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AFTT/GCS/ENG/97D-5 

Abstract 

Existing missile/target encounter modeling and simulation systems focus on improving 

probability of kill models. Little research has been done to visualize these encounters. These 

systems can be made more useful to the engineers by incorporating current computer graphics 

technology for visualizing and animating the encounter. Our research has been to develop a 

graphical simulation package for visualizing both endgame and full fly-out encounters. Endgame 

visualization includes showing the interaction of a missile, its fuze cone proximity sensors, and its 

target during the final fraction of a second of the missile/target encounter. Additionally, this 

system displays dynamic effects such as the warhead fragmentation pattern and the specific 

skewing of the fragment scattering due to missile yaw at the point of detonation. Fly-out 

visualization, on the other hand, involves full animation of a missile from launch to target. 

Animating the results of VisSim fly-out simulations provides the engineer a more efficient means 

of analyzing his data. This research also involves investigating fly-out animation via the World 

Wide Web. 
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Visualization and Animation of a 

Missile/Target Encounter 

1. Introduction 

1.1 Overview 

Maximizing the probability of kill (Pk) in a missile-target engagement is an important 

element in the Air Force's primary goal of obtaining and maintaining air superiority. It affects 

our performance in aerial combat. Therefore, we must pay careful attention to technology which 

holds promise for improving the design of air-to-air missiles. 

Computer simulation has proven effective in providing an economic means of predicting 

the results of real world events. For example, the Air Force Armament Laboratory uses computer 

simulation to provide engineers an economical means of evaluating a warhead's effectiveness 

against its target during and endgame1 scenario. Computer simulation is also used to model the 

full fly-out of a missile from launch to detonation. The information obtained from these 

missile/target simulation tools currently assists engineers in the Armament Laboratory in 

designing missile guidance, fuzing, and warhead components. Furthermore, these automated 

tools are helpful in identifying necessary improvements in offensive and defensive weapon 

systems. Specifically, target damage predictions are useful in analyzing optimal munitions 

quantity, delivery platform, and tactics [Shirley93:1]. Many of these systems were developed 

during the 70's and mid 80's and are still being used today. Some provide graphical feedback of 

the simulation results; however, the graphics are very rudimentary and limit the tools' 

effectiveness. The existing simulation systems can be made more useful to the engineer by 



providing capabilities for graphically visualizing their results. 

Humans assimilate graphical information more efficiently than its textual and numerical 

equivalents. Current trends in usability engineering include information visualization as one 

element in increased software effectiveness and overall user productivity [Nielson93] [Marcus, et 

al 93]. Also, advances in computer graphic technology make scientific visualization possible. 

This technology should be applied to the visualization of missile/target encounters. Work to do 

so began in 1996 by Lt. Joseph Moritz, a graduate student at the Air Force Institute of 

Technology (AFTT) [Moritz96]. The result of his research was of the AFIT Missile Endgame 

Simulation program (AMES), a three-dimensional endgame visualization tool built on the Silicon 

Graphics Inc. workstation platform (SGI).  This research advances Moritz's efforts by creating 

the AFTT Missile Visualization System (AMVS), an improved visualization and animation 

system for the endgame as well as full fly-out encounters. 

1.2 Summary of Current Knowledge 

From the 1970's until now, several software packages have been written to simulate a 

missile/target encounter. Most of these software systems focus on accurate modeling of real- 

world physics and not on the graphical display of the simulation results. Oftentimes, a lack of 

computational power combined with the large amount of modeling data made graphical display 

of the endgame impractical. The following sections summarize previous efforts to visualize 

endgame simulation. For a more complete discussion of endgame simulation software see 

[Mortiz96:2-1..2-12]. 

1.2.1 FASTGEN 

FASTGEN, developed in the 1970's, was one of the first endgame simulation systems. It 

was designed to calculate warhead fragmentation trajectories as they intersect an intricate target 

1 An endgame is defined as the final milliseconds of a missile/target encounter. 
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model, keeping track of which target components each fragment intersects. Part of FASTGEN's 

development involved the creation of an intricate target model format for accurately depicting 

aircraft. The FASTGEN target model involves multiple base primitives including spheres, 

cylinders, donuts, boxes, wedges, rods, and triangles. Several aircraft (both friendly and hostile) 

have been modeled using the FASTGEN format. As a result, most of the endgame systems 

available today use FASTGEN target models directly, or models converted from FASTGEN to a 

format containing all triangles. 

1.2.2 PLOT5 

PLOT5 displays FASTGEN files and was written primarily as a tool for debugging target 

models. It is capable of displaying the set-up encounter of a simulation, the orientation of the 

missile and target. PLOT5 uses two dimensional cross sections of the target to display 

component damage [Moritz96:2-3][Cramer85:B-9]. 

1.2.3 rVAVIEW 

rVAVIEW is an X-Windows application capable of running on an SGI. rVAVIEW 

displays FASTGEN files, showing the entire target and missile models in three dimensions. The 

wireframe models can be views from various directions, and target component visibility options 

are provided to the user [Moritz96:2-3,4][SURVICE92]. 

1.2.4 ENCOUNT 

Engineers need a means of visualizing an endgame scenario; specifically, they must 

know how a missile and target are oriented and see their relative flight paths. ENCOUNT is a 

FORTRAN program which takes endgame parameters from an ENCOUNT file, along with 

FASTGEN target and missile models, and produces a third FASTGEN file containing the target 

and missile oriented according to the endgame parameters along with lines representing relative 

trajectories. This file is then examined with IV A VIEW. 
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1.2.5 OPEC 

The Ordnance Package Evaluation Code (OPEC) is the most recently developed endgame 

simulation system. OPEC was written for the IBM PC; its calculations have a number of 

improvements over previous simulation systems (see [Moritz96:2-7]). Although OPEC provides 

a more accurate simulation of a missile/target engagement, it's results suffer from a poor 

graphical display, because its PC platform does not have the computer graphics power to display 

the abundant model data. 

1.2.6 AMES 

Engineers like OPEC because it provides a more realistic calculation of target probability 

of kill (pk). However, they need better images of the encounters. The AFTT Missile Endgame 

Simulation program was implemented to display OPEC simulation results. With AMES, the 

engineers are able to view the orientation and position of the missile and target for the given 

encounter. It also displays OPEC's warhead burst point, target component damage, and warhead 

fragmentation fly-out velocities. Furthermore, AMES displays encounters based on endgame 

parameters found in an ENCOUNT file and attempts to animate the motion of the missile and 

target. Finally, AMES displays multiple fixed fuze-cone sensor patterns. 

AMES was a good initial attempt at visualizing an endgame scenario; however, several 

major improvements can be made on existing features, and new capabilities must be added to 

make it useful for all endgame analysis activities. 

Improvements on existing features include complete re-engineering of animation to 

correct the missile and target flight path, give the user more control over the animation, provide 

feedback as to current simulation time and target and missile positions, improve rendering 

performance, and provide more fidelity. AMES is limited in its ability to provide complete 

fidelity and control due to its underlying implementation.. Second, although AMES properly 

color codes internal target components based upon pk damage values calculated by OPEC, these 
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cannot be seen due to conclusion from the aircraft skin, plus the target damage color code scheme 

should be modified to improve visualization [Tuft90:82,91]. Third, a different method for 

visualizing warhead fragmentation needs to be applied (including animation) [Cunard97]. 

Fourth, calculations for orienting the target and missile based upon parameters found in OPEC 

and ENCOUNT files need to be corrected. Fifth, a better technique should be implemented for 

visualization of inter-object spatial relationships, rather than using multiple one-point perspective 

projections [Wagner92] [Herndon92]. Lastly, AMES user-interface needs to be modified to 

increase usability. 

At the completion of Moritz's research, some of the original requirements were left 

incomplete and are listed here [Moritz96:6-3]: 

1. Visualize warhead fragmentation pattern skewing. 

2. Provide multiple coordinate center feedback options. 

3. Provide velocity vector orientation feedback relative to the model. 

4. Provide speed control over the simulation. 

5. Provide feedback on time passed during the simulation. 

In addition, Moritz provides a list of recommendations for future work [Moritz96:6-3]: 

1. Modifiable levels of detail. 

2. Saving a simulation to disk, allowing the user to save her work and return to it later. 

3. Capability to change simulation speed. 

In addition, early system prototypes and interviews with the engineers have revealed the needs for 

the following requirements: 

1.   Animation of the entire endgame scenario, including fuze-cone sensor target 

detection, warhead fragmentation fly-out and fragmentation-target intersection based 

upon SHAZAM2 simulation results. 

2 SHAZAM is missile endgame simulation tool for calculating pk based upon fragmentation hits on a target. 
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2. Ability to create, edit, visualize and save the information within an ENCOUNT file. 

3. Target component-group visibility and skin transparency control. 

4. More control over the current view including position and orientation feedback 

relative to the target, and the ability to save and restore multiple views. 

5. Ability to animate full missile fly-out simulations as produced by VisSim3. 

1.3 Thesis Statement 

It is clear from the preceding summary of endgame visualization systems that there 

remains ample opportunity for improvement and a definite need for new for new capabilities. 

This research explores these areas by discovering and implementing techniques for 

1. Visualizing the fragmentation fly-out skewing phenomenon 

2. Animating an endgame encounter from target detection to warhead detonation and the 

target/fragmentation intersection 

3. Animating full fly-out simulations 

4. Visualizing three dimensional inter-object spatial relationships on a two-dimensional 

display. 

5. Providing the engineer complete control over the simulation time while being able to 

view the animation from any angle. 

1.4 Scope 

1.4.1   Research 

This research is limited to providing engineers graphical capabilities for visualizing and 

VisSim is a modeling and simulation system for simulating the full path of the missile from launch to target. 
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animating missile/target encounters. This research will not involve modeling missile flight 

behavior in full fly-out simulations, or pk calculations for endgame scenarios. 

1.4.2 Equipment 

The primary development environment is a Silicon Graphics (SGI) workstation running 

UNIX, X-Windows, and Motif. Various graphical libraries are also available and are discussed 

further in Chapter m. Additional prototypes for animating VisSim results will be developed on 

both the SGI and the PC. Developed prototypes written will be portable to both platforms (see 

Section 5.7 for more details). 

1.4.3 Methods for Enhanced Software Quality 

Because this research includes software development, methodologies for enhancing 

software quality were incorporated. The intent was to create stable, maintainable, extendible and 

efficient software. Chapter HI discusses these methodologies and how they are used to meet 

these intentions. 

1.5   Thesis Presentation 

The remainder of this thesis is divided into five chapters. Chapter II presents background 

information relevant to this thesis. In particular, it describes the three key components in an air- 

intercept missile: guidance, fuze, and warhead, and then briefly discusses the relevant 

missile/target simulation systems which preceded my research. Chapter HI discusses the 

selection of programming language and graphical library, and introduces the software 

development methodologies I followed during this research. Chapter IV outlines design 

decisions regarding three-dimensional visualization, user interface, software library selection, and 

software architecture. In Chapter V, I first present the AMVS' implementation from the user's 

perspective, presenting its features and capabilities while tying these to the engineer's needs 
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outlined in Chapter II. The second part of Chapter V highlights some of AMVS' underlying 

implementation. Finally, Chapter VI summarizes this research, identifying its specific 

contributions to the field, and proposes recommendations for future work. 
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2. Background 

2.1 Introduction 

This chapter begins with a brief description of air intercept missiles which includes a 

discussion of the guidance, warhead, and fuze components followed by explanation of a 

phenomenon known as skewed fragmentation fly-out and its effects on air intercept missile 

performance. Next, I discuss a brief history of computer based simulation of missile/target 

encounters. This discussion includes a description of Lt. Joseph Moritz' implementation of the 

ART Missile Endgame Simulation (AMES). Finally, I discuss the engineer's need for a briefing 

and training tool to explain some of the concepts outlined in this chapter. 

2.2 Air Intercept Missiles 

2.2.1 Missile Guidance Component 

The guidance component's primary objective is to navigate the missile to intercept a 

target directly. A miss occurs when the guidance is unable to turn the missile tightly enough to 

intercept the target on final approach [Mack87:2,14]. When a direct intercept cannot be achieved, 

the guidance component's secondary objective is to minimize the miss distance between the 

missile and target in order to increase the effectiveness of the missile's warhead against the target. 

2.2.2 Missile Warhead Component 

The missile warhead projects fragmentation perpendicularly from the missile's 

longitudinal axis in an effort to kill a target during a miss. The warhead plane (centered at the 
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warhead, perpendicular to the longitudinal axis) defines the fragmentation flight path relative to 

the missile (see Figure 2-1). The actual fragmentation flight path is found by adding the lateral 

fly-out velocity vector with the missile's velocity vector. When timed correctly, fragmentation 

will intersect the target at the point where the target passes the warhead plane [Cunard97]. 

Warhead plane 

Point of burst 

Miss 
Distance 

Warhead's Lateral 
Flyout Vector 

^-   Missile Velocity Vector 

Point of Interception 
(Point at which the target 

passes the warhead plane) 

Resultant Fragment 
Flyout Vector 

Figure 2-1: Warhead Fragmentation Fly-out 

Missile warheads can be directional or isotropic. Directional warheads project 

fragmentation out one side of the missile, depending upon where the target is at the point of 

detonation [Cunard97]. Isotropic warheads send an expanding "ring" of fragmentation in all 

directions from the missile. Over time, this, expanding ring creates a conical pattern due to 

forward momentum of the warhead at the time of burst. This characteristic will be referred to as 

the fragmentation pattern cone throughout the rest of this document. 

2.2.3   Missile Fuze Component 

The fuze component determines when to detonate the warhead.  The fuze component 
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makes this decision based upon information known about the target's proximity, relative velocity, 

and vulnerable point (aimpoint) along with the predicted fragmentation pattern cone [Kobaz74:9]. 

The fuze component consists of a proximity sensor to detect proximity, relative velocity and 

aimpoint of the target, and the fuzing algorithm (or fuzing logic) to calculate the time of burst. 

This thesis focuses on fixed-cone proximity sensors. The fixed-cone fuze uses a high 

gain conical beam antenna with 360 degree azimuth coverage to detect a target. The antenna is 

fixed at a specified elevation angle. The antenna elevation angle and sensor range define the 

sensor cone. A target passing through this cone is detected by the fuze, which in turn triggers the 

fuzing logic. A target approaching at an encounter angle greater than the antenna elevation angle 

will not be detected by the fuze. As a result, no detonation will take place (see Figure 2-2). 

Widening the elevation angle can increase the range of detection; however, as seen in the next 

paragraph, this can adversely effect the ability of the fuzing logic to calculate the warhead 

detonation time. 

Actual Velocities 

Relative Velocity 

a - Antenna Angle 
ß = Encounter Angle 

Figure 2-2: Antenna/Encounter Angle 

2-3 



The fuzing logic uses the fragmentation pattern cone and detected target distance, relative 

velocity, and aim-point to calculate the time-to-burst. The time-to-burst (also called the timing 

delay) is the delay between target detection and warhead detonation (see Figure 2-3). 

intercept 
point 

time-to- 
burst point     bmt 

target 
detection 
point 

relative 
velocity 

fuze antenna 
elevation angle 

missile velocity 

fuze sensor pattern 

Figure 2-3: Time-to-burst 

The objective of the fuzing logic is to calculate the optimal time-to-burst to achieve the highest 

coverage of fragmentation on the target at its most vulnerable point. If the fuzing logic calculates 

a negative time-to-burst (occurring in high-speed head-on encounters), the warhead will not 

detonate. A negative time-to-burst is calculated when the target intercepts the fuze cone after the 

optimal point of burst (see Figure 2-4). This can be alleviated by lowering the antenna elevation 

angle. 
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• Time-to-burst estimate varies as a function of closing velocity 

Higher closing velocity results in 
a negative time-to-burst. 

Figure 2-4: Negative time-to-burst 

Obvious trade-offs exist when selecting an antenna elevation angle for fixed-cone fuze 

proximity sensors. Selecting a high elevation angle will allow the fuze cone to detect targets 

approaching from larger encounter angles, while lower elevation angles allow the fuze cone to 

detect high speed head-on targets early enough to calculate a positive time-to-burst. Engineers 

must find a valid setting for fixed-cone antenna, or search for alternative proximity sensing 

techniques. A technique under consideration is the use of multiple fixed-cone fuzes mounted on a 

single air-intercept missile. 

2.2.4   Skewed Fragmentation Pattern Cone 

A phenomenon known fragmentation pattern cone skewing affects the performance of the 

fuze sensor and warhead. Skewing of the fragmentation pattern cone results when the missile is 

performing a hard bank at the time of warhead detonation. A missile with a yaw or pitch value at 
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detonation will not have its longitudinal axis in line with its flight path. Combining warhead 

fragmentation fly-out velocity Gateral to the missile) with the missile's actual flight path results i 

a cone that is not centered on the missile's longitudinal axis (see Figure 2-5). The cone is rather 

"skewed" towards the flight path. 

m 

Warhead 
Plane 

 3-D Skewed-Cone, 
Fragementation 

i      fly-out pattern. 

Missile flight path 

Figure 2-5: Fragmentation fly-out's skewed cone 

The fuzing logic does not take into account the skewing of the fragmentation pattern cone 

when calculating the time of burst. As a result, an error in calculation occurs when the missile 

has a yaw or pitch at the point of detonation. 

2.3   Computer-Based Simulation 

The following sections describe a subset of current computer based simulation systems as 

applicable to my research. For a more in-depth discussion of simulation systems, see [Moritz96]. 
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2.3.1    FASTGEN 

FASTGEN is a simulation system for calculating the effects of warhead fragmentation on 

a target model. FASTGEN derives its name from SHOTGEN, a computerized mathematical 

model of fragmentation analysis using a "shotline" method to predict damage to a 

target[Cramer85:1-1]. FASTGEN improves upon SHOTGEN by decreasing processing time. A 

target model file format has been developed specifically for FASTGEN and is used by other 

simulation systems as well. The FASTGEN target model uses multiple primitives to define 

intricate aircraft components. These primitives include spheres, cylinders, donuts, boxes, 

wedges, rods, and triangles [Sherly93:23], Aircraft components in the FASTGEN format are 

numbered according to their structural or functional groupings as seen in Table 2-1. 

Table 2-1: Target Component Groups 

Component   ;t 
..;.Number',-,'. ;^f. 

Description 

0000-0999 Skin and other external covers 

1000-1999 Power Plant and Accessories 

2000-2999 Crew 

3000-3999 Flight Control System and Hydraulics 

4000-4999 Fuel System 

5000-5999 Ammunition (include Bombs) and Missiles 

6000-6999 Armament 

7000-7999 Stringer, Ribs, and Structural Members Airframe 

8000-8999 Fire Directional System and Avionics 

9000-9999 Miscellaneous 

2.3.2   SHAZAM 

SHAZAM, created after FASTGEN, is a statistically improved endgame simulation 

system [Coffield86]. SHAZAM runs its simulations against FASTGEN target files that have 
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been converted entirely to triangles. Results produced by SHAZAM are viewed in a program 

called FLYOUT. FLYOUT shows the scenario set-up and displays warhead blast fragmentation 

patterns as an expanding ring formation from the burst point [Coffield86:1,10-11]. Simple 

wireframes are used to represent the target and missile. As a result, the graphical display is 

insufficient in revealing how the fragmentation intersects the target [Moritz96:2-5,6]. 

2.3.3 rVAVIEW 

IVAVIEW is an X-Windows application built for an SGI workstation. IVAVIEW 

displays FASTGEN target models three-dimensionally. Since Moritz' writing, a few 

modifications have been made to IVAVIEW. These include transparency settings on selected 

target components, an "outline" display of the external skin, and ability to edit the target model 

directly within IVAVIEW. 

2.3.4 ENCOUNT 

Each endgame scenario is unique in its placement and orientation of the missile, target 

and relative flight paths and is defined by a series of vectors, velocities, and orientations values. 

ENCOUNT was written to assist engineers in creating and visualizing an endgame scenario. 

ENCOUNT takes a file containing endgame parameters and creates a single FASTGEN model 

file containing both a missile and target oriented according to these parameters. Visible relative 

velocity vectors are included and are displayed as lines extending through the missile and target. 

This file is then viewed using IVAVIEW. Examining an endgame scenario requires the engineer 

to edit an ENCOUNT file, run this file through ENCOUNT, and view the output using 

IVAVIEW. After viewing the FASTGEN file, the engineer must exit IVAVIEW before he can 

edit the ENCOUNT file again. This process can be made more efficient by creating a single 

application for editing, viewing, and saving an endgame file. 
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2.3.5 OPEC 

The Ordnance Package Evaluation Code (OPEC), developed for the IBM PC, is the most 

recently developed endgame simulation system [PMC], OPEC also uses FASTGEN target 

models which have been converted to another format, GEORGE. The GEORGE format contains 

all triangles.  OPEC has a number of improvements over SHAZAM for simulating a 

missile/target endgame encounter and calculating pk [Moritz96:l-6]. Although OPEC provides 

a more statistically accurate/?& calculation, its results are poorly displayed. Its three dimensional 

display shows wireframe target and missile models and target damage displayed as red asterisks. 

Since it is developed for the PC, it suffers from poor rendering performance and limited 

resolution. 

The results produced by OPEC are numerous and complicated. A graphical tool for 

visualizing these results would make OPEC more valuable to the engineers. Visualizing this data 

provides the engineer a more efficient and complete means of assimilating and comprehending 

simulation results. 

2.3.6 VisSim 

VisSim is a PC based application for simulating the full flight of an air intercept missile 

from launch to target (a fly-out). Upon completion of a simulation, VisSim outputs a file 

containing the full flight path of the missile and target. Currently, only a two dimensional view 

of these results are available to the engineers. The engineer needs to know the missile's full path 

as well as orientation at specific points along that path. He must also be able to comprehend 

timing issues between a moving target and missile. This simulation application can be made 

more informative by providing a three-dimensional visualization and animating the results. 

Animating the missile's flight path helps the engineers understand timing issues between the 
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missile and target as well as missile orientation throughout the flight path. Furthermore, a three- 

dimensional display of the flight path provides the engineer an efficient means of evaluating 

simulation results. 

The sponsor has expressed interest in viewing this animation on a PC as well as an SGI. 

This research explores technologies for displaying fly-out results on both platforms. This 

exploration includes extending AMVS to display VisSim results along with the creation of two 

prototypes, one written in C++ using OpenGL for graphical rendering, and one written in Java 

using the Virtual Reality Modeling Language (VRML) for graphical rendering. These prototypes 

will run on both the SGI and PC platform. Chapter V presents the implementation of these 

prototypes and discusses the trade-offs between them. 

2.3.7   AMES 

Previous research by Moritz for the Wright Laboratory Armament Directorate 

(WL/MNMF) resulted in the AFJT Missile Endgame Simulation (AMES). AMES was written to 

investigate techniques for improving endgame graphical feedback by creating a three dimensional 

view of an endgame simulation. It has the ability to load and view endgame parameters found in 

OPEC and ENCOUNT files. AMES is also the first graphical tool to attempt animating the 

motion of the missile and target during an endgame. AMES also displays fixed fuze cone sensor 

coverage patterns. See [Moritz96] for more detail on AMES' capabilities. 

AMES was a good initial step toward providing graphical capabilities for endgame 

visualization; however, there are several areas which need improvement and some necessary 

capabilities were altogether lacking. The identification, design, implementation, and evaluation 

of these areas constitute the bulk of my research and are covered in detail in Chapters IV and V. 

Nevertheless, I've included the following overview for easy reference. The following section 

2-10 



discuss additional major and minor requirements for missile visualization, as well as major and 

minor improvements on existing features. 

2.4   Requirements for Missile Visualization 

2.4.1   Major Additional Capabilities 

2.4.1.1 Visualizing the Fragmentation Fly-out Skewed Cone 

The fragmentation fly-out cone skewing phenomenon, as discussed above, effects the 

performance of air-intercept missiles. Engineers currently have no graphical tool for dynamically 

visualizing this phenomenon. A visualization tool would assist the engineers in better 

understanding fly-out cone skewing and thereby assist in discovering solutions to combat its 

effects. Also, such a tool would be valuable in briefing others on this problem. As engineers 

come up with solutions to this problem, they will also need to communicate the problem and their 

solution to decision makers [Cunard97]. 

2.4.1.2 Full Animation of an Endgame Scenario 

Currently there exists no three-dimensional graphics tools for animating the full endgame 

scenario. Animation should include visualizing fuze-cone target detection, warhead 

fragmentation fly-out, and fragmentation-target impacts as produced by SHAZAM. Such an 

animation tool not only helps the engineers understand timing issues and missile/target interaction 

during an endgame, it also provides an improved method for communicating endgame concepts 

to people not familiar with them. 
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2.4.1.3 Visualization and Animation of Full Fly-out Simulation Results 

As stated before, engineers currently have no three-dimensional tool for visualizing and 

animating VisSim fly-out simulation results. The lack of such a tool makes assimilation of these 

results difficult. Engineers need to be able to understand the missile's flight path in relation to the 

target, as well as its orientation throughout the flight. 

2.4.1.4 Fixed Fuze-cone Attribute Experimentation 

AMES was implemented to allow the engineer to visualize fixed fuze cone sensor pattern 

coverage based upon antenna azimuth and range attributes specified in a FUZE file. Engineers 

need an environment for not only visualizing this sensor coverage but also for experimenting with 

fuze cone antenna azimuth and range settings all within a single graphical application. 

2.4.2   Minor Additional Capabilities 

2.4.2.1 Endgame Scenario Creation 

As stated in Section 2.3.4, engineers need an efficient means of creating an endgame 

scenario. Although AMES was implemented to load an ENCOUNT file, no effort was made to 

allow for saving or creating new ones. As a result, engineers are still left editing these files by 

means of a text editor. The task of creating an endgame scenario would be more efficient by 

creating a single environment with a graphical display of the results complete with GUI interface 

for parameter entry. These modifications should then be written out to a user specified 

ENCOUNT file. 

2.4.2.2 Modifiable Levels of Detail 

To improve performance while still providing high fidelity models, Moritz suggests the 
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implementation of user modifiable levels of detail (LOD) with future versions of AMES 

[Mortiz96:6-3]. This will allow the user to choose between efficiency and accuracy. During 

some tasks, such as examining target/fuze-cone interaction, lower fidelity in target and missile 

models may suffice. During briefings, improved rendering may be more desirable. As a result, 

target and missile level models using various levels of detail are required. 

2.4.2.3 Saving a Simulation 

AMES could provide a more efficient development environment by allowing the 

engineer to save her work and return to it later. At a minimum, saving the simulation setup 

should include such information as the currently selected missile and target models as well as the 

current ENCOUNT or OPEC file. 

2.4.2.4 Visualized Missile and Target Velocity Vectors 

AMES displays relative velocities; however it does not provide visual feedback as to the 

missile and target's actual flight path. Displaying these flight paths assists understanding of 

missile/target interaction. Displaying the missile's actual flight path is especially necessary when 

examining fragmentation fly-out skewing. Recall that the fragmentation fly-out cone is centered 

around the missile's flight path and not around the missile's longitudinal axis. Visualizing the 

actual flight path is necessary to completely understand the skewing phenomenon. 

2.4.2.5 Target component group visibility. 

Each target consists of several hundred components. To reduce scene complexity, 

rVAVIEW provides the user the ability to set component group visibility. This is a useful feature 

and should be included in any prototype. 
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2.4.2.6 View Control 

To further understand the scenario, engineers should be given current view position and 

orientation feedback relative to the target. Also, the engineer should be able to save and restore 

key viewpoints. 

2.4.2.7 Rendering Scene Image Capturing 

Tools supporting training and briefing should be able to capture their rendering scenes 

and save them to user-specified image files. These image files can then be incorporated into 

briefing slides or training manuals. 

2.4.3   Major Enhancements to Existing Features 

2.4.3.1 Corrected Endgame Scenario Calculations 

AMES contains a few calculation errors when displaying an endgame based upon 

parameters found in ENCOUNT and OPEC files. Incorrect calculations include the miss-placed 

visible target coordinate system, arbitrary point on the missile, and visual display of velocity 

vectors as well as the miss-calculated missile center of rotation and direction of flight for missile 

and target during animation. These need to be corrected. 

2.4.3.2 Improved Rendering Performance 

AMES' rendering performance falls far below the suggested minimum frame rate of 10 

frames per second for smooth animation [Foley92:180]. Not only does this degrade the 

animation, it limits AMES' ability to show object positions with a sufficient time resolution due 

to its underlying implementation. Object positions at each frame are based upon a clock value, as 

a result the poor frame rate leads to loss of fidelity. Additionally, as new features are added in 

order to animate the full endgame scenario, this problem will be compounded. Therefore, 
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rendering performance must increase. 

2.4.3.3 Improved Animation Control User-Interface 

AMES user-interface limits the user. It needs to provide information feedback during the 

animation and more control over the simulation time. The engineers require feedback including 

the current simulation time along with current target and missile positions displayed in target, 

missile, or world coordinate systems. Positions should be displayed in inches or meters. The 

engineer also requires more control over the animation including animation speed control, target 

and missile motion relative to the target, missile, or world, and ability to easily move the 

animation to a specific point in time. 

2.4.3.4 Ability to View OPEC Target Damage 

During a simulation, OPEC calculates target component damage on internal components. 

Although AMES reads these results and colors the internal target component damage 

accordingly, these results are occluded by the aircraft skin and cannot be viewed easily. 

2.4.4   Minor Enhancements to Existing Features 

2.4.4.1 Inter-object Visualization Techniques 

In order to provide insight into inter-object spatial relationships, AMES provides three 

additional windows showing top, side and front views of the encounter to complement the main 

rendering window. My sponsors have shared disinterest in this approach. Moreover, better 

technique exists to highlight these relationships. Also, although using transparent cones to 

visualize fixed fuze cone sensor coverage patterns effectively shows target/cone relationships 

when the target is penetrating the cone, it is ineffective at times in revealing this relationship 
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when the target is positioned before or behind the cone. A separate inter-object visualization 

technique is required to help users mentally visualize target/cone relationships. 

2.4.4.2 Alternative Warhead Fragmentation Visualization 

AMES displays warhead fragmentation trajectories as lines emanating from the warhead 

origin point [Moritz96:4-17]. The sponsors have expressed disinterest in this approach. The 

preferred visualization technique involves an expanding ring or torus representing a mass of 

fragmentation emanating from the missile at a specific point in time. The expanding ring or torus 

more accurately models the actual fragmentation fly-out. This expanding ring should also be 

animated. 

2.4.4.3 Improved Target Damage Coloring Scheme 

Component damage produced by OPEC is represented by a scalar value ranging from 0.0 

to 1.0, with 1.0 representing complete damage. AMES visualizes this target component damage 

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of 

the ten increments. No color index table is provided. Additionally, information is lost when 

converting the scalar value to an integer ranging from one to ten. An improved coloring 

technique is required which does not loose information and more logically conveys damage 

amounts. 

2.4.4.4 Need for a briefing and training tool 

An additional reason for AMES development was to create a briefing and training tool 

for people unfamiliar with endgame simulation concepts.  AMVS' development should be done 

keeping this requirment in mind. AMVS will be used to inform upper levels of management on 

problem areas such as skewed fragmentation fly-out. AMVS will also be used to brief new 
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techniques in proximity sensing such as incorporating multiple fixed-fuzed sensors on a single 

missile. Animation of an endgame encounter provides an excellent means of illustrating the 

problems engineers face as well as fostering the understanding necessary to appreciate their 

solutions. 

2.4.4.5 Improved Usability and Stability. 

The sponsors found AMES unstable and difficult to use. Care should be taken on future 

development to ensure that applications delivered to the sponsor have increased usability and 

stability. 

2.5   Conclusion 

Engineers have a variety of systems for simulating missile/target encounters available to 

them. A great deal of computation is performed by these systems to predict the performance of 

air intercept missiles. These systems can be made more valuable to the engineers by enhancing 

the graphical display of simulation results. AMES was a first attempt at meeting this need; 

however, significantly more needs to be done. The rest of this thesis outlines what I have done. 

The next chapter introduces methodologies I use during the development process followed by a 

presentation of my design in Chapter IV. Chapter V shows AMES' implementation; finally 

Chapter VI presents contributions to the field of visualizing and animating missile/target 

encounters and makes recommendations for future work. 
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3. Methodology 

3.1 Introduction 

Developing high-performance, highly usable, robust three-dimensional graphical 

applications takes a variety of skills. One must keep abreast of current software technologies, 

understand graphic rendering and three-dimensional computation, be familiar with users tasks and 

needs, have a good understanding of human-computer interaction (HCI) and data visualization, 

and be skillful in programming and software engineering. This chapter summarizes methods I 

use in each of these areas and how they apply to the development of applications for visualization 

and animation of missile/target encounters. 

3.2 Research Process 

My research began with a literature search in the field of interest: missile/target 

simulation. The result of this study is shown in Chapter 2. In this and subsequent chapters, I turn 

my focus to the development of a graphical application for missile/target simulation using 

principles in HCI, data visualization, and software engineering as a guide. Finally, this effort 

explores some opportunities provided by recent advances in computer graphics and software 

development. 

3.3 Human Computer Interaction and Data Visualization 

My goal in developing the AFIT Missile Visualization System (AMVS) is to produce a 

three-dimensional application with a high degree of usability, and effectiveness for data 

visualization of a missile/target encounter. My philosophy of design is to create an environment 
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that provides an engineer with the temporal and spatial freedom to view, analyze and evaluate the 

performance of air-intercept missiles against hostile targets in a simple to use application. To do 

so, I apply current trends in HCI and data visualization. 

The Air Force Institute of Technology's graduate level graphics sequence includes studies 

in usability and HCI. Information obtained from course notes are applied in the design and 

development of AMVS' user interface. In particular, I apply principles and methods from Jakob 

Nielsen's book Usability Engineering [Nielson93]. The following methods are used: 

• User task analysis - getting to know the user [Nielson93:75]. 

• Vertical prototyping - full implementation of a few chosen features (vs. Horizontal 

Prototyping, reduced functionality in a more complete system) [Nielson93:18]. 

• Participatory design - continued feedback from the user [Nielson93:88]. 

• Interface evaluation and user testing - feedback from test users [Nielson93:165] Test 

users will include sponsors, fellow students and faculty. 

Applying methods of good data visualization techniques can be difficult. For this area, I 

rely on publications on the subject. One author in particular, Edward Tufte, has produced an 

excellent series on the subject [Tufte89][Tufte90][Tufte97]. 

3.4   Evaluation of Software Platforms 

Several software platforms are currently available within AFIT's computer graphics lab. 

For the scope of the projects at hand, I must choose between software development languages, 

and graphical rendering and user interface libraries. Evaluations of each are made primarily 

according to performance, capability, and ease of use. Results of this evaluation can be seen in 

Section 4.4. 
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3.4.1 Software Development languages 

AMVS was developed in C++, no evaluation of software development languages has 

been performed for its selection. C++ provides the ability to apply object oriented programming 

techniques [Stroustrup91] as well as providing ease of use and increased performance when 

working with existing graphical and windowing libraries. Open Inventor is written in C++, while 

Performer, X-Windows and Motif are written in C [OIAG94 ][IRIS95] [Nye92] [Heller92]. 

Introducing PC-based animation of VisSim results into my research, as mentioned in 

Section 2.4.6, provides me the opportunity to explore new technologies in graphical application 

development. In my evaluation, I examine the effectiveness of C++ against Java in this 

environment. Prototypes are written in both languages and an evaluation is made regarding 

performance, capabilities, ease of use, and portability. Results of this evaluation are shown in 

Section 5.7. 

3.4.2 Graphical libraries and languages 

AMVS graphical rendering was done using either Performer or Open Inventor.  AMES, 

currently written in Open Inventor, suffers from poor performance. Performer is known for its 

ability to maintain high rendering rates, and there for is considered as an alternative. The 

possibility exists, however, that AMES' poor performance is in its implementation, and not its 

choice of graphical libraries. To make an unbiased performance comparison, I evaluate simple 

missile/target animation prototypes using both libraries. While these prototypes are compared 

primarily by rendering frame rates, the decision includes issues such as the Application 

Programming Interface (API), and portability. 

Research in PC-based animation provides me the opportunity to explore new 

technologies in three-dimensional computer graphics. In particular, I examine the capability of 

OpenGL, VRML (Virtual Reality Modeling Language), and Java3D [Woo97][Ames97] to 
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provide visualization and animation of VisSim results. Although OpenGL is standardized across 

many platforms, thereby increasing portability, other forms of three-dimensional computer 

graphic display and interaction are possible. Such options include VRML and Java3D. VRML 

and Java3D both provide platform independent three dimensional rendering, eliminating 

portability issues all together. Prototypes are written in all three software platforms with the 

evaluation results presented in Section 5.7. 

3.4.3   User Interface development libraries and tools 

AMES user interface was implemented using the IRIS Viewkit as well as Motif. Lt. 

Joseph Moritz [Moritz96] took advantage of SGFs RapidApp code generation tool for automatic 

generation of Viewkit and Motif code. This gave Lt. Moritz the advantage of rapid GUI 

development, thereby avoiding the learning curve associated with X-Windows/Motif 

programming [Moritz96:4-l]. Tools such as RapidApp, BuilderXcessory and UIMX provided a 

quick means of creating complicated Motif dialogs, however, the generated code can sometimes 

be difficult to integrate into a project. IRIS Viewkit builds upon the set of Motif widgets and 

encapsulates their use into C++ classes. I examine both RapidApp and IRIS Viewkit for their 

usefulness. Capability and ease of use are my primary consideration for user interface library and 

tool selection. Section 4.4.2 shows the results of this evaluation. 

3.5   Software Development 

An initial look at the code for AMES and interviews with its author early in my research 

gave me the impression that AMES' state of maintainability, extendibility, stability and 

performance was in question. Before beginning my development I evaluated the existing code to 

determine its validity as a baseline for AMVS, given the list of requirements outlined in Chapter 

U and software quality goals presented in Section 1.4.3. Throughout development, I implemented 

proper software engineering methodologies. AMVS is a sufficient baseline for future AFTT 
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research and my goals of developing an application with a high degree of stability, 

maintainability, extendibility and performance, mentioned in Section 1.4.3, are achieved. 

3.5.1 Evaluation of AMES 

I evaluated AMES' code in the areas of maintainability, extendibility, stability and 

performance. Stability was evaluated by putting AMES to the test, repeatedly running it to the 

point of fault or failure. Stability, as well as maintainability, was also evaluated with the use of 

automated run-time debuggers, personal interviews with its author, and examination of the code. 

Extendibility was evaluated through interviews with Lt. Moritz, analysis of his design, and 

examination of the existing code. Performance was evaluated by comparing AMES rendering 

rates with that of prototypes written in Open Inventor. 

In addition, I made an estimation of the cost of reproducing features found in AMES. 

AMES currently consists of 22k lines of code in 81 source files; therefore, choosing to not use 

this existing code is a significant one, considering the limited research time available to me. 

Chapter IV shows the evaluation results and the final decision. 

3.5.2 Application of Software Engineering methodologies 

To achieve my goals mentioned above, I incorporated software development processes, 

principles of good object oriented design, use of coding standards and automated tools, and 

documentation into the development of AMVS. 

3.5.2.1 Software Development process 

The nature of the problem lends itself nicely to such software development processes as 

the Spiral Model, Rapid Application Development (RAD), and Rapid Prototyping 

[Gottisdiener95] [0'Brien96]. The compressed schedule necessitated by AFTT's thesis program 

together with our need to re-evaluate user requirements during development well match to 
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Nielson's vertical prototyping method of user interface design. For these reasons, I have chosen 

rapid prototyping for my software development process. 

3.5.2.2 Object Oriented Design 

To achieve stable, maintainable, and most of all, extensible code, I implement Object 

Oriented Design (OOD) and Object Oriented Programming (OOP) principles into AMVS' 

development [Rumbaugh91][Booch91][Sessions92] [Coad93] [Pohl97]. My design and 

implementation invokes principles of inheritance, polymorphism, and encapsulation. 

Encapsulation is used to ensure AMVS' stability and maintainability, while inheritance and 

polymorphism are used to enhance AMVS' extendability. 

3.5.2.3 Coding Standard 

Scott Meyers' book Effective C++ lists 50 specifics ways to improve programs and 

design [Meyers92]. These methods are particular to the C++ programming language and range 

from specifics such as proper use of constructors/destructors and overloaded operators to class 

implementation and design issues. I have opted to use these principles as a coding standard in my 

development. 

3.5.2.4 Automated Tools 

In addition to SGFs debugger, cvd, I use a powerful runtime debugging tool called 

Insure++ created by ParaSoft. Insure++ is a very effective tool for ensuring the stability and 

robustness of a program [ParaSoft96]. Code analyzed with Insure++ is checked for errors such 

as: 

• Memory corruption from attempts to access memory outside the valid areas defined 

by global, local, shared and dynamically allocated objects 

• Operations on illegal, or unrelated pointers 
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• Reading uninitialized memory 

• Memory leaks 

• Errors allocating and freeing dynamic memory 

• Incompatible variable declarations 

ParaSoft has also produced an application called CodeWizard that analyzes code for use 

of proper design and programming practices. It uses Scott Meyers Effective C++ as its standard. 

This tool compares a program written in C++ against a subset of Meyers' coding standards listed 

in his book. This tool is valuable in ensuring my compliance with this coding standard. 

3.5.2.5 Documentation 

To improve AMVS' maintainability, I document its implementation throughout my 

development. This includes file headers and in-line documentation. In addition to this, I keep a 

Deviations file in the Continuity directory where I document any deviation from coding 

standards, good design, and proper OOP principles. The need for such deviations center mostly 

around performance, implementation time or tailoring to the project. C++ has advantages in 

program design and development, however, OOP's added overhead at run-time can decrease 

performance in ways not experienced by pure C code [Ege92:45][Adams88:32]. As a result, I 

occasionally deviate from proper OOP principles at critical sections of implementation for the 

sake of performance. In the interest of time, I occasionally avoid implementation of particular 

coding standards as the scope of the problem allows. 
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4. Design 

4.1 Introduction 

This chapter discusses design decisions made during the development of the AFTT 

Missile Visualization System (AMVS). Design decisions were made regarding three-dimensional 

visualization, user interface, software library selection, usefulness of existing code, software 

development and rendering scene graph creation. 

4.2 Three Dimensional Visualization 

This section outlines rendering and visualization design choices in the areas of inter- 

object spatial perception, use of transparency, target/fuze cone interaction, warhead fly-out 

animation, and target component damage coloring. 

4.2.1   Spatial Perception 

User feedback revealed a need for increasing the AFTT Missile Endgame Simulator's 

(AMES) usefulness as a tool for perceiving the inter-object spatial relationship of a target and 

missile during an endgame. Mental modeling of a three-dimensional encounter displayed on a 

two dimensional screen is non-intuitive. Moritz elected to use additional top, front and side 

views [Moritz96:4-l 1] to present the required information; however, this takes up significant 

display space. Furthermore, it requires the user to mentally combine four separate images into a 

single coherent understanding of the encounter [Cooper84:106-114] [Herndon92:9.1]. Herndon 

suggests an alternative approach using shadow projections. Shadow projections of three- 

dimensional data in scientific visualization has been demonstrated to help users understand their 
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data [Grotch83]. User tests by Wanger et al. revealed shadow projections rank high in effectively 

visualizing inter-object spatial relationships [Wanger92:44-58]. This visualization technique has 

been incorporated into AMVS and can be seen in Figure 4-1. Additionally, shadows soften 

contrasts (through use of a gray background, darkened target shadows, and lighter grid lines) to 

enhance the visualization by reducing contrast intensity [Tufte97:21]. 

Figure 4-1: Top, Side and Front Shadow Projections 

4.2.2   Transparency 

Open Inventor's ability to render transparency enhances the visibility of internal target 

components as well as the usefulness of the fuze sensor and fragmentation fly-out cones. 

However, transparency can also confuse the image by allowing many layers to appear 

simultaneously. Therefore, I've given the user transparency intensity control on aircraft skin 

components (see Figure 4-2) and the sensor and fragmentation cones (see Figure 4-3). 
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Figure 4-2: Aircraft Skin Transparency 

Figure 4-3: Cone Transparency 

4.2.3 Target/Fuze Cone Interaction 

A separate visualization technique is required to convey the spatial relationships of the 

target with fuze sensor and the fragmentation fly-out cone pattern. When the target does not 
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intersect the cone edge, it is difficult to comprehend the relationship between them. In particular, 

it is difficult to determine how far the target is from penetrating the cone. Recognizing that the 

two-dimensional drawings, as seen in Chapter 2, are effective in showing this relationship, I 

incorporate two-dimensional "cross-sections" of all pattern cones into AMVS. Figure 4-4 

demonstrates how target/cone spatial awareness is enhanced by this technique. 

Figure 4-4: Cone Cross Sections 

4.2.4   Fly-out Animation 

Two techniques have been incorporated to visualize the fragmentation fly-out pattern of 

the warhead. These are shown in Figure 4-5, parts A and B. Part A shows a ring representing the 

center of mass. This is valuable in depicting accurate fragmentation/target intersection points and 

is beneficial in demonstrating warhead detonation timing principles. Part B shows a torus, 

representing a mass area of fragmentation dispersal over time. Animation of an expanding torus 

demonstrates the effects of fragmentation dispersal over time. Users may alternate between the 

two presentations. 
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Figure 4-5A: Fly-out ring Figure 4-5B: Fly-out Torus 

4.2.5   Target Damage coloring 

Component damage produced by OPEC is represented by a scalar value ranging from 0.0 

to 1.0, with 1.0 representing complete damage. AMES visualized target component damage 

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of 

the 10 increments. No color index table was provided. Additionally, information is lost when the 

scalar value is converted to an integer ranging from one to ten. An improved technique is to 

implement a color gradient for visualizing target damage without data loss [Tufte90:91].  The 

color gradient applies the scalar component damage (pk) to the rgb (red, green blue) values of the 

geometric model as seen in equation [1]: 

red      - pk 

green   - 1.0-pit [1] 

blue     =  0.0 

This produces a green color for components with the smallest damage, yellow for medium 

damage, and red for largest, or complete damage. Not only does this technique preserve the real 

nature of the pk value, but the green, yellow and red colors correspond to the familiar notation of 
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acceptable, warning, and danger respectively.  A color index table is also available for display. 

The color index displays 20 spheres in .05 increments. Spheres are used to show how shading 

effects color on a three-dimensional object. 

4.3   User Interface Design 

4.3.1 Common Interface 

Dialogs are designed for increased usability by creating a consistent user-interface. 

Consistency is important to an application [Nielson93:20] and is implemented easier through 

code re-use (explained in Section 4.6.5). Common features include similar action areas4, file 

selection methods, and on-line help. Toggle buttons are used for all rendering object visibility 

selection while thumbwheels are used for transparency intensity settings. All text widgets 

allowing for entry of integer or float values have user input error checking. 

4.3.2 View Control 

AMVS includes control over the current viewpoint. In addition, a dialog is provided to 

display the current viewpoint in relation to the target. This includes position in target space as 

well as attack azimuth and elevation as calculated by ENCOUNT. Users can save and restore up 

to five views. The interface for saving and restoring the view is placed along the bottom of the 

main window, making it accessible at all times. All five views, along with the current viewpoint 

are written to disk when the simulation is saved. 

4.3.3 User Interface Design for Animation Control 

Although AMES' user interface for animation was easy to understand and use, it was 

over simplified and limiting to the user (see Figure 4-6). The user had no control over the 

4 Action areas are located at the bottom of a dialog and contain such buttons as Apply, Cancel, and Help. 
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animation's replay speed and no feedback as to the current simulation time. Because push 

buttons are used for starting, stopping and re-winding the animation, the user has to focus 

attention on the animation control dialog for each operation. 

Figure 4-6: AMES Animation Control Dialog 

To overcome these limitations when implementing AMVS, I have significantly modified 

the animation control user-interface by employing vertical prototyping and user testing. The 

animation dialog can be seen in Figure 4-7. 
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Figure 4-7: AMVS'Animation Control Dialog 

This approach yielded the following improvements. The animation dialog provides current 

simulation time feedback along with greater control over the simulation time. It also allows the 

user three modes of modifying the time: 1) direct entry into the text widget used for displaying 

the current simulation time, 2) playing the animation (both forwards and backwards), including 

speed control, and 3) dial control of the simulation time using the time adjustment thumbwheel. 

Speed control is implemented as a percentage, from -100% to 100% of the maximum allowed. 

Using a slider bar for animation speed control and a thumbwheel for time adjustment increases 
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the animation controller usability, because once the user clicks down on either of these widgets, 

she can manipulate the simulation time while focusing her attention on the encounter. 

As noted above, the thumbwheel allows adjustment of the simulation time. Dialing to the 

right moves the animation forward in time, while dialing to the left moves the animation 

backward. Varying the thumbwheel movement/simulation time change is needed depending 

upon the user's actions and intentions. When dialing the thumbwheel to move an object to a 

specific point in space, finer adjustments are required were as dialing to rewind the animation 

requires a larger animation movement. Using a factor of the focal distance is the preferred 

method of operation as revealed by user testing. Implementation of this technique is explained in 

Section 5.4.3. 

The animation dialog also includes current target and missile position feedback in both 

meters and inches. This position can be displayed in World, Target, or Missile coordinate 

systems. Animation motion can likewise be done in a World, Target or Missile coordinate 

system by manipulating the "Motion" option button. A setting of "BOTH" causes both the 

missile and target to move relative to the world coordinate system. A setting of "MISSILE" 

causes the missile to move relative to the target, keeping the target stationary. A setting of 

"TARGET" leaves the missile stationary and moves the target relative to the missile. 

4.3.4   Miscellaneous Usability Issues 

A number of miscellaneous usability improvements have been made over AMES, a few 

of which are listed here: 

• Menu items have been placed under appropriate headings. 

• File selection dialogs have appropriate filters set to put the user in the correct 

directory, displaying the correct files for the given task. 
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•    Files loaded automatically modify the rendering scene appropriately. 

4.4   Library Selection 

4.4.1   Graphical Rendering Library 

AMES suffered from poor performance during animation. Using a different graphical 

rendering library was one possible solution to this problem. SGI's Performer was looked at as an 

alternative to Open Inventor. This section explains performance tests and results between AMES 

and a Performer prototype and talks about my final decision. 

4.4.1.1 Performance Tests 

Performance tests were done on a single processor SGI Indigo2, MIPS R4000,250 MHz 

workstation. This machine is similar to the one used by our sponsors. Test data included full 

F106 and Falcon missile models containing 21124 and 284 polygons respectfully. Tests were 

also done with reduced models containing 746 and 140 polygons. I performed my tests under the 

same system load to reduce the effects of machine state inconstancy on the outcome. Test results 

varied with data size and machine state and are therefore represented as speed-up percentages. 

I began by creating a Performer prototype, to compare against the existing version of 

AMES. This prototype yielded a 150% increase in frame rate over AMES. Knowing that some 

of the poor performance was due to AMES' implementation, I began looking into whether 

significant improvements could be made before abandoning Inventor altogether. My 

investigation determined that Moritz' use of Open Inventor-supplied animation engines inhibited 

performance. Another performance hit came from his means of providing missile and target 

position feedback during animation. This involved SoSensor nodes attached to the target and 

missile calling user defined callbacks for each position change. In the callback, the position is 

retrieved by implementing a SoSearch action on the entire rendering scene graph, thereby causing 
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transformation calculations to be made a second time for each animation frame. This method of 

performing animation with position feedback can be improved. 

With 22 thousand lines of code to examine, I decided to build an Open Inventor prototype 

to do an unbiased comparison against Performer rather than continuing my search for areas of 

improvement within AMES. This prototype was almost identical to the Performer version. Tests 

between these two prototypes revealed almost identical results. When the minimum data set was 

used, both prototypes revealed frame rates up to 70 frames per second. 

4.4.1.2 Conclusion/Decision 

These tests revealed the primary cause of AMES' poor performance was due to its 

implementation and not attributable to the graphics libraries. For this application, Open Inventor 

fairs well against Performer in a single processor environment. Therefore, I decided to continue 

development with Open Inventor, because it has a better API for rapid development. 

4.4.2   User Interface library and tool selection 

Moritz used SGI's RapidApp for automatic generation of user interface classes. 

Although familiar with X-Windows and Motif, I wanted to see if this tool was useful to me. The 

code produced by RapidApp implements classes from the IRIS Viewkit library. This is a library 

of extended Motif widgets encapsulated into C++ classes. Although this is an efficient means of 

rapidly producing code for the user interface, I found the RapidApp classes to be too restrictive. 

Using RapidApp, I had no control over when the dialog was created, where they would appear on 

the screen, and what to do when the user killed the window, which is particularly important for 

the animation control dialog. If the user killed this dialog while animation is running, animation 

needs to be turned off. With all these in mind, I elected to write AMVS' user interface in Motif. 
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4.5   Evaluation of Existing Code 

A significant effort went into the creation of AMES. The application, and its source code 

where available to me at the outset of my research. The extent to which I used this existing code 

needed to be decided upon early in the design phase. In order to make this significant decision, I 

evaluate AMES' usefulness to me in achieving my objectives given the list of requirements 

presented in Chapter n. To better make this decision, I evaluate AMES' code against my goals 

of stability, maintainability, extendibility and high rendering performance as outlined in Section 

1.4.3. These attributes not only have effect on the final version of AMVS, but have significant 

impact on the development process. 

4.5.1 Stability 

The stability of AMES is questionable. Interviews with the author revealed that AMES 

was not extensively tested before delivery and that it had potential stability problems. Further 

tests revealed it was subject to faults and failures while use of automated debugging tools reveal 

many potential problems, some involving dynamic memory access. 

4.5.2 Maintainability 

Interviews with the author and code examination revealed that maintenance of AMES 

could be difficult. Furthermore, documentation is extremely lacking, and code is rather 

unstructured and difficult to follow making modifications and improvements difficult. In 

addition, global variables are extensively used and its software architecture yielded tight 

coupling. These attributes are known to lead to maintains problems [Holub95:47]. 

4.5.3 Extendibility 

The existing version of AMES is not easily extended. Although written in C++, code 

examination revealed only one proper example of inheritance, and no examples of polymorphism 
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and encapsulation, other than code produced by RapidApp. Poor maintainability mentioned 

above also make extensions difficult. 

4.5.4 Performance 

Poor rendering performance appears to be an implementation problem that requires a 

significant amount of modification to improve. Inefficiencies in the rendering scene included 

extra light sources and superficial transformation nodes. Making necessary transformation 

calculations outside of the scene graph in order to reduce the number of transformation nodes 

could be performed, along with improving the lighting scheme; however, any change in the 

rendering scene could have unknown, most likely negative effects on AMES due to the tight 

cohesion between the rendering scene and code. AMES' code relies heavily upon the scene 

graph structure in any number of locations. Rather than keeping pointers to critical nodes in the 

scene tree, the tree is traversed each time node access is needed. Changing the structure of the 

scene graph will require an unknown number of modifications to the code, yet necessary to 

increase AMES' performance. 

4.5.5 Final Decision 

It was revealed that AMES poor performance was due to its underlying implementation 

and not its choice of graphical libraries (see Section 4.4.1.2). Improving performance requires 

significant modification to the scene graph and complete re-design of the animation process to 

avoid the use of the Inventor animation engine. In addition to hindering performance, using the 

Inventor animation engine hinders speed control and time feedback. Considering the tight 

coupling between scene graph and code, in conjunction with other maintenance problems listed 

above, making necessary changes proves to be a difficult task. Also extensions necessary to 

implement the requirements listed in Chapter II could prove to be difficult considering AMES' 

state of maintainability and extendibility.  As a result, I avoid the use of AMES code for my 
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research. 

Although AMES' source code is limiting, its implementation is of value. The result of 

Moritz's research yielded an effective prototype for displaying an endgame [Moritz96:6-5]. For 

this reason, I duplicate all of AMES features into AMVS with the exception of its method for 

displaying fragmentation fly-out, and technique for visualizing inter-object spatial relationships 

(see Sections 2.4.4.2 and 4.2.1 respectively). 

4.6 Software Architecture Design 

This section outlines my software architecture design starting with a presentation of 

AMVS' classes which will be referred to throughout the rest of this document. I then present the 

data flow of two key elements within AMVS: the scenario and the simulation time. Next, the 

sections that follow discuss this data flow while presenting the design of the CEncount and 

CAnimControl class. Afterwards, I present class designs for AMVS' dialogs, and saving and 

loading the simulation. Finally, I discuss how this software architecture design yields low 

coupling and high cohesion. 

4.6.1   Class Hierarchy and Descriptions 

The Class hierarchy for AMVS can be seen in Figure 4-8, followed by an aggregation 

and data flow diagram in Figure 4-9. However, Figure Figure 4-9 only presents the data flow 

relevant to the scenario and simulation time. Finally, Table 4-1 shows the class descriptions. 
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Table 4-1: Class Descriptions 

CBaseClass Base class for all other classes, provides run-time type 
identification (rtti).5 

CScenario Parent class for all scenarios. A scenario contains all 
information pertaining to the missile/target encounter 

COPECScenario Holds information about endgame encounters found in OPEC 
or ENCOUNT files. 

CVisSimScenario Holds information about full fly-out encounters produced by 
VisSim. 

CDataObject Base class for most AMES specific objects. CDataObjects 
accept a pointer to the current CScenario and are able to save 
and load their state to and from a Simulation file. Maintains a 
list of all instantiated CDataObjects. 

CDataObjectList List of CDataObjects. This list is a static member of 
CDataObject. 

CApp Main App class for AMES, instantiating all 
CDlgDataObjects. Initiates the saving and loading of a 
Simulation. 

CDlgDataObject Base class for all CDataObject's requiring a user interface 
(Motif dialog). Registers help with the CHelpDlg class. 

CListDlg Implements a ScrolledList widget inside a CDlgDataObject. 

CHelpDlg Keeps a list of register help items, displays this list as a "help 
index" dialog. Instantiates a CListDlg and uses it to display 
the help for a topic read in from a file. 

CMainWindow Main window for AMES, containing menus and the Inventor 
ExaminerViewer (see Figure 5-1). Holds a pointer to the root 
of the scene graph. Implements saving/restoring of the 
rendering view. 

CRenderObject Abstract base class for all objects that will perform graphical 
rendering of information loaded in from a file. Contains a 
function NewSimTime, to accept the current time from the 
animation "clock". Maintains a list of all instantiated 
CRenderObjects. 

CRenderObjectList List of CRenderObjects. This is list is a static member of 
CRenderObject. 

CGeorgeObject Base class for the missile and target ("George" for the 
original file format used for missile and target models). 

' The current compiler does not support rtti, and therefore needed to be implemented myself. 
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CMissile 

CTarget 

CFuzeCone 

CShadow 

CAnimControl 

CEncounter 

CPanel 

CRCPanel 

CPanelObject 

CTextPanelObject 

CCharPanelObject 

COptionPanelObject 

CYesNoPanelObject 

Contains functionality similar to the missile and target. 

Missile class. Loads, displays and animates a missile model. 
Displays the fragmentation fly-out cone and animates 
fragmentation fly-out. Provides a user-interface for 
manipulating the missile (see Figure 5-5). 

Target class. Loads, displays and animates a target model. 
Displays OPEC target damage data. Provides a user-interface 
for manipulating the target (see Figure 5-4). 

Fuze sensor pattern cones. Loads, displays and animates a 
fuze file. Provides a user-interface for editing fuze 
component settings (see Figure 5-6). 

Front, side, and top grids and 3-D shadows for missile and 
target. Provides a user-interface for manipulating shadows 
and grids (see Figure 5-7) 

Controls the animation "clock". Provides an interface for 
controlling the simulation time (see Figure 4-6). Passes the 
current simulation time to all CRenderObjects. 

Displays information contained in a CScenario (see Figure 5- 
2). Allows loading, saving (ENCOUNT files) and editing of 
the current scenario, sends the current scenario to all 
CDataObjects. 

Used in the construction of Motif style user interfaces. 
Creates a form for the placement of CPanelObjects, keeps a 
list of all CPanelObjects added to this panel. Iterates through 
this list calling their Getlnfo and Setlnfo functions. If an error 
occurs in an object's Getlnfo function, iteration stops and an 
error message is displayed. 

Inserts a RowColumn widget into the form created by a 
CPanel. Places CPanelObjects in this widget. 

Abstract base class for objects creating widgets for 
displaying/editing a single data variable. Setlnfo updates 
widgets according to value held by the data variable. Getlnfo 
performs error checking on user input and updates the data 
variable for valid input. 

Creates a TextField for displaying strings, integers or floats. 
Provides value range error checking and textual/numerical 
conversion for fields intended for integer or float input. 

TextField with width of one. Error checking can be 
performed against a valid string of characters. 

Implements an Motif Option Menu widget. 

COptionPanelObject with two menu items: Yes, No. 
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CSoSwitchPanelObject 

CMultSwitchPanelObject 

CThumbWheelPanelObject 

CHitDamage 

Implements a toggle button to control an Inventor SoSwitch 
node. The SoSwitch node controls the visibility of objects in 
the rendering scene. 

Implements a toggle button to control a list of SoSwitch 
nodes. Used exclusively for level-of-detail models. 

Implements a Thumbwheel widget. 

Used by a CTarget for holding hit damage loaded in from an 
OPEC .out file. 

4.6.2   Data Flow using an Observer Behavioral Pattern 

The current simulation time and current scenario are controlled by the CAnimControl and 

CEncounter classes respectively. The simulation time is represented as a float value while the 

scenario is encapsulated in the CScenario class. When the simulation time changes during 

animation, all CRenderObjects must reflect this change graphically; likewise all CDataObjects 

must reflect changes to the current scenario. This change is generally graphical but could include 

changes to the associated user-interface as well. To notify other classes of changes to these 

variables, I use an Observer behavioral pattern6. In Designing patterns: Elements of Reusable 

Object-Oriented Systems, Gamma, et al. describes several patterns useful in software 

development. He classifies an Observer pattern under the behavioral category and defines it as 

follows: 

"Observer - defines a one-to-many dependency between objects so that when one 

object changes state, all its dependents are notified and updated automatically." 

[Gamma95:9,293-303] 

In order to implement this pattern, I use a Standard Template Library (STL) Vector to define a 

CRenderObjectList and CDataObjectList to keep a list of all CRenderObjects and CDataObjects. 

These lists are static members of each respective class. In the constructor function of each of 

Fowler loosely defines a pattern to be "an idea that has been useful in one practical context and will probably be 
useful in others." [Fowler97:xv] 
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these classes, newly instantiated objects are added to the respective lists to ensure that all child 

classes are automatically. The CRenderObject class then defines a pure virtual NewSimTime 

function which takes the simulation time as a single parameter. Likewise, the CDataObject class 

defines a virtual SetScenario function taking a single const pointer to a CScenario object. These 

functions are then overloaded by child classes to take appropriate action on state changes. The 

CRenderObjectList and CDataObjectList are then used to notify all classes of state changes. 

Code to do so can be seen in Figures 5-10 and 5-14.  The next two sections introduce the 

CEncounter and CAnimControl classes which control the scenario and simulation time 

respectively. 

4.6.3   Scenario 

A scenario is defined as all the information pertinent to a missile/target encounter. The 

CScenario class was designed to encapsulate this information for distribution throughout the rest 

of AMVS'classes. 

AMVS is implemented to visualize and animate of both endgame and full fly-out 

encounters. Endgame parameters are found in ENCOUNT and OPEC files and are stored in the 

COPECScenario class. Both ENCOUNT and OPEC's parameters are similar enough that a 

single scenario object is used. The COPECScenario class contains a flag specifying whether the 

information contained within it was derived from OPEC or ENCOUNT data. Likewise, the 

CVisSimScenario class contains information regarding a VisSim fly-out simulation. 

The CEncounter class controls the contents of a scenario as well as which scenario is 

currently being viewed by all rendering objects (ENCOUNT, OPEC or VisSim). The 

CEncounter dialog allows users to load and edit scenarios. CEncounter uses the Observer pattern 

described above to notify all CDataObject^ of changes to the current scenario. When the current 

scenario changes, the CEncounter class iterates through the list of CDataObject''s, passing each a 
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pointer to the current scenario by use of the SetScenario function. Each keeps a const pointer to 

the CScenario controlled by the CEncounter class and uses this information to modify its user 

interface and/or scene graph accordingly. For instance, when a VisSim scenario is selected, the 

missile modifies its scene graph to include the missile's fly-out route and changes it dialog by 

removing the war-head user interface. 

4.6.4   Rendering and Animation 

All three-dimensional rendering and animation is performed by classes inheriting from 

the abstract base class CRenderObject. Each CRenderObject encapsulates data, functionality and 

user-interface unique to an object or set of objects for three-dimensional rendering. The 

CRenderObject class is designed for performance and extendibility. 

Many design decisions went into the creation of the CRenderObject class to enhance 

AMVS' extendibility, most of which involve inheritance and polymorphism. Indirectly inheriting 

from CDataObject provides each render object with automatic notification of the current 

scenario. Each render object overloads the SetScenario function, performing any action 

necessary to render its scene graph according to the current scenario. Inheriting from 

CDlgDataObject provides functionality for the creation of the render object's user-interface 

(discussed in the next section). As mentioned above, the CRenderObject uses an STL vector to 

maintain a list of all instantiated objects inheriting from CRenderObject. The CAnimControl 

class calls each CRenderObject's pure virtual NewSimTime function for each frame in the 

animation, or whenever the current simulation time changes. Any class inheriting from 

CRenderObject has automatic notification of the current simulation time. With this inheritance 

structure and the virtual functions we have defined, adding new rendering objects is simplified. 

To add a new rendering object to AMVS, only the following steps are required: 
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1. Create the Inventor scene graph in the constructor, keeping pointers to key nodes. 

2. Overload CDlgDataObject's Create function to create the dialog components. 

3. Add a menu item to the CMairiWindow to call this object's Show function. 

4. Overload the SetScenario function, if this object is effected by the current scenario. 

5. Overload the NewSimTime function, if this object is to be animated. 

The CRenderObject class increases performance by having each child class create and 

manipulate its own rendering scene graph, as well as localizing all information needed for a 

single object to perform rendering during a single "frame" of animation. This information is 

derived from user input, the current simulation time, and data found in the current scenario. 

Localizing all rendering information avoids the overhead invoked when retrieving data from other 

classes through member access functions. When performance is not an issue, such encapsulation 

techniques are followed. 

4.6.5   Dialogs 

Design of the user interface classes proceeded with code re-use and ease of 

implementation in mind. The CDlgDataObject class encapsulates the creation and manipulation 

of Motif dialogs, and is used by all CDataObjects requiring a user interface. This class creates a 

dialog shell, a tailorable action area, messaging dialogs, and file selection dialogs. The action 

area includes buttons such as OK, APPLY, DONE, CANCEL and HELP, as well as the option to 

create user defined labels. Virtual callback functions are created for each button and can be 

overloaded as necessary. The HELP button brings up on-line help registered through the 

RegisterHelp function of any instantiated dialog. Pop-up message dialogs including a simple 

message dialog, and a question dialog with callbacks connected to the virtual Yes and No 

functions are implemented and easily invoked. The 'Open File' and 'Save As file' selection 

dialogs each having appropriate virtual callbacks which are overloaded by child classes. These 
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callbacks are passed the filename and path selected by the user. 

The creation of the user interface takes place in the CDlgDataObject's virtual Create 

function. This can be done with straight Motif code, or the use of panels. The CPanel and 

CPanelObject classes provide a convenient method of creating the user interface within the 

dialog. The abstract base class CPanelObject encapsulates the user interface for a single variable. 

A CPanelObject's constructor function is passed the pointer to the variable and a description to 

be displayed with the associated widget. Classes inherited from CPanelObject create Motif 

widgets for displaying and editing the variable and take advantage of the Setlnfo and Getlnfo 

functions for updating the widget state or variable value respectively. When the variable changes 

value, the virtual Setlnfo function can be used to set the widget's state based upon the new value. 

When the user changes the widget's state, the Getlnfo function retrieves state information from 

the widget and sets the variable accordingly, if no error on input occurred. The classes also 

provided error checking based upon criteria for valid user input. For example, a 

CTextPanelObject can be set to display and edit an integer variable. The valid range of integer 

values is identified through the IntRange function error checking performed automatically in the 

Getlnfo function. 

The CPanel class is a container for CPanelObjects. This places panel objects in a Motif 

form or row-column widget. The CPanel class keeps a list of all CPanelObjects added to it. It 

provides iteration functions for calling the Getlnfo and Setlnfo functions of all CPanelObjects 

added to this panel. Once a panel has been constructed, a call to the CPaneVs SetData will 

automatically cause all CPanelObjects to read their associated variables and set their widgets 

appropriately. A call to GetData causes each object to read its widget values, perform valid input 

testing, and update the associated variables. If an error occurred, iteration stops and an error 

message is displayed in a pop-up dialog. 
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4.6.6 Saving/Loading of the Simulation 

One recommendation for future work outlined by Moritz was saving the current 

encounter [Moritz96:6-4]. This originally involved saving the current ENCOUNT or OPEC files, 

along with the target and missile models selected by the user. I have extended this list to include 

potentially any of AMVS' variables or states. In order to do so, the CDataObject class includes 

virtual functions SaveData and LoadData for saving and loaded variables. During a save 

operation, the CApp class will iterate through the list of CDataObjects to save the current 

encounter by passing each data object a C++ iostream. Each CDataObject can write out any 

member variables in the SaveData function and later retrieve these values back into its member 

variables in the LoadData function. Placing the saving and loading functionality in the 

CDataObject provides me access to all state information within AMVS. Although the inheritance 

graph in Figure 4-8 shows some classes not inheriting from CDataObject, each of these are only 

instantiated from within a CDataObject, thereby ensuring the set of all CDataObjects has access 

to all state information. 

4.6.7 High Cohesion, Low Coupling 

This software architecture design yields high cohesion and low coupling. High cohesion 

results from having each rendering object class contain all information and functionality 

necessary for file I/O, graphical rendering, and user interfacing, as pertaining to the real world 

objects they model. This in turn results in low coupling by minimizing data flow between 

rendering objects to that information which is common to all: the simulation time and scenario. 

4.7 Rendering Scene Graph Design 

AMVS' CMairiWindow class maintains a pointer to the root of the scene graph. All sub- 

scene graphs are encapsulated in a CRenderObject (defined in Section 4.6.4). Each 
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CRenderObject is responsible for the creation and maintenance of its sub graph. This section 

outlines design decisions involved in the creation of AMVS' rendering scene graph. Topics 

include transparency, performance, and use of the Open Inventor SoSwitch node for component 

visibility and levels of detail. 

4.7.1 Transparency 

Object ordering in the scene graph effects how Open Inventor renders transparency. Z- 

buffer based transparency algorithms require transparent objects to be drawn last during rendering 

[Foley92:755], Therefore, the scene graph is designed with this in mind. Since each 

CRenderObject creates its own sub scene graph and attaches it to the root node, instantiation 

order is important. AMVS instantiates the CRenderObjects in the following order: CShadow, 

CTarget, CMissile, CFuzeCone. This order insures that the potentially transparent fuze sensor 

pattern cones and fragmentation fly-out pattern cone are rendered last. Additionally, since the 

target may have a transparent skin, I construct the target models with the skin components placed 

last in its scene graph. 

4.7.2 Performance 

This section addresses new improvements to the scene graph to increase rendering speed. 

First, AMVS uses fewer transformation nodes by performing many of the three dimensional 

transformation calculations outside the scene graph. For example, the target and missile each use 

only a single transformation node to replace the three which were used for the target and four for 

the missile. The calculations needed for the target and missile transformation are shown in 

Section 5.3. Second, when applicable, translation nodes were used instead of transformation 

nodes when no rotation calculations were necessary. Likewise rotation nodes were used when 

only a rotation was needed. Using specific node types where possible further reduced the 

overhead of three-dimensional transformation calculations during rendering by avoiding full 
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transformation calculations. 

Another inefficiency in AMES' scene graph was its use of six point light sources to 

illuminate the cones interiors. Without these light sources, the insides of the cones received no 

illumination. An alternative solution to this problem is to place a single directional light in the 

fuze cone's scene graph pointing towards the cones interiors. Placing this directional light after 

the fuze cone's transformation node insures that the light will always point towards them. This 

method significantly increased performance for three reasons: 1) directional light sources require 

less computation [Wernecke94:92], 2) fewer light sources are required and 3) only a subset of the 

scene graph requires illumination calculations. Tests revealed a 30% increase in performance 

using this method. 

4.7.3   Use of the SoSwitch Node 

The Open Inventor SoSwitch node is a grouping node allowing for the selection of one, 

all or none of its children [OIAG94:616]; it is used to select sub-scene graph visibility. The 

SoSwitch node is also used to control target and missile levels of detail (LOD). Providing the 

user with multiple levels of detail allows them to select between improved performance or 

improved model appearance. Level-of-detail target and missile models are constructed with a 

SoSwitch node as the root. An option menu widget allows the user to select between each level of 

detail. 

4.8   Conclusion 

In this chapter, I cover design decisions regarding three-dimensional visualization, one of 

which involved the use of shadow projections to enhance inter-object spatial perception. I also 

discussed user interface design, including an improved animation control dialog. Critical 

decisions made early in development were presented including choice of rendering software 
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library and the user interface library, and avoiding use of existing code.  Finally, I explained 

software and rendering scene graph design. In the next chapter, highlights of the final product are 

presented along with some specifics about the underlying implementation. 
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5. Implementation 

5.1 Introduction 

This chapter outlines the AFTT Missile Visualization System's (AMVS) implementation. 

The first section examines AMVS from a user's perspective, revealing its major features and 

explains how they relate to the requirements outlined in Chapter n. Subsequent sections provide 

insight into AMVS' underlying implementation. The final section discusses portable and 

platform independent animation of VisSim fly-out simulations. 

5.2 AMVS' Features 

5.2.1   Main Window 

AMVS' main window can be seen in Figure 5-1. The main window provides the 

menuing interface, three-dimensional rendering window, and viewpoint control. The user 

controls the rendering scene viewpoint with the mouse. Viewpoints can be saved and later 

restored in one of five view-holders located at the bottom of the window. These five viewpoints, 

along with the current one are saved when writing the encounter to disk. 
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Figure 5-1: AMVS' Main Window 

5.2.2   Encounter Dialog 

The encounter dialog, shown in Figure 5-2, provides the user control over the current 

scenario. Scenarios are loaded, edited, and saved7 using the graphical user interface. Currently 

AMVS' scenarios include ENCOUNT and OPEC endgame files along with VisSim full fly-out 

simulations. Changes made to fields in this dialog are immediately reflected in the graphical 

display. 

7 OPEC produced files may be loaded and edited but will not be saved. These files are output produced by OPEC and 
the sponsor does not need the ability to change them. 
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Figure 5-2: Encounter Dialog 

Section 2.3.4 discusses how engineers use ENCOUNT in conjunction with IVAVIEW to 

set up and visualize an endgame encounter. AMVS provides an improved process: a single 

application to load, edit, and save an encounter file while displaying it both textually and 

graphically. 

AMVS' ability to load OPEC generated files for textual and graphical display increases 

OPEC's usefulness as a tool for simulating endgames. As mentioned in Section 2.3.5, OPEC is a 

valuable tool for predicting missile component performance against selected targets; however, 

OPEC suffers from poor graphical rendering. AMVS is written to meet the need for graphical 

display of OPEC simulation results, improving the engineer's ability to visualize and understand 

the results. 
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Section 2.3.6 introduced the requirement for visualizing VisSim fly-out simulations. 

AMVS allows users to load VisSim files through the encounter dialog. Once loaded, the engineer 

can animate the fly-out using the same animation control dialog for endgame simulations. 

Figure 5-3 shows the rendering of an example VisSim fly-out simulation involving a 

ground target. 

Figure 5-3: VisSim Full Fly-out Animation 

5.2.3   Animation Controller 

The animation controller is explained in detail in Section 4.3.3. Animating an encounter 

improves an analyst's understanding of the missile/target interaction during an endgame, 

particularly for encounters in which the missile intersects the target body. Knowing where 
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missile body components intersect the target during an encounter is important for calculating 

probability of kill (pk). Pk calculations are primarily based on warhead fragmentation 

intersecting target components, but include intersection of the missile body with the target 

[McCardle97]. ENCOUNT provides a means of visualizing this interaction by displaying a 

relative velocity vector line through a specified arbitrary point on the missile. This line shows the 

path of this point relative to the target, projecting where an intersection occurs. AMVS displays 

this line as well; however animation of the encounter improves upon this technique significantly 

by providing the engineer immediate understanding of missile/target intersection for the entire 

missile and not just a single user specified point. 

Animating the encounter also enhances AMVS as a training and briefing tool for 

conveying concepts unique to an endgame. Sections 2.2.2 and 2.2.3 identified the fundamental 

roles of the missile's fuze and warhead components. AMVS animates these components to assist 

individuals in understanding the timing relationship between the fuze and warhead components. 

The fuze sensor cones transparency or visibility values are set to change when a target is passing 

within the fuze sensor's range. Warhead fragmentation is displayed as both an expanding ring 

and a torus. The user witnesses the correlation of fuze sensor target detection and warhead 

detonation. Simulation time during animation is displayed in the animation control dialog and 

assists in understanding timing issues. 

5.2.4   Target Dialog 

Figure 5-4 shows the target dialog. The user loads target models and SHAZAM- 

produced output files with this dialog as well as set the level of transparency for the aircraft skin 

components. Visibility of all aircraft component groups is toggled on or off by the user through 

an interface that is patterned off of the IVAVIEW program. If the loaded target file contains 

varying levels of detail, the user is allowed select between these using this dialog. This provides 
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the user the ability to increase AMVS' performance by reducing the scene graph complexity. 
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Figure 5-4: Target Dialog 

The user can load SHAZAM files using the target dialog. The SHAZAM program 

produces simulation results showing where simulated fragmentation pieces are at specified times 

during the simulation. The fragmentation file flags components that have intersected a target 

with AMVS graphically displaying these results. During animation, the time of impact is used to 

determine when to turn on impact visibility. 

OPEC .out files loaded in the encounter dialog contain target component damage data. 

This dialog provides the engineer the ability to view the colored component damage (component 

coloring is explained in Section 4.2.5) by setting aircraft skin transparency. The user can isolate 

specific target components groups, such as flight control system and hydraulics, by setting 

component group visibility. 
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5.2.5   Missile Dialog 

The missile dialog, shown in Figure 5-5, allows the user to control which missile is 

loaded, level of detail for the missile, which velocity vector lines are displayed (both relative and 

actual), and information about the warhead. The user sets the warhead position on the missile 

through the missile 
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Figure 5-5: Missile Dialog 

dialog. The warhead position is represented as a vector in the missile coordinate system with Y 

and Z values set to 0. Fragmentation lateral fly-out velocity is in inches per second and is set by 

the user. The user has control over visualizing the fragmentation fly-out. Fragmentation fly-out 

is visualized in two ways: first, as a cone representing the path of warhead fragmentation from the 

missile given the fragmentation fly-out velocity along with speed and orientation of the missile. 

Second, an animated ring or torus shows the fragmentation dispersal at specifics point in time. 
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AMVS includes the visualization of fragmentation fly-out only to convey concepts in 

fuzing and warhead detonation. It does not attempt to model the realistic physical phenomenon 

of fragmentation. Therefore, effects of air-resistance and gravity have been left out to simplify 

the model [Starfield90:8]. Never the less, the simplified model is sufficient to demonstrate the 

important effect missile velocity and orientation has on the fragmentation fly-out cone. This 

problem of fragmentation pattern skewing due to missile yaw or pitch and its effects on targeting 

is discussed in detail in Section 2.2.4. AMVS pictorial demonstration of this principle assists 

individuals in understanding this phenomenon and how it effects the performance of air intercept 

missiles. Derivation of the fragmentation fly-out skewed cone calculations appears in Section 

5.3.2. 

5.2.6   Fixed Fuze Cone Dialog 

The missile fuze cone dialog is shown in Figure 5-6. This dialog provides the ability to 

load a fuze file, modify the fuze attributes, set fuze cone visibility and transparency, and specify 

information for animating the fuze cone. Fuze sensor patterns are displayed graphically as 

transparent cones. 
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Figure 5-6: Fixed Fuze Cone Dialog 
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Engineers examine existing fuze components by loading fuze files containing the fuze 

sensor pattern specifications. They may also edit the fuze specifications with this dialog and 

examine the results graphically. As mentioned in Section 2.2.3, the fuze setting effects the type 

of missile/target encounter and ultimately the time-to-burst value. For example, larger fuze 

angles allow the missile to calculate a valid time-to-burst against a target approaching at a larger 

azimuth, while smaller fuze angles allow the missile to calculate a valid time-to-bust for high- 

speed head-on encounters. AMVS provides the engineer a tool for experimenting with different 

fuze settings for specific encounters. Because fuze cone animation is primarily for training and 

briefing purposes, and not sensor analysis, AMVS does not attempt to simulate real fuze sensor 

target detection. As a result, the target detection time must be entered manually by the engineer. 

Currently, air-intercept missiles are designed and developed with only a single fuze 

sensor. Adding additional fuze components to a missile can potentially increase the range of 

encounters a missile can properly operate in to effectively kill a target. AMVS provides the 

engineer an environment for experimenting with up to three fuze sensors. 

5.2.7   Shadow and Grid Dialog 

Shadow projections, as introduced in Section 4.2.1, improve the perception and mental 

modeling of missile/target inter-object spatial relationships. This is most valuable in analyzing 

the endgame parameters of a scenario set by the encounter dialog (see Section 5.2.2). Figure 5-7 

shows the dialog for controlling grids and shadows. An example of this visualization technique 

appears earlier in Figure 5-1. Using the shadow and grid dialog, the user has the option to turn 

the visibility of top, side and back shadows on or off. They may also change grid visibility, units 

dimensions and placement. 
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Figure 5-7: Shadow and Grid Dialog 

5.2.8   Visual Cone Cross Sections 

The dialog for setting fuze and fragmentation fly-out cones to 2D cross sections is shown 

in Figure 5-8. Figure 5-9 shows an example display of cone cross sections. Once the user selects 

the cross section modes, she dials the cone rotation to a desired position. 
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Figure 5-8: Cone Cross Section Dialog 
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Figure 5-9: Example Cone Cross Section View 

As mentioned in Section 4.2.3, this visualization technique, patterned after two- 

dimensional drawings in missile proximity sensor publications and manuals, is both familiar to 

the missile engineer and useful for modeling the interaction of the target and cones.. This 

technique is especially useful when the target is not directly intersecting the cone. 

5.3   Setting up a Scenario 

Now that we have examined AMVS from the user's point of view, we turn our attention 

to some of its underlying implementation, beginning with calculations for setting up an endgame 

scenario. The current scenario is controlled by the CEncounter class. When the scenario 

changes, the CEncounter class notifies all CDataObjects of the new scenario (see Figure 5-10). 

As data object in the list is visited the object's virtual SetScenario is called with the CScenario 

object holding the current scenario. 
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(This line of code is located in CDataObject constructor) 

// Get a pointer to the DataObject lists 
m_dataList - CDataObject::List(); 

// Notify all the CDataObjects of the new CScenario 
for(m_listlndex=m_dataList->begin();m_listlndexl-m_dataList->end();    \ 

m_listlndex++) 
(*m listlndex)->SetScenarlo(m scenario^: 

NOTE: 
The following are defined in the CDataObject header file: 

typedef vector<CDataObject*> DataObjectList; 
typedef DataObjedList::iterator DataObjectListlterator; 

The following are member variables of the CEncounter class: 

DataObjectList*  m_dataList; 
DataObjectListlterator mjistlndex; 

Figure 5-10: Notifying Data Objects of the New Scenario 

Since CDataObject's constructor adds each newly instantiated data object to the data 

object list, all classes inheriting from CDataObject will be automatically notified of changes to 

the current scenario. Each CDataObject is then responsible to modify its state according to the 

new scenario. The following sections outline some of the state changes that occur with a new 

simulation. 

5.3.1   Target, Missile and Relative Velocity Vector Transformations 

Scenarios contain data derived from ENCOUNT or OPEC files. This data primarily 

effects the orientation of the target and missile. ENCOUNT and OPEC calculate missile and 

target orientation in the same way. This section outlines the transformations required to position 

the target, missile, and relative velocity vectors based upon the current scenario. Variables from 

the scenario, along with additional variables for calculation, can be seen in Table 5-1. All vectors 

are normalized unless otherwise specified. 
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Table 5-1 Endgame Scenario Variables 

1 i^'^fV^W "■Sfcif'l dS^'^Ak 1 f,^MS^P?^^^!%'%f^^i^^&^^i^p- !■■■■■ ■ -I^iilll 
AZ Degree Azimuth of missile attach 
EL Degree Elevation of missile attach 

MAA Matrix Attack angle (azimuth and elevation) 
VM\ Vector Missile's unit velocity vector 

Mvel Float Missile's velocity 
VTV Vector Target's unit velocity vector 
Tvel Float Target's velocity 
VRV Vector Relative velocity vector 
Rvel Float Relative velocity 

MRVCS Matrix Relative velocity vector coordinate system 
(rotational transformation only). 

VAP Vector Aimpoint in target space 
VMP Vector Miss point in relative velocity vector 

coordinate system. 
VxYZMfes Vector Aimpoint miss value in relative velocity 

vector coordinate system 
VTP Vector Tracking point on the missile 

MTPT Matrix Tracking point translation matrix, holds 
values in vector VTP 

^MYaw, A/MPltcl» Matrix Missile yaw, pitch and roll 
MMROU 

A^TYaw, MTPUCI,, Matrix Target yaw, pitch and roll 
A^TROH 

MMR Matrix Missile rotation 
MTT Matrix Target's total transformation 
MMT Matrix Missile's total transformation 

MRVAPT Matrix Relative velocity vector and aimpoint 
transformation 

A/TPRVT Matrix Tracking point relative velocity vector 
transformation 

nrPosAtZero Vector Target translation value for an animation time 
of 0.0. (used in Section 5.4.1) This value is 
extracted from Mn. 

^MPosAtZero Vector Missile translation value for an animation 
time of 0.0. (used in Section 5.4.1) This value 
is extracted from MMT- 

5.3.1.1 Calculating the velocity vectors 

The target velocity vector is always along the world coordinate x-axis and is not effected 

by target yaw, pitch or roll. The missile velocity vector is based upon the attack azimuth and 

elevation and is also not effected by missile yaw, pitch or roll. An azimuth value of 0 degrees is 

defined to be a head-on attack with the target, while an azimuth of 180 degrees is an attack from 
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behind. A positive elevation represents an attack from above. Equation 1 shows the angle of 

attack calculation. Equation 2 shows how to calculate the missile velocity vector (VMV) by 

multiplying a unit vector in the X direction through the angle of attack matrix. For a discussion 

on three-dimensional transformations, see [Hearn97],[Rogers90] or [Watt93]. 

MAi = lAA 

cos 180 + AZ -sin 180 + AZ 0   0' 

sin 180 + AZ cos 180 + AZ 0   0 

0                       0 10 

0                       0 0   1 

cos EL 0   sin EL 0 

0 10 0 

-sin EL 0   cos EL 0 

0 0        0 1 

(1) 

VMV=MAA (2) 

5.3.1.2 Calculating the relative velocity and relative velocity vector 

The relative velocity vector is found using vector subtraction on the missile and target 

velocity vectors as shown in Equation 3. This vector has a magnitude of relative velocity. 

Equations 4 and 5 show the calculation of the unit relative velocity and the relative velocity 

vector, respectively. 

VRV  = (VMVMVel)- (VTVTVel) (3) 

V 
V    =    RV 
'RV 

\   RV\ 
(4) 

Rvel = \VÜ (5) 

5.3.1.3 Calculating relative velocity vector coordinate system for XYZMiss translation 

A miss occurs when the missile is unable to intercept the target at the aimpoint during an 
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endgame [Mack87:2]. The miss value is a point in a coordinate system centered at the aimpoint 

with x-axis being the relative velocity vector. This coordinate system must be calculated for 

proper placement of the missile as well as proper orientation of the aimpoint cross-hairs. More 

specifically, to calculate the transformation for the aimpoint cross-hairs, we need the inverse 

rotation of this coordinate system (see Section 5.3.1.6) and can ignore aimpoint translation. 

The relative velocity vector rotation matrix is calculated using unit the local coordinate 

system's unit axis vectors (described below) as columns in the matrix [Hearn97:428-9]. The 

relative velocity vector is used as the x-axis unit vector for this matrix (positive x represents the 

direction of the missile's movement towards the target). The z-axis unit vector is found by taking 

the cross product of the relative velocity vector with the world-coordinate y-axis unit vector. The 

cross product of the x-axis unit vector and z-axis unit vector define the y-axis unit vector for the 

miss coordinate system. These calculations appear in Equations 6,7 and 8. The rotation matrix 

for defining the relative velocity vector coordinate system centered at the origin is shown in 

Equation 9. 

Vx=VRV (6) 

Vz'=Vx'x[0   1   0] (7) 

(8) 

(9) 

yY = V yx xVz' 

YXl Vn VZ1 0 

MRVCS 
= 

VX2 

V YX3 

vY2 

V VY3 

YZ2 

V VZ3 

0 

0 
0 0 0 1 

5.3.1.4 Calculating the target transformation 

The target's initial orientation is located at the origin, facing in the positive x-axis with 

the y-axis out the left wing. The target's orientation is defined by yaw, pitch and roll values. The 
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calculation for the target's rotation is shown in Equation 10. 

MJJ     MTYawMTPitchMTRoU (10) 

5.3.1.5 Calculating the missile transformation 

The missile's initial orientation is the same as the target's. The transformations for 

orienting the missile according to the current scenario are summarized as follows: 

The missile is aligned with the attack angle, 

The yaw, pitch and roll rotation is applied to the missile, 

The missile is translated by the miss vector in the relative velocity vector coordinate system. 

The missile is translated to the aimpoint in the target coordinate system. 

To make the final two transformations, we introduce two temporary vectors VAPW and VMPW 

representing the aimpoint and miss point translation vectors respectively in the world-coordinate 

system, and two temporary matrices MAFT and MMPT to represent these two translations. These 

calculations are shown in Equations 11 through 14. MMT and MMPT are used again later when 

calculating the transformations of the relative velocity vector lines. 

V      = M   V YAPW        lrlTTyAP 

V      =M      V YMPW        1V1RVCSYMP 

(11) 

(12) 

iVl  ADT    ~— 
"■APT 

1   0   0   V APWr 

0   1   0   V, APW, 

0   0   1    V, 

0   0   0 
APWt 

1 

(13) 
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M-UPT   — lMPT 

1   o   0   V, MPW, 

0   1   0   V, MPW, 

0   0   1   V, 

0   0   0 
MPWt 

1 

(14) 

The missile's total rotation matrix calculation is shown in Equation 15. This matrix is saved for 

later calculation of the displayed relative velocity vector through the missile's tracking point. 

Equation 16 shows the missile's total transformation. 

M    = M      M       M      M lrl MR       "l MYaw iY1 MPitch m MRoll1¥1 AA (15) 

M-Mi — M.APJMMPTMMR (16) 

5.3.1.6 Calculating transformations for the relative velocity vector lines 

At this point, the calculations of the missile and target transformations are complete. The 

next step is to calculate transformations for the relative velocity vectors. Figure 5-11 shows the 

visible aimpoint, missile tracking point and relative velocity vectors. In this figure, the 
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Figure 5-11: Aimpoint on the Target and Tracking Point on the Missile 

aimpoint is placed directly above the nose of the target (larger cross-hair), the missile tracking 
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point is centered on the missile, the missile has a miss point of [0, -25,75]. The ideal relative 

velocity represents the flight path of a missile with zero miss value and is therefore always 

displayed directly at the aimpoint. The missile's actual relative velocity vector is centered at the 

tracking point on the missile. 

The ideal relative velocity vector and aimpoint on the target are placed in the target's 

scene graph and will follow the target during animation. The relative velocity vector displayed 

through the tracking point on the missile is placed in the missile's scene graph and moves with it 

during animation. Calculating the ideal relative trajectory and aimpoint transformation, shown in 

Equation 17, requires first an inverse of the target's rotation, a rotation according to the relative 

velocity vector coordinate system, then a translation to the aimpoint. The transformation of the 

relative velocity vector through the missile's tracking point likewise requires first an inverse of 

the missile's total rotation, a rotation according to the relative velocity vector coordinate system, 

then a translation to the tracking point on the missile. This can be seen in Equation 18. 

""■RVAPT = -™ APT™RVCS"*TR ( ^) 

"^TPRVT = "^TPT"^RVCS"^MR (18) 

5.3.2   Calculating the fly-out pattern's skewed cone 

Section 2.2.4 discusses the fragmentation fly-out skew pattern. Recall that the missile 

flies along the x-axis of a coordinate system defined by the attack azimuth and elevation. 

Warhead fragmentation is projected perpendicular to the missile's longitudinal axis. Elapsed 

over time, the warhead fragmentation pattern produces a cone.  If the missile has a yaw or pitch 

at the point of detonation, a skewing of the cone results due to the fact that the missile's flight 

path and missile's orientation are not the same. This causes one side of the missile's fragments to 

travel away from the missile's original position faster than those on the opposite side. The 
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resulting pattern is a cone skewing towards the flight path of the missile. 

To properly display the skewing effect on the fly-out cone, we use a shearing matrix. 

This section demonstrates how to set up the fragmentation fly-out cone's shear matrix. Table 5-2 

shows the important variables. 

MMR 
Mvel 
Fvel 

Matrix 
Float 
Float 

height 
radius 

VrotUnlt 
XRot 

Float 
Float 

Vector 
Vector 
Degree 

SA Degree 

Afro Matrix 

MAM 
MShear 

Matrix 
Matrix 

MRX Matrix 

MTW Matrix 

Time Float 

Table 5-2: Skewed Cone Calculation Variables 

Missile's yaw, pitch and roll rotation 
Missile's velocity 
Warhead fly-out velocity (perpendicular to the 
missile) 
Cone height 
Cone base radius 
X-axis unit vector (1,0,0) 
xunit rotated by MR'1 

Amount of rotation needed to rotate the 
sheared cone to the x-axis 
Shear angle: angle between the missile's axis 
and the missile's flight path. 
Matrix to translate the cone in its default 
position to cone tip at the origin. 
Matrix to align the cone with the missile. 
Matrix to shear the cone in the positive y 
direction. 
Matrix to rotate the sheared cone around the 
missile's x-axis to the origin's x-axis. 
Matrix to translate the cone to the position of 
the warhead on the missile. 
Simulation Time in milliseconds. 

First, the shearing angle must be calculated. This is the angle between the missile's longitudinal 

axis and its flight path (the x-axis), and it is found using a dot product between the missile's 

longitudinal axis and the flight path. The missile's longitudinal axis is simply the flight path 

vector multiplied by the inverse of the missile rotation matrix, MMR. An inverse is used because 

our goal is to rotate the cone back to the x-axis after the shear. These calculations are shown in 

Equations 19 and 20. 

VrotUmt=MMR* XUTlit (19) 
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SA = arccos Vro[Unil • xunit (20) 

Next we calculate the height and base radius of the cone is calculated. The height of the 

cone is a user specified value ^controlled via a thumbwheel widget. This gives the user control 

over the size of the cone. The height and base radius must have the same ratio as the missile 

velocity and fragmentation fly-out velocity. Shearing the cone will alter the height of the cone 

and must be taken into account. Equations 21 and 22 shows the calculation of the cone's height 

and base radius. 

height = y/1 cos SA 

radius = (height x Fvel) I Mvel 

(21) 

(22) 

At this point, we are ready to set up our transformation matrices. The first transformation 

is a translation to move the default cone (centered at the origin of the missile coordinate system) 

along the y-axis to position the apex at the origin. Next, the cone is rotated 90 degrees to align 

with the missile. Figure 5-12: A shows the cone now oriented with its apex at the origin and 

aligned with the x-axis of the missile's coordinate system. Now a shearing in the positive-y 

direction can be applied based upon the shearing angle. The shearing matrix is shown in 

Equation 23 [Hearn97:203,423]. Figure 5-12:B shows the shearing effect for our example. 

ABC 

Figure 5-12: Sheering and Orienting the Fragmentation Cone 

5-20 



Mc,.„ = 1 Shear 

1 0 0   0 

tan SA 1 0   0 

0 0 10 

0 0 0   1 

(23) 

The cone is then rotated around the missile's x-axis to align it with the origin's x-axis. To 

calculate this rotation, we use the rotUnit vector. This vector points along the x-axis of the origin 

(recall, we used the inverse of the missile's rotation to calculate this vector). We can therefore 

use this vector's y and z components to find the necessary rotation amount. This rotation amount 

is calculated in Equation 24, and placed in the rotation matrix in Equation 25. Figure 5-12:C 

shows the effects of this rotation. 

Mmot = arctan VrotUni  I VrotUni, (24) 

MBV = lRX 

10 0 0 

0   cos XRot - sin XRot 0 

0   sin XRot cos XRot 0 

0 0 0 1 

(25) 

The final transformation is a translation to the missile's warhead and is calculated by the 

matrix TW. Equation 26 now shows the combination of these transformations to properly shear 

the cone and orient it along the missile's flight path. 

MShearConcTransfbrm ~ "^TW"^RX^Shear^AM^TO (26) 

5.3.3   Shadows 

Target and missile shadows are implemented in the CShadow class (see Figure 5-13 for 

an example). Shadowing is done by manipulating the polygonal coordinate values to match the 

orientation of the target or missile while setting one of the principle coordinate values to zero. 

The result is a "flattened" projection of the original model, having the same orientation. 
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Shadowing is implemented as follows: Four reduced models are loaded, one for the top, side and 

back shadows and one to control the original polygonal values. The three shadow models are 

then placed in the scene graph along with their respective grids. Flat shading is applied to the 

models to improved rendering performance. As the scenario changes, the shadows are set to 

match the missile and target orientations. This is done by iterating through all the model's 

coordinates values (found in SoCoordinate3 nodes). Iteration is done simultaneously for all four 

models. Each polygon vector coordinate is passed through the respective transformation (missile 

or target). This vector is then placed in the each of the respective shadow models (top, side or 

back), zeroing out one of the axis values (e.g., models representing side shadows will have their 

Y values set to zero). 

Figure 5-13: Example View using Shadow Projections 

5.4   Animation 

The current simulation time is controlled by the CAnimControl class. When the 
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Simulation time changes, the CAnimControl class notifies all CRenderObjects of the new time 

with its UpdatePosition function (see Figure 5-14). As UpdatePosition iterates through its list of 

render objects, each render object's virtual NewSimTime is called with the current simulation 

time. Since CRenderObject's constructor adds each newly instantiated render object to the render 

object list, all classes inheriting from CRenderObject will be automatically notified of changes to 

the current simulation time. 

(This line of code is located in CAnimControls constructor) 

// Get a pointer to the RenderObject lists 
m_renderList - CRenderObject::List(); 

void CAnimControls::UpdatePositlonO 
{ 

// Notify all the CRenderObjects of the new simulation time 
for(m_listlndex=m_renderList->begin(); m_listlndexUm_renderList->endO;    \ 

m_listlndex++) 
Cm listlndex)->NewSlmTime(m SIM TIME): 

} 

NOTE: 
The following are defined in the CRenderObject header file: 

typedef vector<CRenderObject*> RenderObjectList; 
typedef RenderObjectList::iterator RenderObjectListlterator; 

The following are member variables of the CAnimControls class: 

RenderObjectList*  m_renderList; 
RenderObjectListlterator mjistlndex; 

Figure 5-14: Updating the Simulation Time 

5.4.1   Target and Missile Animation 

The target and missile position during animation is dependent upon the animation mode 

the user has selected. If the user has selected "BOTH" for animation motion, then both positions 

are modified (see Equations 27 and 28). Equations 29 and 30 show missile and target position 

calculations for the "MISSILE" animation mode. In this mode, the missile moves along the 

relative trajectory while the target remains stationary. Equations 31 and 32 show position 
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calculations for the "TARGET" mode. Where not specified, variable descriptions can be found in 

Table 5-1 and Table 5-2. 

VTPos = VwosAOero + (VTV X Tvel X Time) ( 27) 

V
MPOS = VuposAiUro + (VMv x M^l x Time) ( 28) 

*TPos = *TPosAtZero (29) 

V
MPOS = VMPosAtZero + (VRV x Rvel x Time) (30) 

VTTos = VjTosAtZero + ("Vjnr X Rvel X Time) ( 31) 

*MPos = *MPosAtZero (32) 

5.4.2 Fragmentation Fly-out Animation 

Warhead fragmentation is displayed as an expanding ring. The ring represents the 

fragmentation's center of mass while the torus represents fragmentation dispersal. In general, 

fragmentation extends perpendicularly from the missile depending upon warhead type. For 

AMVS, the sponsor has chosen a dispersal pattern of about 80 to 100 degrees [McCown97]. As 

stated previously in Section 5.2.5, animation of warhead fragmentation fly-out is for briefing and 

training purposes and not for scientific analysis. 

Fragmentation fly-out is animated by scaling the ring and torus. The fragmentation ring 

is centered at the origin with a radius of one meter. The warhead fly-out velocity, specified by 

the user, is first converted to meters per millisecond, then when the missile receives a new 

simulation time, the ring and torus are scaled as shown in Equation 33. 

ScaleValue = FVel X Time (33) 

5.4.3 Time Adjustment by Focal Distance 

As mentioned in Sections 4.3.3 and 5.2.3, the animation control dialog's time adjustment 
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thumbwheel is configured to adjust the simulation time based upon the viewing distance. When 

the user is zoomed in on a component, movement of the thumbwheel results in small changes to 

the simulation time and vice-versa for a zoomed out configuration. My goal is to create a means 

for controlling the animation movement that positions the missile and target roughly from one 

screen edge to the other in a single movement of the mouse, regardless of the focal distance. 

Equation 34 shows the function of thumbwheel movement to simulation time change that 

achieves this goal. 

SimTime = SimTime + TMx(l- e"0005*™) {34) 

Where : TM = Thumbwheel movement 

FD = Focal distance 

5.5   Target and Missile Levels of Detail 

AMVS' performance is increased by using reduced target and missile models. At times, 

however, the user may prefer more complete and accurate models. To provide the user control 

between rendering quality and performance, AMVS provides configurable levels of detail (LOD) 

for selected target and missile models. 

5.5.1   Using Reduced Models Through Decimation and Web Retrieval. 

Target and missile models are received from the sponsor in GEORGE format. Many of 

these models have a large number of polygons (over 20 thousand) which have an adverse effect 

on AMVS' performance. To alleviate this problem, I include polygon reduction in the conversion 

process from GEORGE to Inventor format using a decimation algorithm from the Visualization 

Tool Kit [Schroeder96]. To create LOD models, I apply a series of varying levels of decimation 

to the model. The resulting decimated models are later combined into a single Inventor file (see 

Section 5.5.2). Figure 5-15 shows a C-130 LOD model created using varying degrees of 

decimation. 
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Full Model 55% Reduced 

Figure 5-15: C-130 LOD Model 

80% Reduced 

Since AMVS reads Inventor files, other target and missile models can be used to improve 

performance. Many aircraft models available on the World Wide Web are designed with reduced 

polygon counts. I use Coryphaeus' Software's Designers Workbench (DWB) to scale, oriented 

and convert those models downloaded from the Web for use within AMVS. 

5.5.2 Creating LOD Target and missile models. 

The reduced models described above can each be loaded directly into AMVS. However, 

these models are more easily managed when combined into a single Inventor file. The MakeLOD 

program takes .iv files containing target or missile models and makes a new model having an 

Inventor SoSwitch as the scene graph root. MakeLOD takes file description comments found in 

the .iv files and places them in the newly created file. These comments are used by AMVS to 

label the LOD option menu button found in the CMissile and CTarget dialogs (see Figure 5-4 and 

Figure 5-5). LOD models can be made from any combination of GEORGE-derived files, or other 

Inventor compatible formats mentioned above. 

5.5.3 Using LOD Models in AMVS 

When a new model is loaded, AMVS checks to determine if it is a GEORGE-derived 

model, non-GEORGE derived model, or an LOD model containing any combination of these. If 

AMVS determines that the newly loaded model contains levels of detail, the LOD option button 
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is updated with the LOD description of each sub-model. 

AMVS handles GEORGE derived and non-GEORGE derived target models differently. 

If a GEORGE derived target model is loaded, the model is searched for key component visibility 

root nodes (SoSwitch's) and the skin transparency node (SoMateriat). These nodes are 

manipulated when the user modifies skin transparency or component visibility. When non- 

GEORGE derived models are loaded, these features are disabled. When a user manipulates 

component visibility or transparency on an LOD target model, AMVS updates all GEORGE- 

derived models accordingly. 

5.6   Multi-threading AMVS 

Multi-threading a GUI-based application improves user interface responsiveness, 

particularly when the applications performs file I/O or computation that can be deferred 

[Kleiman96:4]. For this reason, I have multi-threaded two of AMVS' features: 1) loading a 

simulation and 2) setting target damage for LOD models. Threading simulation loading gives the 

benefit of allowing the user to view the scene as it loads. The user may perceive a reduced 

response time, but is not kept from viewing components that have already been loaded and has 

complete control over viewpoint manipulation during this process. Likewise, threading target 

damage coloring for LOD models improves user responsiveness. When the user requests to see 

component damage on an LOD model, the current level of detail is colored first, then other levels 

of detail are colored within the thread. The user is then allowed to view target damage on the 

immediately visible model while component coloring of other levels of detail is deferred. 

5.6.1    Software Quality 

In Section 1.4.3,1 listed four development intentions. These include creating an 

application with increased stability, maintainability, extendibility and performance. This section 
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addresses each of these intentions in relation to AMES. 

5.6.1.1 Stability 

I evaluate AMVS' stability in the same manner as was done for AMES (as mentioned in 

Section 4.5.1): use of automated tools and stress testing. Parasoft's Insure++, as mentioned in 

Section 3.5.2.4, is an effective tool for ensuring the stability of a program. Insure's evaluation of 

AMES' code revealed only a few warnings, mostly regarding unused or un-initialized variables, 

which were later fixed. 

5.6.1.2 Maintainability 

AMVS is more maintainable than AMES due to improved design and documentation, 

along with cleaner, more efficient code. AMVS has been well documented, using both in-line 

documents and documentation found in AMVS' continuity directory. Also, AMVS has been 

implemented in fewer lines of code, resulting from good design and code re-use. Writing AMVS 

with the same capabilities of AMES was done in one-third the number of lines of code. It is 

generally accepted that an application written with fewer statements results in cleaner, more 

maintainable code. 

5.6.1.3 Extendibility 

Extending AMVS will most likely involve adding new rendering object, new dialogs, or 

perhaps, even new scenario types. The process to do so has been simple. The ease in which new 

rendering objects are added to AMVS was outlined in Section 4.6.4. The creation of new dialogs 

in simplified through code re-use. Classes inheriting from CDlgDataObject can take advantage 

of all methods provided by it. New interfaces can be quickly constructed using the panel and 

panel object classes AMVS provides. 

AMVS has been designed to allow for the implementation of new missile/target 
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scenarios. One such example was the extension of AMVS to include animation of a VisSim fly- 

out simulation. All that was required was the creation of a CVisSimScenario class inheriting from 

CScenario. Each CDataObject was then modified to handle this new scenario type. The only 

modifications necessary for each object involved small changes to the user-interface, and actions 

performed in the SetScenario and NewSimTime functions. 

5.6.1.4 Performance 

Through-out this document, I have mentioned methods used to improve AMVS' 

performance. I will summarize techniques for increasing performance here: 

1. Using fewer transformation nodes in the scene graph by performing many of the 

calculations prior to rendering. Also using translation or rotation nodes rather than 

full transformation matrices where applicable. 

2. Providing each CRenderObject with all necessary information (through the 

CScenario) needed for calculating each frame. This low coupling reduces function 

call overhead. In addition, objects calculate and save as many variables as possible 

before animation begins (such as velocity vectors). 

3. Only performing computation when necessary. If an object's visibility is turned off, 

the object will not perform calculations for position updates during animation. 

4. Inlining functions [Meyers92:10]. 

5. Using a single directional light in the fuze-cone sub-scene graph rather then six point 

light sources for the entire scene-graph. 

6. Flat shading shadows. 

7. Using reduced models (described in Section 5.5.1). 
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Performance test results between AMES and AMVS can be seen in Table 5-3. All tests 

were performed with a missile containing 284 polygons. These test results show an average 

performance increase of almost 200%. 

Table 5-3: AMES I AMVS Performance Tests 

:^-zS^vg£^. 

21124 2.985 8.95 200% 

688 26.785 72.25 170% 

70434 0.830 2.60 213% 

34433 1.71 5.15 201% 

47879 1.10 3.15 186% 

5.7   PC Based Animation of VisSim results 

As mentioned in Chapter n, the sponsor is interested in seeing VisSim results animated 

on the PC. I have elected to explore this area by creating two prototypes to run on both the PC 

and SGI, one written in C++/OpenGL, the other written in Java/VRML and viewed through a 

web browser. 

5.7.1   OpenGL 

Figure 5-16 shows the C++/OpenGL VisSim animation prototype. This program was 

developed on an SGI workstation and then rehosted on the PC. To make this program completely 

portable, I did not use any existing libraries for the user interface. The user interface is written 

entirely in OpenGL. This prototype provides the basic capability to load a VisSim file from the 

command line, display the full fly-out path, and animate the missile along this path. 
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Figure 5-16: C++/OpenGL VisSim Animation Prototype 

5.7.2   Java/VRML platform independent version. 

Figure 5-17 shows the Java/VRML implementation as viewed in a Netscape browser. 

This version provides the same capabilities as stated above, with one addition: being able to load 

a new VisSim file with the Java applet. Also, the animation control more closely matches the one 

found in AMVS. 
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Figure 5-17: Java/VRML VisSim Animation Prototype 
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5.7.3   Comparison 

Both software platforms allowed for object oriented programming. The biggest 

advantage OpenGL has over Java/VRML is in rendering performance. The Java/VRML version 

viewed through the web browser rendered at about half the former's frame rate. However, the 

Java/VRML software platforms has a few advantages over OpenGL. First, both Java and VRML 

are platform independent; no additional effort was needed to port it to the PC. As a result, 

software delivery has been greatly simplified. The Java/VRML application can also be posted at 

a web site, readily available to anyone with Internet access. Finally, since Java includes a user 

interface API, the GUI was easier to develop. Although the Java/VRML software platform 

(currently) has lower rendering performance, it has potential in the area of missile fly-out 

visualization. The next chapter summarizes my contributions to visualization and animation of 

missile/target encounters. 
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6. Contributions 

6.1 Introduction 

This chapter summarizes my research efforts to enhance visualization and animation of 

endgame and full fly-out missile/target encounters. I begin by presenting major and minor 

contributions to the field followed by major and minor enhancements to the previous research 

done by Lt. Joseph Moritz. Next I make suggestions for future work in this field and then 

conclude with a summary of this research. 

6.2 Contributions 

Previous work at AFJT in the field of visualizing endgame scenarios was accomplished 

by Lt. Joseph Moritz [Moritz96]. His research resulted in the creation of the AFTT Missile 

Endgame Simulator (AMES). My research extends Moritz's work. In particular, this research 

focuses upon visualizing the fragmentation fly-out skewing, improving endgame animation and 

extending the animation to include the complete endgame encounter from target detection to 

fragmentation impact. This research also investigates animation of a full fly-out simulation. 

Furthermore, it explores new techniques for visualizing the spatial relationships present in a 

missile/target encounter. These new capabilities and concepts in visualizing and animation 

missile/target encounters are implemented in the AFJT Missile Visualization System (AMVS). 

While AMVS development necessarily involved reusing ideas found in AMES, the sections to 

follow represent only those original contributions embodied in AMVS. 
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6.2.1.1 Visualizing the Fragmentation Fly-out Skewed Cone 

The fragmentation fly-out cone skewing phenomenon, as discussed in Section 2.2.4, 

effects the performance of air-intercept missiles. Previously, engineers had no graphical tool for 

dynamically visualizing this phenomenon. AMVS displays the skewed cone both as a two- 

dimensional cross section and as full, transparent cone. Visualization of the skewed cone assists 

engineers in achieving a better understanding fly-out cone skewing and thereby discover solutions 

to combat its effects. It is also useful in briefing decision makers on this problem. 

6.2.1.2 Full Animation of an Endgame Scenario 

Previously, there did not exists a three-dimensional graphical tool for animating the full 

endgame encounter to include visualizing fuze-cone target detection, warhead fragmentation fly- 

out, and fragmentation/target impacts. AMVS animates the full endgame encounter. Fuze cones 

are animated by changing their transparency or visibility during target detection (see Section 

5.2.6). Warhead fly-out is displayed as an expanding ring or torus (see Sections 5.2.5 and 5.4.2). 

Fragmentation/target impacts are displayed using SHAZAM output and correctly correlated with 

the impact time. 

Such an animation tool not only helps the engineers understand encounter timing issues 

and the missile/target interaction during an endgame, it also provides an improved method for 

communicating endgame concepts to people not familiar with them. 

6.2.1.3 Visualization and Animation of Full Fly-out Simulation Results 

Engineers previously had no three-dimensional tool for visualizing and animating VisSim 

full fly-out simulation results. The lack of such a tool makes assimilation of these results 

difficult. Engineers needed to be able to understand the missiles flight path in relation to the 

target, as well as its orientation through out the flight. AMVS reads, displays, and animates the 
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missile's flight path using a VisSim output file. 

6.2.1.4 Fixed Fuze-cone Attribute Experimentation 

AMES was implemented to allow the engineer to visualize fixed fuze cone sensor pattern 

coverage based upon antenna azimuth and range attributes loaded in from a FUZE file. However, 

engineers needed an environment not only to visualize this sensor coverage, but to experiment 

with fuze cone antenna azimuth and range settings within a single graphical application. AMVS 

provides such an environment. Engineers can load a fuze file, modify the fuze attributes, 

examine the results interactively, and save their work. 

6.2.1.5 Endgame Scenario Creation 

As stated in Section 2.4.4, engineers need an efficient means of creating an endgame 

scenario. Although AMES was implemented to load an ENCOUNT file, no effort was made to 

allow for saving or creating new ones. As a result, engineers were still left editing these files via 

text editors. The task of creating an endgame scenario is much more efficient in AMVS due to its 

GUI interface for parameter entry, including error checking, and a graphical display to show the 

results of the settings. Furthermore, these modifications can then be written out to a user 

specified ENCOUNT file for archival or reuse. 

6.2.2   Minor Contributions 

6.2.2.1 Modifiable Levels of Detail 

To improve performance while still providing high fidelity models, Moritz suggested the 

implementation of user modifiable levels of detail (LOD) with future versions of AMES 

[Mortiz96:6-3]. AMVS allows the user to select between varying levels of detail for the missile 

and target. Thus, the user may choose between efficiency and accuracy depending upon the task 

at hand. During some tasks, such as examining target/fuze-cone interaction, lower fidelity in 
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target and missile models may suffice. When using AMVS as a briefing tool, however, improved 

rendering may be more desirable. 

6.2.2.2 Saving a Simulation 

AMVS enables the user to work efficiently by allowing the engineer to save her work and 

return to it later. AMVS not only saves such information as currently selected missile and target 

models and as the currently loaded ENCOUNT or OPEC file, but also such states as the fuze cone 

attribute settings, the cone, grid and shadow visibility settings, the current rendering view, and the 

five "saved" rendering views. 

6.2.2.3 Visualized Missile and Target Velocity Vectors 

AMVS displays the missile and target's actual velocity vector lines in addition displaying 

relative velocities. Displaying the missile's actual velocity vector is critical when examining 

fragmentation skewing, since the fragmentation fly-out cone is centered along the missile's flight 

path and not the missile's longitudinal axis. 

6.2.2.4 Target Component Group Visibility 

Each target consists of several hundred components. To reduce scene complexity, 

IV A VIEW provides the user the ability to set component group visibility. AMVS likewise 

provides this capability. 

6.2.2.5 View Control 

To further enhance understanding of the scenario, engineers are given the current view 

position and orientation feedback relative to the target. Also, the engineer is able to save and 

restore key viewpoints. 
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6.2.2.6 Rendering Scene Image Capturing 

To support training and briefing, AMVS captures its rendering scene and save it to a user 

specified image file. These image files can then be incorporated into briefing slides or training 

manuals. 

6.2.3   Major Enhancements to AMES' Capabilities 

6.23.1 Improved Rendering Performance 

As mentioned in Section 2.4.3.2, AMES surfers from poor rendering performance, 

resulting in a degraded animation and lower fidelity. Section 5.6.1.4 summarizes the efforts to 

improve rendering performance in AMVS' implementation. Performance test results show 

almost a 200% increase in rendering performance. 

6.2.3.2 Improved Animation Control User-Interface 

AMES user interface for animation limited the user. AMVS' animation control dialog is 

significantly improved as a result of prototyping and user testing. It now provides valuable 

feedback during the animation and complete control of the simulation time. The feedback given 

to the engineer includes the current simulation time and the current target and missile positions 

displayed in target, missile, or world coordinate systems. Additionally, positions are displayed in 

inches or meters. The engineer also has three separate means of controlling the animation time 

including text field direct entry, dial control, and animation start/stop with speed control. Finally, 

the user has complete control over the simulation time without the need to focus on the animation 

control dialog. 
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6.2.4   Minor Enhancements over AMES' Implementation 

6.2.4.1 Corrected Endgame Scenario Calculations 

AMES makes a few calculation errors when displaying an endgame based upon 

parameters found in ENCOUNT and OPEC files. Incorrect calculations include miss-placed 

visible target coordinate system, arbitrary point on the missile, and visual display of velocity 

vectors as well as miss-calculated center of rotation of the missile and direction of flight for 

missile and target during animation. AMVS corrects these problems. 

6.2.4.2 Ability to View OPEC Target Damage 

Although AMES implemented color coding target internal components based upon the 

component damage information found in an OPEC .out file, component damage was not easily 

visible due to occlusion by the aircraft skin. AMVS fixes this problem by applying user 

configurable transparency to the aircraft skin, allowing the internal components to be visible. 

6.2.4.3 Inter-object Visualization Techniques 

In order to provide insight into inter-object spatial relationships, AMES used three 

additional windows showing the top, side and front views of the encounter in addition to the main 

rendering window. Section 4.2.1 discusses problems with this approach and presents an 

improved visualization technique using shadow projections. AMVS implements shadow 

projections of the missile and target in order to improve visualization of inter-object spatial 

relations between them. 

AMVS also improves visualization of the target/fuze cone relationship. Although using 

transparent cones to visualize fixed fuze cone sensor coverage patterns effectively shows 

target/cone relationships when the target is penetrating the cone, it is ineffective in revealing the 

relationship when the target is positioned before or behind the cone. A better visualization 
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technique in this case is to use cone "cross sections." AMVS optionally displays the fuze cones 

as two-dimensional cross sections patterned after text book and manual drawings. Rendering the 

cone as a cross-section allows the user to better determine how far the target is from the cone at a 

specific point in time. 

6.2.4.4 Alternative Warhead Fragmentation Visualization 

AMES displays warhead fragmentation trajectories as lines emanating from the warhead 

origin point [Moritz96:4-17]. The sponsors expressed disinterest in this approach. Therefore, 

AMVS implements a preferred visualization technique involving an expanding ring or torus 

representing a mass of fragmentation emanating from the missile at a specific point in time. The 

size of the ring is modified accordingly during animation. 

6.2.4.5 Improved Target Damage Coloring Scheme 

Component damage produced by OPEC is represented by a scalar value ranging from 0.0 

to 1.0, with 1.0 representing complete damage. AMES visualizes this target component damage 

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of 

the ten increments, thereby loosing some information. AMVS uses a coloring technique which 

does not loose information and more logically conveys damage amounts (see Section 4.2.5). 

6.3   Recommendations for Future Work 

AMVS significantly improves visualization of missile/target encounters. Graphically 

displaying the results of computer based simulation systems makes these systems more valuable 

to the engineers. However, there is one drawback. The engineer must run the endgame on one 

system, and view the results on another. For the case of viewing OPEC and VisSim results, this 

requires transferring simulation results from a PC to the SGI before viewing them in AMVS. A 

single application combining the modeling and simulation capability of OPEC, SHAZAM and 
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VisSim with the visualization and animation capability found in AMVS would be a valuable step 

in improving the engineer's efficiency and realizing the objective of providing a fully capable 

visual environment for missile fuze engineering. 

6.4    Conclusion 

My research results in the discovery and implementation of improved techniques for 

visualizing and animating missile/target encounters. For the first time, engineers are provided an 

interactive three-dimensional graphical display of the fragmentation fly-out skewing 

phenomenon. Visualizing this phenomenon allows engineers to understand its negative effects 

against air-intercept missile performance, leading them further towards the development of fuzing 

and warhead components that overcome this problem. Furthermore, engineers are provided a full 

animation of the endgame, from target detection to fragmentation/target interception. In addition, 

the engineer is given complete temporal and spatial control over the animation through an 

improved animation control interface and viewpoint feedback and control. Visualization 

techniques such as shadow projections and cone cross-sections enhance the animation by 

providing the engineer more information about complex spatial relationships during the endgame. 

This results in an environment which allows the engineer the ability to enter into, control, and 

freely witness an endgame in ways previously not possible. Furthermore, engineers are provided 

a simple to use graphical application for creating endgame scenarios and experimenting with 

fixed fuze-cone attributes.  Finally, during my thesis efforts, I have extended my research to 

include three-dimensional visualization and animation of full fly-out simulations, where 

previously only static two-dimensional display of these results where available to the engineer. 

Displaying and animating the fly-out simulation results allows the engineer complete 

comprehension of simulation results, thereby increasing the value of the system producing them, 

and enhancing the engineers efforts in developing air-intercept missiles. 
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