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A LEARNING CURVE  
MODEL ACCOUNTING FOR THE 

FLATTENING 
EFFECT  

IN PRODUCTION CYCLES

The authors investigate production cost estimates to identify and model 
modifications to a prescribed learning curve. Their new model examines 
the learning rate as a decreasing function over time as opposed to a 
constant rate that is frequently used. The purpose of this research is to 
determine whether a new learning curve model could be implemented to 
reduce the error in cost estimates for production processes. A new model 
was created that mathematically allows for a “flattening effect,” which 
typically occurs later in the production process. This model was then 
compared to Wright’s learning curve, which is a popular method used by 
many organizations today. The results showed a statistically significant 
reduction in error through the measurement of the two error terms, Sum 
of Squared Errors and Mean Absolute Percentage Error.

DOI: https:// doi.org/10.22594/10.22594/dau.20-850.28.01 
Keywords: Learning Curve, Cost Estimation, Acquisition, Wright’s Learning Curve,  
       Boone’s Learning Curve

  Capt Evan R. Boone, USAF, John J. Elshaw, Lt Col Clay M.    
 Koschnick, USAF, Jonathan D. Ritschel, and Adedeji B. Badiru



74 Defense ARJ, January 2021, Vol. 28 No. 1 : 72-97

A Learning Curve Model Accounting for the Flattening Effect in Production Cycles  https://www.dau.edu

Many manufacturing firms today operate in a fiscally constrained and 
financially conscious environment. Managers throughout these organi-
zations are expected to maximize the utility from every dollar as budgets 
and profit margins continue to shrink. Increased financial scrutiny adds 
greater emphasis on the accuracy of program and project management 
cost estimates to ensure acquisition programs are sufficiently funded. Cost 
estimating models and tools used by organizations must be evaluated for 
their relevance and accuracy to ensure reliable cost estimates. Many of 
the cost estimating procedures for learning curves were developed in the 
1930s (Wright, 1936) and are still in use today as a primary method to model 
learning. As automation and robotics increasingly replace human touch- 
labor in the manufacturing process, the current 80-year-old learning curve 
model may no longer provide the most accurate approach for estimates. New 
learning curve methods that incorporate automated production and other 
factors that lead to reduced learning should be examined as an alternative 
for cost estimators in the acquisition process. 

Since Wright’s (1936) original learning curve model was developed, 
researchers have found other functions to model learning within the man-
ufacturing process (Carr, 1946; Chalmers & DeCarteret, 1949; Crawford, 
1944; DeJong, 1957; Towill, 1990; Towill & Cherrington, 1994). The purpose 
of this research is to address a gap in the literature that fails to account for 
the nonconstant rate of learning, which results in a flattening effect at the 
end of production cycles. We will investigate learning curve estimating 
methodology, develop learning curve theory, and pursue the development 
of a new estimation model that examines learning at a nonconstant rate. 
This research identifies and models modifications to a learning curve model 
such that the estimated learning rate is modeled as a decreasing learn-
ing rate function over time, as opposed to a constant learning rate that is 
currently in use. Wright’s (1936) learning curve model in use today math-
ematically states that for every doubling of units there will be a constant 
gain in efficiency. For example, if a manufacturer observes a 10% reduction 
in labor hours in the time to produce unit 10 from the time to produce unit 
5, then it should expect to see the same 10% reduction in labor hours in the 
time to produce unit 20 from the time to produce unit 10. We propose that 

Increased financial scrutiny adds greater 
emphasis on the accuracy of program and 
project management cost estimates to 

ensure acquisition programs are sufficiently funded. 
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more accurate cost estimates would result if a more flexible exponent were 
taken into consideration in developing the learning curve model. The pro-
posed general modification would take the form:

Cost(x) = Axf(x)                                                             (1)
Where:
 Cost(x) = cumulative average cost per unit
               A = theoretical cost to produce the first unit
                x = cumulative number of units produced
          f(x) = learning curve effect as a function of units produced

The exponent function in Equation 1 will be explored in this article. Figure 1 
demonstrates the phenomena this research will examine. The black (flatter) 
line depicts the traditional curve where learning occurs at a constant rate; 
the red (steeper) line represents the hypothesized learning structure where 
the rate of learning changes as a function of the number of units produced; 
and the blue line represents notional data used to fit the two curves. 

FIGURE 1. LEARNING CURVE DEPICTION
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To address this research gap, our study aims to model a function that has the 
added precision of diminishing learning effects over time by introducing a 
learning curve decay factor that more closely models actual production cycle 
learning. We will accomplish this by developing a new learning curve model 
that minimizes the amount of error compared to current estimation models. 
Learning curves, specifically when estimating the expected cost per unit of 
complex manufactured items such as aircraft, are frequently modeled with 
a mathematical power function. The intent of these models is to capture the 
expected reduction in costs over time due to learning effects, particularly 
in areas with a high percentage of human touch labor. Typically, as produc-
tion increases, manufacturers identify labor efficiencies and improve the 
process. If labor efficiencies are identified, it translates to unit cost savings 
over time. The general form of the learning curve model frequently used 
today is based on Wright’s theory and is shown in Equation 2. Note that the 
structure of the exponent b ensures that as the number of units produced 
doubles, the cost will decrease by a given percentage defined as the learning 
curve slope (LCS). For example, when LCS is 0.8, then the cost per unit will 
decrease by 80% between units 2 and 4.

Cost(x) = Axb                                                                  (2)
Where:
 Cost(x) = cumulative average cost per unit
               A = theoretical cost to produce the first unit
                x = cumulative number of units produced
                b = ln Learning Curve Slope

ln 2
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The cost of a particular production unit is modeled as a power function that 
decreases at a constant exponential rate. The problem is that the rate of 
decrease is not likely to be constant over time. We propose that the major-
ity of cost improvements are to be found early in the production process, 
and fewer revelations are made later as the manufacturer becomes more 
familiar with the process. As time progresses, the production process should 
normalize to a steady state and additional cost reductions prove less likely. 

For relatively short production runs, the basic form of the learning curve 
may be sufficient because the hypothesized efficiencies will not have time to 
materialize. However, when estimating production runs over longer periods 
of time, the basic learning curve could underestimate the unit costs of those 
furthermost in the future. The underestimation occurs because the model 
assumes a constant learning rate, while actual learning would diminish, 
causing the actuals to be higher than the estimate. Current models may 
underestimate a significant amount when dealing with high unit cost items 
such as those in major acquisition programs; a small error in an estimate 
can be large in terms of dollars. Through the use of curve fitting techniques, 
a comparison can be made to determine which model best predicts learn-
ing within a particular production process. The remainder of this article 
is organized as follows. A literature review of the most common learning 
curve processes is presented in the next section, followed by methodology 
and model formulation. We then provide an in-depth analysis of the learn-
ing curve models, followed by future research directions, conclusions, and 
limitations of this research.

Literature Review
Learning curve research dates back to 1936, when Theodore Paul Wright 

published the original learning curve equation that predicted the production 
effects of learning. Wright recognized the mathematical relationship that 
exists between the time it takes for a worker to complete a single task and 
the number of times the worker had previously performed that task (Wright, 
1936). The mathematical relationship developed from this hypothesis is 
that as workers complete the same process, they get better at it. Specifically, 
Wright realized that the rate at which they get better at that task is constant. 

Our study aims to model a function that 
has the added precision of diminishing 
learning effects over time by introducing a 

learning curve decay factor that more closely models 
actual production cycle learning.
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The relationship between these two variables is as follows: as the number 
of units produced doubles, the worker will do it faster by a constant rate. He 
proposed that this relationship takes the form of: 

F = Nx   or   x = Log F
Log N

 ;

“where F = a factor of cost variation proportional to the quantity N. The 
reciprocal of F then represents a direct percent variation of cost vs. quantity” 
(Wright 1936). The relationship between these variables can be modified to 
predict the expected cost of a given unit number in production by multiplying 
the factor of cost variation by the theoretical cost of the first unit produced—
this relationship was stated in Equation 2 and is shown in Figure 2. It is a 
log linear relationship through an algebraic manipulation. The logarithmic 
form of this equation (taking the natural log of both sides of the equation) 
allows practitioners to run linear regression analysis on the data to find what 
slope best fits the data using a straight line (Martin, n.d.).

FIGURE 2. WRIGHT'S LEARNING CURVE MODEL 

Y = Axb

X

Y

Note. (Martin, n.d.)

The goal of using learning curves is to increase the accuracy of cost esti-
mates. Having accurate cost estimates allows an organization to efficiently 
budget while providing as much operational capability as possible because 
it can allocate resources to higher priorities. While the use of learning 
curves focuses on creating accurate cost estimates, learning curves of-
ten use the number of labor hours it takes to perform a task. When Wright 
originated the theory, he proposed the output in terms of time to produce, 
not production cost. However, many organizations perform learning curve 
analysis on both production cost and time to produce, depending on the 
data available. Nevertheless, labor hour cost is relevant because it is based 
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on factors such as labor rates and other associated values. The use of labor 
hours in learning curve development allows a common comparison over 
time without the effects of inflation convoluting the results. However, the 
same goal can be achieved by using inflation-adjusted cost values. 

Wright’s model has been compared to some of the more contemporary 
models that have surfaced in recent years since the original learning curve 
theory was established (Moore et al., 2015). Moore compared the Stanford-B, 
Dejong, and the S-Curve models to Wright’s model to see if any of these func-
tions could provide a more accurate estimate of the learning phenomenon. 
Both the Dejong and the S-curve models use an incompressibility factor in 
the calculation. Incompressibility is a factor used to account for the percent-
age of automation in the production process. Values of the incompressibility 
factor can range from zero to one where zero is all touch labor and one is 
complete automation. Moore found that when using an incompressibility 
factor between zero and 0.1, the Dejong and S-Curve models were more 
accurate (Moore et al., 2015). In other words, when a production process had 
very little automation and high amounts of touch labor, the newer learning 
curve models tended to be more accurate. For all other values of incompress-
ibility, Wright’s model was more accurate. 
More recently, Johnson (2016) proposed that a flattening effect is evident at 
the end of the production process where learning does not continue to occur 
at a constant rate near the end of a production cycle. Using the same models 
as Moore, Johnson explored the difference in accuracy between Wright’s 
model and contemporary models early in the production process versus later 
in the production process. He had similar findings to Moore in that Wright’s 
model was most accurate except in cases where the incompressibility factors 
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were extremely low. When the incompressibility factor is low, more touch 
labor is involved in the process allowing for the possibility of additional 
learning to occur. He also found that Wright’s learning curve was more 
accurate early in the production process whereas the Dejong and S-Curve 
models were more accurate later in the production process (Johnson, 2016). 
Another key concept in learning curve estimation and modeling is the idea 
of a forgetting curve (Honious et al., 2016). A forgetting curve explains how 
configuration changes in the production process can cause a break in learn-
ing, which leads to loss of efficiency that had previously been gained. When a 
configuration change occurs, the production process changes. Changes may 
include factors such as using different materials, different tooling, adding 
steps to a process, or might even be attributed to workforce turnover. The 
new process affects how workers complete their tasks and causes previously 
learned efficiencies to be lost. If manufacturers fail to take these breaks 
into account, they may underestimate the total effort needed to produce 
a product. Honious et al. (2016) found that configuration changes signifi-
cantly changed the learning curve, and that the new learning curve slope 
was steeper than the previous steady slope prior to a configuration change. 
The distinction between pre- and post-configuration change is important 
to ensure both types of effects are taken into account. 

The International Cost Estimating and Analysis Association (ICEAA) pub-
lished learning curve training material in 2013. While presenting the basics 
of learning curve theory, it also presented some rules of thumb for learning. 
The first rule is that learning curves are steepest when the production pro-
cess is touch-labor intensive. Conversely, learning curves are the flattest 
when the production process is highly automated (ICEAA, 2013). Another 
key piece of information is that adding new work to the process can affect 
the overall cost. ICEAA states that this essentially adds a new curve for the 
added work, which increases the original curve by the amount of the new 
curve (ICEAA, 2013). The equation is as follows: 

When a production process had very 
little automation and high amounts of 
touch labor, the newer learning curve 

models tended to be more accurate. For all other 
values of incompressibility, Wright’s model was 
more accurate. 
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Cost(x) = A1 xb1+A2 (x-L)b2                                                    (3)
Where:
 Cost(x) = cumulative average cost per unit
                      A1 = theoretical cost to produce the first unit prior to addition  

       of new work
                 x = cumulative number of units produced
                L = last unit produced before addition of new work
           A2 = theoretical cost to produce the first unit after addition  

         of new work
                b1 =  ln Learning Curve Slope  prior to additional work

ln 2

                b2 = ln Learning Curve Slope  prior to additional work
ln 2 

        (typically same as b1)
Equation 3 is important to consider when generating an estimate after a 
major configuration change or engineering change proposal (ECP). For 
example, while producing the eighth unit of an aircraft, the customer real-
izes they need to drastically change the radar on the aircraft. Learning has 
already taken place on the first eight aircraft; the new radar has not yet been 
installed, and therefore no learning has taken place. To accurately take into 
account the new learning, the radar would be treated as a second part to the 
equation, ensuring we account for the learning on the eight aircraft while 
also accounting for no learning on the new radar. 
Lastly, Anderlohr (1969) and Mislick and Nussbaum (2015) write about 
production breaks and the effects they have on 
a learning curve. These production breaks 
can cause a direct loss of learning, which 
can fully or partially reset the learn-
ing curve. For example, a 50% loss 
of learning would result in a loss 
of half of the cost reduction that 
has occurred (ICEA A, 2013). 
This information is important 
when a na lyzing pa st data to 
ensure that breaks in production 
are accounted for. 
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Thus far, we have laid out the fundamental building blocks for learning curve 
theory and how they might apply in a production environment. Wright’s 
learning curve formula established the method by which many organi-
zations account for learning during the procurement process. Following 
Wright’s findings, other methods have emerged that account for breaks in 
production, natural loss of learning over time, incompressibility factors, 
and half-life analysis (Benkard, 2000). This article adds to the discussion 
by examining the flattening effect and how various models predict learning 
at different points in the production process. 
When examining learning curve theory and the effects learning has on 
production, it is critical to understand the production process being esti-
mated. Since Wright established learning curve theory in 1936, factory 
automation and technology have grown tremendously and continue to grow. 
Contemporary learning curve methods try to account for this automation. 
To get the best understanding, we will examine the aircraft industry, spe-
cifically how it behaves in relation to the rest of the manufacturing industry. 

The a ircra f t industr y has relatively low automation (Kronemer & 
Henneberer, 1993), especially compared to other industries. Kronemer 
and Henneberer (1993) state that the aircraft industry is a fairly labor-in-
tensive process with relatively little reliance on automated production 
techniques, despite it being a high-tech industry. Specifically, they list 
three main reasons why manufacturing aircraft is so labor-intensive. First, 
aircraft manufacturers usually build multiple models of the same aircraft, 
typically for the commercial sector alone. These different aircraft models 
mean different tooling and configurations are needed to meet the demand of 
the customer. Second, aircraft manufacturers deal with a very low unit vol-
ume when compared to other industries in manufacturing. The final reason 
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for low levels of automation is the fact that aircraft are highly complex and 
have very tight tolerances. To attain these specifications, manufacturers 
must continue to use highly skilled touch laborers or spend extremely large 
amounts of money on machinery to replace them (Henneberer & Kronemer, 
1993). For these reasons, we should typically see or use low incompressibil-
ity factors in the learning curve models when estimating within the aircraft 
industry. 
Although the aircraft industry remains largely unaffected by the shift to 
machine production from human touch labor, many industries are seeing 
a rise in the percentage of manufacturing processes that are automated. In 
a Wall Street Journal article posted in 2012, the author showed how com-
panies have been increasing the amount of money spent on machines and 
software while spending less on manpower. They proposed that part of the 
reason behind this shift was a temporary tax break “that allowed companies 
in 2011 to write off 100% of investments in the first year” (Aeppel, 2012). 
Tax breaks combined with extremely low interest rates provided industry 
with incentive to invest in future production. Investment in production 
technology increases the incompressibility factor that should be used when 
estimating the effects of learning. In a separate article for the Wall Street 
Journal, Kathleen Madigan also pointed out the increase in spending on 
capital investments in relation to labor. She stated that “businesses had 
increased their real spending on equipment and software by a strong 26%, 
while they have added almost nothing to their payrolls” (Madigan, 2011). 

Methodology
Model Formulation 

Before we can begin the process of developing a new learning curve 
equation, we need to examine the characteristics of the curve we expected 
to best fit the data. Our hypothesis is that a learning curve whose slope 
decreases over time would fit the data better than Wright’s curve. To adjust 
the rate at which the curve flattens, the b value from Wright’s learning curve, 
or the exponent in the power function, needs to be adjusted. Specifically, 

Following Wright’s findings, other 
methods have emerged that account 
for breaks in production, natural loss of 

learning over time, incompressibility factors, and 
half-life analysis (Benkard, 2000). 
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to make the curve move in a flatter direction, the exponent in the power 
curve must decrease as the number of units produced increases. Initially 
we modified Wright’s existing formula by dividing the exponent by the unit 
number as shown in Equation 4.

Cost(x) = Axb/x                                                               (4)
Where:
          Cost(x) = cumulative average cost per unit
                A = theoretical cost of the first unit
                 x = cumulative number of units produced
                 b = Wright’s learning curve constant as described in  

        Equation 2
Using Wright’s learning curve, b is a negative constant that has a larger 
magnitude for larger amounts of learning (i.e., as LCS decreases, b becomes 
more negative). Therefore, in Equation 4, when b is divided by x, the amount 
of learning is reduced. In fact, the f lattening effect is fairly drastic. For 
example, when applying Equation 4, a standard 80% Wright’s learning 
curve exhibits 90% learning by the second unit and flattens to 97% by the 
fourth unit. To implement a learning curve that has the flexibility to not 
flatten as quickly, we instead divide b by 1+x/c where c is a positive constant 
(see Equation 5). The term 1+x/c is always greater than 1 and is increasing 
as x increases; therefore, a f lattening effect always occurs (i.e., learning 
decreases as the number of units produced increases). The choice of the 
constant c is critical in determining how quickly the learning decreases. 
For example, when c = 4, a standard 80% Wright’s learning curve exhibits 
86% learning by the second unit and approximately 89% learning by the 
fourth unit. For the same standard 80% curve when c = 40, the learning 
decreases to 80.9% by the second unit and to 81.6% by the fourth unit. The 
new equation (which we also refer to as Boone’s learning curve hereafter) 
took the form: 
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Cost(x) = Ax b/(1+x/c)                                                          (5)
Where:
 Cost(x) = cumulative average cost per unit
               A = theoretical cost of the first unit
                x = cumulative number of units produced
                b = Wright’s learning curve constant as described  

       in Equation 2
                c = decay value (positive constant)

The function that modifies the traditional learning curve exponent in 
Equation 5—i.e., 1+x/c – has a key characteristic—ensures that the rate of 
learning associated with traditional learning curve theory decreases as 
each additional unit is produced. Specifically, 1+x/c is always greater than 
1 since x/c is always positive. Note that c is an estimated parameter and x 
increases as more units are produced, so the term x/c is decreasing. When 
c is large, Boone’s learning curve would effectively behave like Wright’s 
learning curve. For example, if the fitted value of c is 5,000, then 1+x/c equals 
1.0002 after the first unit has been produced and 1.004 after the twentieth 
unit has been produced. This equates to a decrease in the learning rate of 
the traditional theory (i.e., b) of less than 0.07%. More formally, as c goes to 
infinity, b/(1 + x/c) goes to b.
Note that the previous discussion assumed that b was the same value for 
both Wright’s and Boone’s learning curve to help demonstrate the f lat-
tening effect. In practice, nothing precludes each of the learning curves 
from having different b values. For instance, if we desire a learning curve 
that possesses more learning early in production and less learning later in 
production (compared to Wright’s curve), then the b parameters could be 
different—this was shown in Figure 1. In this case, Boone’s curve would have 
a b value less than Wright’s curve (i.e., a more negative value representing 
more learning). Then the flattening effect of dividing by 1+x/c as production 
increases would eventually result in a curve with less learning than Wright’s 
curve. For example, consider an 80% Wright’s learning curve and a Boone’s 
learning curve that initially has 70% learning and a decay value of 8; by the 
eighth production unit, Boone’s curve would be at 82% learning.

Population and Sample 
To test the new learning curve in Equation 5, we looked at quantitative 

data from several DoD airframes to gain a comprehensive understanding of 
how learning affects the cost of lot production. The costs used in this anal-
ysis are the direct lot costs and exclude costs for items such as Research, 
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Development, Test, & Evaluation (RDT&E), support items, and spares. 
These data specifically include Prime Mission Equipment (PME) only as 
these costs are directly related to labor, and can be inf luenced directly 
through learning. To ensure we are comparing properly across time, we 
used inflation and rate-adjusted PME cost data for each production lot of the 
selected aircraft systems. The PME cost data were adjusted using escalation 
rates for materials using Office of the Secretary of Defense (OSD) rate tables, 
when applicable. We used data from fighter, bomber, and cargo aircraft, as 
well as missiles and munitions. This diverse dataset allowed comparison 
among multiple systems in different production environments. 

Data Collection 
Data used were gathered from the Cost Assessment Data Enterprise 

(CADE). CADE is a resource available to DoD cost analysts that stores 
historical data on weapon systems. Some of the older data also came from 
a DoD research library in the form of cost summary reports. The data used 
can be broken out by Work Breakdown Structure (WBS) or Contract Line 
Item Number (CLIN). For this research, the PME cost data were broken out 
by WBS element, then rolled up into top line, finished product elements and 
used for the regression analysis. In total, 46 weapon system platforms were 
analyzed (see Table).

TABLE. RESULTS

PROGRAM Wright's  
SSE

Wright's 
MAPE

Boone  
SSE

Boone  
MAPE

SSE 
Difference

MAPE 
Difference

Platform A 2.78E+08 5.3% 2.17E+08 4.8% -22% -10%

Platform B 4.88E+08 5.4% 4.90E+08 5.6% 0% 5%

Platform C 1.58E+07 10.8% 4.51E+05 2.1% -97% -80%

Platform D 6.56E+10 22.1% 6.02E+10 24.5% -8% 11%

Platform E 1.14E+09 6.2% 1.10E+09 5.6% -4% -9%

Platform F 1.94E+06 4.6% 1.95E+06 4.6% 0% 1%

Platform G 7.14E+08 13.6% 6.28E+08 12.9% -12% -5%

Platform H 5.49E+06 4.6% 5.00E+06 4.0% -9% -13%

Platform I 1.30E+09 18.6% 1.21E+09 23.8% -7% 28%

Platform J 7.90E+06 3.9% 6.12E+06 3.6% -23% -8%

Platform K 2.18E+07 6.0% 7.48E+06 3.2% -66% -47%

Platform L 1.06E+08 9.6% 1.05E+08 9.7% -1% 0%

Platform M 1.49E+07 10.7% 1.48E+07 13.4% 0% 26%

Platform N 9.92E+08 16.3% 7.67E+07 10.0% -92% -39%

Platform O 1.81E+08 13.0% 1.78E+08 14.0% -1% 7%
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TABLE. RESULTS (CONTINUED)

PROGRAM Wright's  
SSE

Wright's 
MAPE

Boone  
SSE

Boone  
MAPE

SSE 
Difference

MAPE 
Difference

Platform P 1.71E+07 6.3% 7.96E+06 4.7% -53% -26%

Platform Q 8.00E+06 10.1% 4.11E+06 7.6% -49% -25%

Platform R 1.48E+09 18.8% 1.31E+09 18.3% -12% -2%

Platform S 5.00E+07 6.2% 4.89E+07 6.1% -2% -2%

Platform T 4.01E+07 11.1% 5.45E+06 6.5% -86% -41%

Platform U 1.19E+06 8.8% 1.34E+06 7.8% 13% -11%

Platform V 1.60E+09 10.6% 1.74E+02 0.0% -100% -100%

Platform W 1.39E+09 6.4% 1.38E+09 6.4% -1% 0%

Platform X 7.61E+08 18.1% 3.18E-01 0.0% -100% -100%

Platform Y 6.81E+05 3.3% 1.10E+06 4.1% 4.1% 26%

Platform Z 2.12E+06 7.5% 1.57E+06 6.8% 6.8% -9%

Platform AA 2.66E+07 5.0% 2.73E+07 5.5% 5.5% 10%

Platform AB 1.48E+09 18.8% 1.31E+09 18.3% 18.3% -2%

Platform AC 3.81E+07 5.9% 2.45E+07 4.5% 4.5% -24%

Platform AD 3.03E+11 21.9% 1.34E+11 16.7% 16.7% -24%

Platform AE 1.04E+09 10.0% 1.03E+09 10.3% 10.3% 3%

Platform AF 9.01E+05 5.1% 6.94E+05 4.0% 4.0% -23%

Platform AG 8.20E+06 5.9% 1.77E+06 3.7% 3.7% -37%

Platform AH 6.40E+06 10.8% 6.11E+06 9.8% 9.8% -9%

Platform AI 1.47E+07 8.2% 5.22E+06 5.4% 5.4% -35%

Platform AJ 4.95E+07 10.0% 4.98E+07 10.7% 10.7% 6%

Platform AK 5.99E+07 19.8% 5.69E+07 20.4% 20.4% 3%

Platform AL 1.50E+10 12.9% 1.43E+10 14.8% 14.8% 15%

Platform AM 1.29E+07 5.5% 1.28E+07 5.4% 5.4% -3%

Platform AN 4.99E+06 3.7% 3.02E+06 3.4% 3.4% -9%

Platform AO 9.63E+07 21.9% 9.45E+07 21.5% 21.5% -2%

Platform AP 1.18E+06 3.1% 1.22E+06 3.4% 3.4% 7%

Platform AQ 2.77E+03 3.4% 1.19E-05 0.0% 0.0% -100%

Platform AR 1.84E+06 17.3% 1.82E+06 18.0% 18.0% 4%

Platform AS 3.27E+06 1.3% 1.09E+00 0.0% 0.0% -100%

Platform AT 1.98E+03 2.8% 1.19E+03 1.7% 1.7% -40%

Note. The actual names of each system and contractor have been removed and replaced  
           with a designator of Platform A…Platform AT.
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Analysis
Regression analysis was used to test which learning curve model was 

most accurate in estimating the data. The goal is to minimize the sum 
of squared errors (SSE) in the regression to examine how well a model 
estimates a given set of data. The SSE is calculated by taking the vertical 
distance between the actual data point (in this case lot midpoint PME cost) 
and the prediction line (or estimate) (Mislick & Nussbaum, 2015). This 
error term is then squared and the sum of these squared error terms is the 
value for comparing which model is a more accurate predictor. However, 
since an extra parameter is available in fitting the regression for the new 
model, it should be able to maintain or decrease the SSE in most cases. As 
previously mentioned, as the decay parameter in Equation 5 approaches 
infinity, Boone’s learning curve approaches Wright’s learning curve for-
mula. With this in mind, we also examined the Mean Absolute Percentage 
Error (MAPE). MAPE takes the same error term as the SSE calculation but 
then divides it by the actual value; then the mean of the absolute value of 
these modified error terms is calculated. By examining the error in terms of 
a percentage, comparisons between different types and sizes of systems are 
more robust. If Boone’s curve reduces both SSE and MAPE when compared 
to the SSE and MAPE of Wright’s curve, it would indicate the new model 
may be better suited for modeling learning and the associated costs. 
As stated previously, Wright’s learning curve is suitable for a log-log model. 
A log-log model is used when a logarithmic transformation of both sides of 
an equation results in a model that is linear in the parameters. As Wright 
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proposed, this linear transformation occurs because learning happens at a 
constant rate throughout the production cycle. If learning happens at a non-
constant rate (as in Boone’s learning curve), then the curve in log-log space 
would no longer be linear. This constraint means typical linear regression 
methods would not be suitable for estimating Boone’s learning curve; there-
fore, we had to use nonlinear methods to fit these curves. 

Specifically, we used the Generalized Reduced Gradient (GRG) nonlinear 
solver package in Excel to minimize the SSE by fitting the A, b, and c param-
eters from Equation 5. To use this solver, bounds for the three parameters 
had to be established. These are values that are easy to obtain for any data-
set, as they are provided by Microsoft Excel when fitting a power function 
or by using the “linest()” function in Excel. We used this as a starting point 
because Wright’s curve is currently used throughout the DoD. For the A 
variable, the lower bound was one-half of Wright’s A and the upper bound 
was 2 times Wright’s A. These values were used to give the solver model a 
wide enough range to avoid limiting the value but small enough to ease the 
search for the optimal values. Neither of these limits was found to be bind-
ing. For the exponent parameter b, we chose values between 3 and -3 times 
Wright’s exponent value. In theory, the value of the exponent should never go 
above 0 due to positive learning leading to a decrease in cost, but in practice 
some datasets go up over time and we wanted to be able to account for those 
scenarios, if necessary. Again, these values between 3 and -3 times Wright’s 
exponent value were never found to be binding limits for the model. Finally, 
for the decay parameter c, fitted values were bounded between 0 and 5,000; 
the 5,000 upper bound was found to be a binding constraint in the solver 
on several occasions. In practice, analysts could bound the value as high as 
possible to reduce error, but in the case of this research, we used 5,000 as 
no significant change was evidenced from 5,000 to infinity—relaxing this 
bound would have only further reduced the SSE for Boone’s learning curve. 

Statistical Significance Testing 
Once the SSE and MAPE values were calculated for each learning curve 

equation, we tested for significance to determine whether the difference 
between the error values for the two equations were statistically different. 
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Specifically, we conducted t-tests on the differences in error terms between 
Wright’s and Boone’s learning curve equations. This t-test was conducted 
for both SSE and MAPE values separately. A nonsignificant t-test indicates 
no statistically significant difference between the two learning curves.

Analysis and Results
The Table shows the SSE and MAPE values for both Wright’s and 

Boone’s learning curve for each system in the dataset. The last two columns 
are the percentage difference in SSE and MAPE between the two learning 
curve methods. This percentage was calculated by taking the difference 
of Boone’s error term minus Wright’s error term divided by Wright’s error 
term. Negative values represent programs where Boone’s learning curve 
had less error than Wright’s learning curve, and positive values represent 
programs where Wright’s curve had less error than Boone’s curve. 
Based on this analysis, we observed that Boone’s learning curve reduced 
the SSE in approximately 84% of programs and reduced MAPE in 67% of 
programs. The mean reduction of SSE and MAPE was 27% and 17%, respec-
tively. As previously mentioned, these values were based on using both 
learning curve equations to minimize the SSE for each system in the dataset. 
This is standard practice in the DoD as prescribed by the U.S. Government 
Accountability Office (GAO, 2009) Cost Estimating and Assessment Guide 
when predicting the cost of subsequent units or subsequent lots.

We conducted additional tests to determine if a statistical difference existed 
between the means of both curve estimation techniques. On average, pro-
grams estimated using Boone’s learning curve had a lower error rate (M = 
4.73, SD = 2.15) than those estimated using Wright’s learning curve (M = 
8.64, SD = 4.55). Additionally, the difference between these two error rates 
expressed as a percentage and compared to a hypothesized value of 0 (no 
difference) was significant, t(46) = -4.87, p < .0001, and represented an effect 
of d = 1.10. We then applied the same test to the difference in the MAPE val-
ues from Boone’s learning curve and Wright’s learning curve. On average, 
programs estimated using Boone’s learning curve had a lower MAPE value 
(M = .08, SD = .07) than those estimated using Wright’s MAPE value (M = 

The incompressibility factor represents 
the amount of automation in the 
production process, which limits how 

much learning can occur (Badiru et al., 2013). 
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.10, SD = .06). The difference between these two estimates has a mean of -.17, 
which translates to Boone’s curve reducing MAPE by 17% more on average. 
Additionally, the difference between these two error rates expressed as a 
percentage and compared to a hypothesized value of 0 (no difference) was 
significant, t(46) = -3.48, p < .0005, and represented an effect of d = .22. The 
results indicate that in both SSE and MAPE, Boone’s learning curve reduced 
the error, and that each of those values was statistically significant when 
using an alpha value of 0.05. 

Discussion
As stated previously, an average of a 27% reduction in the SSE resulted 

from among the 46 programs analyzed. These results were statistically 
significant. Also, a 17% reduction in the MAPE resulted from among the pro-
grams analyzed, which was also found to be statistically significant. Based 
on these results, we can conclude that Boone’s learning curve equation 
was able to reduce the overall error in cost estimates for our sample. This 
information is critical to allow the DoD to calculate more accurate cost esti-
mates and better allocate its resources. These conclusions help answer our 
three guiding research questions. Specifically, we were looking for the point 
where Wright’s model became less accurate than other models. We found 
that adding a decay factor caused the learning curve to flatten out over time, 
which resulted in less error than Wright’s model. Additionally, we found that 
Boone’s learning curve was more accurate throughout the entire production 
process, not just during the tail end when production was winding down. 
Boone’s learning curve was steeper during the early stages of production 
when it’s hypothesized that the most learning occurs. Toward the end of the 
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production process, Boone’s curve flattens out more than Wright’s curve, 
supporting our contention that learning toward the end of the production 
cycle yields diminishing returns. While Wright’s curve assumes constant 
learning throughout the entire process, Boone’s curve treats learning in a 
nonlinear fashion that slows down over time. By reducing the error in the 
estimates and properly allocating resources, the DoD could potentially 
minimize risk for all parties involved. The benefit of Boone’s learning curve 
is accuracy in the estimation process. If labor estimates aren’t accurate in 
the production process, risks escalate, such as schedule slip, cost overruns, 
and increased costs for all involved. Accuracy in the cost estimate should 
be the goal of both the contractor and government, thereby facilitating the 
acquisition process with better data.

Limitations 
One limitation of this study is that all 46 of the weapon systems ana-

lyzed were U.S. Air Force systems. While the list included many platforms 
spanning decades, we hesitate to draw conclusions outside of the U.S. Air 
Force without further research and analysis. That said, we see no reason 
our model wouldn’t apply equally well in any aircraft production environ-
ment, both within and outside the DoD. Another limitation in this research 
is the use of PME cost as opposed to labor hours. Labor-hour data are not 
readily available across many platforms, which led to the use of PME cost. 
Contractor data provided to the government normally come in the form of 
lots, which is the lowest level tracked by cost estimators. To compare learn-
ing curves across multiple platforms, the same level of analysis is required 
to ensure a fair comparison. Future research should attempt to examine 
data at the individual level of analysis between systems and exclude those 
where only lot data are available. Because there are inherently less lots than 
units, this may affect how the equation behaves when applied at the unit 
level. For this research, we used the lot midpoint formula/method (Mislick & 
Nussbaum, 2015), but further research should be conducted to evaluate the 
performance of Boone’s learning curve with unitary data. Finally, we only 
performed a comparison to Wright’s learning curve since that is a primary 
method of estimation in the DoD. A comparison with other learning curve 
models may yield different results, although previous research found those 
curves were not statistically better than Wright’s.

Future research should identify decay 
values for different types of weapon 
systems—similar to the way learning 

curve rates are established for different categories 
of programs. 
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Recommendations for Future Research 
Data outside of the U.S. Air Force should be examined to test whether 

this equation applies broadly to programs, and not just to Air Force pro-
grams. Also, conducting the analysis with unitary data could confirm that 
this works for predicting subsequent units as well as subsequent lots, while 
reducing error over Wright’s method. We also made an attempt to select 
weapon systems that had minimal automation in the production process. 
However, DeJong’s Learning Formula is another derivation from Wright’s 
original in which an incompressibility factor is introduced. The incom-
pressibility factor represents the amount of automation in the production 
process, which limits how much learning can occur (Badiru et al. 2013). 
Other models such as the S-Curve model (Carr, 1946) and a more recent 
version (Towill, 1990; Towill & Cherrington, 1994) also account for some 
form of incompressibility. Additional research could also include modifi-
cations to Boone’s formula to try and further reduce the error types listed 
in this research. Furthermore, fitting Boone’s curve in this analysis was 
based on past data whereas cost estimates are used to project future costs. 
Therefore, future research should identify decay values for different types 
of weapon systems—similar to the way learning curve rates are established 
for different categories of programs. Lastly, further research could examine 
whether the incorporation of multiple learning curve equations at different 
points in the production process would be beneficial to reducing additional 
error in the estimates.

We developed a new learning curve equation utilizing the concept of learn-
ing decay. This equation was tested against Wright’s learning equation to 
see which equation provided the least amount of error when looking at both 
the SSE and MAPE. We found that Boone’s learning curve reduced error 
in both cases and that this reduction in error was statistically significant. 
Follow-on research in this field could lead to further discoveries and allow 
for broader use of this equation in the cost community.  
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