReConFig.2014.7032552.
[66] N. Kapre and J. Gray. “Hoplite: Building Austere Overlay NoCs for FPGAs”. In: Inter-

national Conference on Field Programmable Logic and Applications (FPL). IEEE, Sept.2015, pp. 1–8. DOI: 10.1109/FPL.2015.7293956.
[67] J. Siast, A. uczak, and M. Domaski. “RingNet: A Memory-Oriented Network-On-ChipDesigned for FPGA”. In: Transactions on Very Large Scale Integration (VLSI) Systems(June 2019), pp. 1284–1297. DOI: 10.1109/TVLSI.2019.2899575.
[68] L. Ost, G. M. Almeida, M. Mandelli, E. Wachter, S. Varyani, G. Sassatelli, L. S. Indru-siak, M. Robert, and F. Moraes. “Exploring Heterogeneous NoC-Based MPSoCs:From FPGA to High-Level Modeling”. In: International Workshop on Reconfigurable

Communication-Centric Systems-on-Chip (ReCoSoC). IEEE, June 2011, pp. 1–8. DOI:
10.1109/ReCoSoC.2011.5981517.

[69] S. K. Rethinagiri, O. Palomar, J. A. Moreno, O. Unsal, and A. Cristal. “TrigeneousPlatforms for Energy Efficient Computing of HPC Applications”. In: International
Conference on High Performance Computing (HiPC). IEEE, Dec. 2015, pp. 264–274.DOI: 10.1109/HiPC.2015.19.

[70] A. Filgueras, E. Gil, D. Jimenez-Gonzalez, C. Alvarez, X. Martorell, J. Langer, J. Noguera,and K. Vissers. “OmpSsZynq All-Programmable SoC Ecosystem”. In: International
Symposium on Field-Programmable Gate Arrays (FPGA). ACM, Feb. 2014, pp. 137–146.DOI: 10.1145/2554688.2554777.

[71] K. Vipin and S. A. Fahmy. “FPGA Dynamic and Partial Reconfiguration: A Survey ofArchitectures, Methods, and Applications”. In: Computing Surveys (CSUR) (July 2018),pp. 1–39. DOI: 10.1145/3193827.
[72] O. Knodel, A. Georgi, P. Lehmann, W. E. Nagel, and R. G. Spallek. “Integration ofa Highly Scalable, Multi-FPGA-Based Hardware Accelerator in Common ClusterInfrastructures”. In: International Conference on Parallel Processing (ICPP). IEEE, Dec.2013, pp. 893–900. DOI: 10.1109/ICPP.2013.106.

264

https://doi.org/10.1109/FPT.2010.5681427
https://doi.org/10.1109/FPT.2010.5681427
https://doi.org/10.1109/NEWCAS.2006.250955
https://doi.org/10.1109/DTIS.2016.7483808
https://doi.org/10.1109/IPDPS.2008.4536503
https://doi.org/10.1109/ReConFig.2014.7032552
https://doi.org/10.1109/FPL.2015.7293956
https://doi.org/10.1109/TVLSI.2019.2899575
https://doi.org/10.1109/ReCoSoC.2011.5981517
https://doi.org/10.1109/HiPC.2015.19
https://doi.org/10.1145/2554688.2554777
https://doi.org/10.1145/3193827
https://doi.org/10.1109/ICPP.2013.106

Bibliography

[73] Z. Lin and P. Chow. “ZCluster: A Zynq-based Hadoop cluster”. In: International
Conference on Field-Programmable Technology (FPT). IEEE, Dec. 2013, pp. 450–453.DOI: 10.1109/FPT.2013.6718411.

[74] P. Moorthy and N. Kapre. “Zedwulf: Power-Performance Tradeoffs of a 32-NodeZynq SoC Cluster”. In: International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM). IEEE, May 2015, pp. 68–75. DOI: 10.1109/FCCM.2015.37.
[75] A. Theodore Markettos, P. J. Fox, S. W. Moore, and A. W. Moore. “Interconnectfor Commodity FPGA Clusters: Standardized or Customized?” In: International

Conference on Field Programmable Logic and Applications (FPL). IEEE, Oct. 2014,pp. 1–8. DOI: 10.1109/FPL.2014.6927472.
[76] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael, L.Woods, S. Lanka, D. Chiou, and D. Burger. “A Cloud-Scale Acceleration Architecture”.In: International Symposium on Microarchitecture (MICRO). IEEE/ACM, Oct. 2016,pp. 1–13. DOI: 10.1109/MICRO.2016.7783710.
[77] X. Bai, L. Jiang, Q. Dai, J. Yang, and J. Tan. “Acceleration of RSA processes based onhybrid ARM-FPGA cluster”. In: Symposium on Computers and Communications (ISCC).IEEE, July 2017, pp. 682–688. DOI: 10.1109/ISCC.2017.8024607.
[78] T. Ueno, T. Miyajima, A. Mondigo, and K. Sano. “Hybrid Network Utilization forEfficient Communication in a Tightly Coupled FPGA Cluster”. In: International Con-

ference on Field-Programmable Technology (FPT). IEEE, Dec. 2019, pp. 1–4. DOI:
10.1109/ICFPT47387.2019.00068.

[79] K. Takano, T. Oda, R. Ozaki, A. Uejima, andM. Kohata. “Implementation of DistributedProcessing Using a PC-FPGA Hybrid System”. In: International Conference on Field-
Programmable Technology (FPT). IEEE, Dec. 2019, pp. 387–390. DOI: 10.1109/
ICFPT47387.2019.00074.

[80] J. Hou, Y. Zhu, L. Kong, Z. Wang, S. Du, S. Song, and T. Huang. “A Case Studyof Accelerating Apache Spark with FPGA”. In: International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom) and International

Conference On Big Data Science And Engineering (BigDataSE). IEEE, Aug. 2018, pp. 855–860. DOI: 10.1109/TrustCom/BigDataSE.2018.00123.
[81] Y. Osana and Y. Sakamoto. “Performance Evaluation of a CPU-FPGA Hybrid ClusterPlatform Prototype”. In: International Symposium on Highly Efficient Accelerators

and Reconfigurable Technologies (HEART). ACM, June 2017, pp. 1–6. DOI: 10.1145/
3120895.3120917.

[82] AVNET. ZedBoard - Hardware Users Guide. Jan. 2014.
[83] N. Mentens, J. Vandorpe, J. Vliegen, A. Braeken, B. Silva, A. Touhafi, S. Knappmann,A. Kern, J. Rettkowski, M. Kadi, D. Göhringer, and M. Hübner. “DynamIA: DynamicHardware Reconfiguration in Industrial Applications”. In: International Symposium

on Applied Reconfigurable Computing (ARC). Springer, Mar. 2015, pp. 513–518. DOI:
10.1007/978-3-319-16214-0_47.

[84] M. Owaida and G. Alonso. “Application Partitioning on FPGA Clusters: Inferenceover Decision Tree Ensembles”. In: International Conference on Field Programmable
Logic and Applications (FPL). IEEE, Aug. 2018, pp. 295–2955. DOI: 10.1109/FPL.
2018.00057.

265

https://doi.org/10.1109/FPT.2013.6718411
https://doi.org/10.1109/FCCM.2015.37
https://doi.org/10.1109/FPL.2014.6927472
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/ISCC.2017.8024607
https://doi.org/10.1109/ICFPT47387.2019.00068
https://doi.org/10.1109/ICFPT47387.2019.00074
https://doi.org/10.1109/ICFPT47387.2019.00074
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00123
https://doi.org/10.1145/3120895.3120917
https://doi.org/10.1145/3120895.3120917
https://doi.org/10.1007/978-3-319-16214-0_47
https://doi.org/10.1109/FPL.2018.00057
https://doi.org/10.1109/FPL.2018.00057

Bibliography

[85] M. Owaida, A. Kulkarni, and G. Alonso. “Distributed Inference over Decision TreeEnsembles on Clusters of FPGAs”. In: Transactions on Reconfigurable Technology and
Systems (TRETS) (Sept. 2019), pp. 1–28. DOI: 10.1145/3340263.

[86] J. Sheng, Q. Xiong, C. Yang, and M. C. Herbordt. “Collective Communication on FPGAClusters with Static Scheduling”. In: Special Interest Group on Computer Architecture
(SIGARCH) (Jan. 2017), pp. 2–7. DOI: 10.1145/3039902.3039904.

[87] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong. “Energy-Efficient CNN Im-plementation on a Deeply Pipelined FPGA Cluster”. In: International Symposium
on Low Power Electronics and Design (ISLPED). ACM, Aug. 2016, pp. 326–331. DOI:
10.1145/2934583.2934644.

[88] A. Wu, X. Jin, X. Du, and S. Guo. “A Flexible FPGA-to-FPGA Communication System”.In: International Conference on Advanced Communication Technology (ICACT). IEEE,Feb. 2017, pp. 836–843. DOI: 10.23919/ICACT.2017.7890234.
[89] X. Y. Niu, K. H. Tsoi, and W. Luk. “Reconfiguring Distributed Applications in FPGAAccelerated Cluster with Wireless Networking (FPL)”. In: International Conference

on Field Programmable Logic and Applications. IEEE, Oct. 2011, pp. 545–550. DOI:
10.1109/FPL.2011.106.

[90] O. Knodel and R. G. Spallek. “Integration of a Multi-FPGA System in a CommonCluster Environment”. In: International Conference on Field programmable Logic and
Applications (FPL). IEEE, Oct. 2013, pp. 1–2. DOI: 10.1109/FPL.2013.6645612.

[91] P. J. Fox, A. T. Markettos, and S. W. Moore. “Reliably Prototyping Large SoCs UsingFPGA Clusters”. In: International Symposium on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC). IEEE, May 2014, pp. 1–8. DOI: 10.1109/ReCoSoC.
2014.6861350.

[92] S. Buscemi and R. Sass. “Design and Utilization of an FPGA Cluster to Imple-ment a Digital Wireless Channel Emulator”. In: International Conference on Field
Programmable Logic and Applications (FPL). IEEE, Oct. 2012, pp. 635–638. DOI:
10.1109/FPL.2012.6339253.

[93] Y. Kono, K. Sano, and S. Yamamoto. “Scalability Analysis of Tightly-Coupled FPGA-Cluster for Lattice Boltzmann Computation”. In: International Conference on Field
Programmable Logic and Applications (FPL). IEEE, Oct. 2012, pp. 120–127. DOI:
10.1109/FPL.2012.6339275.

[94] Y. Thoma, A. Dassatti, and D. Molla. “FPGA2: An Open Source Framework for FPGA-GPU PCIe Communication”. In: International Conference on Reconfigurable Computing
and FPGAs (ReConFig). IEEE, Dec. 2013, pp. 1–6. DOI: 10.1109/ReConFig.2013.
6732296.

[95] R. Bittner and E. Ruf. “Direct GPU/FPGA Communication via PCI Express”. In: In-
ternational Conference on Parallel Processing Workshops (ICPPW). IEEE, Sept. 2012,pp. 135–139. DOI: 10.1109/ICPPW.2012.20.

[96] M. Hübner, D. Göhringer, J. Noguera, and J. Becker. “Fast Dynamic and PartialReconfiguration Data Path with Low Hardware Overhead on Xilinx FPGAs”. In:
International Symposium on Parallel Distributed Processing, Workshops and Phd Forum

(IPDPSW). IEEE, Mar. 2010, pp. 1–8. DOI: 10.1109/IPDPSW.2010.5470736.

266

https://doi.org/10.1145/3340263
https://doi.org/10.1145/3039902.3039904
https://doi.org/10.1145/2934583.2934644
https://doi.org/10.23919/ICACT.2017.7890234
https://doi.org/10.1109/FPL.2011.106
https://doi.org/10.1109/FPL.2013.6645612
https://doi.org/10.1109/ReCoSoC.2014.6861350
https://doi.org/10.1109/ReCoSoC.2014.6861350
https://doi.org/10.1109/FPL.2012.6339253
https://doi.org/10.1109/FPL.2012.6339275
https://doi.org/10.1109/ReConFig.2013.6732296
https://doi.org/10.1109/ReConFig.2013.6732296
https://doi.org/10.1109/ICPPW.2012.20
https://doi.org/10.1109/IPDPSW.2010.5470736

Bibliography

[97] Takaaki Miyajima, Tomoya Hirao, Naoya Miyamoto, Jeongdo Son, and KentaroSano. “A Software Bridged Data Transfer on a FPGA Cluster by Using Pipeliningand InfiniBand Verbs”. In: nternational Symposium on Highly-Efficient Accelerators

and Reconfigurable Technologies (HEART). ACM, June 2019, pp. 1–6. DOI: 10.1145/
3337801.3337808.

[98] A. Mondigo, T. Ueno, D. Tanaka, K. Sano, and S. Yamamoto. “Design and ScalabilityAnalysis of Bandwidth-Compressed Stream Computing with Multiple FPGAs”. In:
International Symposium on Reconfigurable Communication-centric Systems-on-Chip

(ReCoSoC). IEEE, July 2017, pp. 1–8. DOI: 10.1109/ReCoSoC.2017.8016148.
[99] NVIDIA. Whitepaper: NVIDIA Tegra Multi-processor Architecture. Feb. 2010.
[100] Xilinx. Zynq-7000 SoC Data Sheet: Overview. July 2018.
[101] F. Robino and J. Öberg. “From Simulink to NoC-based MPSoC on FPGA”. In: Design,

Automation Test in Europe Conference Exhibition (DATE). IEEE, Mar. 2014, pp. 1–4.DOI: 10.7873/DATE.2014.341.
[102] S. Bandaru and K. Deb. “Metaheuristic Techniques”. In: ed. by R. N. Sengupta, A.Gupta, and J. Dutta. Taylor & Francis, Feb. 2016. Chap. Decision Sciences: Theoryand Practice, pp. 693–750.
[103] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. “Handbook of CombinatorialOptimization”. In: ed. by D. Z. Du and P. M. Pardalos. Springer, 1998. Chap. TheQuadratic Assignment Problem, pp. 1713–1809. DOI: 10.1007/978-1-4613-0303-

9_27.
[104] T. Weise. Metaheuristic Optimization: 7. Simulated Annealing. Hefei University. 2021.
[105] T. Weise. Metaheuristic Optimization: 8. Tabu Search. Hefei University. 2021.
[106] T. Weise. Metaheuristic Optimization: 10. Genetic Algorithms. Hefei University. 2021.
[107] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. “Mapping on Multi/Many-CoreSystems: Survey of Current and Emerging Trends”. In: Design Automation Conference

(DAC). IEEE, Apr. 2013, pp. 1–10. DOI: 10.1145/2463209.2488734.
[108] H. R. Lewis. Computers and intractability. A guide to the theory of NP-completeness.1983.
[109] A. Goens, R. Khasanov, J. Castrillon, M. Hähnel, T. Smejkal, and H. Härtig. “TETRiS: AMulti-Application Run-Time System for Predictable Execution of Static Mappings(SCOPES)”. In: International Workshop on Software and Compilers for Embedded

Systems. ACM, June 2017, pp. 11–20. DOI: 10.1145/3078659.3078663.
[110] D. Grewe and M. F. P. O’Boyle. “A Static Task Partitioning Approach for Hetero-geneous Systems Using OpenCL”. In: Compiler Construction. Springer, Apr. 2011,pp. 286–305. DOI: 10.1007/978-3-642-19861-8_16.
[111] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. “Scheduling het-erogeneous multi-cores through performance impact estimation (PIE)”. In: Inter-

national Symposium on Computer Architecture (ISCA). IEEE, June 2012, pp. 213–224.DOI: 10.1109/ISCA.2012.6237019.
[112] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. “Comparative Evaluation OfThe Robustness Of DAG Scheduling Heuristics”. In: Grid Computing. Springer, 2008,pp. 73–84. DOI: 10.1007/978-0-387-09457-1_7.

267

https://doi.org/10.1145/3337801.3337808
https://doi.org/10.1145/3337801.3337808
https://doi.org/10.1109/ReCoSoC.2017.8016148
https://doi.org/10.7873/DATE.2014.341
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1007/978-3-642-19861-8_16
https://doi.org/10.1109/ISCA.2012.6237019
https://doi.org/10.1007/978-0-387-09457-1_7

Bibliography

[113] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-Effective and Low-ComplexityTask Scheduling for Heterogeneous Computing”. In: Transactions on Parallel and
Distributed Systems (TPDS) (Aug. 2002), pp. 260–274. DOI: 10.1109/71.993206.

[114] J. G. Filho, M. Strum, and W. J. Chau. “Using Genetic Algorithms for Hardware CorePlacement and Mapping in NoC-Based Reconfigurable Systems”. In: International
Journal of Reconfigurable Computing (IJRC) (Feb. 2015), pp. 1–13. DOI: 10.1155/
2015/902925.

[115] I. Beretta, V. Rana, D. Atienza, and D. Sciuto. “Run-Time Mapping of Applicationson FPGA-Based Reconfigurable Systems”. In: International Symposium on Circuits

and Systems (ISCAS). IEEE, Aug. 2010, pp. 3329–3332. DOI: 10.1109/ISCAS.2010.
5537893.

[116] N. P. Mand, F. Robino, and J. Öberg. “Artificial Neural Network Emulation on NoCBased Multi-Core FPGA Platform”. In: NORCHIP. IEEE, Nov. 2012, pp. 1–4. DOI:
10.1109/NORCHP.2012.6403122.

[117] M. S. Mohammed, J. Wei Tang, A. A. Ab Rahman, N. Paraman, and M. N. Marsono.“Rapid Prototyping of NoC-based MPSoC Based on Dataflow Modeling of Real-World Applications”. In: Control and System Graduate Research Colloquium (ICSGRC).IEEE, Aug. 2018, pp. 217–222. DOI: 10.1109/ICSGRC.2018.8657542.
[118] G. Zhu and Y. Wang. “A Multi-Application Mapping Case Study for NoC-BasedMPSoCs”. In: International Conference on Signal Processing, Communication and Com-

puting (ICSPCC). IEEE, Aug. 2013, pp. 1–6. DOI: 10.1109/ICSPCC.2013.6664092.
[119] F. Robino and J. Öberg. “The HeartBeat Model: A Platform Abstraction EnablingFast Prototyping of Real-Time Applications on NoC-based MPSoC on FPGA”. In:

International Workshop on Reconfigurable and Communication-Centric Systems-on-

Chip (ReCoSoC). IEEE, July 2013, pp. 1–8. DOI: 10.1109/ReCoSoC.2013.6581536.
[120] M. Mandelli, L. Ost, E. Carara, G. Guindani, T. Gouvea, G. Medeiros, and F. G. Moraes.“Energy-Aware Dynamic Task Mapping for NoC-Based MPSoCs”. In: International

Symposium of Circuits and Systems (ISCAS). IEEE, May 2011, pp. 1676–1679. DOI:
10.1109/ISCAS.2011.5937903.

[121] S. Bayar and A. Yurdakul. “PFMAP: Exploitation of Particle Filters for Network-on-Chip Mapping”. In: Transactions on Very Large Scale Integration (VLSI) Systems (Oct.2015), pp. 2116–2127. DOI: 10.1109/TVLSI.2014.2360791.
[122] K. Pang, V. Fresse, S. Yao, and O. A. De Lima. “Task Mapping and Mesh Topology Ex-ploration for an FPGA-Based Network on Chip”. In:Microprocessors andMicrosystems

(MICPRO) (May 2015), pp. 189–199. DOI: 10.1016/j.micpro.2015.03.006.
[123] B. N. K. Reddy and Sireesha. “An Energy-Efficient Core Mapping Algorithm onNetwork on Chip (NoC)”. In: International Symposium on VLSI Design and Test (VDAT).Springer, Jan. 2019, pp. 631–640. DOI: 10.1007/978-981-13-5950-7_52.
[124] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. “Optimizing FPGA-BasedAccelerator Design for Deep Convolutional Neural Networks”. In: International

Symposium on Field-Programmable Gate Arrays (FPGA). ACM, Feb. 2015, pp. 161–170.DOI: 10.1145/2684746.2689060.
[125] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016,pp. 770–778. DOI: 10.1109/CVPR.2016.90.

268

https://doi.org/10.1109/71.993206
https://doi.org/10.1155/2015/902925
https://doi.org/10.1155/2015/902925
https://doi.org/10.1109/ISCAS.2010.5537893
https://doi.org/10.1109/ISCAS.2010.5537893
https://doi.org/10.1109/NORCHP.2012.6403122
https://doi.org/10.1109/ICSGRC.2018.8657542
https://doi.org/10.1109/ICSPCC.2013.6664092
https://doi.org/10.1109/ReCoSoC.2013.6581536
https://doi.org/10.1109/ISCAS.2011.5937903
https://doi.org/10.1109/TVLSI.2014.2360791
https://doi.org/10.1016/j.micpro.2015.03.006
https://doi.org/10.1007/978-981-13-5950-7_52
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/CVPR.2016.90

Bibliography

[126] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and M. Herbordt. “FPDeep:Acceleration and Load Balancing of CNN Training on FPGA Clusters”. In: International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, May2018, pp. 81–84. DOI: 10.1109/FCCM.2018.00021.

[127] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Patel, and M. Herbordt. “A Frameworkfor Acceleration of CNN Training on Deeply-Pipelined FPGA Clusters with Work andWeight Load Balancing”. In: International Conference on Field Programmable Logic
and Applications (FPL). IEEE, Aug. 2018, pp. 1–5. DOI: 10.1109/FPL.2018.00074.

[128] A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet Classification with Deep Con-volutional Neural Networks”. In: Communications of the ACM (May 2017), pp. 84–90.DOI: 10.1145/3065386.
[129] K. Bouaziz, S. Chtourou, Z. Marrakchi, M. Abid, and A. Obeid. “Exploration of Cluster-ing Algorithms effects on Mesh of Clusters based FPGA Architecture Performance”.In: International Conference on High Performance Computing Simulation (HPCS). IEEE,July 2019, pp. 658–665. DOI: 10.1109/HPCS48598.2019.9188138.
[130] S. Chtourou, Z. Marrakchi, E. Amouri, V. Pangracious, M. Abid, and H. Mehrez.“Improvement of Cluster-Based Mesh FPGA Architecture using Novel HierarchicalInterconnect Topology and Long Touting Wires”. In: Microprocessors and Microsys-

tems (Feb. 2016), pp. 16–26. DOI: 10.1016/j.micpro.2015.11.011.
[131] S. Chtourou, M. Abid, Z. Marrakchi, E. Amouri, and H. Mehrez. “On ExploitingPartitioning-Based Placement Approach for Performances Improvement of 3DFPGA”. In: International Conference on High Performance Computing Simulation (HPCS).IEEE, July 2017, pp. 572–579. DOI: 10.1109/HPCS.2017.91.
[132] S.M. Mohtavipour and H.S. Shahhoseini. “A Link-Elimination Partitioning Approachfor Application Graph Mapping in Reconfigurable Computing Systems”. In: The

Journal of Supercomputing (Nov. 2019), pp. 726–754. DOI: 10.1007/s11227-019-
03056-5.

[133] S. M. Mohtavipour and H. Shahriar Shahhoseini. “A Low-Cost Distributed Mappingfor Large-Scale Applications of Reconfigurable Computing Systems”. In: International
Computer Conference, Computer Society of Iran (CSICC). IEEE, Jan. 2020, pp. 1–6. DOI:
10.1109/CSICC49403.2020.9050063.

[134] S. M. Mohtavipour and H. S. Shahhoseini. “A Large-Scale Application Mapping inReconfigurable Hardware Using Deep Graph Convolutional Network”. In: Interna-
tional Conference on Computer and Knowledge Engineering (ICCKE). IEEE, Oct. 2020,pp. 382–387. DOI: 10.1109/ICCKE50421.2020.9303679.

[135] A. Marquardt, V. Betz, and J. Rose. “Using Cluster-Based Logic Blocks and Timing-Driven Packing to Improve FPGA Speed and Density”. In: International Symposium
on Field Programmable Gate Arrays (FPGA). ACM, Feb. 1999, pp. 37–46. DOI: 10.
1145/296399.296426.

[136] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. “Resource Elastic Virtualization forFPGAs using OpenCL”. In: International Conference on Field Programmable Logic and
Applications (FPL). IEEE, Aug. 2018, pp. 1–8. DOI: 10.1109/FPL.2018.00028.

[137] U. I. Minhas, R. Woods, and G. Karakonstantis. “Optimisation of System ThroughputExploiting Tasks Heterogeneity on Space Shared FPGAs”. In: International Conference
on Field-Programmable Technology (FPT). IEEE, Dec. 2019, pp. 359–362. DOI: 10.
1109/ICFPT47387.2019.00067.

269

https://doi.org/10.1109/FCCM.2018.00021
https://doi.org/10.1109/FPL.2018.00074
https://doi.org/10.1145/3065386
https://doi.org/10.1109/HPCS48598.2019.9188138
https://doi.org/10.1016/j.micpro.2015.11.011
https://doi.org/10.1109/HPCS.2017.91
https://doi.org/10.1007/s11227-019-03056-5
https://doi.org/10.1007/s11227-019-03056-5
https://doi.org/10.1109/CSICC49403.2020.9050063
https://doi.org/10.1109/ICCKE50421.2020.9303679
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/296399.296426
https://doi.org/10.1109/FPL.2018.00028
https://doi.org/10.1109/ICFPT47387.2019.00067
https://doi.org/10.1109/ICFPT47387.2019.00067

Bibliography

[138] G. A. Silva Novaes, L. C. Moreira, and W. J. Chau. “Exploring Tabu Search BasedAlgorithms for Mapping and Placement in NoC-based Reconfigurable Systems”.In: Symposium on Integrated Circuits and Systems Design (SBCCI). ACM, Aug. 2019,pp. 1–6. DOI: 10.1145/3338852.3339843.
[139] M. Y. Rad and S. Shahbandegan. “An Intelligent Algorithm for Mapping of Ap-plications on Parallel Reconfigurable Systems”. In: Iranian Conference on Signal

Processing and Intelligent Systems (ICSPIS). IEEE, Dec. 2020, pp. 1–6. DOI: 10.1109/
ICSPIS51611.2020.9349558.

[140] J. G. Filho and W. J. Chau. “Exploring the Problems of Placement and Mapping inNoC-Based Reconfizurable Systems”. In: International Conference on Reconfigurable
Computing and FPGAs (ReConFig). IEEE, Dec. 2013, pp. 1–4. DOI: 10.1109/ReConFig.
2013.6732289.

[141] G. A. Silva Novaes, L. C. Moreira, and W. J. Chau. “Mapping and Placement in NoC-based Reconfigurable Systems Using an Adaptive Tabu Search Algorithm”. In: Latin
American Symposium on Circuits Systems (LASCAS). IEEE, Feb. 2019, pp. 145–148.DOI: 10.1109/LASCAS.2019.8667553.

[142] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der Veen. “DyNoC: ADynamic Infrastructure for Communication in Dynamically Reconfigurable Devices”.In: International Conference on Field Programmable Logic and Applications (FPL). IEEE,Aug. 2005, pp. 153–158. DOI: 10.1109/FPL.2005.1515715.
[143] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel Programmingwith CUDA: Is CUDA the Parallel Programming Model That Application DevelopersHave Been Waiting For?” In: Queue (Mar. 2008), pp. 40–53. DOI: 10.1145/1365490.

1365500.
[144] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Programming Standard forHeterogeneous Computing Systems”. In: Computing in Science Engineering (CiSE)(May 2010), pp. 66–73. DOI: 10.1109/MCSE.2010.69.
[145] W. W. Hwu J. A. Stratton S. S. Stone. “MCUDA: An Efficient Implementation of CUDAKernels for Multi-core CPUs”. In: International Workshop on Languages and Compilers

for Parallel Computing (LCPC). Springer, July 2008, pp. 16–30. DOI: 10.1007/978-3-
540-89740-8_2.

[146] G. De Fabritiis M.J. Harvey. “wan: A Tool for Porting CUDA Programs to OpenCL”. In:
Computer Physics Communications (CPC) (Apr. 2011), pp. 1093–1099. DOI: 0.1016/
j.cpc.2010.12.052.

[147] I. Mavroidis, I. Mavroidis, I. Papaefstathiou, L. Lavagno, M. Lazarescu, E. de la Torre,and F. Schäfer. “FASTCUDA: Open Source FPGA Accelerator & Hardware-SoftwareCodesign Toolset for CUDA Kernels”. In: Euromicro Conference on Digital System
Design (DSD). IEEE, Sept. 2012, pp. 343–348. DOI: 10.1109/DSD.2012.58.

[148] M. Knaust, F. Mayer, and T. Steinke. “OpenMP to FPGA Offloading Prototype UsingOpenCL SDK”. In: International Workshop High-Level Parallel Programming Models
and Supportive Environment (HIPS). IEEE, May 2019, pp. 387–390. DOI: 10.1109/
IPDPSW.2019.00072.

[149] S. Lee, J. Kim, and J. S. Vetter. “OpenACC to FPGA: A Framework for Directive-Based High-Performance Reconfigurable Computing”. In: International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, July 2016, pp. 544–554. DOI: 10.
1109/IPDPS.2016.28.

270

https://doi.org/10.1145/3338852.3339843
https://doi.org/10.1109/ICSPIS51611.2020.9349558
https://doi.org/10.1109/ICSPIS51611.2020.9349558
https://doi.org/10.1109/ReConFig.2013.6732289
https://doi.org/10.1109/ReConFig.2013.6732289
https://doi.org/10.1109/LASCAS.2019.8667553
https://doi.org/10.1109/FPL.2005.1515715
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1007/978-3-540-89740-8_2
https://doi.org/10.1007/978-3-540-89740-8_2
https://doi.org/0.1016/j.cpc.2010.12.052
https://doi.org/0.1016/j.cpc.2010.12.052
https://doi.org/10.1109/DSD.2012.58
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/IPDPS.2016.28
https://doi.org/10.1109/IPDPS.2016.28

Bibliography

[150] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W. W. Hwu.“FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs”. In: Symposium
on Application Specific Processors (SASP). IEEE, July 2009, pp. 35–42. DOI: 10.1109/
SASP.2009.5226333.

[151] L. Sommer, J. Korinth, and A. Koch. “OpenMP Device Offloading to FPGA Accelera-tors”. In: International Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, July 2017, pp. 201–205. DOI: 10.1109/ASAP.2017.7995280.

[152] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and C. Cong. “AutoPilot: A Platform-Based ESL Synthesis Syste”. In: ed. by P. Coussy and A. Morawiec. Springer, 2008.Chap. High-Level Synthesis: From Algorithm to Digital Circuit, pp. 99–112. DOI:
10.1007/978-1-4020-8588-8_6.

[153] Khronos OpenCL Working Group. The OpenCL Specification. Dec. 2020.
[154] A. Munshi. “The OpenCL Specification”. In: Hot Chips 21 Symposium (HCS). IEEE, Aug.2009, pp. 1–314. DOI: 10.1109/HOTCHIPS.2009.7478342.
[155] S. Lee and J. S. Vetter. “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing”. In: International Symposium on High-

Performance Parallel and Distributed Computing (HPDC). ACM, June 2014, pp. 115–120. DOI: 10.1145/2600212.2600704.
[156] L. Dagum and R. Menon. “OpenMP: An Industry Standard API for Shared-MemoryProgramming”. In: Computational Science and Engineering. IEEE, Mar. 1998, pp. 46–55. DOI: 10.1109/99.660313.
[157] OpenACC-Standard.org. The OpenACC Application Programming Interface: Version

2.7. Sept. 2018.
[158] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller. “A Pattern-Based Comparisonof OpenACC and OpenMP for Accelerator Computing”. In: International European

Conference on Parallel Processing (Euro-Par). Springer, Aug. 2014, pp. 812–823. DOI:
10.1007/978-3-319-09873-9_68.

[159] F. Mayer, M. Knaust, andM. Philippsen. “OpenMP on FPGAs—A Survey”. In: OpenMP:
Conquering the Full Hardware Spectrum. Springer, Aug. 2019, pp. 94–108. DOI:
10.1007/978-3-030-28596-8_7.

[160] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J.Planas. “Ompss: a Proposal for Programming Heterogeneous Multi-Core Archi-tectures”. In: Parallel Processing Letters (Mar. 2011), pp. 173–193. DOI: 10.1142/
S0129626411000151.

[161] J. M. Perez, R. M. Badia, and J. Labarta. “A Dependency-Aware Task-Based Program-ming Environment for Multi-Core Architectures”. In: International Conference on
Cluster Computing (CLUSTER). IEEE, Oct. 2008, pp. 142–151. DOI: 10.1109/CLUSTR.
2008.4663765.

[162] J. Bosch, A. Filgueras, M. Vidal, D. Jimenez-Gonzalez, C. Alvarez, and X. Martorell.“Exploiting Parallelism onGPUs and FPGAs with OmpSs”. In:Workshop on AutotuniNg
and aDaptivity AppRoaches for Energy efficient HPC Systems (ANDARE). ACM, Sept.2017, pp. 1–5. DOI: 10.1145/3152821.3152880.

[163] Khronos SYCL Working Group. The SYCL Specification. Apr. 2020.

271

https://doi.org/10.1109/SASP.2009.5226333
https://doi.org/10.1109/SASP.2009.5226333
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1007/978-1-4020-8588-8_6
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1145/2600212.2600704
https://doi.org/10.1109/99.660313
https://doi.org/10.1007/978-3-319-09873-9_68
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1145/3152821.3152880

Bibliography

[164] H. C. da Silva, F. Pisani, and E. Borin. “A Comparative Study of SYCL, OpenCL,and OpenMP”. In: International Symposium on Computer Architecture and High Per-

formance Computing Workshops (SBAC-PADW). IEEE, Oct. 2016, pp. 61–66. DOI:
10.1109/SBAC-PADW.2016.19.

[165] Khronos SYCL Working Group. SYCL Implementations. Jan. 2021. URL: www.khronos.
org/sycl/.

[166] S. Memeti, L. Li, S. Pllana, J. Koodziej, and C. Kessler. “Benchmarking OpenCL, Ope-nACC, OpenMP, and CUDA: Programming Productivity, Performance, and EnergyConsumption”. In: Workshop on Adaptive Resource Management and Scheduling for
Cloud Computing (ARMS-CC). ACM, July 2017, pp. 1–6. DOI: 10.1145/3110355.
3110356.

[167] Khronos SYCL Working Group. SYCL Projects. Jan. 2021. URL: www.sycl.tech/
projects/.

[168] D. Demidov, K. Ahnert, K. Rupp, and P. Gottschling. “Programming CUDA andOpenCL: A Case Study Using Modern C++ Libraries”. In: Journal on Scientific Com-
puting (SISC) (Sept. 2013), pp. 453–472. DOI: 10.1137/120903683.

[169] N. Bell and J. Hoberock. “Chapter 26 - Thrust: A Productivity-Oriented Library forCUDA”. In: GPU Computing Gems Jade Edition. Elsevier, 2012, pp. 359–371. DOI:
10.1016/B978-0-12-385963-1.00026-5.

[170] P. Gottschling and T. Hoefler. “Productive Parallel Linear Algebra Programming withUnstructured Topology Adaption”. In: nternational Symposium on Cluster, Cloud and

Grid Computing (CCGRID). IEEE/ACM, May 2012, pp. 9–16. DOI: 10.1109/CCGrid.
2012.51.

[171] D. Demidov. VexCL Documentation. May 2017. URL: https://vexcl.read%5C-
the%5C-docs.io/.

[172] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, andS. Selberherr. “ViennaCL—Linear Algebra Library for Multi- and Many-Core Archi-tectures”. In: Journal on Scientific Computing (SISC) (Oct. 2016), pp. 412–439. DOI:
10.1137/15M1026419.

[173] V. Shkarupa, R. Mencis, and M. Sabatelli. “Offline Handwriting Recognition UsingLSTM Recurrent Neural Networks”. In: Benelux Conference on Artificial Intelligence.Research Gate, Nov. 2016, pp. 1–9.
[174] M. Kowalczyk, D. Przewlocka, and T. Krvjak. “Real-Time Implementation of Con-textual Image Processing Operations for 4K Video Stream in Zynq UltraScale+MPSoC”. In: International Conference on Design and Architectures for Signal and Image

Processing (DASIP). IEEE, Oct. 2018, pp. 37–42. DOI: 10.1109/DASIP.2018.8597105.
[175] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. “TensorFlow:A System for Large-Scale Machine Learning”. In: Symposium on Operating Systems

Design and Implementation (OSDI). Nov. 2016, pp. 265–283. DOI: arXiv:1605.
08695.

[176] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, andT. Darrell. “Caffe: Convolutional Architecture for Fast Feature Embedding”. In: ACM
International Conference on Multimedia (MM). ACM, Nov. 2014, pp. 675–678. DOI:
10.1145/2647868.2654889.

272

https://doi.org/10.1109/SBAC-PADW.2016.19
www.khronos.org/sycl/
www.khronos.org/sycl/
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1145/3110355.3110356
www.sycl.tech/projects/
www.sycl.tech/projects/
https://doi.org/10.1137/120903683
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1109/CCGrid.2012.51
https://doi.org/10.1109/CCGrid.2012.51
https://vexcl.read%5C-the%5C-docs.io/
https://vexcl.read%5C-the%5C-docs.io/
https://doi.org/10.1137/15M1026419
https://doi.org/10.1109/DASIP.2018.8597105
https://doi.org/arXiv:1605.08695
https://doi.org/arXiv:1605.08695
https://doi.org/10.1145/2647868.2654889

Bibliography

[177] S. Shi, Q. Wang, P. Xu, and X. Chu. “Benchmarking State-of-the-Art Deep LearningSoftware Tools”. In: International Conference on Cloud Computing and Big Data (CCBD).IEEE, Sept. 2016, pp. 99–104. DOI: 10.1109/CCBD.2016.029.
[178] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV library.O’Reilly Media, Inc., Jan. 2008.
[179] OpenCV. OpenCV OpenCL Acceleration. 2021. URL: https://opencv.org/opencl.
[180] R. Haase, L.A. Royer, P. Steinbach, D. Schmidt, A. Dibrov, U. Schmidt, M. Weigert,N. Maghelli, P. Tomancak, F. Jug, and E.W. Myers. “CLIJ: GPU-Accelerated ImageProcessing for Everyone”. In: Nature Methods (Jan. 2020), pp. 1–2. DOI: 10.1038/

s41592-019-0650-1.
[181] Xilinx. Xilinx xfOpenCV Library. June 2019.
[182] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich. “A Highly Efficient and ComprehensiveImage Processing Library for C++-based High-Level Synthesis”. In: International

Workshop on FPGAs for Software Programmers (FSP). VDE, Sept. 2017, pp. 1–10.
[183] J. Vasiljevic, R. Wittig, P. Schumacher, J. Fifield, F. M. Vallina, H. Styles, and P. Chow.“OpenCL Library of StreamMemory Components Targeting FPGAs”. In: International

Conference on Field Programmable Technology (FPT). IEEE, Dec. 2015, pp. 104–111.DOI: 10.1109/FPT.2015.7393134.
[184] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.“Programming Heterogeneous Systems from an Image Processing DSL”. In: Trans-

actions on Architecture and Code Optimization (TACO) (Aug. 2017), pp. 1–25. DOI:
10.1145/3107953.

[185] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. “Halide:A Language and Compiler for Optimizing Parallelism, Locality, and Recomputationin Image Processing Pipelines”. In: Special Interest Group on Programming Languages
(SIGPLAN) (June 2013), pp. 519–530. DOI: 10.1145/2499370.2462176.

[186] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert. “HIPAcc: ADomain-Specific Language and Compiler for Image Processing”. In: Transactions
on Parallel and Distributed Systems (TPDS) (Jan. 2016), pp. 210–224. DOI: 10.1109/
TPDS.2015.2394802.

[187] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich. “FPGA-based Accelerator Design froma Domain-Specific Language”. In: International Conference on Field Programmable
Logic and Applications (FPL). IEEE, Sept. 2016, pp. 1–9. DOI: 10.1109/FPL.2016.
7577357.

[188] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich. “Code Generationfrom a Domain-Specific Language for C-based HLS of Hardware Accelerators”.In: International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS). ACM, Oct. 2014, pp. 1–10. DOI: 10.1145/2656075.2656081.
[189] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula. “A DSL Compiler for Accel-erating Image Processing Pipelines on FPGAs”. In: International Conference on

Parallel Architectures and Compilation (PACT). ACM, Sept. 2016, pp. 327–338. DOI:
10.1145/2967938.2967969.

[190] R. T. Mullapudi, V. Vasista, and U. Bondhugula. “Polymage: Automatic Optimizationfor Image Processing Pipelines”. In: Special Interest Group on Computer Architecture
(SIGARCH) (Mar. 2015), pp. 429–443. DOI: 10.1145/2786763.2694364.

273

https://doi.org/10.1109/CCBD.2016.029
https://opencv.org/opencl
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1109/FPT.2015.7393134
https://doi.org/10.1145/3107953
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/FPL.2016.7577357
https://doi.org/10.1109/FPL.2016.7577357
https://doi.org/10.1145/2656075.2656081
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1145/2786763.2694364

Bibliography

[191] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,M. Horowitz, and P. Hanrahan. “Darkroom: Compiling High-Level Image ProcessingCode into Hardware Pipelines”. In: Transactions on Graphics (TOG) (July 2014), pp. 1–11. DOI: 10.1145/2601097.2601174.
[192] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and P. Hanrahan. “Rigel:Flexible Multi-Rate Image Processing Hardware”. In: Transactions on Graphics (TOG)(July 2016), pp. 1–11. DOI: 10.1145/2897824.2925892.
[193] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T.Shpeisman, N. Vasilache, and O. Zinenko. “MLIR: Scaling Compiler Infrastructurefor Domain Specific Computation”. In: International Symposium on Code Generation

and Optimization (CGO). IEEE, Mar. 2021, pp. 2–14. DOI: 10.1109/CGO51591.2021.
9370308.

[194] J. Kessenich, B. Ouriel, and R. Krisch. SPIR-V Specification. Jan. 2021. URL: www.
khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf.

[195] S. Verdoolaege. Presburger Formulas and Polyhedral Compilation. Polly Labs and KULeuven, Jan. 2016. DOI: 10.13140/RG.2.1.1174.6323.
[196] S. Verdoolaege. “ISL: An Integer Set Library for the Polyhedral Model”. In: Interna-

tional Congress on Mathematical Software (ICMS). Springer, Sept. 2010, pp. 299–302.DOI: 10.1007/978-3-642-15582-6_49.
[197] A. Darte, Y. Robert, and F. Vivien. “Compiler Optimizations for Scalable ParallelSystems: Languages, Compilation Techniques, and Run Time Systems”. In: ed. by S.Pande and D. P. Agrawal. Springer, May 2001. Chap. Loop Parallelization Algorithms,pp. 141–171. DOI: 10.1007/3-540-45403-9_5.
[198] M. Griebl and C. Lengauer. “The Loop Parallelizer LooPo”. In: Workshop on Compilers

for Parallel Computers (CPC). Feb. 1997, pp. 311–320. DOI: 10.1007/BFb0017283.
[199] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. “A Practical Auto-matic Polyhedral Parallelizer and Locality Optimizer”. In: Conference on Programming

Language Design and Implementation (PLDI). ACM, June 2008, pp. 101–113. DOI:
10.1145/1375581.1375595.

[200] P. Feautrier. “Parametric Integer Programming”. In: RAIRO-Operations Research (Aug.1988), pp. 243–268. DOI: 10.1051/ro/1988220302431.
[201] C. Bastoul. “Code Generation in the Polyhedral Model is Easier than you Think”. In:

International Conference on Parallel Architecture and Compilation Techniques (PACT).IEEE, Oct. 2004, pp. 7–16. DOI: 10.1109/PACT.2004.1342537.
[202] S. Verdoolaege and T. Grosser. “Polyhedral Extraction Tool”. In: Workshop on Poly-

hedral Compilation Techniques (IMPACT). Jan. 2012, pp. 1–8. DOI: 10.13140/RG.2.1.
4213.4562.

[203] C. Lengauer T. Grosser A. Groesslinger. “Polly - Performing Polyhedral Optimizationson a Low-Level Intermediate Representation”. In: Parallel Processing Letters (Dec.2012), pp. 1–27. DOI: 10.1142/S0129626412500107.
[204] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. A. Silber, and N. Vasilache. “GRAPHITE: Poly-hedral Analyses and Optimizations for GCC”. In: Proceedings of the GCC Developers’

Summit. June 2006, pp. 179–197.

274

https://doi.org/10.1145/2601097.2601174
https://doi.org/10.1145/2897824.2925892
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://doi.org/10.13140/RG.2.1.1174.6323
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/3-540-45403-9_5
https://doi.org/10.1007/BFb0017283
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1051/ro/1988220302431
https://doi.org/10.1109/PACT.2004.1342537
https://doi.org/10.13140/RG.2.1.4213.4562
https://doi.org/10.13140/RG.2.1.4213.4562
https://doi.org/10.1142/S0129626412500107

Bibliography

[205] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. “Automatic C-to-CUDA CodeGeneration for Affine Programs”. In: International Conference on Compiler Construc-
tion (CC). Springer, Mar. 2010, pp. 244–263. DOI: 10.1007/978-3-642-11970-
5_14.

[206] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and F.Catthoor. “Polyhedral Parallel Code Generation for CUDA”. In: Transactions on
Architecture and Code Optimization (TACO) (Jan. 2013), pp. 1–23. DOI: 10.1145/
2400682.2400713.

[207] S. Verdoolaege and A. Cohen. “Live Range Reordering”. In: International Workshop
on Polyhedral Compilation Techniques (IMPACT). Polly Labs and KU Leuven, Jan. 2016.DOI: 10.13140/RG.2.1.3272.9680.

[208] W. Klingauf and R. Gunzel. “From TLM to FPGA: Rapid Prototyping with SystemCand Transaction Level Modeling”. In: International Conference on Field-Programmable
Technology (FPT). IEEE, Dec. 2005, pp. 285–286. DOI: 10.1109/FPT.2005.1568563.

[209] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviienis, J. Wawrzynek, and K.Asanovi. “Chisel: Constructing hardware in a Scala embedded language”. In: Design
Automation Conference (DAC). June 2012, pp. 1212–1221. DOI: 10.1145/2228360.
2228584.

[210] Intel. Intel FPGA SDK for OpenCL ProEdition. Dec. 2020.
[211] I. Janik, Q. Tang, and M. Khalid. “An Ooverview of Altera SDK for OpenCL: A UserPerspective”. In: Canadian Conference on Electrical and Computer Engineering (CCECE).IEEE, May 2015, pp. 559–564. DOI: 10.1109/CCECE.2015.7129336.
[212] Xilinx. Vivado Design Suite UserGuide - High-Level Synthesis. July 2019.
[213] Xilinx. SDSoC Environment User Guide. May 2019.
[214] Xilinx. SDAccel Environment UserGuide. May 2019.
[215] K. Hill, S. Craciun, A. George, and H. Lam. “Comparative Analysis of OpenCL vs.HDL with Image-Processing Kernels on Stratix-V FPGA”. In: International Conference

on Application-specific Systems, Architectures and Processors (ASAP). IEEE, July 2015,pp. 189–193. DOI: 10.1109/ASAP.2015.7245733.
[216] J. Villarreal, A. Park, W. Najjar, and R. Halstead. “Designing Modular Hardware Accel-erators in C with ROCCC 2.0”. In: International Symposium on Field-Programmable

Custom Computing Machines (FCCM). ACM, May 2010, pp. 127–134. DOI: 10.1109/
FCCM.2010.28.

[217] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson, S. Brown, andT. Czajkowski. “LegUp: High-Level Synthesis for FPGA-Based Processor/AcceleratorSystems”. In: International Symposium on Field Programmable Gate Arrays (FPGA).ACM, Feb. 2011, pp. 33–36. DOI: 10.1145/1950413.1950423.
[218] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. Brown, andJ. Anderson. “LegUp: An Open-Source High-Level Synthesis Tool for FPGA-BasedProcessor/Accelerator Systems”. In: Transactions on Embedded Computing Systems

(TECS) (Sept. 2013), pp. 1–27. DOI: 10.1145/2514740.
[219] A. Canis, J. Choi, R. L. Lian, and J. Anderson. LegUp: Benefits of High-Level Synthesis

for FPGA Design. Sept. 2020. URL: www.legupcomputing.com.

275

https://doi.org/10.1007/978-3-642-11970-5_14
https://doi.org/10.1007/978-3-642-11970-5_14
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.13140/RG.2.1.3272.9680
https://doi.org/10.1109/FPT.2005.1568563
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/CCECE.2015.7129336
https://doi.org/10.1109/ASAP.2015.7245733
https://doi.org/10.1109/FCCM.2010.28
https://doi.org/10.1109/FCCM.2010.28
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/2514740
www.legupcomputing.com

Bibliography

[220] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and W. A. Najjar.“High-Level Language Tools for Reconfigurable Computing”. In: Proceedings of the
IEEE (Apr. 2015), pp. 390–408. DOI: 10.1109/JPROC.2015.2399275.

[221] R. Nikhil. “Bluespec System Verilog: efficient, correct RTL from high level specifi-cations”. In: International Conference on Formal Methods and Models for Co-Design
(MEMOCODE). IEEE, June 2004, pp. 69–70. DOI: 10.1109/MEMCOD.2004.1459818.

[222] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F.Ferrandi, J. Anderson, and K. Bertels. “A Survey and Evaluation of FPGA High-LevelSynthesis Tool”. In: Transactions on Computer-Aided Design of Integrated Circuits and
Systems (Oct. 2016), pp. 1591–1604. DOI: 10.1109/TCAD.2015.2513673.

[223] C. Pilato and F. Ferrandi. “Bambu: A modular Framework for the High Level Syn-thesis of Memory-Intensive Applications”. In: International Conference on Field pro-
grammable Logic and Applications (FPL). IEEE, Sept. 2013, pp. 1–4. DOI: 10.1109/
FPL.2013.6645550.

[224] R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels. “DWARV 2.0: ACoSy-based C-to-VHDL Hardware Compiler”. In: International Conference on Field
Programmable Logic and Applications (FPL). IEEE, Aug. 2012, pp. 619–622. DOI:
10.1109/FPL.2012.6339221.

[225] F. Winterstein, S. Bayliss, and G. A. Constantinides. “High-Level Synthesis of DynamicData Structures: A Case Study using Vivado HLS”. In: International Conference on
Field-Programmable Technology (FPT). IEEE, Dec. 2013, pp. 362–365. DOI: 10.1109/
FPT.2013.6718388.

[226] M. Hosseinabady and J. L. Nunez-Yanez. “Optimised OpenCL Workgroup Synthesisfor Hybrid ARM-FPGA Devices”. In: International Conference on Field Programmable
Logic and Applications (FPL). IEEE, Sept. 2015, pp. 1–6. DOI: 10.1109/FPL.2015.
7294016.

[227] Z. Wang, B. He, W. Zhang, and S. Jiang. “A Performance Analysis Framework forOptimizing OpenCL Applications on FPGAs”. In: International Symposium on High

Performance Computer Architecture (HPCA). IEEE, Apr. 2016, pp. 114–125. DOI: 10.
1109/HPCA.2016.7446058.

[228] S. O. Ayat, M. Khalil-Hani, and R. Bakhteri. “OpenCL-Based Hardware-SoftwareCo-Design Methodology for Image Processing Implementation on HeterogeneousFPGA Platform”. In: International Conference on Control System, Computing and Engi-
neering (ICCSCE). IEEE, Sept. 2015, pp. 36–41. DOI: 10.1109/ICCSCE.2015.7482154.

[229] Khronos OpenVX Working Group. The OpenVX Specification (version 1.3). Sept. 2020.
[230] J. Hascoë, B. D. de Dinechin, K. Desnos, and J. Nezan. “A Distributed Frameworkfor Low-Latency OpenVX over the RDMA NoC of a Clustered Manycore”. In: High

Performance extreme Computing Conference (HPEC). IEEE, Sept. 2018, pp. 1–7. DOI:
10.1109/HPEC.2018.8547736.

[231] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. “ADRENALINE: An OpenVXEnvironment to Optimize Embedded Vision Applications on Many-core Accelera-tors”. In: International Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSoC). IEEE, Sept. 2015, pp. 289–296. DOI: 10.1109/MCSoC.2015.45.
[232] H. Omidian, N. Ivanov, and G. G. F. Lemieux. “An Accelerated OpenVX Overlay forPure Software Programmers”. In: International Conference on Field-Programmable

Technology (FPT). IEEE, Dec. 2018, pp. 290–293. DOI: 10.1109/FPT.2018.00056.

276

https://doi.org/10.1109/JPROC.2015.2399275
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPT.2013.6718388
https://doi.org/10.1109/FPT.2013.6718388
https://doi.org/10.1109/FPL.2015.7294016
https://doi.org/10.1109/FPL.2015.7294016
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1109/ICCSCE.2015.7482154
https://doi.org/10.1109/HPEC.2018.8547736
https://doi.org/10.1109/MCSoC.2015.45
https://doi.org/10.1109/FPT.2018.00056

Bibliography

[233] H. Omidian, N. Ivanov, and G. G. F. Lemieux. “An Accelerated OpenVX Overlay forPure Software Programmers”. In: International Conference on Field-Programmable
Technology (FPT). IEEE, Dec. 2018, pp. 290–293. DOI: 10.1109/FPT.2018.00056.

[234] S. Taheri, J. Heo, P. Behnam, J. Chen, A. Veidenbaum, and A. Nicolau. “AccelerationFramework for FPGA Implementation of OpenVX Graph Pipelines”. In: International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, Apr.2018, pp. 227–227. DOI: 10.1109/FCCM.2018.00061.

[235] M. A. Özkan, B. Ok, B. Qiao, O. Reiche, J. Teich, and F. Hannig. “HipaccVX: Wedding ofOpenVX and DSL-based Code Generation”. In: Journal of Real-Time Image Processing
(JRTIP) (June 2021), pp. 1861–8219. DOI: 10.1007/s11554-020-01015-5.

[236] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. “A Framework for OptimizingOpenVX Applications Performance on Embedded Manycore Accelerators”. In: Inter-
national Workshop on Software and Compilers for Embedded Systems (SCOPES). ACM,June 2015, pp. 125–128. DOI: 10.1145/2764967.2776858.

[237] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. “Optimizing Memory BandwidthExploitation for OpenVX Applications on Embedded Many-Core Accelerators”. In:
Journal of Real-Time Image Processing (JRTIP) (June 2018), pp. 73–92. DOI: 10.1007/
s11554-015-0544-0.

[238] H. Omidian and G. G. F. Lemieux. “Exploring automated space/time tradeoffsfor OpenVX compute graphs”. In: International Conference on Field Programmable
Technology (FPT). IEEE, Dec. 2017, pp. 152–159. DOI: 10.1109/FPT.2017.8280133.

[239] S. Taheri, P. Behnam, E. Bozorgzadeh, A. Veidenbaum, and A. Nicolau. “AFFIX:Automatic Acceleration Framework for FPGA Implementation of OpenVX VisionAlgorithms”. In: International Symposium on Field-Programmable Gate Arrays (FPGA).ACM, Feb. 2019, pp. 252–261. DOI: 10.1145/3289602.3293907.
[240] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. “SnuCL: An OpenCL Framework forHeterogeneous CPU/GPU Clusters”. In: International Conference on Supercomputing

(ICS). ACM, June 2012, pp. 341–352. DOI: 10.1145/2304576.2304623.
[241] J. Kim, G. Jo, J. Jung, J. Kim, and J. Lee. “A Distributed OpenCL Framework UsingRedundant Computation and Data Replication”. In: Conference on Programming

Language Design and Implementation (SIGPLAN). ACM, June 2016, pp. 553–569. DOI:
10.1145/2908080.2908094.

[242] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: A Unified Platformfor Task Scheduling on Heterogeneous Multicore Architectures”. In: Concurrency
and Computation: Practice and Experience (CCPE) (Feb. 2011), pp. 187–198. DOI:
10.1002/cpe.1631.

[243] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault. “StarPU-MPI:Task Programming over Clusters of Machines Enhanced with Accelerators”. In:
Recent Advances in the Message Passing Interface (EuroMPI). Springer, Sept. 2012,pp. 298–299. DOI: 10.1007/978-3-642-33518-1_40.

[244] J. Kim, T. T. Dao, J. Jung, J. Joo, and J. Lee. “Bridging OpenCL and CUDA: A Compar-ative Analysis and Translation”. In: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). ACM, Nov. 2015, pp. 1–12. DOI:
10.1145/2807591.2807621.

277

https://doi.org/10.1109/FPT.2018.00056
https://doi.org/10.1109/FCCM.2018.00061
https://doi.org/10.1007/s11554-020-01015-5
https://doi.org/10.1145/2764967.2776858
https://doi.org/10.1007/s11554-015-0544-0
https://doi.org/10.1007/s11554-015-0544-0
https://doi.org/10.1109/FPT.2017.8280133
https://doi.org/10.1145/3289602.3293907
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2908080.2908094
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1007/978-3-642-33518-1_40
https://doi.org/10.1145/2807591.2807621

Bibliography

[245] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik. “Locality and Loop Scheduling on NUMAMultiprocessors”. In: International Conference on Parallel Processing (ICPP). IEEE, Aug.1993, pp. 140–147. DOI: 10.1109/ICPP.1993.112.
[246] L. Kalms, A. Podlubne, and D. Göhringer. HiFlipVX. Aug. 2020. URL: https://github.

com/TUD-ADS/HiFlipVX.
[247] F. d. Dinechin and M. Istoan. “Hardware Implementations of Fixed-Point Atan2”. In:

22nd Symposium on Computer Arithmetic (ARITH). IEEE, June 2015, pp. 34–41. DOI:
10.1109/ARITH.2015.23.

[248] J. M. Palomares, J. Gonzalez, E. Ros, and A. Prieto. “General Logarithmic ImageProcessing Convolution”. In: Transactions on Image Processing (Nov. 2006), pp. 3602–3608. DOI: 10.1109/TIP.2006.881967.
[249] A. Hematian, S. Chuprat, A. A. Manaf, and N. Parsazadeh. “Zero-delay FPGA-basedodd-even sorting network”. In: Symposium on Computers Informatics (ISCI). IEEE, Apr.2013, pp. 128–131. DOI: 10.1109/ISCI.2013.6612389.
[250] D. E.Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and

Searching. Addison Wesley Longman Publishing Co., May 1998.
[251] L. A. Aranda, P. Reviriego, and J. A. Maestro. “A fault-tolerant implementation ofthe median filter”. In: 16th European Conference on Radiation and Its Effects on

Components and Systems (RADECS). IEEE, Sept. 2016, pp. 1–4. DOI: 10.1109/RADECS.
2016.8093153.

[252] J. Han, S. Yang, and B. Lee. “A Novel 3-D Color Histogram Equalization MethodWith Uniform 1-D Gray Scale Histogram”. In: Transactions on Image Processing (Feb.2011), pp. 506–512. DOI: 10.1109/TIP.2010.2068555.
[253] An Analysis of the SURF Method. “E. Oyallon and R. Julien”. In: Image Processing On

Line (July 2015), pp. 176–218. DOI: 10.5201/ipol.
[254] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Trainingby Reducing Internal Covariate Shift”. In: 32nd International Conference on Machine

Learning. PMLR, July 2015, pp. 448–456.
[255] P. F. Alcantarilla. A-KAZE Features. Oct. 2016. URL: https://github.com/pablofdezalc/

akaze.
[256] A. Alahi. FREAK: Fast Retina Keypoint. Sept. 2014. URL: https://github.com/

kikohs/freak.
[257] K. Mikolajczyk and C. Schmid. “A Performance Evaluation of Local Descriptors”.In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (Aug. 2005),pp. 1615–1630. DOI: 10.1109/TPAMI.2005.188.
[258] G. Akgün, L. Kalms, and D. Göhringer. “Resource Efficient Dynamic Voltage andFrequency Scaling on Xilinx FPGAs”. In: International Symposium on Applied Reconfig-

urable Computing (ARC). Springer, Apr. 2020, pp. 178–192. DOI: 10.1007/978-3-
030-44534-8_14.

[259] E. Mair, G.D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. “Adaptive and GenericCorner Detection Based on the Accelerated Segment Test”. In: European Conference
on Computer Vision (ECCV). Springer, Sept. 2010, pp. 183–196. DOI: 10.1007/978-
3-642-15552-9_14.

278

https://doi.org/10.1109/ICPP.1993.112
https://github.com/TUD-ADS/HiFlipVX
https://github.com/TUD-ADS/HiFlipVX
https://doi.org/10.1109/ARITH.2015.23
https://doi.org/10.1109/TIP.2006.881967
https://doi.org/10.1109/ISCI.2013.6612389
https://doi.org/10.1109/RADECS.2016.8093153
https://doi.org/10.1109/RADECS.2016.8093153
https://doi.org/10.1109/TIP.2010.2068555
https://doi.org/10.5201/ipol
https://github.com/pablofdezalc/akaze
https://github.com/pablofdezalc/akaze
https://github.com/kikohs/freak
https://github.com/kikohs/freak
https://doi.org/10.1109/TPAMI.2005.188
https://doi.org/10.1007/978-3-030-44534-8_14
https://doi.org/10.1007/978-3-030-44534-8_14
https://doi.org/10.1007/978-3-642-15552-9_14
https://doi.org/10.1007/978-3-642-15552-9_14

Bibliography

[260] M. Göbel, C.C. Chi, M. Alvarez-Mesa, and B. Juurlink. “High Performance MemoryAccesses on FPGA-SoCs: A Quantitative Analysis”. In: International Symposium on

Field-Programmable Custom Computing Machines (FCCM). IEEE, May 2015, pp. 32–32.DOI: 10.1109/FCCM.2015.23.
[261] P. Soleimani, D.W. Capson, and K.F. Li. “Real-time FPGA-based implementation of theAKAZE algorithm with nonlinear scale space generation using image partitioning”.In: Journal of Real-Time Image Processing (JRTIP) (Mar. 2021), pp. 2123–2134. DOI:

10.1007/s11554-021-01089-9.
[262] S. Du, Y. LI, and T. Ikenaga. “Temporally Forward Nonlinear Scale Space for HighFrame Rate and Ultra-Low Delay A-KAZE Matching System”. In: Transactions on In-

formation and Systems (IEICE) (June 2020), pp. 1226–1235. DOI: 10.1587/transinf.
2019MVP0019.

[263] L. Kalms, A. Elhossini, and B. Juurlink. “FPGA Based Hardware Accelerator for KAZEFeature Extraction Algorithm”. In: International Conference on Field-Programmable
Technology (FPT). IEEE, July 2016, pp. 281–284. DOI: 10.1109/FPT.2016.7929553.

[264] R. O. Hassan. “Implementation of deep neural networks on FPGA-CPU platformusing Xilinx SDSOC”. In: Analog Integrated Circuits and Signal Processing (Feb. 2021),pp. 399–408. DOI: 10.1007/s10470-020-01638-5.
[265] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li. “An FPGA-Based CNN AcceleratorIntegrating Depthwise Separable Convolution”. In: Electronics (Mar. 2019), pp. 1–18.DOI: 10.3390/electronics8030281.
[266] Tensorflow. SSD MobileNet v1. May 2021. URL: https://tensorflow.org/lite/

models/object_detection/overview.
[267] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius. Integer Quantization for Deep

Learning Inference: Principles and Empirical Evaluation. 2020. arXiv: 2004.09602
[cs.LG].

[268] A. Sadek, A.Muddukrishna, L. Kalms, A. Djupdal, A. Podlubne, A. Paolillo, D. Göhringer,and M. Jahre. “Supporting utilities for heterogeneous embedded image processingplatforms (sthem)): An overview”. In: International Symposium on Applied Reconfig-

urable Computing (ARC). Springer, May 2018, pp. 737–749. DOI: 10.1007/978-3-
319-78890-6_59.

[269] A. Podlubne, J. Haase, L. Kalms, G. Akgün, M. Ali, H.u.H. Khan, A. Kamal, and D.Göhringer. “Low power image processing applications on FPGAs using dynamicvoltage scaling and partial reconfiguration”. In: International Conference on Design
and Architectures for Signal and Image Processing (DASIP). IEEE, Oct. 2018, pp. 64–69.DOI: 10.1109/DASIP.2018.8596910.

[270] Intel. Optimizing Simple OpenCL Kernels: Sobel Kernel Optimization. 2014.
[271] O. Bachmann, P. S. Wang, and E. V. Zima. “Chains of Recurrencesa Method toExpedite the Evaluation of Closed-Form Functions”. In: International Symposium

on Symbolic and Algebraic Computation (ISSAC). ACM, Aug. 1994, pp. 242–249. DOI:
10.1145/190347.190423.

[272] Tim Häring. AMDOVX OpenCL Kernel Extraction for High-Performance Vision Toolchain.May 2021. URL: https://github.com/timhae/amdovx-core.
[273] cameron314. ReaderWriter Queue. Feb. 2021. URL: https://github.com/cameron314/

readerwriterqueue.

279

https://doi.org/10.1109/FCCM.2015.23
https://doi.org/10.1007/s11554-021-01089-9
https://doi.org/10.1587/transinf.2019MVP0019
https://doi.org/10.1587/transinf.2019MVP0019
https://doi.org/10.1109/FPT.2016.7929553
https://doi.org/10.1007/s10470-020-01638-5
https://doi.org/10.3390/electronics8030281
https://tensorflow.org/lite/models/object_detection/overview
https://tensorflow.org/lite/models/object_detection/overview
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://doi.org/10.1007/978-3-319-78890-6_59
https://doi.org/10.1007/978-3-319-78890-6_59
https://doi.org/10.1109/DASIP.2018.8596910
https://doi.org/10.1145/190347.190423
https://github.com/timhae/amdovx-core
https://github.com/cameron314/readerwriterqueue
https://github.com/cameron314/readerwriterqueue

Bibliography

[274] A. Waterman and K. Asanovic. The RISC-V Instruction Set Manual Volume I: Unprivileged
ISA. June 2019. URL: https://riscv.org/.

[275] Xilinx. UG984: MicroBlaze Processor Reference Guide (v2019.2). Oct. 2019. URL: https:
//www.xilinx.com/support.html.

280

https://riscv.org/
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html

Student Work
[STD01] Daniel Neudek. “Implementierung eines Computer Vision Algorithmus (FAST-Detektorund FREAK-Deskriptor) auf einemheterogenen System inOpenCL”. Bachelor Thesis.July 2016, pp. 7–54.
[STD02] Marvin Diedrich. “Implementierung des AKAZE Feature Detektors auf einem het-erogenen System in OpenCL zur Objekterkennung”. Bachelor Thesis. July 2016,pp. 4–65.
[STD03] Hasan Ibrahim. “Accelerated Embedded Feature Detection Using ORB Algorithm”.Bachelor Thesis. Aug. 2016, pp. 6–70.
[STD04] Holger Hantusch. “Implementierung und Parallelisierung des Voila-Jones-Algorithmusfür Objekterkennung in OpenCL auf einem heterogenen System”. Bachelor Thesis.Aug. 2016, pp. 1–44.
[STD05] Khaled Mohamed. “Accelerated Embedded Feature Detection using the AKAZEAlgorithm”. Bachelor Thesis. Aug. 2016, pp. 7–67.
[STD06] Marc Hamme. “Robuste Spurerkennung für autonomes Fahren auf einem einge-betteten System”. Bachelor Thesis. Feb. 2017, pp. 9–80.
[STD07] Henry Bathke. “GPU-FPGA Kommunikation über PCIe”. Seminar. June 2017, pp. 1–10.
[STD08] Patrick Kappen. “OpenCL Deap Learning Framework for Automated Text Recogni-tion”. Master Thesis. June 2017, pp. 9–115.
[STD09] Tim Hebbeler. “Automatische Erstellung von OpenCL-Code für GPUs aus LLVM-IRmit Hilfe der polyhedralen Optimierung”. Masters Thesis. July 2017, pp. 1–87.
[STD10] SarahMilad. “Design and Implementation of High performanceGesture Recognitionusing deep learning”. Master Thesis. Apr. 2018, pp. 1–67.
[STD11] Maximilian Hajduk. “Entwicklung eines Speichercontrollers auf einem Xilinx SoC fürden FREAK Algorithmus”. Grosser Beleg. Nov. 2018, pp. 1–62.
[STD12] Mirko Schäfer. “An Evaluation of SYCL”. Seminar. Aug. 2019, pp. 1–13.
[STD13] Arsany Eskander. “HW/SW Co-design For Object Detection Using a Machine Learn-ing Accelerator”. Bachelor Thesis. Aug. 2019, pp. 1–74.
[STD14] Matthias Nickel. “Implementation of the graph based OpenVX approach for theautomated application distribution of HiFlipVX”. Project. Aug. 2019, pp. 3–11.
[STD15] Matthias Nickel. “Entwicklung von High-Level Synthese Komponenten zur Integra-tion von HiFlipVX in eine NoC-Topologie”. Project. Aug. 2019, pp. 1–7.

281

Student Work

[STD16] Karl Friebel. “Extending A Source-to-source Compiler For Use In A Hls Toolchain”.Project. Aug. 2019, pp. 1–11.
[STD17] Tim Häring. “Computer Vision Algorithm Design using High-level Synthesis”. Project.Sept. 2020, pp. 1–19.
[STD18] Karl Friedrich Alexander Friebel. “Sycl to C99 Based Transpiler for Generating DataFlow Oriented FPGA Accelerators”. Diploma Thesis. Dec. 2020, pp. 1–60.
[STD19] Matthias Nickel. “Implementation and Optimization of the AKAZE Feature DetectionAlgorithm for the HiFlipVX Library using High-Level Synthesis”. Masters Thesis. May2021, pp. 1–79.
[STD20] Xinyue Shi. “DMA Controller and Library Implementation and Integration for NoC-based RISC-V Systems”. Project. May 2021, pp. 1–19.
[STD21] Tim Häring. “A Framework to Schedule OpenVX-based Applications on x86-basedSystems Containing CPUs, GPUs and FPGAs”. Masters Thesis. June 2021, pp. 1–68.
[STD22] Osama Ibrahim. “HW/SW Co-Design of a Feature Matching Algorithm for an ARM-FPGA System”. Project. Aug. 2021, pp. 5–26.
[STD23] Tianyu Xing. “Building a Feature Extraction Algorithm for a Video System on anFPGA-ARM SoC”. Project. Aug. 2021, pp. 5–20.

282

A Appendix

A.1 High-Performance Vision toolchain: Transaction Patterns
Between Kernels

remote remote remote remote remote local home

dacc
dev

d6

dacc
dev

d7

dacc
dev

d8

context 1context 2context 3
dacc
dev

d5

iacc
dev

d3

host
hst

d1

host
dev

d2

dacc
dev

d4

Figure A.1: Example system to cover all possible types of data transfers.
This section gives a more detailed description of the transfer patterns in Section 4.5.5.Figure A.1 shows an example system consisting of three contexts to represent all differentdata transfer possibilities within one compute node. In this case, d1 – d2 can be a CPU, whichcan be used as a host or as a device, d3 could be an integrated GPU, and d4 – d8 could bededicated GPUs and FPGAs. While d1 computes on the home node, d2 – d3 compute on thelocal node. All other devices have their own remote node. Each node represents a memoryobject in the same buffer. Memory objects are only created if they are really accessed.
For each device in Figure A.1, Table A.1 shows which is the closest device that will respondto a bus-read or bus-update action. For simplicity, the table does not show the calculateddistances (latencies), but the order in which the source device is closest to the target device.If the variable has a higher number, the source node is either further away or has at leastthe same distance. Some variables, like C1 and C2 are repeated in the columns, because thedata transfers have exactly the same sequence of commands.
In the last step of compute_transaction() function from Listing 4.3, all commands neededfor the transaction are generated. Figure A.2 and A.3 show all transfer possibilities for theexample system from Figure A.1. The variable names on the left side of the figure are thesame as those used in Table A.1. Additionally, all transfer possibilities for a system that doesnot have a local node are shown (E1, E2 or E3). For this case the devices d1–d3 are omitted.
The left side of Figure A.2 and A.3 shows the state of the various devices before the transferstarts. The destination of the transfer is the device which is enclosed with a thick border. Thesource of the transfer is the device with the dark gray background. A device can be sourceif a kernel, which has read or written the data, has been executed on one of its command

283

A Appendix

Table A.1: The labels in the table refer to Figure A.1 and represent the required data transferfrom source device (1. column) to destination device (1. row). If the variable insidea column has a higher number, the source node is either further away or has thesame distance.
src\dst d1 d2 d3 d4 d5 d6 d7 d8

d1 A1 B3 B3 C4 C4 D3 D3 D3
d2 A2 B1 B2 C3 C3 D4 D4 D4
d3 A2 B2 B1 C3 C3 D4 D4 D4
d4 A3 B4 B4 C1 C2 D5 D5 D5
d5 A3 B4 B4 C2 C1 D5 D5 D5
d6 A4 B5 B5 C5 C5 C1 C2 D6
d7 A4 B5 B5 C5 C5 C2 C1 D6
d8 A4 B5 B5 C5 C5 D6 D6 C1

queues. All devices that could also have a copy of the data have a light gray backgroundcolor. All devices without a background color cannot have a copy of the data, since thesedevices are closer to the destination than the source device. With the transfer sequencesfrom Figure A.2 and A.3, all other transfer device pairs can also be represented, as shown inTable A.1.
On the right side of the figure the enqueue commands and the command queues wherethese commands are executed are shown. Commands which are executed only under certainconditions are shown in light gray. For synchronization of data movement and kernels thereis a series of events (e1 – e5). Inter context events are represented by solid lines (e1) andintra context events by dashed lines (e2). The barriers in the device and host queues waituntil all input events of all transfers have been generated so that the kernel can be executed(e5). In case of a bus-update, the system additionally waits until all readers of the buffer arefinished. After a bus-read, commands that read can then read from these events (e3). If thedata is copied via another node during the transfer, additional synchronization points aregenerated from which data can be read (e4). A closer look at these points reveals that theyoccur either on the local or on the home node, which is used for further simplification.
There is a set of conditions (c1– c6) for the execution of several commands. For a bus-update,the barrier waits until all readers have finished reading or the owner has finished writing (c3).Only then data can be written to the memory object. Memory objects that have been mappedfor reading into the host space can be read from the local node without an unmap command.However, an unmap is necessary to read from the local node if the data was mapped for writing(c2). Conversely, it would also not be possible to copy data from a remote node to a localnode if it was mapped to host space for writing. However, this case will not occur because thehome node is closer to the local node as compared to the remote nodes. For a bus-update,an unmap is also needed if the data is mapped for reading before it can be written to the buffer(c1). If the host’s map flags change, the unmap and map commands are needed to changethese flags (c4). For example, after the flags have been changed from write to read, the localnode could read from the same memory object in parallel without an unmap. It can happenthat data was written to the home before the application was executed. In these cases there

284

A.1 High-Performance Vision toolchain: Transaction Patterns Between Kernels

[c5]

e3

[c6]

c6 = home event

SYNCHRONIZATION

DEVICE STATE

CONDITIONS

c5 = event exists
c4 = flags change
c3 = bus update
c2 = map wr
c1 = map rd & bus update

e5

e4

e2

e1

source +destination

has copy

has no copy

source

destination

device

device

device

device

device

daccd8
context 3

[c4]

E1

B5

B4

B3

B2

B1

A4

A3

A2

A1

read

read queue
(d4)daccd5daccd6 homedacc

d4
daccd7

context 1context 2

[c3]

[c3]

[c3]
barrier

daccd6daccd7daccd8
context 1context 2context 3

daccd5 iaccd3
[c4]host queue (d1 a)

mapunmap
host
d1

hostd2daccd4

[c3]

[c3]

[c3]

[c3]

[c3]

[c3]

barrier
hostd1

barrierreadmap
create

dacc
d6

daccd7daccd8 daccd4daccd5 hostd1iaccd3 host
d2

context 3 context 1context 2

iaccd3

daccd5

daccd8 daccd7

daccd5 iaccd3

iaccd3

iaccd3

copy barrier
dacc
d4

host
d2

hostd1
context 1

daccd6daccd7daccd8
context 3 context 2

unmap
daccd6daccd7daccd8 daccd5 daccd4

daccd6daccd7daccd8 daccd5 daccd4

daccd6daccd7daccd8 daccd5 daccd4

hostd2iaccd3 host
d1

daccd6daccd7daccd8

daccd4daccd5daccd6daccd7daccd8

[c1]context 1context 3 context 2

[c1]
unmap

context 1context 3 context 2

context 1context 3 context 2

[c2]

dacc
d6

host
d1

context 3 context 2 context 1

context 1context 2context 3

context 1context 2context 3

unmap

device queue (d2)read queue
(d6)

host queue
(d1 b)

read queue
(d4)

device queue (d2)

iacc
d3

device queue (d2)

barrier
hostd1host

d2

device queue (d2)

host
d2

[c1 | c2]device queue (d2)

unmapbarrier
host
d1

host
d2

barrier

host queue (d1 a)

read

read queue
(d6)

host queue
(d1 b)
map
create

daccd4daccd5

iaccd3
read queue

(d4)

barrier

barriercopy

host queue (d1 a)

map

host queue (d1 a)

map
host
d1

host
d2

hostd2dacc
d4

sourcefor readers

barrier toaccess buffers

extra sourcefor readers

intra contextsyncronization

inter contextsyncronization

Figure A.2: All possible data transfers between memory objects of a buffer with a host orIACC as destination for the example system in Figure A.1.
is no input event for synchronization (c5). For A1, it makes a difference whether the source isthe device itself or whether it is an event that occurred on the home node by copying data toit (c6).
For all transfers that go via the host, without it being the destination, the map/unmap commandsare executed on an extra command queue (d1b). This queue is necessary so that on the onehand the host queue is not blocked and on the other hand the map/unmap commands arenot blocked. If a DACC from context two or three triggers a bus-update, the unmap is alsoexecuted on this extra command queue (d1b), due to similar reasons. For a read commandthat writes to the host space, the host space must be mapped for writing (A4, B5, C5 or D6).For a write command that reads from host space to a DACC, the memory object must atleast be mapped for reading (D4 or D5).
In a few cases, the data may have been mapped to host space for writing even though otherdevices still have a copy of the data (A4 or D6). If the data is mapped for writing, no device onthe local node can have a current copy of the data (A2, A3 or A4). The host is not selected as

285

A Appendix

[c5]

[c5]

e3

c6 = home event

SYNCHRONIZATION

DEVICE STATE

CONDITIONS

c5 = event exists
c4 = flags change
c3 = bus update
c2 = map wr
c1 = map rd & bus update

e5

e4

e2

e1

source +destination

has copy

has no copy

source

destination

device

device

device

device

device

host queue
(d1 b)

homedaccd8
context 3

daccd8
context 3

[c3]
unmap

host queue
(d1 b)

device queue
(d6)

[c3]
barrierwrite

write queue
(d6)

[c1]
unmap

host queue
(d1 b)

device queue
(d6)

[c3]
barrierwrite

write queue
(d6)

[c1]
unmap

host queue
(d1 b)

write

write queue
(d6)

[c3]
unmap

host queue
(d1 b)

daccd5

[c2]
unmap

E3

E2

D6

D5

D4

D3

C5

C4

C3

C2

C1

daccd7 dacc
d4

dacc
d6

context 1 device queue
d6

[c3]
barrierwrite

write queue
(d6)

read queue
(d4)

read

context 2

[c5]
[c3]

barrier

device queue (d4)

write

write queue (d4)

daccd6 homedaccd5daccd7 dacc
d4

context 1context 2

daccd7

daccd7

daccd7

daccd7

[c3]

read queue
(d8)

readmap
create

host queue
(d1 b)

map
read

copy

read queue
(d4)

device queue
(d6)

[c3]
barrierwrite

write queue
(d6)

host queue
(d1 b)
map
read

device queue
(d6)

[c3]
barrier

iaccd3

hostd2iaccd3daccd4daccd5

daccd4daccd5

daccd8

daccd8

daccd8

daccd4daccd5

daccd5

hostd1hostd2iaccd3dacc
d8

dacc
d6

context 1context 2context 3

hostd1

hostd1hostd2iaccd3dacc
d4

host
d2

dacc
d6

context 1context 2context 3

dacc
d6

context 1context 2context 3

dacc
d6

host
d1

context 1context 2context 3
[c3]

hostd1

hostd1

hostd1

iaccd3

hostd2iaccd3daccd5 barrier

device queue
(d4)

unmap copy

write queue (d4)read queue
(d6)

readmap
create

host queue
(d1 b)daccd7daccd8 dacc

d6
hostd1dacc

d4

context 1context 2context 3

hostd2iaccd3
[c3]

write queue (d4)

copy unmap
[c3]device queue (d4)

barrier

[c3]
barrier

[c3]
unmap

device queue (d4)

[c3]

[c3]

hostd2iaccd3

hostd2daccd5

write queue (d4)

copy unmap
[c1]device queue (d4)

barrier

write queue (d4)

copy
[c1]device queue (d4)

unmapbarrier
daccd5

iaccd3daccd5

daccd6daccd7daccd8

daccd6daccd7daccd8

daccd6daccd7daccd8

daccd6daccd7daccd8

dacc
d5

host
d2

host
d1

dacc
d4

context 1context 2context 3

dacc
d4

context 1context 2context 3

dacc
d4

context 1context 2context 3

dacc
d4

context 1context 2context 3

sourcefor readers

barrierto write buffer

extra sourcefor readers

intra contextsyncronization

inter contextsyncronization

Figure A.3: All possible data transfers between memory objects of a buffer with a DACC asdestination for the example system in Figure A.1.
the source if the data is not mapped, but it can still be a reader or the owner (A1, B3, C4 or D3).However, in these cases at least one device of the local node has the data and is selected assource. In some cases it is therefore not possible for the data to be mapped for writing (B1,
B2, C3 or C4). Because the host is either owner or reader in C4, the unmap can be executedbefore the copy without any further synchronization points.
There are three special cases where the home node is used without the existence of a hostor IACC device (E1, E2 or E3). If the data was written before the application, it must be readfrom the home node (E2). In this case there is no input event for synchronization (c5). If datais transferred between two DACC from two different contexts, it must be copied via the homenode (E3). In this case, data can also be read from the home node using a synchronizationpoint (E2). If the data is needed after the application, it must be written back to the homenode (E1).

286

	Title page
	Selbstständigkeitserklärung
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Own Contribution
	1.3 Thesis Outline

	2 Background
	2.1 Object Detection
	2.1.1 Pattern Recognition
	2.1.2 Feature Detection, Description and Matching
	2.1.3 Multiscale Feature Detection and Description Algorithms
	2.1.4 ORB
	2.1.5 (A)KAZE
	2.1.6 FREAK
	2.1.7 FPGA Implementations

	2.2 Heterogeneous Systems
	2.2.1 FPGA-based Systems
	2.2.2 Communication and Topology
	2.2.3 FPGA-based Clusters
	2.2.4 Summary

	2.3 Application Distribution
	2.3.1 Metaheuristics
	2.3.2 Mapping and Scheduling on Many-Core Systems
	2.3.3 Design Space Exploration for Neural Networks on FPGA-based Cluster
	2.3.4 Clustering and Placement for Configurable Logic Blocks
	2.3.5 Tuning, Clustering and Placement for Partial Reconfigurable Regions
	2.3.6 Summary

	2.4 Programming Methods
	2.4.1 General Purpose Approaches
	2.4.2 Domain Specific Approaches

	2.5 Toolchains
	2.5.1 Source-to-Source Compilers (Transpilers)
	2.5.2 High-Level Synthesis (HLS) Tools
	2.5.3 FPGA-based OpenVX Tools
	2.5.4 OpenCL-based Tools

	3 HiFlipVX: Object Detection Library
	3.1 HiFlipVX Library Functions
	3.1.1 Image Pixelwise Functions
	3.1.2 Image Filter Functions
	3.1.3 Image Conversion Functions
	3.1.4 Image Analysis Functions
	3.1.5 Image Function Latency & HLS Directive Usage
	3.1.6 Feature Functions
	3.1.7 Neural Network Functions

	3.2 Object Detection Algorithms
	3.2.1 Proposed AKAZE and FREAK based Feature Extraction Algorithm
	3.2.2 FAST Corner Detector
	3.2.3 Canny Edge Detector
	3.2.4 ORB feature detection
	3.2.5 AKAZE feature detection
	3.2.6 FREAK feature description
	3.2.7 MobileNets

	3.3 Evaluation
	3.3.1 Library Functions
	3.3.2 Feature Extraction Algorithms
	3.3.3 Neural Network Extension

	3.4 Summary

	4 DECISION: Vision Framework
	4.1 Overview
	4.2 OpenVX Graph Creation Module
	4.2.1 OpenVX Application Flow
	4.2.2 Data Extraction

	4.3 Architecture Dependent OpenCL Kernel Optimizations
	4.3.1 FPGA Bandwidth and Kernel Optimization
	4.3.2 FPGA Example Implementation
	4.3.3 CPU and (integrated) GPU Kernel Optimization

	4.4 Automatic OpenCL Code Generation
	4.4.1 Overview
	4.4.2 PPCG Source Code Generation
	4.4.3 Creating OpenCL Device and Host Code
	4.4.4 Conversion from LLVM-IR to C-Code
	4.4.5 Converting PHI Instructions

	4.5 High-Performance Vision Toolchain
	4.5.1 Overview
	4.5.2 Library Module
	4.5.3 Profiling Module
	4.5.4 Mapping and Scheduling Module
	4.5.5 Program Creation Module
	4.5.6 Runtime System Module

	4.6 Embedded System Vision Toolchain
	4.6.1 Module Overview
	4.6.2 Model Description
	4.6.3 Library Module
	4.6.4 Hardware Creation Module

	4.7 Evaluation
	4.7.1 Architecture Dependent OpenCL Kernel Optimizations
	4.7.2 Automatic OpenCL Code Generation
	4.7.3 High-Performance Vision Toolchain
	4.7.4 Embedded System Vision Toolchain

	4.8 Summary

	5 APARMAP: Application Distribution Algorithm
	5.1 Overview
	5.2 Heuristics and Concepts
	5.2.1 Objective Function
	5.2.2 Local Search Function
	5.2.3 Grid-Based Solution Space
	5.2.4 Simulated Annealing
	5.2.5 History
	5.2.6 Tabu Search

	5.3 Algorithm
	5.3.1 Scheduling & Mapping Phase
	5.3.2 Load Balancing Phase
	5.3.3 Optimization Phase

	5.4 Evaluation
	5.4.1 Default Parameters
	5.4.2 Measurement Methodology
	5.4.3 Memory Usage
	5.4.4 Load Balancing & Optimization Phase Comparison
	5.4.5 Amount of Threads
	5.4.6 Load Balancing Phase Iterations
	5.4.7 Load Balancing Complexity
	5.4.8 Optimization Phase: MTM and STM amount per LTM
	5.4.9 Irregular and Heterogeneous Topologies
	5.4.10 Verifying Optimality and Scalability
	5.4.11 Real Application
	5.4.12 Comparison to Previous Work

	5.5 Summary

	6 Conclusion and Outlook
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography
	Student Work
	A Appendix
	A.1 High-Performance Vision toolchain: Transaction Patterns Between Kernels

