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Imagine the benefits that battlefield 
commanders or  intelligence analysts 
could derive from an airborne surveil-

lance platform that would carry a 500-pound 
payload, operate above the range of small-
arms fire, remain on station for weeks or 
even years, cost much less than a satellite, 
and relocate around the globe to a new re-
gion of interest within a couple of weeks. 
Realizing this concept, known as a high- 
altitude, long-endurance (HALE) aircraft, is 
a 10-to-15-year goal of researchers at the Air 
Force Institute of Technology (AFIT). In or-
der to reach this goal, those researchers are 
following a developmental path similar to 
the one the Wright brothers used over a 
century ago by gathering new test data and 
building theoretical formulations for this 
aircraft. The brothers’ discovery that the 
existing aeronautical data of the day was 
inaccurate proved key to their success. In-
deed, Wilbur Wright even wrote that “hav-
ing set out with absolute faith in the exist-
ing scientific data, we were driven to doubt 
one thing after another, until finally, after 
two years of experiment, we cast it all aside, 
and decided to rely entirely upon our own 
investigations.”1

The air and space community experi-
enced a dramatic reminder of the impor-
tance of developing accurate aerodynamic 
data and computer software on 26 June 
2003. On that date, the National Aeronautics 
and Space Administration’s (NASA) Helios 
aircraft, a uniquely flexible HALE design 

intended to cruise up to an altitude of 
100,000 feet, became unstable during a test 
flight and crashed due to excessive wing de-
formation, followed by uncontrolled flight 
and catastrophic failure of upper-wing sur-
faces. Accident investigators concluded that 
the root cause of the accident was a “lack of 
adequate [aerodynamic] analysis methods 
[which] led to an inaccurate risk assessment 
of the effects of configuration changes 
leading to an inappropriate decision to fly 
an aircraft.”2 Even though modern fifth- 
generation fighter aircraft are designed with 
state-of-the-art aeronautical tools, the latter 
fail at designing very flexible HALE aircraft 
that fly at less than 80 miles per hour. 
Further more current tools fail to predict 
the stability and control of these aircraft.

The Helios accident highlighted the limi-
tations of our understanding and of the ana-
lytical tools (computer software) necessary 
for designing HALE aircraft such as the He-
lios, which have the potential to offer im-
munity from most ground threats while 
providing low-cost surveillance. Following 
the Helios accident, NASA’s primary recom-
mendation called for the development of 
“more advanced, multidisciplinary (struc-
tures, aeroelastic, aerodynamics, atmo-
spheric, materials, propulsion, controls, 
etc.) ‘time-domain’ analysis methods appro-
priate to highly flexible, ‘morphing’ vehicles” 
(emphasis in original).3

Despite the lack of fundamental aero-
dynamic knowledge and analytical tools 
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(particularly computer software) necessary 
to understand the aerodynamic behavior of 
these vehicles, aircraft designers are still 
striving to develop aircraft that incorporate 
the latest sensor technology. However, most 
of these designs continue to have critical 
constraints in the areas of mission duration, 
the payload’s electrical power supply, and 
payload weight. To fully exploit the poten-
tial of sensor technology, we need a long-
term surveillance platform.

Researchers at AFIT have been collabo-
rating with the Defense Advanced Research 
Projects Agency (DARPA) since 2008 to de-

standing of the flight dynamics and control 
of HALE aircraft and to validate recent 
progress in software and aerodynamics.6

An Experimental High-Altitude, 
Long-Endurance Aircraft

AFIT began a research effort in 2007 to 
locate existing, available data for validating 
the software and aerodynamic theory for 
HALE aircraft. That effort ended when a 
DARPA-sponsored meeting of experts from 
academe, the Department of Defense (in-

The Vulture program has the potential to combine the 
best aspects of aircraft station keeping and low-cost 

relocation with the persistence and high-ground 
advantage of a satellite system.

velop a HALE aircraft capable of remaining 
airborne continuously for five years. The 
Vulture program has the potential to com-
bine the best aspects of aircraft station 
keeping and low-cost relocation with the 
persistence and high-ground advantage of a 
satellite system.

Due to mission requirements, HALE air-
craft are characterized by high-aspect-ratio 
wings and slender fuselages, resulting in 
very flexible vehicles. These geometric con-
straints make the aircraft susceptible to large, 
dynamic wing deformations at low frequen-
cies. Such deformations can adversely affect 
the vehicle’s flight characteristics, as dem-
onstrated during the Helios flight tests.4 
Despite that accident, development of 
 DARPA’s Vulture program, developmental 
designs of other civilian HALE aircraft, and 
recent analytical work reveal a severe short-
age of experimental test data.5 These data 
are critical to further advance an under-

cluding the author), NASA, and industry 
confirmed the suspicion that no complete 
set of available data existed for such valida-
tion research.7 Interestingly enough, NASA’s 
Helios aircraft could have supplied this in-
formation had political and programmatic 
obstacles not prevented installing instru-
ments on the aircraft to collect it.

Because of the lack of available data, 
AFIT began a second research effort, utiliz-
ing the unique expertise of researchers at 
the University of Michigan. On 27 August 
2008, AFIT formed a partnership with the 
university’s Aerospace Engineering Depart-
ment to develop an experimental high- 
altitude, long-endurance (X-HALE) remotely 
piloted aircraft supported by the Air Force 
Research Laboratory’s (AFRL) Air Vehicles 
Directorate and directed by AFIT. The 
partnership has designed a HALE aircraft 
using tools developed by AFIT, AFRL, and 
the University of Michigan, producing two 
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different design configurations (see figure) 
with certain design characteristics (see table). 
If the response to tests of the aircraft’s ini-
tial configuration (having a six-meter wing-
span) does not provide the requisite flight 
dynamic features (coupled wing flexibility 
with aircraft lateral and longitudinal con-
trol), then testing will move to the eight-
meter concept.8

The first X-HALE flight test is scheduled 
for late spring or summer 2011 at Camp 
 Atterbury, Indiana. For these tests, the Uni-
versity of Michigan will provide expertise in 
handling the aircraft; AFIT, flight-test exper-
tise and program management; and AFRL, 
funding and program oversight. The tests 
seek to validate HALE aircraft design tools 
by employing accumulated flight-test data 
to build and fly the X-HALEs successfully. 
For the first of two series of X-HALE flight 
tests, the aircraft will carry a limited set of 
instrumentation to reduce programmatic 
risk. Upon successful completion of this se-
ries of tests, researchers will build a second 
vehicle with more extensive instrumenta-

Table. Characteristics of X-HALE remotely piloted aircraft

Wingspan 6 meters (m) or 8 m

Chord 0.2 m

Planform Area 1.2 square meters (m2) or 1.6 m2

Aspect Ratio 30 or 40

Length 0.96 m

Propeller Diameter 0.3 m

Gross Takeoff Weight 11 or 12 kilograms (kg)

Power/Weight 30 watts/kg

Airspeed 12–18 m/second

Maximum Range 3 kilometers

Endurance 45 minutes

Figure. X-HALE six- (above) and eight-meter (be-
low) wingspan designs
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tion and flight-test objectives to meet the 
primary research goal of collecting flight-
test data to validate the HALE aircraft’s re-
search software and aerodynamic theory. 
The researchers plan to share all data with 
several large air and space companies that 
have followed this project with great interest.

Conclusion
The Air Force’s goal of achieving persis-

tent aerial surveillance has long represented 
the holy grail of the intelligence commu-
nity. Researchers have made great strides in 
developing aircraft platforms and sensors, 
but the proliferation of asymmetric warfare 

means that the United States desperately 
needs aircraft that can loiter over a target of 
interest for weeks or years. AFIT’s research-
ers, along with its strategic partners, are 
making great progress in offering these 
tools to the war fighter. Currently, the way 
forward involves combining the high 
ground of satellites with the navigational 
flexibility of aircraft. The X-HALE program 
will supply the test data and the validated 
design tools that AFIT and industry re-
searchers need to design an aircraft to meet 
our war fighters’ need for persistent aerial 
surveillance. 

Wright-Patterson AFB, Ohio
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