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Abstract 
The first part of this manuscript examines the impact of configuration changes to the learning 
curve when implemented during production. This research is a study on the impact to the 
learning curve slope when production is continuous but a configuration change occurs. 
Analysis discovered the learning curve slope after a configuration change is different from the 
stable learning curve slope pre-configuration change. The newly configured units were 
statistically different from previous units. This supports that the new configuration should be 
estimated with a new learning curve equation. The research also discovered the post-
configuration slope is always steeper than the stable learning slope. Secondly, this research 
investigates flattening effects at tail of production. Analysis compares the conventional and 
contemporary learning curve models in order to determine if there is a more accurate learning 
model. Results in this are inconclusive. Examining models that incorporate automation was 
important, as technology and machinery play a larger role in production. Conventional models 
appear to be most accurate, although a trend for all models appeared. The trend supports 
that the conventional curve was accurate early in production and the contemporary models 
were more accurate later in production. 

Introduction 
The Budget Control Act of 2011 subjected the Department of Defense (DoD) to a 

more fiscally constrained and financially conscious environment than ever before, 
juxtaposed with a demand for new aircraft programs of almost every type. As an increasing 
number of programs are terminated, with budget overruns being a contributing factor, 
managers at every level in the DoD are expected to ensure the Department’s shrinking 
budget is being used in the most effective way. The increased scrutiny adds greater 
emphasis on the accuracy of program office cost estimates given that an approved program 
cost estimate supports every major aircraft acquisition program funded by the Department.  

The current state of the DoD includes shrinking budgets and large funding cuts for 
acquisition programs. An extra emphasis on scrutiny of accurate cost estimates is the result 
of the current cuts and budget issues. There is a new standard for Financial Managers and 
Program Managers who have to support and maintain a cost estimate like no time before. 
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Having a balanced budget is a concern for the DoD, and the budget depends on the cost 
estimate. Gone are the days when the DoD had ever-growing budgets where the fiscal 
mentality was to spend. The fiscal mentality now involves saving and receiving as much 
value as possible for every budgeted dollar.  

In order to obtain reliable cost estimates, cost estimating models and tools within the 
DoD present the opportunity for an evaluation on their accuracy. The current learning curve 
methods within the DoD’s cost estimating procedures are from the 1930s. As automation 
and robotics increasingly replace human touch-labor in the production process, a model that 
is 80 years old and assumes constant learning may no longer be appropriate for accurate 
learning curve estimates. Robotics and automation do not learn, and they are inevitably a 
part of future production. New learning curve methods that consider automated production 
should be examined as a possible tool for cost estimators to utilize. The modern learning 
curve methods could be a useful tool for obtaining better cost estimates within the DoD. The 
purpose of this research ultimately is to investigate new learning curve methods, develop 
the learning curve theory within the DoD, and pursue a more accurate cost estimation 
model.  

A vital input to the cost estimate for a production program is the assumed learning 
curve slope for the program. The learning curve often depicts the learning phenomenon that 
occurs in manufacturing. Learning is defined as a constant percentage reduction of the 
required touch labor hours (or costs) to produce an individual unit as the quantity of units 
produced doubles (Yelle, 1979, p. 302)—as the number of units produced doubles, the 
number of hours required to produce a single unit decreases by the learning curve rate. 
Learning is also defined as both the conceptual and the physical learning of a physical 
process (Watkins, 2001, p. 18). The learning curve for a program is generally considered 
stable once the program is substantially into production because the manufacturer and 
laborers have produced enough units to learn the most efficient production process. 
However, intuitively and through past research, it is known that learning is disrupted by 
changes in production, and only the production of additional units can recover the lost 
learning (Watkins, 2001, p. 18). It is critical to capture the change in the learning rate due to 
production modifications to better estimate DoD program costs.  

This comparative analysis study will examine whether different learning curve 
models are more accurate than Wright’s Learning Curve model (the status quo) when 
comparing actual values to predicted. The current DoD learning curve methodology does 
not take into account available information and factors that contribute to learning. The point 
of emphasis for this research and the issue that needs to be resolved is that DoD agencies 
need to estimate more accurately. Prior research on this subject shows that the learning 
curve methods have room for further development. There may be an opportunity to 
incorporate alternate learning curve models and more DoD programs into this area of 
research. Research found that an important factor (incompressibility) was not explicitly 
researched or known. Towill and Cherrington defined incompressibility as the percentage of 
the learning process that is automated (Towill, 1990). Robotics and automation are not 
going away and will likely play a larger role in the future. Research on what that factor 
actually equals or how it relates to different airframes could be critical for obtaining a more 
precise model. Using integration, assembly, and checkout (IA&CO) processes instead of 
complete touch labor processes should provide an analysis that is more insightful and 
potentially leads to a more accurate model. IA&CO are specific work that occurs during 
production. 

The idea of learning in a production environment is well established. T.P. Wright first 
published the learning curve phenomenon in early 1936. Wright observed that in a 
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manufacturing environment, as the cumulative quantity of units produced doubled, the 
cumulative average cost decreased at a constant rate (Wright, 1936, pp. 124–125; Yelle, 
1979, p. 302). During World War II, government contractors investigated the usefulness of 
the learning curve concept to predict labor hours and cost requirements for aircraft and ship 
construction projects. The private sector went on to adopt the learning curve theory into 
practice shortly thereafter. Although learning curve theory has evolved and has been 
referred to by different names in the decades following Wright’s report, including the 
experience curve, the progress curve, and the improvement curve, Wright’s model remains 
one of the models most widely used by manufacturers to predict labor hours and costs 
(Yelle, 1979, pp. 303–304; Badiru, 1992, p. 176.).  

Wright’s original findings postulated a constant learning environment; however, 
researchers have not ignored the idea that constant learning may not exist on a continual 
basis in a manufacturing environment. In fact, the ideas of regressed and lost learning have 
been widely studied. Research studies support that a break in production creates an 
environment of relearning because the labor resources have stopped working, at least on 
the same project, and will be less efficient at manufacturing when production restarts 
(Anderlohr, 1969, pp. 16–17).  

In addition to production breaks, instances also exist when a major configuration 
change occurs during production and disrupts the learning process. In this situation, the new 
configuration is immediately incorporated into the next units on the production line; the units 
already produced are retrofitted at a later time. Intuitively, the units with the configuration 
change should initially have a different learning rate than the units without a change 
because the manufacturers must learn how to incorporate the change into the production 
process. However, because the learning rate for the new configuration is unknown, DoD 
program offices generally do not treat the reconfigured units with a different learning rate. As 
a result, the program often experiences substantially different hours/costs for the newly 
configured production units than their original learning curve projected. A configuration 
change in a production program does necessitate learning for the contractor, and the impact 
to learning attributable to the configuration change should be understood by all levels of the 
DoD acquisition community. Wright (1936) understood this limitation to the learning curve 
theory application even in the infancy of the idea: 

The tremendous cost of changes introduced into a production order during 
construction is too well known to require emphasis. This cost is involved, not 
only in shop delays, but in the engineering expense of re-designing. It is 
appreciated that in a rapidly moving art such as aviation, changes are more 
or less inherent. … In using the curve developed in this paper, it should be 
recognized that the factors derived are based on the assumption that no 
major changes will be introduced during construction. (Wright, 1936, p. 124) 

One of the first and most recognizable learning curve formulas is y=〖ax〗^b. This is 
referred to as the Unit Learning Curve Model,  

y=〖ax〗^b     (1)  

where 

y = the estimated production hours or cost 

a = the production hours of the theoretical first unit  

x = is the unit produced 
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b = is a factor of the learning = log R (learning rate)/log2 

The Air Force methodology on learning curves and guidance in their application is 
found in Chapter 8 of the Air Force Cost Analysis Handbook (AFCAH) and Chapter 17 of the 
DoD Basic Cost Estimating Guidebook (BCE). These two guides focus on two theories: unit 
theory and cumulative average theory. The unit theory, Equation 1, predicts a specific unit 
cost. Cumulative average theory focuses on the average of all units produced up to a certain 
point in the production process. The cumulative average and unit theory have been the 
standard in manufacturing. However, research has shown other models may provide a more 
accurate predictor of cost. 

Study 1: Production Break and Lost Learning  
Current DoD program office cost estimating assumes a stable rate of learning once a 

program is substantially into production. However, intuitively, a configuration change 
introduced into the production line will initially disrupt the learning effect. This study will 
research two main questions to address the implications when a configuration change 
occurs during production: 

1. Is there an impact to the learning curve slope when a configuration change is 
introduced to the production line? Specifically, 

a. What is the learning curve slope for each new configuration;  

b. Are the production segments for each configuration significantly 
different; and  

c. What is the difference between the hours predicted based on the prior 
configuration and actual hours for each segment? 

2. How many units of the newly configured aircraft are produced before the 
contractor recovers the stable learning rate? 

The first research question leads to a single testable hypothesis to determine if the 
mean amount of labor hours prior to a configuration change is the same as the mean 
amount of labor hours subsequent to a production change? 

Hypothesis 1: 

H0: Mean labor hours prior to configuration change = Mean labor hours post configuration change  

Ha: Mean labor hours prior to configuration change ≠ Mean labor hours post configuration change 

If the analysis results fail to reject the null hypothesis, this would indicate that the 
data points come from the same population and a configuration change did not have a 
significant impact to the learning during production. If the analysis rejects the null 
hypothesis, this would indicate the opposite, that the data points representing different 
configurations come from different populations and that a configuration change did have a 
significant impact to the learning during production. If the results support rejecting the null 
hypothesis, using the prior learning curve equation is inappropriate to predict the hours of 
the new configuration because the units come from different populations. The second 
research question does not require a hypothesis test. 

Production Break and Lost Learning  

As the learning curve theory has evolved, researchers and practitioners have 
investigated the impact to the learning rate when other than constant production exists. 
George Anderlohr (1969) is credited with developing a model to determine the additional 
hours/costs that result from a break in production. Anderlohr (1969) defined a production 
break as “the time lapse between completion of a contract for the manufacture of certain 
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units of equipment and the commencement of a follow-on order for identical units” (p. 16). A 
break in production results in increased hours and costs because the laborers are no longer 
performing their tasks on a constant repetitive basis and the laborers become less efficient 
(have a loss of learning) during the production break timeframe (Anderlohr, 1969, pp. 16–
17).  

Studies have also discovered that lost learning can be a result of forgetting at times 
other than during a production break (which is considered scheduled forgetting). Two other 
instances when forgetting can occur are (1) at random due to the inability to continue work 
(e.g., machine breakdowns), and (2) based on a natural process (e.g., aging workforce; 
Badiru, 1995, p. 780). Badiru goes on to conclude that “whenever interruption occurs in the 
learning process, it results in some forgetting.” The amount of forgetting is a function of both 
the length of disruption and the initial performance level (Badiru, 1995, p. 780).  

Additional Work Theory 

A similar circumstance to the production break theory that has a similar result is the 
idea of new learning, when manufacturing is interrupted with a major configuration change 
to the production unit. When the unit being manufactured is changed, the laborers must 
adjust their processes to learn how to correctly produce the newly configured unit. 
Historically, adjusting the learning curve to account for the impact due to configuration 
changes is referred to as splicing or splitting the curve, although little research has been 
done in this area with empirical data. The theory of splitting the curve provides rationale to 
split the curve between units of different configurations (pre- and post-configuration change) 
because the latest production unit usually provides the greatest estimate for future 
production units (Dahlhaus & Roj, 1967, p. 16).  

Sample Data 

There were three limiting conditions the data had to satisfy to be included in this 
study: (1) at least one identified configuration change must come into the production line 
during production, (2) all units must be produced on the same production line, and (3) the 
program must be “substantially” into production. For the purposes of this analysis, 
substantially into production is defined as those units considered by the program office to be 
representative of stable production and exclude any units identified as developmental or 
pre-production.  

After excluding programs that did not meet the research conditions, there were four 
data sets available at the time of the analysis, including one joint service and three Air Force 
aircraft programs. Due to the proprietary nature of the production data, the program names 
are not disclosed and will be identified as Programs A, B, C, and D. In addition, three 
classes of aircraft are represented in this study: Unmanned Air Vehicle, Cargo, and Fighter 
aircraft.  

Analysis Methods and Results  

To test the research hypothesis, the data will be split into separate segments at each 
identified configuration change to identify if the segments are statistically similar based on 
the mean or median labor hour values. Using the touch labor hours, the learning rate before 
an identified configuration change and the learning rate after the change will be calculated to 
address the remaining areas of the first research question. Both calculations will use 
Crawford’s unit theory equation ݕ ൌ  ௕; because the data is available in units, a unitݔܽ
analysis is appropriate. In addition, to avoid the smoothing effect and the obfuscation of unit 
variation a cumulative unit curve can create, the unit learning curve method will provide the 
most explanatory results of the two methods (unit and cumulative average) for the intent of 
this study (ICEAA Module 7, 2013, p. 14).  
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The slope will be calculated each time an identified configuration change occurs and 
not at other instances, even if a pattern change is evident in the scatter-plot of the data. The 
learning curve equation of a segment will forecast the touch labor requirements of the 
successive production segment. The forecasted hours of an identified configuration change 
will be compared to the actual hours of the same configuration to calculate the difference 
and the percentage difference.  

To answer the second research question, an analysis will determine the number of 
aircraft produced after a configuration change until the prime contractor was able to return to 
a stable learning rate. This will be accomplished by removing one production unit at a time 
(in sequential order beginning with the first unit of the segment) and calculating the learning 
curve slope of the remaining units until the stable rate of the prior segment is achieved. An 
overall commonality is not expected because every program, every contractor, and the 
associated production process are different. Instead, the results are informational and may 
support contract negotiation efforts with more insight into post-configuration change 
production. 

Table 1 includes the slope calculations for each program for each segment identified. 
Configuration A is always the initial configuration, prior to any changes. Based on this 
summary, the slope never remained the same after a configuration change. Program C and 
Configuration C of Program B were excluded from the analysis at this point based on the 
inappropriateness of the analysis method displayed through scatter-plots in both unit and log 
space. 

 Segment Learning Curve Slope Values 

 

In nearly every case involved in this study, the segmented data are statistically 
different when compared to an adjacent segment, which addresses the issue in the first 
research question (Configurations A and B of Program B were not found to be statistically 
different). There is a change to the learning curve slope each time a configuration change is 
introduced, and in every case examined except one, the median labor hours (which are 
partially a function of the learning curve slope) for the different configurations are statistically 
different. These findings suggest that using the prior learning curve equation is inappropriate 
to predict the hours of the new configuration because the units come from different 
populations. 

Further addressing the first set of questions, the learning curve regression equation 
for each segment is used to predict the touch labor hours for each unit in the following 
segment. The total predicted hours for each segment are compared to the total actual hours 
of the segment, and the results are shown as a difference in hours as well as a percent 
difference for comparison between the programs. A negative value indicates the estimate 
was lower than the actuals. Table 2 details the results of the predicted and actual hour 
comparisons.  
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 Learning Curve Equation Prediction vs. Actuals Summary 

 

Given that this portion of the analysis only includes three programs, and two of the 
programs only compare two segments, there are too few data points to develop any 
meaningful CER or factor. However, the results are still impactful because for each of the 
seven segment comparisons, no fewer than 20,000 hours were the difference between the 
predicted and actuals, which equates to millions of dollars per segment misestimated 
(generally underestimated) in a cost estimate. Underestimation requires the program office 
to find dollars not currently in its budget, and overestimation temporarily ties up funding that 
can be used for other purposes.  

In reality, a contractor will submit a tech-refresh proposal to the program office to 
account for the configuration change, but will estimate the unit costs based on an 
extrapolation of its stable learning curve because the new slope is unknown. In every 
program analyzed in this study, the learning curve slope becomes much steeper after the 
configuration change (when compared to the initial stable slope), and a extrapolation of the 
stable curve will create a higher per unit cost than the contractor would actually experience 
with the steeper learning curve. This phenomenon is explored in the next section, which 
analyzes Program A to answer the second research question of how many production units 
are manufactured before the contractor returns to its stable learning rate.  

Program A was selected for analysis in addressing the second research question 
because Program A has a large sample size in total and within each segment. In addition, 
only one configuration change came into the production line, so this program provides a 
consistent sample to analyze. The stable slope for Program A is 63.26% as determined by 
the units in Configuration A (units 41 to 71). Table 3 summarizes the slopes for 
Configuration B beginning with units 72 to 124 and removing one unit at a time from the 
beginning of the segment until the stable slope was reestablished.  
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 Program A Stable Slope Analysis Summary 

 

The stable learning rate is achieved with the production of unit 91, which is 19 units 
after the configuration change came into the production line. While every program will 
stabilize at different production rates, the important point in this analysis is that after the 
configuration change is introduced, the contractor learns much quicker on the units after the 
configuration change than the stable flatter learning rate pre-change. The units immediately 
following the stabilized rate (92 to 97) are included in the table to show that the contractor 
does not continue to learn for all units after the stabilized rate is achieved; rather, the 
contractor’s learning rate stays around the stabilized rate. While this analysis is for only one 
program and cannot be generalized for all programs, the prior analysis did show that for 
each program, the contractor learned at a much steeper rate following the configuration 
change. These results provide evidence to support a position other than the contractor 
extrapolating the prior stable learning curve in a tech-refresh proposal before a configuration 
change is introduced.  

Conclusions of Research 

The hypothesis testing indicated a statistically significant difference in the median 
production touch labor hours in the pre-configuration change and post-configuration change 
aircraft for every pair of data segments analyzed, except for one. Comparing the median 
values may equate to a statistically significant difference in the learning curve slopes for 
those data segments because the impact to the learning curve slope is evaluated through 
the touch labor hours of the data points, as they are partially a function of the slope value.  

The data point analysis to address the stable learning curve research question 
produced interesting results. The analysis did show a pattern that post-configuration 
change, the contractor initially learns at a much faster rate and the learning rate decreases 
with each subsequent unit until the stable learning rate is again achieved. The learning rate 
did appear to stabilize at this point and did not continue to decrease.  

While sample size was limited to a few programs, the results of this study may imply 
two things. First, that a majority of the time there is an impact to the learning curve slope 
whenever a configuration change is introduced during production. Second, that the 
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contractor is able to learn to incorporate the change much more quickly than its stable 
learning rate for the entire aircraft.  

Significance of Research 

The results of this research indicate there may be a significant impact to the learning 
curve slope when a configuration change is introduced during production, even if the 
program is substantially into production, as were the programs included in this analysis. The 
findings suggest more research in this area is important for two reasons. First, if more 
programs are examined, additional data points may lead to the development of a CER or 
factor to adjust a stable learning curve, which would be a useful tool for cost estimators 
given the ever-changing acquisition environment. Second, because the learning curve slope 
is such a crucial factor in production contract negotiations, empirical evidence strengthens 
the DoD’s position of what the contractor’s expected learning curve should be—which this 
study found is not the same as the extrapolation of the contractor’s stable learning curve.  

An initial estimate that does not anticipate any configuration changes will 
underestimate unit production hours or costs required for the newly configured unit. If the 
DoD negotiates a contract based on an extrapolation of the contractor’s stable rate, these 
results provide evidence that the stable rate will overestimate the production requirements; 
this analysis showed the contractor learns at a steeper rate after a configuration change. 
The initial underestimating, coupled with the contractor’s overestimation, will result in the 
program office requesting millions of dollars, possibly in excess, per configuration change. 

Learning curve theory advises the use of the most recent or most representative 
production methods to predict the follow-on articles. While this is intuitive and proven to 
result in better estimates, program offices cannot disregard the prior units. If program offices 
track the configuration change information and the resulting impacts, the DoD may be in a 
better position to estimate costs and negotiate production contracts.  

Study 2: A Comparative Study of Learning Curve Models 
History shows that there is a flattening effect near the end of production runs, 

learning does not remain constant in aircraft production, and machinery is becoming more 
involved in the production process. There is evidence to support a hypothesis that a different 
model may be more accurate than Wright’s model. Prior research establishes the foundation 
for further research into additional types of aircraft. There is evidence to support a 
hypothesis that a different model may be more accurate than Wright’s model. Previous 
research found that the contemporary models are more accurate than Wright’s model given 
an incompressibility factor (M) that is somewhere between 0.0 and 0.1. M is a number 
between zero and one where zero indicates a completely manual process and one indicates 
a fully automated process. Wright’s model is the most accurate predictor of cost if M is 
assumed to be greater than 0.1. Specifically, further research and analysis using program 
integration, assembly, and checkout. Additional research on the impressibility factor may 
indicate a model that is more applicable to DoD methodology. For the purpose of this study, 
the contemporary models examined are the DeJong and S-Curve Models. The following 
investigative questions are the basis for study 2:  

1. How does the application of learning curve models using program integration, 
assembly, and checkout data affect learning curve models that incorporate an 
incompressibility factor?  

2. How sensitive are IA&CO data to the incompressibility range? 

3. Which learning curve model is the most accurate at predicting cost or time? 
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4. How can the individual airframe work codes prove beneficial for predicting 
cost or time? 

The questions lead to the following hypotheses:  

H1: One of the compared models will have Mean Absolute Percent Error 
significantly different from the others.  

H2: One of the modern learning curve models will be significantly more 
accurate than Wright’s model in predicting costs or hours.  

H3: The S-Curve model with IA&CO will have a significantly lower MAPE than 
Wright’s and DeJong’s Learning Curve Models.  

H4: The incompressibility factor will have a significant influence on the 
accuracy of the DeJong and S-Curve Models. 

The first hypothesis’ null (ܪ଴) is 	ߤଵ ൌ ଶߤ ൌ  ଷ. This means that the MAPE (lowerߤ
MAPE is better) for each learning curve model is the same. The alternative hypothesis(ܪ௔) 
is that one of the model’s MAPE is statistically different. A rejection of the null hypothesis in 
favor of the alternative hypothesis supports significant finding. The significant finding means 
that testing each contemporary learning curve model against Wright’s model is the next 
phase. The second hypothesis (H2) has a null 	ߤଵ ൌ  ௜, where ݅ will equal models 2 and 3ߤ
(DeJong’s and the S-Curve). The ܪ௔ is that the contemporary learning curve models will 
have a lower MAPE than the conventional modelߤଵ ൐ ଶߤ	 ௜. H3’s null hypothesis isߤ ൌ  .ଷߤ
The ܪ௔ is that ߤଶ ൐  ଷ, meaning that the S-Curve will have the lowest MAPE and thus be theߤ
most accurate predictor of cost or hours. The last hypothesis is that small changes in the 
incompressibility factor will have a large influence on the MAPE of each model.  

Relevant Learning Curve Research  

Relevant research has highlighted an important point in why military programs have 
not adapted a contemporary learning curve model:  

Because of the regularity of production in military programs, organizational 
forgetting, and spillovers of production experience are less apparent. If 
forgetting is present, it may be very difficult to identify (e. g., data could be 
consistent with either a 20 percent learning rate or a 25 percent learning rate 
with 5 percent forgetting). And, in most cases there are not many model 
variants, so spillovers are not important. (Benkard, 1999, p. 4)  

The newest fighter weapon in the U.S. military arsenal will be the F-35. The F-35 has 
three variants, and the Pentagon plans to spend over $390 billion on these aircraft (Luce, 
2014). Five percent of $390 billion attributed to learning/forgetting processes is still a 
staggering number. The point is that there is room for improvement. Many of the fighter 
aircraft in use today have had multiple models. The F-15 had models A-E, and the F-16 had 
models A-F. The DoD can use the hypothesized 5% forgetting to save millions of taxpayers’ 
dollars. The accurate estimates result in less spending, or savings that could go into other 
taxpayer needs or public works. The estimates enable the DoD to truly forecast budget and 
spending levels.  

One must consider the question of what does the future actually look like in regards 
to machinery and automation? Are people still going to be relevant for production? In the 
Defense acquisitions realm, the basis is that with low purchase quantities for state of the art 
machines will not rely on technological or machine dominated production. This idea really 
comes down to the machine verses machines argument. Asking whether a robot will take 
the jobs of humans is key. Experts say yes and no. In the past, machines were used to 
replace manual labor that was intensive and repetitive. According to a study by the Bank of 
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America, robots are likely to be performing 45% of manufacturing tasks by 2025, versus 
10% today (Madigan, 2011). The price of a computer, a robot, a chip, etc. is falling, and it is 
speculated that it will fall even more in the future. However, the jobs that require human 
interaction are least likely to be replaced by a robot. Maybe DoD acquisitions are in the clear 
and 100% of learning is still realizable for learning curve methodology. Experts agree that 
the future does include a significant presence of machinery because the prices of robotics 
and computers are decreasing while the cost of human employees are increasing (Aeppel, 
2012). 

Contemporary Learning Theory 

A contemporary variation of learning curve models is DeJong’s Learning Formula. 
This formula is a modification of Wright’s model, and it takes into account the constant, M. M 
is the incompressibility factor, which is a constant between zero (fully manual operation) and 
one (fully automated or machine dominated operation; Badiru et al., 2013). Equation 2 
highlights DeJong’s Learning Model.  

௡ݐ ൌ 	 ܯଵሼݐ ൅ ሺ1 െܯሻ݊ି௕       (2) 

where  

 ௡= the cumulative average time after producing ݊ unitsݐ

 ଵ = time required to produce theoretical first unitݐ

݊ = cumulative unit number  

ܾ = log ܴ/log 2 (learning index) 

  incompressibility factor (a constant) = ܯ

A machine based production process would result in no learning, and thus an M 
value of one. It the basis of this thesis and belief that aircraft production, complex in nature, 
has an M value close zero because aircraft production is a highly manual process. Thus, M 
would be closer to zero for IA&CO. M does not have a specific value. This research will 
focus on the best M value for the particular aircraft production. A potential weakness of the 
DeJong model is that it does not take into account previous units produced as much as the 
S-Curve model does.  

The S-Curve Model takes into account both previous units produced and the 
incompressibility factor. Figure 1 shows the effects of learning over time as hypothesized 
from the S-Curve Model. The linear nature of Wright’s original learning curve model has 
been in question for many years (Everest, 1988). The Rand Corporation first sought to 
explain the progression of the learning curve used to estimate costs for both military and 
civilian airframes. The report attempted to describe the relationship between units (quantity) 
and costs and, ultimately, whether the relationship was linear on a log scale. The results of 
the Rand Corporation found that a convex curve may provide more accuracy if producing a 
large number of units (Asher, 1956). The results found that a convex model provides less 
error if there is a need for large extrapolation. Essentially, an estimation of significantly more 
units in production instead of fewer provides less error. For units where large extrapolation 
was required, a non-linear model was more appropriate. The S-Curve model, convex in 
nature, presents a shape of learning. The S-Curve, when plotted using a log scale 
relationship, follows an S function. The experience over time (attempts at learning) may 
exhibit the S-Curve (Everest, 1988). 
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 S-Curve Learning Model 

Initially, there is a slow beginning as a worker learns the production process. The 
newness of the product is a characteristic of the slow initial beginning. New tools, methods, 
shortages of parts, reworks, and the challenge of developing a cohesive production team 
are all potential contributors to the slow beginning. The fact that the initial stage in 
production deals changes from tooling to even workers contributes to the gradual start 
(Badiru, 1992). From there, learning and familiarity of tools, methods, and workers occur. 
The learning enables a steep acceleration of production. Production improvement occurs 
with attempts on the process, or learning by doing. An example from the literature is aircraft 
production. Aircraft production that includes workers and tools that are more efficient leads 
to an assembly process that is also more efficient. The efficiencies found result in less time 
to complete an aircraft (Asher, 1956). However, the improvement and efficiencies eventually 
begin to fade. The plateau at the trailing edge of the curve is the slope of diminishing returns 
where the curve begins to flatten out, or in many occurrences at the end of production 
cycles, there is a “tailup” (Everest, 1988). After time, inefficiencies can occur: forgetting, 
experienced workers focusing on new projects, failure to repair worn tooling at the normal 
rate, increase of machine disassembly, lack of key materials (safety stock), and workers 
taking more time to prolong their employment (Everest, 1988). The S-Curve equation is 
shown in Equation 3:  

௡ݐ ൌ 	 ଵݐ ൅ ሺ݊ܯ ൅  ሻି௕     (3)ܤ

where 

 ௡= the cumulative average time after producing ݊ unitsݐ

 ଵ = time required to produce theoretical first unitݐ

݊ = cumulative unit number  

ܾ = log ܴ/log 2 (learning index) 

  incompressibility factor (a constant) = ܯ

  equivalent experience units (a constant) = ܤ

From this equation and Figure 1, the forgetting concept is evident. The S-Curve 
portrays that with time, some inefficiencies will occur. Use of the S-Curve and DeJong 
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Models may provide more precision to learning curve estimation and enable higher accuracy 
within DoD cost estimating because they include influences that were previously 
unaccounted for.  

Data 

The Air Force Life Cycle Management Center Cost Staff (AFLCMC/FCZ) at Wright-
Patterson Air Force Base (WPAFB) provided learning curve data for 17 Major Defense 
Acquisition Programs (MDAPs). A MDAP is classified as a major program that exceeds a 
certain dollar threshold. There are 80 MDAPs in the DoD as of 2014. The numbers have 
decreased slightly over the years. The data files consist of average Learning Curve Reports 
of Annual Unit Cost (AUC) in addition to the MDAPs estimate methods using Wright’s 
conventional learning curve model. Only one program provided was broken into the specific 
work codes that include the needed data (IA&CO). When comparing models based on 
airframe’s integration, assembly, and checkout data, the assumption of incompressibility 
close to zero is acceptable due to the highly individualized process completed by humans.  

A description of labor categories Integration, Assembly, and Checkout highlights that 
not all definitions are synonymous amongst manufacturers. The manufacturers largely 
consider what is involved in each category as proprietary information. For the purpose of 
this study, Final Test Integration, Electrical and Mechanical Assembly, Test/Integration, 
Composites (all locations), and Quality Control are considered IA&CO. Final Test Integration 
includes the direct labor for the final integration and test, which includes final assembly, 
system burn-in, payload integration and interface, autopilot checks, taxi tests, range tests 
and first flight support. Electrical Assembly is the direct labor required to assemble electronic 
components. Mechanical Assembly is the direct labor required to build servos for the 
aircraft, to build landing gear, build starter/alternators, to perform rework, and high-time 
maintenance on those components. Test/Integration is the direct labor for new build 
electronics, field repairs, integrating avionics, and testing them at the system level. 
Composites manufacturing is the direct labor required to lay up, cure, and finish components 
such as the fuselage, wings, tails, and landing gear. Quality Control is the direct labor 
required to provide inspection of electronics and mechanical components and assemblies, 
document discrepancies, and resolve problem areas. Of note, these labor categories involve 
mainly direct labor performed by humans where the learning process is observable. All of 
the data includes Test Support, Machine Shop, Program Support and Design. These work 
codes are not repetitive in nature like IA&CO.  

Analysis Methods and Results  

The data includes actual costs as well as predicted costs using one of the learning 
curve models. Once calculation of the predicted costs is complete, the error is simply the 
difference between the actuals costs and the predicted costs. To provide a comparison, a 
difference calculation in the absolute value and absolute value percent error are the means 
of analysis. The next step is to perform an analysis to test the hypotheses. ANOVA or the 
Kruskal-Wallis test will provide the basis for comparing the percent errors. The tests will 
produce an F-statistic (a test statistic) that falls within a Chi-distribution and a p-value. This 
comparative study will produce results based on a 95% confidence level (an ∝ of 0.05). If 
the P-value is less than 0.05, rejection of the null hypothesis in favor of the alternative 
hypothesis will occur. Rejecting the null hypothesis for this study will represent that there is a 
95% chance that the tested populations are different. The conditions for ANOVA are as 
follows: the samples must be from a random selection of the population, normally 
distributed, and population variances must be equal. If the conditions for ANOVA fail to meet 
the needed criteria, the Kruskal-Wallis test (non-parametric equivalent to ANOVA) will be the 
test to determine if multiple samples arise from the same distribution and have the same 
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parameters (“Kruksal-Wallis Excel,” n.d.). The ANOVA or Kruskal-Wallis f-test provides 
insight into the first hypothesis. The Kruskal-Wallis test is beneficial since the one-way 
ANOVA is usually robust based on the assumptions for ANOVA. The Kruskal-Wallis test 
becomes useful in particular when group samples strongly deviate from normal (sample size 
is small and unequal and data are not symmetric) and variances are different (potential 
outliers exist). The assumptions for the Kruskal-Wallis test are that no assumptions are 
made about the underlying distribution; however, assume that all groups have a distribution 
with the same shape, and no population parameters are estimated (no confidence intervals 
in the data; Zaiontz, 2015). If the F-statistic is significant, then rejection of the null 
hypothesis in favor of the alternative that at least one of the sample means is different is the 
outcome.  

The t-Test for two samples test will evaluate the second hypothesis that one or more 
of the models is a better fit to the data than Wright’s Model. The control for this comparison 
is Wright’s Learning Curve Model. Since Wright’s Learning Curve Model (WLC) is the control 
for this study, a comparison to the other model’s MAPEs is the method. If the assumption for 
equal variance is not met, the t-Test for two samples assuming unequal variances will be 
used. The next analysis that corresponds to H3 will be testing which model is most accurate 
given significant results for more than one model from H2. Once again, the paired difference 
t-test is the next step. A paired difference experiment uses a probability distribution when 
comparing two sample means and produces a t-statistic that falls within a student-t 
distribution that can either reject or fail to reject the null hypothesis depending on the desired 
confidence level. Lastly, H4 will require reiterations of the tests in order to determine a good 
estimate for incompressibility factor based on the airframes. This method will include IA&CO 
and then all of the data in order to provide a comparison.  

Of note, the reader may question why the means cannot provide the basis for the 
analysis. This lies in the variation of the means. If the coefficient of variation (standard 
deviation as a percentage of the mean) is low, the mean may be a good predictor of the 
better model. However, as a rule of thumb, if the coefficient of variation (CV) is greater than 
15%, the mean indicates a looser distribution. Most analysts would likely prefer a tighter 
distribution with less variability. In practice, a low CV (say, 5%) would indicate that the 
average (mean) of the cost data is a useful description of the data set. On the other hand, if 
the CV is much higher (say, greater than 15%), there should be a cost driver in the data set 
that causes the cost to vary. The CVs for the analysis will provide insight into the dispersion 
of the data points. CVs for the analysis all exceeded the threshold and resulted in the mean 
not being a good predictor. Table 4 highlights the MAPE analysis for M = 0.05. Results were 
inconclusive as to which model was more accurate.  

 MAPE Analysis M = 0.05 

 

A description of the results for the Air Force Program, based on the assumption of 
low incompressibility values of 0.05 and 0.1, highlights the effects of learning. The results 
changed between these values and indicated that the S-Curve model may be a more 
accurate predictor at 0.05, but WLC is more accurate at 0.10. After 0.10, WLC becomes 
significantly less error prone for both IA&CO and the analysis with all of the work codes. 
WLC is a better predictor of cost when the incompressibility is 0.10 and higher. Analysis on 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 483 - 

all of the data points, not just IA&CO, showed no difference between the models at an M of 
0.05. However increasing the M value results in WLC becoming an increasingly more 
accurate predictor of cost. The following figures highlight the effects of M and the Absolute 
Percent Errors. 

 

 IA&CO APE Trends 

When plotting the Absolute Percent Errors for all of the data points, a trend similar to 
the analysis using IA&CO was evident. WLC starts as a more accurate predictor of cost and 
then becomes less and less accurate, whereas the DeJong and S-Curve models become 
increasingly more accurate predictors. Figure 3 shows the results of APE for all of the data. 

 

 All Data APE Trends 
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Conclusions of Research 

In summary, results support the first hypothesis that there is a significant difference 
between the models. Results are inconclusive as to whether any models are significantly 
more accurate than Wright’s model. Between an incompressibility of 0 to 0.1, DeJong and 
S-Curve models were more accurate (less error prone). Nevertheless, at an 
incompressibility of 0.10 and beyond, Wright’s model is most accurate. The third hypothesis 
was also inconclusive as to which model is most accurate at an incompressibility of 0.05.  

Both DeJong and S-Curve models were more accurate than WLC, but there was no 
difference between the two. Finally, incompressibility was highly influential as hypothesized. 
The results of the findings lead to questioning why, for the program chosen, 
incompressibility would become increasingly more error prone when more automation is 
present. In addition, the findings put into question how the DoD can draw a conclusion about 
the application of contemporary learning curve models in acquisitions and specifically cost 
estimation. Absolute Percent Error figures highlight that WLC is accurate initially and 
eventually becomes increasingly less accurate. The opposite, S-Curve and DeJong Models 
are not as accurate initially, but become increasingly accurate over trials. The MAPE 
analysis averages all of the errors. If the data set included more units, results may trend 
towards results in favor of the contemporary models. That answer is based on the visual 
trend from the APE figures. Of interest when the incompressibility factor is 0.10, the models 
portray that 90% of learning is obtainable. Because the data set was small, changes in 
incompressibility may not be as evident to the significance of the comparative study.  

The findings also put into question how the DoD can draw a conclusion about the 
application of contemporary learning curve models in acquisitions and specifically cost 
estimation. If the production cycle is long and many trials will be realized, there is potential 
that the contemporary models may capture a more accurate picture of learning. Aircraft 
production may provide starkly different results from a missile production run where more 
units are produced over time. The results support that there is potential for a more accurate 
model. However, it may not be in the realm of aircraft production. Aircraft production may 
include some automation. It is not implausible that aircraft production is 95% manual and 
supports an M factor of 0.05. The contemporary models may support a more automated 
process such as a production line much like the automobile industry. Prior studies and 
subject matter expert opinion support that aircraft production is manual. However, there is a 
belief that more automation will be present in the future.  

Significance of Research 

Results from the analysis show that there is reason to believe Wright’s Learning 
Curve may not be the best method for estimating costs. By extrapolating from actuals, the 
method for Wright’s model may not incorporate enough of the variability of learning. The 
results provide evidence that Wright’s Model is accurate initially, but with attempts at 
learning (trials) the amount of error increases. The comparative analysis on learning curve 
models provides a standalone analysis of program actuals. The conclusions from this study 
are that there is potential for a more accurate cost-estimating model and that the 
conventional learning curve models become increasingly less error prone over trials. The 
DeJong and S-Curve models show promise as a way to improve DoD cost estimating.  

The results of the research do not support all of the hypotheses. Results did confirm 
that the incompressibility factor was highly influential for both the S-Curve and DeJong 
models. The results of the comparison changed drastically with a small change in the 
incompressibility factor. The DeJong and S-Curve models were both more accurate than 
WLC, but there was no difference between the two. This finding makes it challenging to 
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simplify the results given the uncertainty of incompressibility. The influence of machinery in 
longer production cycles is a valid assumption for the future. The influence of automation in 
this comparative study was evident by the absolute percent error graphs.  
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Background 
 

• Learning Curve Theory Conception 
• T.P. Wright (1936) 
• J.R. Crawford (1944) 

 

• Learning Curve Theory Evolution 
• S-Model (1946) 
• Stanford-B Model (1956) 
• DeJong Model (1957) 
• Plateau Model (1965) 
• Anderlohr Production Break Theory (1969) 

• Learning/Forgetting/Relearning 
• Additional Work Theory 
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1. Is there an impact to the learning curve slope when a 
configuration change is introduced to the production line? 
Specifically: 

a. What is the learning curve slope for each new configuration? 

b. Are the production segments for each configuration significantly 
different?  

c. What is the difference between predicted and actual hours for each 
adjacent segment? 

2. How many units of the newly configured aircraft are produced 
before the contractor regains the stable learning rate?   

 

 

Research Questions 
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Methodology 

• Segment “stable” production units  
• Visual Analysis 
• Based on identified configuration changes 
 

• Nonparametric Tests  
• Compare actuals between segments to determine statistical similarity 
 

• Regression Analysis 
• Calculate learning curve slope for each segment 
• Compare predicted versus actual hours for adjacent segments 
• Determine number of production units to stabilize rate  
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• Regression Analysis 
• Compare predicted versus actuals for each segment pair 
• Negative difference indicates under-estimation 

Data Analysis 

Predicted Hours Actual Hours Difference % Difference 
A predicting B 11,336,756.40  11,371,252.00 (34,495.60)   -0.30%

Predicted Hours Actual Hours Difference % Difference 
A predicting B* 229,114.62        295,348.35       (66,233.73)   -22.43%

Predicted Hours Actual Hours Difference % Difference 
A predicting B 1,014,525.48    986,331.30       28,194.18     2.86%
B predicting C 490,909.41        531,988.54       (41,079.13)   -7.72%
C predicting D 339,726.00        368,921.32       (29,195.31)   -7.91%
D predicting E 678,070.58        698,789.63       (20,719.06)   -2.96%
D predicting F 397,530.17        542,429.97       (144,899.80) -26.71%

Program A

Program B

Program D

*Configuration B not considered a statistically significant change from 
configuration A
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1. Is there a significant impact to the learning curve slope when a 
configuration change is introduced to the production line? 
Specifically: 

a. What is the learning curve slope for each new configuration? 
 
 
 
 

b. Are the segments of each configuration significantly different?  
• Each segment statistically different aside from Program B between 

configurations A and B 
c. What is the difference between predicted and actual hours for each 

adjacent segment?  
• At least 20 thousand hours (usually under-estimated) 

 

 
 
 

Findings: Research Question 1 
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Findings: Research Question 2 
Program A 

2. How many units of the newly configured 
aircraft are produced before the contractor 
regains the stable learning rate?   

 

• Large sample size  
• In total 
• In each segment 

• One configuration change 
• Isolated impact 

• Stable slope: 63.26% 
• Configuration A 

• Stabilized after 19 newly configured units 
 

First Unit Slope Units to Stabilize 
72 49.84%
73 50.69% 1
74 51.34% 2
75 51.95% 3
76 52.48% 4
77 52.85% 5
78 52.83% 6
79 52.81% 7
80 53.21% 8
81 53.44% 9
82 53.80% 10
83 54.36% 11
84 54.85% 12
85 55.25% 13
86 56.33% 14
87 57.39% 15
88 59.18% 16
89 60.52% 17
90 62.03% 18
91 63.60% 19
92 64.36%
93 64.30%
94 64.52%
95 63.51%
96 62.06%
97 60.54%
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Significance of Findings 

• Configuration changes introduced during production may cause a statistically 
significant impact to the unit production learning rate and production hours 
 

• After most of the configuration changes analyzed, the contractor achieved a 
steeper rate of learning than the stable rate 

• Analysis of Program A indicated the contractor’s learning decreased with each 
subsequent production unit until eventually stabilizing 
 

• In reality, a contractor will submit a tech-refresh proposal to program office 
to account for configuration change 

• Estimated based on extrapolation of stable learning curve  
 

• In every program in this analysis (and in most segments), a newly configured 
aircraft initially experienced a higher rate of learning  

• An extrapolation of the stable curve will result in a higher per unit cost than the 
contractor would actually experience 
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Background/Research Question 

• Learning curves are commonly used in production estimates  
• Production accounts for the majority of total Acquisition Costs 

 
• Mr. Thomas Henry (OSD CAPE) on modernization  

• “Manufacturing and depots are becoming as automated as possible. Learning 
curves could get much different in the future due to machines”  

 

• Heightened scrutiny of cost estimates 
• Budget Control Act of 2011 seeks to reduce federal deficit  

 
• Is the current DoD methodology is outdated? Are alternative models 

are more accurate?  
• Wright’s original learning curve theory (CUMAV) was formulated in 1936. 
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Learning Theory  

• T. P. Wright (1936) theorized that as a worker performs a task 
multiple times, the time required to complete that task will decrease 
at a constant rate. 

• Constant percentage decrease for doubling quantity  
• Wright’s Learning Curve (WLC) Model:  

   
• Learning is a human phenomenon occurring in manual labor, so we 

should expect the most learning to occur when the production process 
involves a great deal of touch labor and little automation 

• DeJong’s Learning Formula  
• Incorporates percentage of process that is automated into learning models 

• S-Curve Model  
• Incorporates prior experience units (prototypes) and percentage of process that is 

automated into learning curves. 
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Analytical Tests 

•  Use Historical data to determine CUMAV vs. Unit Theory 
• Use Regression statistics to determine validity of regression models 

 

• Compare all sample means to determine if any models are different 
• Use skewness, kurtosis, and standard deviation to determine normality 

 

• Compare sample means to determine which models are different from 
WLC status quo 
 

• Compare means of S-Curve and DeJong if they are more accurate than 
WLC to determine the most accurate model 
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Data Table Example (WLC) 

• MAPE is the average of the Absolute Percent Error  
• MAPES at M of 0.05 

• WLC = 4.11% 
• DeJong = 3.00%  
• S-Curve = 2.64% 
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Results: APE Graphs 
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Significance of Findings 

• There is potential for a more accurate model in predicting the 
effects of learning within DoD acquisitions 
• S-Curve and DeJong models 
 

• Sensitivity of results and uncertainty of incompressibility 
factor make it difficult to simplify the results 

 
• Findings provide a proxy to future research and open a 

dialogue for change within DoD learning methodology 
 

• The influence of machinery potentially displayed with long 
production cycle  
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