
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1997

Visualization and Animation of a Missile/Target Encounter Visualization and Animation of a Missile/Target Encounter

Jeffrey T. Bush

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons, and the Signal Processing

Commons

Recommended Citation Recommended Citation
Bush, Jeffrey T., "Visualization and Animation of a Missile/Target Encounter" (1997). Theses and
Dissertations. 5591.
https://scholar.afit.edu/etd/5591

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5591?utm_source=scholar.afit.edu%2Fetd%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFTT/GCS/ENG/97D-05

Visualization and Animation of
a Missile/Target Encounter

THESIS

Jeffrey T. Bush, Captain, USAF

AFTT/GCS/ENG/97D-05

19980130 143
Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy of
position of the Department of Defense or the U. S. Government.

AFTT/GCS/ENG/97D-05

Visualization and Animation

of a

Missile/Target Encounter

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science.

Jeffrey T. Bush, B.S.C.S.

Captain, USAF

December, 1997

Approved for public release; distribution unlimited

AHT/MS/ENG/97D-05

VISUALIZATION AND ANIMATION OF A MISSILE/TARGET ENCOUNTER

Jeffrey T. Bush, B.S.C.S.
Captain, USAF

Approved:

fyrrXSjlirr^put^^ g? gee 97
Keith A. Shomper, PhD, Major, Committee Chairman Date
Department of Electrical and Computer Engineering

Martin R. Stytz, PhD, LtCol, Conimittde-Member Date
Department of Electrical and Computer Engineering

Z^Ü2^97
Mark A. Kanko, PhD, Major, Committee Member Date
Department of Electrical and Computer Engineering

Acknowledgments

I would like to thank 1) my wife, Shani, 2) my advisor, Major Keith Shomper, and 3) my

savior, the Lord Jesus Christ for: 1) love, support and understanding, 2) wisdom, guidance and

fellowship, and 3) salvation, peace and full life (respectively).

Jeffrey T. Bush

Table of Contents

Acknowledgment i

List of Figures vi

List of Tables vii

Abstract viii

1. INTRODUCTION 1-1

1.1 OVERVIEW 1-1
1.2 SUMMARY OF CURRENT KNOWLEDGE 1-2

1.2.1 FASTGEN 1-2
1.2.2 PLOT5 1-3
1.2.3 IVAVIEW. 1-3
1.2.4 ENCOUNT 1-3
1.2.5 OPEC 1-4
1.2.6 AMES 1-4

1.3 THESIS STATEMENT. 1-6
1.4 SCOPE 1-6

1.4.1 Research 1-6
1.4.2 Equipment 1-7
1.4.3 Methods for Enhanced Software Quality 1-7

1.5 THESIS PRESENTATION 1-7

2. BACKGROUND 2-1

2.1 INTRODUCTION 2-1
2.2 Am INTERCEPT MISSILES 2-1

2.2.1 Missile Guidance Component 2-1
2.2.2 Missile Warhead Component 2-1
2.2.3 Missile Fuze Component 2-2
2.2.4 Skewed Fragmentation Pattern Cone 2-5

2.3 COMPUTER-BASED SIMULATION 2-6
2.3.1 FASTGEN 2-7
2.3.2 SHAZAM 2-7
2.3.3 IVAVIEW. 2-8
2.3.4 ENCOUNT 2-8
2.3.5 OPEC 2-9
2.3.6 VisSim 2-9
2.3.7 AMES 2-10

2.4 REQUIREMENTS FOR MISSILE VISUALIZATION 2-11
2.4.1 Major Additional Capabilities 2-11

2.4.1.1 Visualizing the Fragmentation Fly-out Skewed Cone 2-11
2.4.1.2 Full Animation of an Endgame Scenario 2-11
2.4.1.3 Visualization and Animation of Full Fly-out Simulation Results 2-12
2.4.1.4 Fixed Fuze-cone Attribute Experimentation 2-12

2.4.2 Minor Additional Capabilities 2-12
2.4.2.1 Endgame Scenario Creation 2-12
2.4.2.2 Modifiable Levels of Detail 2-12
2.4.2.3 Saving a Simulation 2-13
2.4.2.4 Visualized Missile and Target Velocity Vectors 2-13
2.4.2.5 Target component group visibility 2-13
2.4.2.6 View Control 2-14
2.4.2.7 Rendering Scene Image Capturing 2-14

2.4.3 Major Enhancements to Existing Features 2-14
2.4.3.1 Corrected Endgame Scenario Calculations 2-14

u

2.4.3.2 Improved Rendering Performance 2-14
2.4.3.3 Improved Animation Control User-Interface 2-15
2.4.3.4 Ability to View OPEC Target Damage 2-15

2.4.4 Minor Enhancements to Existing Features 2-15
2.4.4.1 Inter-object Visualization Techniques 2-15
2.4.4.2 Alternative Warhead Fragmentation Visualization 2-16
2.4.4.3 Improved Target Damage Coloring Scheme 2-16
2.4.4.4 Need for a briefing and training tool 2-16
2.4.4.5 Improved Usability and Stability 2-17

2.5 CONCLUSION 2-17

.METHODOLOGY 3-1

3.1 INTRODUCTION 3-1
3.2 RESEARCH PROCESS 3-1
3.3 HUMAN COMPUTER INTERACTION AND DATA VISUALIZATION 3-1
3.4 EVALUATION OF SOFTWARE PLATFORMS 3-2

3.4.1 Software Development languages.... 3-3
3.4.2 Graphical libraries and languages 3-3
3.4.3 User Interface development libraries and tools 3-4

3.5 SOFTWARE DEVELOPMENT. 3-4
5.5.7 Evaluation of AMES 3-5
3.5.2 Application of Software Engineering methodologies 3-5

3.5.2.1 Software Development process 3-5
3.5.2.2 Object Oriented Design 3-6
3.5.2.3 Coding Standard 3-6
3.5.2.4 Automated Tools 3-6
3.5.2.5 Documentation 3.7

, DESIGN...„.............„.................„.„„............„..,.„.„„..,,...,„„„„,.„.4.1

4.1 INTRODUCTION 4-1
4.2 THREE DIMENSIONAL VISUALIZATION 4-1

4.2.1 Spatial Perception 4.1
4.2.2 Transparency 4.2
4.2.3 Target/Fuze Cone Interaction 4.3
4.2.4 Fly-out Animation ...4-4
4.2.5 Target Damage coloring 4.5

4.3 USER INTERFACE DESIGN 4-6
4.3.1 Common Interface 4-6
4.3.2 View Control 4-6
4.3.3 User Interface Design for Animation Control 4-6
4.3.4 Miscellaneous Usability Issues 4.8

4.4 LIBRARY SELECTION 4.9
4.4.1 Graphical Rendering Library 4.9

4.4.1.1 Performance Tests 4.9
4.4.1.2 Conclusion/Decision 4-10

4.4.2 User Interface library and tool selection 4-10
4.5 EVALUATION OF EXISTING CODE 4-11

4.5.1 Stability 4.11
4.5.2 Maintainability 4.11
4.5.3 Extendibility 4.17
4.5.4 Performance 4.12
4.5.5 Final Decision 4.J2

4.6 SOFTWARE ARCHITECTURE DESIGN 4-13
4.6.1 Class Hierarchy and Descriptions 4-13
4.6.2 Data Flow using an Observer Behavioral Pattern 4-17
4.6.3 Scenario 4-I8
4.6.4 Rendering and Animation 4.19

ill

4.6.5 Dialogs 4-20
4.6.6 Saving!Loading ofthe Simulation 4-22
4.6.7 High Cohesion, Low Coupling 4-22

4.7 RENDERING SCENE GRAPH DESIGN 4-22
4.7.1 Transparency 4-23
4.7.2 Performance 4-23
4.7.3 UseoftheSoSwitchNode 4-24

4.8 CONCLUSION 4-24

5. IMPLEMENTATION 5-1

5.1 INTRODUCTION 5-1
5.2 AMVS'FEATURES 5-1

5.2.7 Main Window J-7
5.2.2 Encounter Dialog 5-2
5.2.3 Animation Controller 5-4
5.2.4 Target Dialog 5-5
5.2.5 Missile Dialog 5-7
5.2.6 Fixed Fuze Cone Dialog 5-8
5.2.7 Shadow and Grid Dialog 5-9
5.2.8 Visual Cone Cross Sections 5-10

5.3 SETTING UP A SCENARIO 5-11
5.5.7 Target, Missile and Relative Velocity Vector Transformations 5-72

5.3.1.1 Calculating the velocity vectors 5-13
5.3.1.2 Calculating the relative velocity and relative velocity vector 5-14
5.3.1.3 Calculating relative velocity vector coordinate system for XYZMiss translation 5-14
5.3.1.4 Calculating the target transformation 5-15
5.3.1.5 Calculating the missile transformation 5-16
5.3.1.6 Calculating transformations for the relative velocity vector lines 5-17

5.3.2 Calculating the fly-out pattern's skewed cone 5-18
5.3.3 Shadows 5-27

5.4 ANIMATION 5-22
5.4.1 Target and Missile Animation 5-23
5.4.2 Fragmentation Fly-out Animation 5-24
5.4.3 Time Adjustment by Focal Distance 5-24

5.5 TARGET AND MISSILE LEVELS OF DETAIL 5-25
5.5.7 Using Reduced Models Through Decimation and Web Retrieval 5-25
5.5.2 Creating LOD Target and missile models 5-26
5.5.3 Using LOD Models in AMVS 5-26

5.6 MULTI-THREADING AMVS 5-27
5.6.7 Software Quality 5-27

5.6.1.1 Stability 5-28
5.6.1.2 Maintainability 5-28
5.6.1.3 Extendibility 5-28
5.6.1.4 Performance 5-29

5.7 PC BASED ANIMATION OF VISSIM RESULTS 5-30
5.7.7 OpenGL 5-30
5.7.2 Java/VRML platform independent version 5-57
5.7.3 Comparison 5-33

6. CONTRIBUTIONS 6-1

6.1 INTRODUCTION 6-1
6.2 CONTRIBUTIONS 6-1

6.2.1.1 Visualizing the Fragmentation Fly-out Skewed Cone 6-2
6.2.1.2 Full Animation of an Endgame Scenario 6-2
6.2.1.3 Visualization and Animation of Full Fly-out Simulation Results 6-2
6.2.1.4 Fixed Fuze-cone Attribute Experimentation 6-3
6.2.1.5 Endgame Scenario Creation 6-3

IV

6.2.2 Minor Contributions 3.3
6.2.2.1 Modifiable Levels of Detail 3.3
6.2.2.2 Saving a Simulation 3.4
6.2.2.3 Visualized Missile and Target Velocity Vectors 3-4
6.2.2.4 Target Component Group Visibility 3.4
6.2.2.5 View Control 3.4
6.2.2.6 Rendering Scene Image Capturing 3.5

6.2.3 Major Enhancements to AMES' Capabilities 3-5
6.2.3.1 Improved Rendering Performance 3.5
6.2.3.2 Improved Animation Control User-Interface 3-5

6.2.4 Minor Enhancements over AMES' Implementation 3-6
6.2.4.1 Corrected Endgame Scenario Calculations 3-6
6.2.4.2 Ability to View OPEC Target Damage 3-6
6.2.4.3 Inter-object Visualization Techniques 3-6
6.2.4.4 Alternative Warhead Fragmentation Visualization 3-7
6.2.4.5 Improved Target Damage Coloring Scheme 3-7

6.3 RECOMMENDATIONS FOR FUTURE WORK 3-7
6.4 CONCLUSION 3-8

Bibliography BIB-1

List of Figures

Figure 2-1: Warhead Fragmentation Fly-out 2-2
Figure 2-2: Antenna/Encounter Angle 2-3
Figure 2-3: Time-to-burst 2-4
Figure 2-4: Negative time-to-burst 2-5
Figure 2-5: Fragmentation fly-out's skewed cone 2-6
Figure 4-1: Top, Side and Front Shadow Projections 4-2
Figure 4-2: Aircraft Skin Transparency 4-3
Figure 4-3: Cone Transparency 4.3
Figure 4-4: Cone Cross Sections 4-4
Figure 4-5A-B: Fly-out Ring and Torus 4-5
Figure 4-6: AMES Animation Control Dialog 4-7
Figure 4-7: AMVS1 Animation Control Dialog 4-7
Figure 4-8: Class Hierarchy 4-14
Figure 4-9: Aggregation and Data Flow 4-14
Figure 5-1: AMVS' Main Window 5-2
Figure 5-2: Encounter Dialog 5-3
Figure 5-3: VisSim Full Fly-out Animation 5-4
Figure 5-4: Target Dialog 5-6
Figure 5-5: Missile Dialog „ 5-7
Figure 5-6: Fixed Fuze Cone Dialog 5-8
Figure 5-7: Shadow and Grid Dialog 5-10
Figure 5-8: Cone Cross Section Dialog 5-10
Figure 5-9: Example Cone Cross Section View 5-11
Figure 5-10: Notifying Data Objects of the New Scenario 5-12
Figure 5-11: Aimpoint on the Target and Tracking Point on the Missile 5-17
Figure 5-12: Sheering and Orienting the Fragmentation Cone 5-20
Figure 5-13: Example View using Shadow Projections 5-22
Figure 5-14: Updating the Simulation Time 5-23
Figure 5-15: C-130 LOD Model ^5-26
Figure 5-16: C++/OpenGL VisSim Animation Prototype 5-31
Figure 5-17: Java/VRML VisSim Animation Prototype 5-32

VI

List of Tables

Table 2-1: Target Component Groups 2-7
Table 4-1: Class Descriptions 4-15
Table 5-1: Endgame Scenario Variables 5-13
Table 5-2: Skewed Cone Calculation Variables 5-19
Table 5-3: AMES / AMVS Performance Tests 5-30

Vll

AFTT/GCS/ENG/97D-5

Abstract

Existing missile/target encounter modeling and simulation systems focus on improving

probability of kill models. Little research has been done to visualize these encounters. These

systems can be made more useful to the engineers by incorporating current computer graphics

technology for visualizing and animating the encounter. Our research has been to develop a

graphical simulation package for visualizing both endgame and full fly-out encounters. Endgame

visualization includes showing the interaction of a missile, its fuze cone proximity sensors, and its

target during the final fraction of a second of the missile/target encounter. Additionally, this

system displays dynamic effects such as the warhead fragmentation pattern and the specific

skewing of the fragment scattering due to missile yaw at the point of detonation. Fly-out

visualization, on the other hand, involves full animation of a missile from launch to target.

Animating the results of VisSim fly-out simulations provides the engineer a more efficient means

of analyzing his data. This research also involves investigating fly-out animation via the World

Wide Web.

vui

Visualization and Animation of a

Missile/Target Encounter

1. Introduction

1.1 Overview

Maximizing the probability of kill (Pk) in a missile-target engagement is an important

element in the Air Force's primary goal of obtaining and maintaining air superiority. It affects

our performance in aerial combat. Therefore, we must pay careful attention to technology which

holds promise for improving the design of air-to-air missiles.

Computer simulation has proven effective in providing an economic means of predicting

the results of real world events. For example, the Air Force Armament Laboratory uses computer

simulation to provide engineers an economical means of evaluating a warhead's effectiveness

against its target during and endgame1 scenario. Computer simulation is also used to model the

full fly-out of a missile from launch to detonation. The information obtained from these

missile/target simulation tools currently assists engineers in the Armament Laboratory in

designing missile guidance, fuzing, and warhead components. Furthermore, these automated

tools are helpful in identifying necessary improvements in offensive and defensive weapon

systems. Specifically, target damage predictions are useful in analyzing optimal munitions

quantity, delivery platform, and tactics [Shirley93:1]. Many of these systems were developed

during the 70's and mid 80's and are still being used today. Some provide graphical feedback of

the simulation results; however, the graphics are very rudimentary and limit the tools'

effectiveness. The existing simulation systems can be made more useful to the engineer by

providing capabilities for graphically visualizing their results.

Humans assimilate graphical information more efficiently than its textual and numerical

equivalents. Current trends in usability engineering include information visualization as one

element in increased software effectiveness and overall user productivity [Nielson93] [Marcus, et

al 93]. Also, advances in computer graphic technology make scientific visualization possible.

This technology should be applied to the visualization of missile/target encounters. Work to do

so began in 1996 by Lt. Joseph Moritz, a graduate student at the Air Force Institute of

Technology (AFTT) [Moritz96]. The result of his research was of the AFIT Missile Endgame

Simulation program (AMES), a three-dimensional endgame visualization tool built on the Silicon

Graphics Inc. workstation platform (SGI). This research advances Moritz's efforts by creating

the AFTT Missile Visualization System (AMVS), an improved visualization and animation

system for the endgame as well as full fly-out encounters.

1.2 Summary of Current Knowledge

From the 1970's until now, several software packages have been written to simulate a

missile/target encounter. Most of these software systems focus on accurate modeling of real-

world physics and not on the graphical display of the simulation results. Oftentimes, a lack of

computational power combined with the large amount of modeling data made graphical display

of the endgame impractical. The following sections summarize previous efforts to visualize

endgame simulation. For a more complete discussion of endgame simulation software see

[Mortiz96:2-1..2-12].

1.2.1 FASTGEN

FASTGEN, developed in the 1970's, was one of the first endgame simulation systems. It

was designed to calculate warhead fragmentation trajectories as they intersect an intricate target

1 An endgame is defined as the final milliseconds of a missile/target encounter.

1-2

model, keeping track of which target components each fragment intersects. Part of FASTGEN's

development involved the creation of an intricate target model format for accurately depicting

aircraft. The FASTGEN target model involves multiple base primitives including spheres,

cylinders, donuts, boxes, wedges, rods, and triangles. Several aircraft (both friendly and hostile)

have been modeled using the FASTGEN format. As a result, most of the endgame systems

available today use FASTGEN target models directly, or models converted from FASTGEN to a

format containing all triangles.

1.2.2 PLOT5

PLOT5 displays FASTGEN files and was written primarily as a tool for debugging target

models. It is capable of displaying the set-up encounter of a simulation, the orientation of the

missile and target. PLOT5 uses two dimensional cross sections of the target to display

component damage [Moritz96:2-3][Cramer85:B-9].

1.2.3 rVAVIEW

rVAVIEW is an X-Windows application capable of running on an SGI. rVAVIEW

displays FASTGEN files, showing the entire target and missile models in three dimensions. The

wireframe models can be views from various directions, and target component visibility options

are provided to the user [Moritz96:2-3,4][SURVICE92].

1.2.4 ENCOUNT

Engineers need a means of visualizing an endgame scenario; specifically, they must

know how a missile and target are oriented and see their relative flight paths. ENCOUNT is a

FORTRAN program which takes endgame parameters from an ENCOUNT file, along with

FASTGEN target and missile models, and produces a third FASTGEN file containing the target

and missile oriented according to the endgame parameters along with lines representing relative

trajectories. This file is then examined with IV A VIEW.

1-3

1.2.5 OPEC

The Ordnance Package Evaluation Code (OPEC) is the most recently developed endgame

simulation system. OPEC was written for the IBM PC; its calculations have a number of

improvements over previous simulation systems (see [Moritz96:2-7]). Although OPEC provides

a more accurate simulation of a missile/target engagement, it's results suffer from a poor

graphical display, because its PC platform does not have the computer graphics power to display

the abundant model data.

1.2.6 AMES

Engineers like OPEC because it provides a more realistic calculation of target probability

of kill (pk). However, they need better images of the encounters. The AFTT Missile Endgame

Simulation program was implemented to display OPEC simulation results. With AMES, the

engineers are able to view the orientation and position of the missile and target for the given

encounter. It also displays OPEC's warhead burst point, target component damage, and warhead

fragmentation fly-out velocities. Furthermore, AMES displays encounters based on endgame

parameters found in an ENCOUNT file and attempts to animate the motion of the missile and

target. Finally, AMES displays multiple fixed fuze-cone sensor patterns.

AMES was a good initial attempt at visualizing an endgame scenario; however, several

major improvements can be made on existing features, and new capabilities must be added to

make it useful for all endgame analysis activities.

Improvements on existing features include complete re-engineering of animation to

correct the missile and target flight path, give the user more control over the animation, provide

feedback as to current simulation time and target and missile positions, improve rendering

performance, and provide more fidelity. AMES is limited in its ability to provide complete

fidelity and control due to its underlying implementation.. Second, although AMES properly

color codes internal target components based upon pk damage values calculated by OPEC, these

1-4

cannot be seen due to conclusion from the aircraft skin, plus the target damage color code scheme

should be modified to improve visualization [Tuft90:82,91]. Third, a different method for

visualizing warhead fragmentation needs to be applied (including animation) [Cunard97].

Fourth, calculations for orienting the target and missile based upon parameters found in OPEC

and ENCOUNT files need to be corrected. Fifth, a better technique should be implemented for

visualization of inter-object spatial relationships, rather than using multiple one-point perspective

projections [Wagner92] [Herndon92]. Lastly, AMES user-interface needs to be modified to

increase usability.

At the completion of Moritz's research, some of the original requirements were left

incomplete and are listed here [Moritz96:6-3]:

1. Visualize warhead fragmentation pattern skewing.

2. Provide multiple coordinate center feedback options.

3. Provide velocity vector orientation feedback relative to the model.

4. Provide speed control over the simulation.

5. Provide feedback on time passed during the simulation.

In addition, Moritz provides a list of recommendations for future work [Moritz96:6-3]:

1. Modifiable levels of detail.

2. Saving a simulation to disk, allowing the user to save her work and return to it later.

3. Capability to change simulation speed.

In addition, early system prototypes and interviews with the engineers have revealed the needs for

the following requirements:

1. Animation of the entire endgame scenario, including fuze-cone sensor target

detection, warhead fragmentation fly-out and fragmentation-target intersection based

upon SHAZAM2 simulation results.

2 SHAZAM is missile endgame simulation tool for calculating pk based upon fragmentation hits on a target.

1-5

2. Ability to create, edit, visualize and save the information within an ENCOUNT file.

3. Target component-group visibility and skin transparency control.

4. More control over the current view including position and orientation feedback

relative to the target, and the ability to save and restore multiple views.

5. Ability to animate full missile fly-out simulations as produced by VisSim3.

1.3 Thesis Statement

It is clear from the preceding summary of endgame visualization systems that there

remains ample opportunity for improvement and a definite need for new for new capabilities.

This research explores these areas by discovering and implementing techniques for

1. Visualizing the fragmentation fly-out skewing phenomenon

2. Animating an endgame encounter from target detection to warhead detonation and the

target/fragmentation intersection

3. Animating full fly-out simulations

4. Visualizing three dimensional inter-object spatial relationships on a two-dimensional

display.

5. Providing the engineer complete control over the simulation time while being able to

view the animation from any angle.

1.4 Scope

1.4.1 Research

This research is limited to providing engineers graphical capabilities for visualizing and

VisSim is a modeling and simulation system for simulating the full path of the missile from launch to target.

1-6

animating missile/target encounters. This research will not involve modeling missile flight

behavior in full fly-out simulations, or pk calculations for endgame scenarios.

1.4.2 Equipment

The primary development environment is a Silicon Graphics (SGI) workstation running

UNIX, X-Windows, and Motif. Various graphical libraries are also available and are discussed

further in Chapter m. Additional prototypes for animating VisSim results will be developed on

both the SGI and the PC. Developed prototypes written will be portable to both platforms (see

Section 5.7 for more details).

1.4.3 Methods for Enhanced Software Quality

Because this research includes software development, methodologies for enhancing

software quality were incorporated. The intent was to create stable, maintainable, extendible and

efficient software. Chapter HI discusses these methodologies and how they are used to meet

these intentions.

1.5 Thesis Presentation

The remainder of this thesis is divided into five chapters. Chapter II presents background

information relevant to this thesis. In particular, it describes the three key components in an air-

intercept missile: guidance, fuze, and warhead, and then briefly discusses the relevant

missile/target simulation systems which preceded my research. Chapter HI discusses the

selection of programming language and graphical library, and introduces the software

development methodologies I followed during this research. Chapter IV outlines design

decisions regarding three-dimensional visualization, user interface, software library selection, and

software architecture. In Chapter V, I first present the AMVS' implementation from the user's

perspective, presenting its features and capabilities while tying these to the engineer's needs

1-7

outlined in Chapter II. The second part of Chapter V highlights some of AMVS' underlying

implementation. Finally, Chapter VI summarizes this research, identifying its specific

contributions to the field, and proposes recommendations for future work.

1-8

2. Background

2.1 Introduction

This chapter begins with a brief description of air intercept missiles which includes a

discussion of the guidance, warhead, and fuze components followed by explanation of a

phenomenon known as skewed fragmentation fly-out and its effects on air intercept missile

performance. Next, I discuss a brief history of computer based simulation of missile/target

encounters. This discussion includes a description of Lt. Joseph Moritz' implementation of the

ART Missile Endgame Simulation (AMES). Finally, I discuss the engineer's need for a briefing

and training tool to explain some of the concepts outlined in this chapter.

2.2 Air Intercept Missiles

2.2.1 Missile Guidance Component

The guidance component's primary objective is to navigate the missile to intercept a

target directly. A miss occurs when the guidance is unable to turn the missile tightly enough to

intercept the target on final approach [Mack87:2,14]. When a direct intercept cannot be achieved,

the guidance component's secondary objective is to minimize the miss distance between the

missile and target in order to increase the effectiveness of the missile's warhead against the target.

2.2.2 Missile Warhead Component

The missile warhead projects fragmentation perpendicularly from the missile's

longitudinal axis in an effort to kill a target during a miss. The warhead plane (centered at the

2-1

warhead, perpendicular to the longitudinal axis) defines the fragmentation flight path relative to

the missile (see Figure 2-1). The actual fragmentation flight path is found by adding the lateral

fly-out velocity vector with the missile's velocity vector. When timed correctly, fragmentation

will intersect the target at the point where the target passes the warhead plane [Cunard97].

Warhead plane

Point of burst

Miss
Distance

Warhead's Lateral
Flyout Vector

^- Missile Velocity Vector

Point of Interception
(Point at which the target

passes the warhead plane)

Resultant Fragment
Flyout Vector

Figure 2-1: Warhead Fragmentation Fly-out

Missile warheads can be directional or isotropic. Directional warheads project

fragmentation out one side of the missile, depending upon where the target is at the point of

detonation [Cunard97]. Isotropic warheads send an expanding "ring" of fragmentation in all

directions from the missile. Over time, this, expanding ring creates a conical pattern due to

forward momentum of the warhead at the time of burst. This characteristic will be referred to as

the fragmentation pattern cone throughout the rest of this document.

2.2.3 Missile Fuze Component

The fuze component determines when to detonate the warhead. The fuze component

2-2

makes this decision based upon information known about the target's proximity, relative velocity,

and vulnerable point (aimpoint) along with the predicted fragmentation pattern cone [Kobaz74:9].

The fuze component consists of a proximity sensor to detect proximity, relative velocity and

aimpoint of the target, and the fuzing algorithm (or fuzing logic) to calculate the time of burst.

This thesis focuses on fixed-cone proximity sensors. The fixed-cone fuze uses a high

gain conical beam antenna with 360 degree azimuth coverage to detect a target. The antenna is

fixed at a specified elevation angle. The antenna elevation angle and sensor range define the

sensor cone. A target passing through this cone is detected by the fuze, which in turn triggers the

fuzing logic. A target approaching at an encounter angle greater than the antenna elevation angle

will not be detected by the fuze. As a result, no detonation will take place (see Figure 2-2).

Widening the elevation angle can increase the range of detection; however, as seen in the next

paragraph, this can adversely effect the ability of the fuzing logic to calculate the warhead

detonation time.

Actual Velocities

Relative Velocity

a - Antenna Angle
ß = Encounter Angle

Figure 2-2: Antenna/Encounter Angle

2-3

The fuzing logic uses the fragmentation pattern cone and detected target distance, relative

velocity, and aim-point to calculate the time-to-burst. The time-to-burst (also called the timing

delay) is the delay between target detection and warhead detonation (see Figure 2-3).

intercept
point

time-to-
burst point bmt

target
detection
point

relative
velocity

fuze antenna
elevation angle

missile velocity

fuze sensor pattern

Figure 2-3: Time-to-burst

The objective of the fuzing logic is to calculate the optimal time-to-burst to achieve the highest

coverage of fragmentation on the target at its most vulnerable point. If the fuzing logic calculates

a negative time-to-burst (occurring in high-speed head-on encounters), the warhead will not

detonate. A negative time-to-burst is calculated when the target intercepts the fuze cone after the

optimal point of burst (see Figure 2-4). This can be alleviated by lowering the antenna elevation

angle.

2-4

• Time-to-burst estimate varies as a function of closing velocity

Higher closing velocity results in
a negative time-to-burst.

Figure 2-4: Negative time-to-burst

Obvious trade-offs exist when selecting an antenna elevation angle for fixed-cone fuze

proximity sensors. Selecting a high elevation angle will allow the fuze cone to detect targets

approaching from larger encounter angles, while lower elevation angles allow the fuze cone to

detect high speed head-on targets early enough to calculate a positive time-to-burst. Engineers

must find a valid setting for fixed-cone antenna, or search for alternative proximity sensing

techniques. A technique under consideration is the use of multiple fixed-cone fuzes mounted on a

single air-intercept missile.

2.2.4 Skewed Fragmentation Pattern Cone

A phenomenon known fragmentation pattern cone skewing affects the performance of the

fuze sensor and warhead. Skewing of the fragmentation pattern cone results when the missile is

performing a hard bank at the time of warhead detonation. A missile with a yaw or pitch value at

2-5

detonation will not have its longitudinal axis in line with its flight path. Combining warhead

fragmentation fly-out velocity Gateral to the missile) with the missile's actual flight path results i

a cone that is not centered on the missile's longitudinal axis (see Figure 2-5). The cone is rather

"skewed" towards the flight path.

m

Warhead
Plane

 3-D Skewed-Cone,
Fragementation

i fly-out pattern.

Missile flight path

Figure 2-5: Fragmentation fly-out's skewed cone

The fuzing logic does not take into account the skewing of the fragmentation pattern cone

when calculating the time of burst. As a result, an error in calculation occurs when the missile

has a yaw or pitch at the point of detonation.

2.3 Computer-Based Simulation

The following sections describe a subset of current computer based simulation systems as

applicable to my research. For a more in-depth discussion of simulation systems, see [Moritz96].

2-6

2.3.1 FASTGEN

FASTGEN is a simulation system for calculating the effects of warhead fragmentation on

a target model. FASTGEN derives its name from SHOTGEN, a computerized mathematical

model of fragmentation analysis using a "shotline" method to predict damage to a

target[Cramer85:1-1]. FASTGEN improves upon SHOTGEN by decreasing processing time. A

target model file format has been developed specifically for FASTGEN and is used by other

simulation systems as well. The FASTGEN target model uses multiple primitives to define

intricate aircraft components. These primitives include spheres, cylinders, donuts, boxes,

wedges, rods, and triangles [Sherly93:23], Aircraft components in the FASTGEN format are

numbered according to their structural or functional groupings as seen in Table 2-1.

Table 2-1: Target Component Groups

Component ;t
..;.Number',-,'. ;^f.

Description

0000-0999 Skin and other external covers

1000-1999 Power Plant and Accessories

2000-2999 Crew

3000-3999 Flight Control System and Hydraulics

4000-4999 Fuel System

5000-5999 Ammunition (include Bombs) and Missiles

6000-6999 Armament

7000-7999 Stringer, Ribs, and Structural Members Airframe

8000-8999 Fire Directional System and Avionics

9000-9999 Miscellaneous

2.3.2 SHAZAM

SHAZAM, created after FASTGEN, is a statistically improved endgame simulation

system [Coffield86]. SHAZAM runs its simulations against FASTGEN target files that have

2-7

been converted entirely to triangles. Results produced by SHAZAM are viewed in a program

called FLYOUT. FLYOUT shows the scenario set-up and displays warhead blast fragmentation

patterns as an expanding ring formation from the burst point [Coffield86:1,10-11]. Simple

wireframes are used to represent the target and missile. As a result, the graphical display is

insufficient in revealing how the fragmentation intersects the target [Moritz96:2-5,6].

2.3.3 rVAVIEW

IVAVIEW is an X-Windows application built for an SGI workstation. IVAVIEW

displays FASTGEN target models three-dimensionally. Since Moritz' writing, a few

modifications have been made to IVAVIEW. These include transparency settings on selected

target components, an "outline" display of the external skin, and ability to edit the target model

directly within IVAVIEW.

2.3.4 ENCOUNT

Each endgame scenario is unique in its placement and orientation of the missile, target

and relative flight paths and is defined by a series of vectors, velocities, and orientations values.

ENCOUNT was written to assist engineers in creating and visualizing an endgame scenario.

ENCOUNT takes a file containing endgame parameters and creates a single FASTGEN model

file containing both a missile and target oriented according to these parameters. Visible relative

velocity vectors are included and are displayed as lines extending through the missile and target.

This file is then viewed using IVAVIEW. Examining an endgame scenario requires the engineer

to edit an ENCOUNT file, run this file through ENCOUNT, and view the output using

IVAVIEW. After viewing the FASTGEN file, the engineer must exit IVAVIEW before he can

edit the ENCOUNT file again. This process can be made more efficient by creating a single

application for editing, viewing, and saving an endgame file.

2-8

2.3.5 OPEC

The Ordnance Package Evaluation Code (OPEC), developed for the IBM PC, is the most

recently developed endgame simulation system [PMC], OPEC also uses FASTGEN target

models which have been converted to another format, GEORGE. The GEORGE format contains

all triangles. OPEC has a number of improvements over SHAZAM for simulating a

missile/target endgame encounter and calculating pk [Moritz96:l-6]. Although OPEC provides

a more statistically accurate/?& calculation, its results are poorly displayed. Its three dimensional

display shows wireframe target and missile models and target damage displayed as red asterisks.

Since it is developed for the PC, it suffers from poor rendering performance and limited

resolution.

The results produced by OPEC are numerous and complicated. A graphical tool for

visualizing these results would make OPEC more valuable to the engineers. Visualizing this data

provides the engineer a more efficient and complete means of assimilating and comprehending

simulation results.

2.3.6 VisSim

VisSim is a PC based application for simulating the full flight of an air intercept missile

from launch to target (a fly-out). Upon completion of a simulation, VisSim outputs a file

containing the full flight path of the missile and target. Currently, only a two dimensional view

of these results are available to the engineers. The engineer needs to know the missile's full path

as well as orientation at specific points along that path. He must also be able to comprehend

timing issues between a moving target and missile. This simulation application can be made

more informative by providing a three-dimensional visualization and animating the results.

Animating the missile's flight path helps the engineers understand timing issues between the

2-9

missile and target as well as missile orientation throughout the flight path. Furthermore, a three-

dimensional display of the flight path provides the engineer an efficient means of evaluating

simulation results.

The sponsor has expressed interest in viewing this animation on a PC as well as an SGI.

This research explores technologies for displaying fly-out results on both platforms. This

exploration includes extending AMVS to display VisSim results along with the creation of two

prototypes, one written in C++ using OpenGL for graphical rendering, and one written in Java

using the Virtual Reality Modeling Language (VRML) for graphical rendering. These prototypes

will run on both the SGI and PC platform. Chapter V presents the implementation of these

prototypes and discusses the trade-offs between them.

2.3.7 AMES

Previous research by Moritz for the Wright Laboratory Armament Directorate

(WL/MNMF) resulted in the AFJT Missile Endgame Simulation (AMES). AMES was written to

investigate techniques for improving endgame graphical feedback by creating a three dimensional

view of an endgame simulation. It has the ability to load and view endgame parameters found in

OPEC and ENCOUNT files. AMES is also the first graphical tool to attempt animating the

motion of the missile and target during an endgame. AMES also displays fixed fuze cone sensor

coverage patterns. See [Moritz96] for more detail on AMES' capabilities.

AMES was a good initial step toward providing graphical capabilities for endgame

visualization; however, there are several areas which need improvement and some necessary

capabilities were altogether lacking. The identification, design, implementation, and evaluation

of these areas constitute the bulk of my research and are covered in detail in Chapters IV and V.

Nevertheless, I've included the following overview for easy reference. The following section

2-10

discuss additional major and minor requirements for missile visualization, as well as major and

minor improvements on existing features.

2.4 Requirements for Missile Visualization

2.4.1 Major Additional Capabilities

2.4.1.1 Visualizing the Fragmentation Fly-out Skewed Cone

The fragmentation fly-out cone skewing phenomenon, as discussed above, effects the

performance of air-intercept missiles. Engineers currently have no graphical tool for dynamically

visualizing this phenomenon. A visualization tool would assist the engineers in better

understanding fly-out cone skewing and thereby assist in discovering solutions to combat its

effects. Also, such a tool would be valuable in briefing others on this problem. As engineers

come up with solutions to this problem, they will also need to communicate the problem and their

solution to decision makers [Cunard97].

2.4.1.2 Full Animation of an Endgame Scenario

Currently there exists no three-dimensional graphics tools for animating the full endgame

scenario. Animation should include visualizing fuze-cone target detection, warhead

fragmentation fly-out, and fragmentation-target impacts as produced by SHAZAM. Such an

animation tool not only helps the engineers understand timing issues and missile/target interaction

during an endgame, it also provides an improved method for communicating endgame concepts

to people not familiar with them.

2-11

2.4.1.3 Visualization and Animation of Full Fly-out Simulation Results

As stated before, engineers currently have no three-dimensional tool for visualizing and

animating VisSim fly-out simulation results. The lack of such a tool makes assimilation of these

results difficult. Engineers need to be able to understand the missile's flight path in relation to the

target, as well as its orientation throughout the flight.

2.4.1.4 Fixed Fuze-cone Attribute Experimentation

AMES was implemented to allow the engineer to visualize fixed fuze cone sensor pattern

coverage based upon antenna azimuth and range attributes specified in a FUZE file. Engineers

need an environment for not only visualizing this sensor coverage but also for experimenting with

fuze cone antenna azimuth and range settings all within a single graphical application.

2.4.2 Minor Additional Capabilities

2.4.2.1 Endgame Scenario Creation

As stated in Section 2.3.4, engineers need an efficient means of creating an endgame

scenario. Although AMES was implemented to load an ENCOUNT file, no effort was made to

allow for saving or creating new ones. As a result, engineers are still left editing these files by

means of a text editor. The task of creating an endgame scenario would be more efficient by

creating a single environment with a graphical display of the results complete with GUI interface

for parameter entry. These modifications should then be written out to a user specified

ENCOUNT file.

2.4.2.2 Modifiable Levels of Detail

To improve performance while still providing high fidelity models, Moritz suggests the

2-12

implementation of user modifiable levels of detail (LOD) with future versions of AMES

[Mortiz96:6-3]. This will allow the user to choose between efficiency and accuracy. During

some tasks, such as examining target/fuze-cone interaction, lower fidelity in target and missile

models may suffice. During briefings, improved rendering may be more desirable. As a result,

target and missile level models using various levels of detail are required.

2.4.2.3 Saving a Simulation

AMES could provide a more efficient development environment by allowing the

engineer to save her work and return to it later. At a minimum, saving the simulation setup

should include such information as the currently selected missile and target models as well as the

current ENCOUNT or OPEC file.

2.4.2.4 Visualized Missile and Target Velocity Vectors

AMES displays relative velocities; however it does not provide visual feedback as to the

missile and target's actual flight path. Displaying these flight paths assists understanding of

missile/target interaction. Displaying the missile's actual flight path is especially necessary when

examining fragmentation fly-out skewing. Recall that the fragmentation fly-out cone is centered

around the missile's flight path and not around the missile's longitudinal axis. Visualizing the

actual flight path is necessary to completely understand the skewing phenomenon.

2.4.2.5 Target component group visibility.

Each target consists of several hundred components. To reduce scene complexity,

rVAVIEW provides the user the ability to set component group visibility. This is a useful feature

and should be included in any prototype.

2-13

2.4.2.6 View Control

To further understand the scenario, engineers should be given current view position and

orientation feedback relative to the target. Also, the engineer should be able to save and restore

key viewpoints.

2.4.2.7 Rendering Scene Image Capturing

Tools supporting training and briefing should be able to capture their rendering scenes

and save them to user-specified image files. These image files can then be incorporated into

briefing slides or training manuals.

2.4.3 Major Enhancements to Existing Features

2.4.3.1 Corrected Endgame Scenario Calculations

AMES contains a few calculation errors when displaying an endgame based upon

parameters found in ENCOUNT and OPEC files. Incorrect calculations include the miss-placed

visible target coordinate system, arbitrary point on the missile, and visual display of velocity

vectors as well as the miss-calculated missile center of rotation and direction of flight for missile

and target during animation. These need to be corrected.

2.4.3.2 Improved Rendering Performance

AMES' rendering performance falls far below the suggested minimum frame rate of 10

frames per second for smooth animation [Foley92:180]. Not only does this degrade the

animation, it limits AMES' ability to show object positions with a sufficient time resolution due

to its underlying implementation. Object positions at each frame are based upon a clock value, as

a result the poor frame rate leads to loss of fidelity. Additionally, as new features are added in

order to animate the full endgame scenario, this problem will be compounded. Therefore,

2-14

rendering performance must increase.

2.4.3.3 Improved Animation Control User-Interface

AMES user-interface limits the user. It needs to provide information feedback during the

animation and more control over the simulation time. The engineers require feedback including

the current simulation time along with current target and missile positions displayed in target,

missile, or world coordinate systems. Positions should be displayed in inches or meters. The

engineer also requires more control over the animation including animation speed control, target

and missile motion relative to the target, missile, or world, and ability to easily move the

animation to a specific point in time.

2.4.3.4 Ability to View OPEC Target Damage

During a simulation, OPEC calculates target component damage on internal components.

Although AMES reads these results and colors the internal target component damage

accordingly, these results are occluded by the aircraft skin and cannot be viewed easily.

2.4.4 Minor Enhancements to Existing Features

2.4.4.1 Inter-object Visualization Techniques

In order to provide insight into inter-object spatial relationships, AMES provides three

additional windows showing top, side and front views of the encounter to complement the main

rendering window. My sponsors have shared disinterest in this approach. Moreover, better

technique exists to highlight these relationships. Also, although using transparent cones to

visualize fixed fuze cone sensor coverage patterns effectively shows target/cone relationships

when the target is penetrating the cone, it is ineffective at times in revealing this relationship

2-15

when the target is positioned before or behind the cone. A separate inter-object visualization

technique is required to help users mentally visualize target/cone relationships.

2.4.4.2 Alternative Warhead Fragmentation Visualization

AMES displays warhead fragmentation trajectories as lines emanating from the warhead

origin point [Moritz96:4-17]. The sponsors have expressed disinterest in this approach. The

preferred visualization technique involves an expanding ring or torus representing a mass of

fragmentation emanating from the missile at a specific point in time. The expanding ring or torus

more accurately models the actual fragmentation fly-out. This expanding ring should also be

animated.

2.4.4.3 Improved Target Damage Coloring Scheme

Component damage produced by OPEC is represented by a scalar value ranging from 0.0

to 1.0, with 1.0 representing complete damage. AMES visualizes this target component damage

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of

the ten increments. No color index table is provided. Additionally, information is lost when

converting the scalar value to an integer ranging from one to ten. An improved coloring

technique is required which does not loose information and more logically conveys damage

amounts.

2.4.4.4 Need for a briefing and training tool

An additional reason for AMES development was to create a briefing and training tool

for people unfamiliar with endgame simulation concepts. AMVS' development should be done

keeping this requirment in mind. AMVS will be used to inform upper levels of management on

problem areas such as skewed fragmentation fly-out. AMVS will also be used to brief new

2-16

techniques in proximity sensing such as incorporating multiple fixed-fuzed sensors on a single

missile. Animation of an endgame encounter provides an excellent means of illustrating the

problems engineers face as well as fostering the understanding necessary to appreciate their

solutions.

2.4.4.5 Improved Usability and Stability.

The sponsors found AMES unstable and difficult to use. Care should be taken on future

development to ensure that applications delivered to the sponsor have increased usability and

stability.

2.5 Conclusion

Engineers have a variety of systems for simulating missile/target encounters available to

them. A great deal of computation is performed by these systems to predict the performance of

air intercept missiles. These systems can be made more valuable to the engineers by enhancing

the graphical display of simulation results. AMES was a first attempt at meeting this need;

however, significantly more needs to be done. The rest of this thesis outlines what I have done.

The next chapter introduces methodologies I use during the development process followed by a

presentation of my design in Chapter IV. Chapter V shows AMES' implementation; finally

Chapter VI presents contributions to the field of visualizing and animating missile/target

encounters and makes recommendations for future work.

2-17

3. Methodology

3.1 Introduction

Developing high-performance, highly usable, robust three-dimensional graphical

applications takes a variety of skills. One must keep abreast of current software technologies,

understand graphic rendering and three-dimensional computation, be familiar with users tasks and

needs, have a good understanding of human-computer interaction (HCI) and data visualization,

and be skillful in programming and software engineering. This chapter summarizes methods I

use in each of these areas and how they apply to the development of applications for visualization

and animation of missile/target encounters.

3.2 Research Process

My research began with a literature search in the field of interest: missile/target

simulation. The result of this study is shown in Chapter 2. In this and subsequent chapters, I turn

my focus to the development of a graphical application for missile/target simulation using

principles in HCI, data visualization, and software engineering as a guide. Finally, this effort

explores some opportunities provided by recent advances in computer graphics and software

development.

3.3 Human Computer Interaction and Data Visualization

My goal in developing the AFIT Missile Visualization System (AMVS) is to produce a

three-dimensional application with a high degree of usability, and effectiveness for data

visualization of a missile/target encounter. My philosophy of design is to create an environment

3-1

that provides an engineer with the temporal and spatial freedom to view, analyze and evaluate the

performance of air-intercept missiles against hostile targets in a simple to use application. To do

so, I apply current trends in HCI and data visualization.

The Air Force Institute of Technology's graduate level graphics sequence includes studies

in usability and HCI. Information obtained from course notes are applied in the design and

development of AMVS' user interface. In particular, I apply principles and methods from Jakob

Nielsen's book Usability Engineering [Nielson93]. The following methods are used:

• User task analysis - getting to know the user [Nielson93:75].

• Vertical prototyping - full implementation of a few chosen features (vs. Horizontal

Prototyping, reduced functionality in a more complete system) [Nielson93:18].

• Participatory design - continued feedback from the user [Nielson93:88].

• Interface evaluation and user testing - feedback from test users [Nielson93:165] Test

users will include sponsors, fellow students and faculty.

Applying methods of good data visualization techniques can be difficult. For this area, I

rely on publications on the subject. One author in particular, Edward Tufte, has produced an

excellent series on the subject [Tufte89][Tufte90][Tufte97].

3.4 Evaluation of Software Platforms

Several software platforms are currently available within AFIT's computer graphics lab.

For the scope of the projects at hand, I must choose between software development languages,

and graphical rendering and user interface libraries. Evaluations of each are made primarily

according to performance, capability, and ease of use. Results of this evaluation can be seen in

Section 4.4.

3-2

3.4.1 Software Development languages

AMVS was developed in C++, no evaluation of software development languages has

been performed for its selection. C++ provides the ability to apply object oriented programming

techniques [Stroustrup91] as well as providing ease of use and increased performance when

working with existing graphical and windowing libraries. Open Inventor is written in C++, while

Performer, X-Windows and Motif are written in C [OIAG94][IRIS95] [Nye92] [Heller92].

Introducing PC-based animation of VisSim results into my research, as mentioned in

Section 2.4.6, provides me the opportunity to explore new technologies in graphical application

development. In my evaluation, I examine the effectiveness of C++ against Java in this

environment. Prototypes are written in both languages and an evaluation is made regarding

performance, capabilities, ease of use, and portability. Results of this evaluation are shown in

Section 5.7.

3.4.2 Graphical libraries and languages

AMVS graphical rendering was done using either Performer or Open Inventor. AMES,

currently written in Open Inventor, suffers from poor performance. Performer is known for its

ability to maintain high rendering rates, and there for is considered as an alternative. The

possibility exists, however, that AMES' poor performance is in its implementation, and not its

choice of graphical libraries. To make an unbiased performance comparison, I evaluate simple

missile/target animation prototypes using both libraries. While these prototypes are compared

primarily by rendering frame rates, the decision includes issues such as the Application

Programming Interface (API), and portability.

Research in PC-based animation provides me the opportunity to explore new

technologies in three-dimensional computer graphics. In particular, I examine the capability of

OpenGL, VRML (Virtual Reality Modeling Language), and Java3D [Woo97][Ames97] to

3-3

provide visualization and animation of VisSim results. Although OpenGL is standardized across

many platforms, thereby increasing portability, other forms of three-dimensional computer

graphic display and interaction are possible. Such options include VRML and Java3D. VRML

and Java3D both provide platform independent three dimensional rendering, eliminating

portability issues all together. Prototypes are written in all three software platforms with the

evaluation results presented in Section 5.7.

3.4.3 User Interface development libraries and tools

AMES user interface was implemented using the IRIS Viewkit as well as Motif. Lt.

Joseph Moritz [Moritz96] took advantage of SGFs RapidApp code generation tool for automatic

generation of Viewkit and Motif code. This gave Lt. Moritz the advantage of rapid GUI

development, thereby avoiding the learning curve associated with X-Windows/Motif

programming [Moritz96:4-l]. Tools such as RapidApp, BuilderXcessory and UIMX provided a

quick means of creating complicated Motif dialogs, however, the generated code can sometimes

be difficult to integrate into a project. IRIS Viewkit builds upon the set of Motif widgets and

encapsulates their use into C++ classes. I examine both RapidApp and IRIS Viewkit for their

usefulness. Capability and ease of use are my primary consideration for user interface library and

tool selection. Section 4.4.2 shows the results of this evaluation.

3.5 Software Development

An initial look at the code for AMES and interviews with its author early in my research

gave me the impression that AMES' state of maintainability, extendibility, stability and

performance was in question. Before beginning my development I evaluated the existing code to

determine its validity as a baseline for AMVS, given the list of requirements outlined in Chapter

U and software quality goals presented in Section 1.4.3. Throughout development, I implemented

proper software engineering methodologies. AMVS is a sufficient baseline for future AFTT

3-4

research and my goals of developing an application with a high degree of stability,

maintainability, extendibility and performance, mentioned in Section 1.4.3, are achieved.

3.5.1 Evaluation of AMES

I evaluated AMES' code in the areas of maintainability, extendibility, stability and

performance. Stability was evaluated by putting AMES to the test, repeatedly running it to the

point of fault or failure. Stability, as well as maintainability, was also evaluated with the use of

automated run-time debuggers, personal interviews with its author, and examination of the code.

Extendibility was evaluated through interviews with Lt. Moritz, analysis of his design, and

examination of the existing code. Performance was evaluated by comparing AMES rendering

rates with that of prototypes written in Open Inventor.

In addition, I made an estimation of the cost of reproducing features found in AMES.

AMES currently consists of 22k lines of code in 81 source files; therefore, choosing to not use

this existing code is a significant one, considering the limited research time available to me.

Chapter IV shows the evaluation results and the final decision.

3.5.2 Application of Software Engineering methodologies

To achieve my goals mentioned above, I incorporated software development processes,

principles of good object oriented design, use of coding standards and automated tools, and

documentation into the development of AMVS.

3.5.2.1 Software Development process

The nature of the problem lends itself nicely to such software development processes as

the Spiral Model, Rapid Application Development (RAD), and Rapid Prototyping

[Gottisdiener95] [0'Brien96]. The compressed schedule necessitated by AFTT's thesis program

together with our need to re-evaluate user requirements during development well match to

3-5

Nielson's vertical prototyping method of user interface design. For these reasons, I have chosen

rapid prototyping for my software development process.

3.5.2.2 Object Oriented Design

To achieve stable, maintainable, and most of all, extensible code, I implement Object

Oriented Design (OOD) and Object Oriented Programming (OOP) principles into AMVS'

development [Rumbaugh91][Booch91][Sessions92] [Coad93] [Pohl97]. My design and

implementation invokes principles of inheritance, polymorphism, and encapsulation.

Encapsulation is used to ensure AMVS' stability and maintainability, while inheritance and

polymorphism are used to enhance AMVS' extendability.

3.5.2.3 Coding Standard

Scott Meyers' book Effective C++ lists 50 specifics ways to improve programs and

design [Meyers92]. These methods are particular to the C++ programming language and range

from specifics such as proper use of constructors/destructors and overloaded operators to class

implementation and design issues. I have opted to use these principles as a coding standard in my

development.

3.5.2.4 Automated Tools

In addition to SGFs debugger, cvd, I use a powerful runtime debugging tool called

Insure++ created by ParaSoft. Insure++ is a very effective tool for ensuring the stability and

robustness of a program [ParaSoft96]. Code analyzed with Insure++ is checked for errors such

as:

• Memory corruption from attempts to access memory outside the valid areas defined

by global, local, shared and dynamically allocated objects

• Operations on illegal, or unrelated pointers

3-6

• Reading uninitialized memory

• Memory leaks

• Errors allocating and freeing dynamic memory

• Incompatible variable declarations

ParaSoft has also produced an application called CodeWizard that analyzes code for use

of proper design and programming practices. It uses Scott Meyers Effective C++ as its standard.

This tool compares a program written in C++ against a subset of Meyers' coding standards listed

in his book. This tool is valuable in ensuring my compliance with this coding standard.

3.5.2.5 Documentation

To improve AMVS' maintainability, I document its implementation throughout my

development. This includes file headers and in-line documentation. In addition to this, I keep a

Deviations file in the Continuity directory where I document any deviation from coding

standards, good design, and proper OOP principles. The need for such deviations center mostly

around performance, implementation time or tailoring to the project. C++ has advantages in

program design and development, however, OOP's added overhead at run-time can decrease

performance in ways not experienced by pure C code [Ege92:45][Adams88:32]. As a result, I

occasionally deviate from proper OOP principles at critical sections of implementation for the

sake of performance. In the interest of time, I occasionally avoid implementation of particular

coding standards as the scope of the problem allows.

3-7

4. Design

4.1 Introduction

This chapter discusses design decisions made during the development of the AFTT

Missile Visualization System (AMVS). Design decisions were made regarding three-dimensional

visualization, user interface, software library selection, usefulness of existing code, software

development and rendering scene graph creation.

4.2 Three Dimensional Visualization

This section outlines rendering and visualization design choices in the areas of inter-

object spatial perception, use of transparency, target/fuze cone interaction, warhead fly-out

animation, and target component damage coloring.

4.2.1 Spatial Perception

User feedback revealed a need for increasing the AFTT Missile Endgame Simulator's

(AMES) usefulness as a tool for perceiving the inter-object spatial relationship of a target and

missile during an endgame. Mental modeling of a three-dimensional encounter displayed on a

two dimensional screen is non-intuitive. Moritz elected to use additional top, front and side

views [Moritz96:4-l 1] to present the required information; however, this takes up significant

display space. Furthermore, it requires the user to mentally combine four separate images into a

single coherent understanding of the encounter [Cooper84:106-114] [Herndon92:9.1]. Herndon

suggests an alternative approach using shadow projections. Shadow projections of three-

dimensional data in scientific visualization has been demonstrated to help users understand their

4-1

data [Grotch83]. User tests by Wanger et al. revealed shadow projections rank high in effectively

visualizing inter-object spatial relationships [Wanger92:44-58]. This visualization technique has

been incorporated into AMVS and can be seen in Figure 4-1. Additionally, shadows soften

contrasts (through use of a gray background, darkened target shadows, and lighter grid lines) to

enhance the visualization by reducing contrast intensity [Tufte97:21].

Figure 4-1: Top, Side and Front Shadow Projections

4.2.2 Transparency

Open Inventor's ability to render transparency enhances the visibility of internal target

components as well as the usefulness of the fuze sensor and fragmentation fly-out cones.

However, transparency can also confuse the image by allowing many layers to appear

simultaneously. Therefore, I've given the user transparency intensity control on aircraft skin

components (see Figure 4-2) and the sensor and fragmentation cones (see Figure 4-3).

4-2

Figure 4-2: Aircraft Skin Transparency

Figure 4-3: Cone Transparency

4.2.3 Target/Fuze Cone Interaction

A separate visualization technique is required to convey the spatial relationships of the

target with fuze sensor and the fragmentation fly-out cone pattern. When the target does not

4-3

intersect the cone edge, it is difficult to comprehend the relationship between them. In particular,

it is difficult to determine how far the target is from penetrating the cone. Recognizing that the

two-dimensional drawings, as seen in Chapter 2, are effective in showing this relationship, I

incorporate two-dimensional "cross-sections" of all pattern cones into AMVS. Figure 4-4

demonstrates how target/cone spatial awareness is enhanced by this technique.

Figure 4-4: Cone Cross Sections

4.2.4 Fly-out Animation

Two techniques have been incorporated to visualize the fragmentation fly-out pattern of

the warhead. These are shown in Figure 4-5, parts A and B. Part A shows a ring representing the

center of mass. This is valuable in depicting accurate fragmentation/target intersection points and

is beneficial in demonstrating warhead detonation timing principles. Part B shows a torus,

representing a mass area of fragmentation dispersal over time. Animation of an expanding torus

demonstrates the effects of fragmentation dispersal over time. Users may alternate between the

two presentations.

4-4

Figure 4-5A: Fly-out ring Figure 4-5B: Fly-out Torus

4.2.5 Target Damage coloring

Component damage produced by OPEC is represented by a scalar value ranging from 0.0

to 1.0, with 1.0 representing complete damage. AMES visualized target component damage

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of

the 10 increments. No color index table was provided. Additionally, information is lost when the

scalar value is converted to an integer ranging from one to ten. An improved technique is to

implement a color gradient for visualizing target damage without data loss [Tufte90:91]. The

color gradient applies the scalar component damage (pk) to the rgb (red, green blue) values of the

geometric model as seen in equation [1]:

red - pk

green - 1.0-pit [1]

blue = 0.0

This produces a green color for components with the smallest damage, yellow for medium

damage, and red for largest, or complete damage. Not only does this technique preserve the real

nature of the pk value, but the green, yellow and red colors correspond to the familiar notation of

4-5

acceptable, warning, and danger respectively. A color index table is also available for display.

The color index displays 20 spheres in .05 increments. Spheres are used to show how shading

effects color on a three-dimensional object.

4.3 User Interface Design

4.3.1 Common Interface

Dialogs are designed for increased usability by creating a consistent user-interface.

Consistency is important to an application [Nielson93:20] and is implemented easier through

code re-use (explained in Section 4.6.5). Common features include similar action areas4, file

selection methods, and on-line help. Toggle buttons are used for all rendering object visibility

selection while thumbwheels are used for transparency intensity settings. All text widgets

allowing for entry of integer or float values have user input error checking.

4.3.2 View Control

AMVS includes control over the current viewpoint. In addition, a dialog is provided to

display the current viewpoint in relation to the target. This includes position in target space as

well as attack azimuth and elevation as calculated by ENCOUNT. Users can save and restore up

to five views. The interface for saving and restoring the view is placed along the bottom of the

main window, making it accessible at all times. All five views, along with the current viewpoint

are written to disk when the simulation is saved.

4.3.3 User Interface Design for Animation Control

Although AMES' user interface for animation was easy to understand and use, it was

over simplified and limiting to the user (see Figure 4-6). The user had no control over the

4 Action areas are located at the bottom of a dialog and contain such buttons as Apply, Cancel, and Help.

4-6

animation's replay speed and no feedback as to the current simulation time. Because push

buttons are used for starting, stopping and re-winding the animation, the user has to focus

attention on the animation control dialog for each operation.

Figure 4-6: AMES Animation Control Dialog

To overcome these limitations when implementing AMVS, I have significantly modified

the animation control user-interface by employing vertical prototyping and user testing. The

animation dialog can be seen in Figure 4-7.

i^m^rmi ^^^^^^^^^^^^^ ^^^^^^^^^^MSMS^SS^^^M ^; ^ -f< t

1 TIME (Editable): 0.8803 j - Reset] Motion: 1' BOTH *»

POSITIONS: CoordSystem: World - Units: i Meter» «»

Target: 0.<»0 0.000 0.000

Speed

Missile: 0.000 0.00 0.00

s KA(.NWAKU3 n^~ —, ^ J-UKWAKL

|SU>|3]|
I

HiiiMMiluiv. Vll i ripy i Adjustment: j ni i ■; 11, i Jili|-
ipv*****^*******»****^^

..... , ^^^^^^^^^^H
 1.

li' —J l

\ **■".•■' ■ • .'.Done" ■■■■■>$£
 : ■:.:..:

Figure 4-7: AMVS'Animation Control Dialog

This approach yielded the following improvements. The animation dialog provides current

simulation time feedback along with greater control over the simulation time. It also allows the

user three modes of modifying the time: 1) direct entry into the text widget used for displaying

the current simulation time, 2) playing the animation (both forwards and backwards), including

speed control, and 3) dial control of the simulation time using the time adjustment thumbwheel.

Speed control is implemented as a percentage, from -100% to 100% of the maximum allowed.

Using a slider bar for animation speed control and a thumbwheel for time adjustment increases

4-7

the animation controller usability, because once the user clicks down on either of these widgets,

she can manipulate the simulation time while focusing her attention on the encounter.

As noted above, the thumbwheel allows adjustment of the simulation time. Dialing to the

right moves the animation forward in time, while dialing to the left moves the animation

backward. Varying the thumbwheel movement/simulation time change is needed depending

upon the user's actions and intentions. When dialing the thumbwheel to move an object to a

specific point in space, finer adjustments are required were as dialing to rewind the animation

requires a larger animation movement. Using a factor of the focal distance is the preferred

method of operation as revealed by user testing. Implementation of this technique is explained in

Section 5.4.3.

The animation dialog also includes current target and missile position feedback in both

meters and inches. This position can be displayed in World, Target, or Missile coordinate

systems. Animation motion can likewise be done in a World, Target or Missile coordinate

system by manipulating the "Motion" option button. A setting of "BOTH" causes both the

missile and target to move relative to the world coordinate system. A setting of "MISSILE"

causes the missile to move relative to the target, keeping the target stationary. A setting of

"TARGET" leaves the missile stationary and moves the target relative to the missile.

4.3.4 Miscellaneous Usability Issues

A number of miscellaneous usability improvements have been made over AMES, a few

of which are listed here:

• Menu items have been placed under appropriate headings.

• File selection dialogs have appropriate filters set to put the user in the correct

directory, displaying the correct files for the given task.

4-8

• Files loaded automatically modify the rendering scene appropriately.

4.4 Library Selection

4.4.1 Graphical Rendering Library

AMES suffered from poor performance during animation. Using a different graphical

rendering library was one possible solution to this problem. SGI's Performer was looked at as an

alternative to Open Inventor. This section explains performance tests and results between AMES

and a Performer prototype and talks about my final decision.

4.4.1.1 Performance Tests

Performance tests were done on a single processor SGI Indigo2, MIPS R4000,250 MHz

workstation. This machine is similar to the one used by our sponsors. Test data included full

F106 and Falcon missile models containing 21124 and 284 polygons respectfully. Tests were

also done with reduced models containing 746 and 140 polygons. I performed my tests under the

same system load to reduce the effects of machine state inconstancy on the outcome. Test results

varied with data size and machine state and are therefore represented as speed-up percentages.

I began by creating a Performer prototype, to compare against the existing version of

AMES. This prototype yielded a 150% increase in frame rate over AMES. Knowing that some

of the poor performance was due to AMES' implementation, I began looking into whether

significant improvements could be made before abandoning Inventor altogether. My

investigation determined that Moritz' use of Open Inventor-supplied animation engines inhibited

performance. Another performance hit came from his means of providing missile and target

position feedback during animation. This involved SoSensor nodes attached to the target and

missile calling user defined callbacks for each position change. In the callback, the position is

retrieved by implementing a SoSearch action on the entire rendering scene graph, thereby causing

4-9

transformation calculations to be made a second time for each animation frame. This method of

performing animation with position feedback can be improved.

With 22 thousand lines of code to examine, I decided to build an Open Inventor prototype

to do an unbiased comparison against Performer rather than continuing my search for areas of

improvement within AMES. This prototype was almost identical to the Performer version. Tests

between these two prototypes revealed almost identical results. When the minimum data set was

used, both prototypes revealed frame rates up to 70 frames per second.

4.4.1.2 Conclusion/Decision

These tests revealed the primary cause of AMES' poor performance was due to its

implementation and not attributable to the graphics libraries. For this application, Open Inventor

fairs well against Performer in a single processor environment. Therefore, I decided to continue

development with Open Inventor, because it has a better API for rapid development.

4.4.2 User Interface library and tool selection

Moritz used SGI's RapidApp for automatic generation of user interface classes.

Although familiar with X-Windows and Motif, I wanted to see if this tool was useful to me. The

code produced by RapidApp implements classes from the IRIS Viewkit library. This is a library

of extended Motif widgets encapsulated into C++ classes. Although this is an efficient means of

rapidly producing code for the user interface, I found the RapidApp classes to be too restrictive.

Using RapidApp, I had no control over when the dialog was created, where they would appear on

the screen, and what to do when the user killed the window, which is particularly important for

the animation control dialog. If the user killed this dialog while animation is running, animation

needs to be turned off. With all these in mind, I elected to write AMVS' user interface in Motif.

4-10

4.5 Evaluation of Existing Code

A significant effort went into the creation of AMES. The application, and its source code

where available to me at the outset of my research. The extent to which I used this existing code

needed to be decided upon early in the design phase. In order to make this significant decision, I

evaluate AMES' usefulness to me in achieving my objectives given the list of requirements

presented in Chapter n. To better make this decision, I evaluate AMES' code against my goals

of stability, maintainability, extendibility and high rendering performance as outlined in Section

1.4.3. These attributes not only have effect on the final version of AMVS, but have significant

impact on the development process.

4.5.1 Stability

The stability of AMES is questionable. Interviews with the author revealed that AMES

was not extensively tested before delivery and that it had potential stability problems. Further

tests revealed it was subject to faults and failures while use of automated debugging tools reveal

many potential problems, some involving dynamic memory access.

4.5.2 Maintainability

Interviews with the author and code examination revealed that maintenance of AMES

could be difficult. Furthermore, documentation is extremely lacking, and code is rather

unstructured and difficult to follow making modifications and improvements difficult. In

addition, global variables are extensively used and its software architecture yielded tight

coupling. These attributes are known to lead to maintains problems [Holub95:47].

4.5.3 Extendibility

The existing version of AMES is not easily extended. Although written in C++, code

examination revealed only one proper example of inheritance, and no examples of polymorphism

4-11

and encapsulation, other than code produced by RapidApp. Poor maintainability mentioned

above also make extensions difficult.

4.5.4 Performance

Poor rendering performance appears to be an implementation problem that requires a

significant amount of modification to improve. Inefficiencies in the rendering scene included

extra light sources and superficial transformation nodes. Making necessary transformation

calculations outside of the scene graph in order to reduce the number of transformation nodes

could be performed, along with improving the lighting scheme; however, any change in the

rendering scene could have unknown, most likely negative effects on AMES due to the tight

cohesion between the rendering scene and code. AMES' code relies heavily upon the scene

graph structure in any number of locations. Rather than keeping pointers to critical nodes in the

scene tree, the tree is traversed each time node access is needed. Changing the structure of the

scene graph will require an unknown number of modifications to the code, yet necessary to

increase AMES' performance.

4.5.5 Final Decision

It was revealed that AMES poor performance was due to its underlying implementation

and not its choice of graphical libraries (see Section 4.4.1.2). Improving performance requires

significant modification to the scene graph and complete re-design of the animation process to

avoid the use of the Inventor animation engine. In addition to hindering performance, using the

Inventor animation engine hinders speed control and time feedback. Considering the tight

coupling between scene graph and code, in conjunction with other maintenance problems listed

above, making necessary changes proves to be a difficult task. Also extensions necessary to

implement the requirements listed in Chapter II could prove to be difficult considering AMES'

state of maintainability and extendibility. As a result, I avoid the use of AMES code for my

4-12

research.

Although AMES' source code is limiting, its implementation is of value. The result of

Moritz's research yielded an effective prototype for displaying an endgame [Moritz96:6-5]. For

this reason, I duplicate all of AMES features into AMVS with the exception of its method for

displaying fragmentation fly-out, and technique for visualizing inter-object spatial relationships

(see Sections 2.4.4.2 and 4.2.1 respectively).

4.6 Software Architecture Design

This section outlines my software architecture design starting with a presentation of

AMVS' classes which will be referred to throughout the rest of this document. I then present the

data flow of two key elements within AMVS: the scenario and the simulation time. Next, the

sections that follow discuss this data flow while presenting the design of the CEncount and

CAnimControl class. Afterwards, I present class designs for AMVS' dialogs, and saving and

loading the simulation. Finally, I discuss how this software architecture design yields low

coupling and high cohesion.

4.6.1 Class Hierarchy and Descriptions

The Class hierarchy for AMVS can be seen in Figure 4-8, followed by an aggregation

and data flow diagram in Figure 4-9. However, Figure Figure 4-9 only presents the data flow

relevant to the scenario and simulation time. Finally, Table 4-1 shows the class descriptions.

4-13

CScenario

1
A

1
COPECScenario CVisSimScenario

CDataObject

CBaseClass

zsz
CPanel

^

CPanelObject

CApp CDIgDataObject

^\

CHitDamage

CRCPanel
^

CTextPanelObject COptionPanelObject

ZZl^
CCharPanelObject CYesNoPanelObject

CListDlg

I
I _A^

CMain Window
X

CRendeiObject

CHelpDIg
I

I
CAnimControls

1
CEncounter

CMultSwitehPanelObject

CGeorgeObject CFuzeCone CShadow
X

CSoSwitchPanelObject

CMissile CTarget
X

CThumbWheelPanelObject

Figure 4-8: Class Hierarchy

CApp

._ CAnimControls CMissile

CMain Window

CFuzeCone

CTarget

I
CHelpDIg

CShadow CEncounter _,

CHitDamage CScenario

CRendeiObject

Updates SimTime, I
CDataObject

^ CRenderObjectList
I

CDataObjectList £.
Updates Scenario

Figure 4-9: Aggregation and Data Flow

4-14

Table 4-1: Class Descriptions

CBaseClass Base class for all other classes, provides run-time type
identification (rtti).5

CScenario Parent class for all scenarios. A scenario contains all
information pertaining to the missile/target encounter

COPECScenario Holds information about endgame encounters found in OPEC
or ENCOUNT files.

CVisSimScenario Holds information about full fly-out encounters produced by
VisSim.

CDataObject Base class for most AMES specific objects. CDataObjects
accept a pointer to the current CScenario and are able to save
and load their state to and from a Simulation file. Maintains a
list of all instantiated CDataObjects.

CDataObjectList List of CDataObjects. This list is a static member of
CDataObject.

CApp Main App class for AMES, instantiating all
CDlgDataObjects. Initiates the saving and loading of a
Simulation.

CDlgDataObject Base class for all CDataObject's requiring a user interface
(Motif dialog). Registers help with the CHelpDlg class.

CListDlg Implements a ScrolledList widget inside a CDlgDataObject.

CHelpDlg Keeps a list of register help items, displays this list as a "help
index" dialog. Instantiates a CListDlg and uses it to display
the help for a topic read in from a file.

CMainWindow Main window for AMES, containing menus and the Inventor
ExaminerViewer (see Figure 5-1). Holds a pointer to the root
of the scene graph. Implements saving/restoring of the
rendering view.

CRenderObject Abstract base class for all objects that will perform graphical
rendering of information loaded in from a file. Contains a
function NewSimTime, to accept the current time from the
animation "clock". Maintains a list of all instantiated
CRenderObjects.

CRenderObjectList List of CRenderObjects. This is list is a static member of
CRenderObject.

CGeorgeObject Base class for the missile and target ("George" for the
original file format used for missile and target models).

' The current compiler does not support rtti, and therefore needed to be implemented myself.

4-15

CMissile

CTarget

CFuzeCone

CShadow

CAnimControl

CEncounter

CPanel

CRCPanel

CPanelObject

CTextPanelObject

CCharPanelObject

COptionPanelObject

CYesNoPanelObject

Contains functionality similar to the missile and target.

Missile class. Loads, displays and animates a missile model.
Displays the fragmentation fly-out cone and animates
fragmentation fly-out. Provides a user-interface for
manipulating the missile (see Figure 5-5).

Target class. Loads, displays and animates a target model.
Displays OPEC target damage data. Provides a user-interface
for manipulating the target (see Figure 5-4).

Fuze sensor pattern cones. Loads, displays and animates a
fuze file. Provides a user-interface for editing fuze
component settings (see Figure 5-6).

Front, side, and top grids and 3-D shadows for missile and
target. Provides a user-interface for manipulating shadows
and grids (see Figure 5-7)

Controls the animation "clock". Provides an interface for
controlling the simulation time (see Figure 4-6). Passes the
current simulation time to all CRenderObjects.

Displays information contained in a CScenario (see Figure 5-
2). Allows loading, saving (ENCOUNT files) and editing of
the current scenario, sends the current scenario to all
CDataObjects.

Used in the construction of Motif style user interfaces.
Creates a form for the placement of CPanelObjects, keeps a
list of all CPanelObjects added to this panel. Iterates through
this list calling their Getlnfo and Setlnfo functions. If an error
occurs in an object's Getlnfo function, iteration stops and an
error message is displayed.

Inserts a RowColumn widget into the form created by a
CPanel. Places CPanelObjects in this widget.

Abstract base class for objects creating widgets for
displaying/editing a single data variable. Setlnfo updates
widgets according to value held by the data variable. Getlnfo
performs error checking on user input and updates the data
variable for valid input.

Creates a TextField for displaying strings, integers or floats.
Provides value range error checking and textual/numerical
conversion for fields intended for integer or float input.

TextField with width of one. Error checking can be
performed against a valid string of characters.

Implements an Motif Option Menu widget.

COptionPanelObject with two menu items: Yes, No.

4-16

CSoSwitchPanelObject

CMultSwitchPanelObject

CThumbWheelPanelObject

CHitDamage

Implements a toggle button to control an Inventor SoSwitch
node. The SoSwitch node controls the visibility of objects in
the rendering scene.

Implements a toggle button to control a list of SoSwitch
nodes. Used exclusively for level-of-detail models.

Implements a Thumbwheel widget.

Used by a CTarget for holding hit damage loaded in from an
OPEC .out file.

4.6.2 Data Flow using an Observer Behavioral Pattern

The current simulation time and current scenario are controlled by the CAnimControl and

CEncounter classes respectively. The simulation time is represented as a float value while the

scenario is encapsulated in the CScenario class. When the simulation time changes during

animation, all CRenderObjects must reflect this change graphically; likewise all CDataObjects

must reflect changes to the current scenario. This change is generally graphical but could include

changes to the associated user-interface as well. To notify other classes of changes to these

variables, I use an Observer behavioral pattern6. In Designing patterns: Elements of Reusable

Object-Oriented Systems, Gamma, et al. describes several patterns useful in software

development. He classifies an Observer pattern under the behavioral category and defines it as

follows:

"Observer - defines a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically."

[Gamma95:9,293-303]

In order to implement this pattern, I use a Standard Template Library (STL) Vector to define a

CRenderObjectList and CDataObjectList to keep a list of all CRenderObjects and CDataObjects.

These lists are static members of each respective class. In the constructor function of each of

Fowler loosely defines a pattern to be "an idea that has been useful in one practical context and will probably be
useful in others." [Fowler97:xv]

4-17

these classes, newly instantiated objects are added to the respective lists to ensure that all child

classes are automatically. The CRenderObject class then defines a pure virtual NewSimTime

function which takes the simulation time as a single parameter. Likewise, the CDataObject class

defines a virtual SetScenario function taking a single const pointer to a CScenario object. These

functions are then overloaded by child classes to take appropriate action on state changes. The

CRenderObjectList and CDataObjectList are then used to notify all classes of state changes.

Code to do so can be seen in Figures 5-10 and 5-14. The next two sections introduce the

CEncounter and CAnimControl classes which control the scenario and simulation time

respectively.

4.6.3 Scenario

A scenario is defined as all the information pertinent to a missile/target encounter. The

CScenario class was designed to encapsulate this information for distribution throughout the rest

of AMVS'classes.

AMVS is implemented to visualize and animate of both endgame and full fly-out

encounters. Endgame parameters are found in ENCOUNT and OPEC files and are stored in the

COPECScenario class. Both ENCOUNT and OPEC's parameters are similar enough that a

single scenario object is used. The COPECScenario class contains a flag specifying whether the

information contained within it was derived from OPEC or ENCOUNT data. Likewise, the

CVisSimScenario class contains information regarding a VisSim fly-out simulation.

The CEncounter class controls the contents of a scenario as well as which scenario is

currently being viewed by all rendering objects (ENCOUNT, OPEC or VisSim). The

CEncounter dialog allows users to load and edit scenarios. CEncounter uses the Observer pattern

described above to notify all CDataObject^ of changes to the current scenario. When the current

scenario changes, the CEncounter class iterates through the list of CDataObject''s, passing each a

4-18

pointer to the current scenario by use of the SetScenario function. Each keeps a const pointer to

the CScenario controlled by the CEncounter class and uses this information to modify its user

interface and/or scene graph accordingly. For instance, when a VisSim scenario is selected, the

missile modifies its scene graph to include the missile's fly-out route and changes it dialog by

removing the war-head user interface.

4.6.4 Rendering and Animation

All three-dimensional rendering and animation is performed by classes inheriting from

the abstract base class CRenderObject. Each CRenderObject encapsulates data, functionality and

user-interface unique to an object or set of objects for three-dimensional rendering. The

CRenderObject class is designed for performance and extendibility.

Many design decisions went into the creation of the CRenderObject class to enhance

AMVS' extendibility, most of which involve inheritance and polymorphism. Indirectly inheriting

from CDataObject provides each render object with automatic notification of the current

scenario. Each render object overloads the SetScenario function, performing any action

necessary to render its scene graph according to the current scenario. Inheriting from

CDlgDataObject provides functionality for the creation of the render object's user-interface

(discussed in the next section). As mentioned above, the CRenderObject uses an STL vector to

maintain a list of all instantiated objects inheriting from CRenderObject. The CAnimControl

class calls each CRenderObject's pure virtual NewSimTime function for each frame in the

animation, or whenever the current simulation time changes. Any class inheriting from

CRenderObject has automatic notification of the current simulation time. With this inheritance

structure and the virtual functions we have defined, adding new rendering objects is simplified.

To add a new rendering object to AMVS, only the following steps are required:

4-19

1. Create the Inventor scene graph in the constructor, keeping pointers to key nodes.

2. Overload CDlgDataObject's Create function to create the dialog components.

3. Add a menu item to the CMairiWindow to call this object's Show function.

4. Overload the SetScenario function, if this object is effected by the current scenario.

5. Overload the NewSimTime function, if this object is to be animated.

The CRenderObject class increases performance by having each child class create and

manipulate its own rendering scene graph, as well as localizing all information needed for a

single object to perform rendering during a single "frame" of animation. This information is

derived from user input, the current simulation time, and data found in the current scenario.

Localizing all rendering information avoids the overhead invoked when retrieving data from other

classes through member access functions. When performance is not an issue, such encapsulation

techniques are followed.

4.6.5 Dialogs

Design of the user interface classes proceeded with code re-use and ease of

implementation in mind. The CDlgDataObject class encapsulates the creation and manipulation

of Motif dialogs, and is used by all CDataObjects requiring a user interface. This class creates a

dialog shell, a tailorable action area, messaging dialogs, and file selection dialogs. The action

area includes buttons such as OK, APPLY, DONE, CANCEL and HELP, as well as the option to

create user defined labels. Virtual callback functions are created for each button and can be

overloaded as necessary. The HELP button brings up on-line help registered through the

RegisterHelp function of any instantiated dialog. Pop-up message dialogs including a simple

message dialog, and a question dialog with callbacks connected to the virtual Yes and No

functions are implemented and easily invoked. The 'Open File' and 'Save As file' selection

dialogs each having appropriate virtual callbacks which are overloaded by child classes. These

4-20

callbacks are passed the filename and path selected by the user.

The creation of the user interface takes place in the CDlgDataObject's virtual Create

function. This can be done with straight Motif code, or the use of panels. The CPanel and

CPanelObject classes provide a convenient method of creating the user interface within the

dialog. The abstract base class CPanelObject encapsulates the user interface for a single variable.

A CPanelObject's constructor function is passed the pointer to the variable and a description to

be displayed with the associated widget. Classes inherited from CPanelObject create Motif

widgets for displaying and editing the variable and take advantage of the Setlnfo and Getlnfo

functions for updating the widget state or variable value respectively. When the variable changes

value, the virtual Setlnfo function can be used to set the widget's state based upon the new value.

When the user changes the widget's state, the Getlnfo function retrieves state information from

the widget and sets the variable accordingly, if no error on input occurred. The classes also

provided error checking based upon criteria for valid user input. For example, a

CTextPanelObject can be set to display and edit an integer variable. The valid range of integer

values is identified through the IntRange function error checking performed automatically in the

Getlnfo function.

The CPanel class is a container for CPanelObjects. This places panel objects in a Motif

form or row-column widget. The CPanel class keeps a list of all CPanelObjects added to it. It

provides iteration functions for calling the Getlnfo and Setlnfo functions of all CPanelObjects

added to this panel. Once a panel has been constructed, a call to the CPaneVs SetData will

automatically cause all CPanelObjects to read their associated variables and set their widgets

appropriately. A call to GetData causes each object to read its widget values, perform valid input

testing, and update the associated variables. If an error occurred, iteration stops and an error

message is displayed in a pop-up dialog.

4-21

4.6.6 Saving/Loading of the Simulation

One recommendation for future work outlined by Moritz was saving the current

encounter [Moritz96:6-4]. This originally involved saving the current ENCOUNT or OPEC files,

along with the target and missile models selected by the user. I have extended this list to include

potentially any of AMVS' variables or states. In order to do so, the CDataObject class includes

virtual functions SaveData and LoadData for saving and loaded variables. During a save

operation, the CApp class will iterate through the list of CDataObjects to save the current

encounter by passing each data object a C++ iostream. Each CDataObject can write out any

member variables in the SaveData function and later retrieve these values back into its member

variables in the LoadData function. Placing the saving and loading functionality in the

CDataObject provides me access to all state information within AMVS. Although the inheritance

graph in Figure 4-8 shows some classes not inheriting from CDataObject, each of these are only

instantiated from within a CDataObject, thereby ensuring the set of all CDataObjects has access

to all state information.

4.6.7 High Cohesion, Low Coupling

This software architecture design yields high cohesion and low coupling. High cohesion

results from having each rendering object class contain all information and functionality

necessary for file I/O, graphical rendering, and user interfacing, as pertaining to the real world

objects they model. This in turn results in low coupling by minimizing data flow between

rendering objects to that information which is common to all: the simulation time and scenario.

4.7 Rendering Scene Graph Design

AMVS' CMairiWindow class maintains a pointer to the root of the scene graph. All sub-

scene graphs are encapsulated in a CRenderObject (defined in Section 4.6.4). Each

4-22

CRenderObject is responsible for the creation and maintenance of its sub graph. This section

outlines design decisions involved in the creation of AMVS' rendering scene graph. Topics

include transparency, performance, and use of the Open Inventor SoSwitch node for component

visibility and levels of detail.

4.7.1 Transparency

Object ordering in the scene graph effects how Open Inventor renders transparency. Z-

buffer based transparency algorithms require transparent objects to be drawn last during rendering

[Foley92:755], Therefore, the scene graph is designed with this in mind. Since each

CRenderObject creates its own sub scene graph and attaches it to the root node, instantiation

order is important. AMVS instantiates the CRenderObjects in the following order: CShadow,

CTarget, CMissile, CFuzeCone. This order insures that the potentially transparent fuze sensor

pattern cones and fragmentation fly-out pattern cone are rendered last. Additionally, since the

target may have a transparent skin, I construct the target models with the skin components placed

last in its scene graph.

4.7.2 Performance

This section addresses new improvements to the scene graph to increase rendering speed.

First, AMVS uses fewer transformation nodes by performing many of the three dimensional

transformation calculations outside the scene graph. For example, the target and missile each use

only a single transformation node to replace the three which were used for the target and four for

the missile. The calculations needed for the target and missile transformation are shown in

Section 5.3. Second, when applicable, translation nodes were used instead of transformation

nodes when no rotation calculations were necessary. Likewise rotation nodes were used when

only a rotation was needed. Using specific node types where possible further reduced the

overhead of three-dimensional transformation calculations during rendering by avoiding full

4-23

transformation calculations.

Another inefficiency in AMES' scene graph was its use of six point light sources to

illuminate the cones interiors. Without these light sources, the insides of the cones received no

illumination. An alternative solution to this problem is to place a single directional light in the

fuze cone's scene graph pointing towards the cones interiors. Placing this directional light after

the fuze cone's transformation node insures that the light will always point towards them. This

method significantly increased performance for three reasons: 1) directional light sources require

less computation [Wernecke94:92], 2) fewer light sources are required and 3) only a subset of the

scene graph requires illumination calculations. Tests revealed a 30% increase in performance

using this method.

4.7.3 Use of the SoSwitch Node

The Open Inventor SoSwitch node is a grouping node allowing for the selection of one,

all or none of its children [OIAG94:616]; it is used to select sub-scene graph visibility. The

SoSwitch node is also used to control target and missile levels of detail (LOD). Providing the

user with multiple levels of detail allows them to select between improved performance or

improved model appearance. Level-of-detail target and missile models are constructed with a

SoSwitch node as the root. An option menu widget allows the user to select between each level of

detail.

4.8 Conclusion

In this chapter, I cover design decisions regarding three-dimensional visualization, one of

which involved the use of shadow projections to enhance inter-object spatial perception. I also

discussed user interface design, including an improved animation control dialog. Critical

decisions made early in development were presented including choice of rendering software

4-24

library and the user interface library, and avoiding use of existing code. Finally, I explained

software and rendering scene graph design. In the next chapter, highlights of the final product are

presented along with some specifics about the underlying implementation.

4-25

5. Implementation

5.1 Introduction

This chapter outlines the AFTT Missile Visualization System's (AMVS) implementation.

The first section examines AMVS from a user's perspective, revealing its major features and

explains how they relate to the requirements outlined in Chapter n. Subsequent sections provide

insight into AMVS' underlying implementation. The final section discusses portable and

platform independent animation of VisSim fly-out simulations.

5.2 AMVS' Features

5.2.1 Main Window

AMVS' main window can be seen in Figure 5-1. The main window provides the

menuing interface, three-dimensional rendering window, and viewpoint control. The user

controls the rendering scene viewpoint with the mouse. Viewpoints can be saved and later

restored in one of five view-holders located at the bottom of the window. These five viewpoints,

along with the current one are saved when writing the encounter to disk.

5-1

Willi ffii ril'i^aiaiaAatMiaaM'.viii ^■••••■''■»■^r
,MimilViVini-!}lW>tti^'tf kÄwk-Uk^Mk, ^■jtfr-*>**si&iA*i*.A-fr^g ^^w.A!^^Jlv.^^^--^>|^yr^^-^^i^^-A_VA^.J}lf.,' J^l^K-.W^Il—

10
File Edit: View Animation Help

Figure 5-1: AMVS' Main Window

5.2.2 Encounter Dialog

The encounter dialog, shown in Figure 5-2, provides the user control over the current

scenario. Scenarios are loaded, edited, and saved7 using the graphical user interface. Currently

AMVS' scenarios include ENCOUNT and OPEC endgame files along with VisSim full fly-out

simulations. Changes made to fields in this dialog are immediately reflected in the graphical

display.

7 OPEC produced files may be loaded and edited but will not be saved. These files are output produced by OPEC and
the sponsor does not need the ability to change them.

5-2

Figure 5-2: Encounter Dialog

Section 2.3.4 discusses how engineers use ENCOUNT in conjunction with IVAVIEW to

set up and visualize an endgame encounter. AMVS provides an improved process: a single

application to load, edit, and save an encounter file while displaying it both textually and

graphically.

AMVS' ability to load OPEC generated files for textual and graphical display increases

OPEC's usefulness as a tool for simulating endgames. As mentioned in Section 2.3.5, OPEC is a

valuable tool for predicting missile component performance against selected targets; however,

OPEC suffers from poor graphical rendering. AMVS is written to meet the need for graphical

display of OPEC simulation results, improving the engineer's ability to visualize and understand

the results.

5-3

Section 2.3.6 introduced the requirement for visualizing VisSim fly-out simulations.

AMVS allows users to load VisSim files through the encounter dialog. Once loaded, the engineer

can animate the fly-out using the same animation control dialog for endgame simulations.

Figure 5-3 shows the rendering of an example VisSim fly-out simulation involving a

ground target.

Figure 5-3: VisSim Full Fly-out Animation

5.2.3 Animation Controller

The animation controller is explained in detail in Section 4.3.3. Animating an encounter

improves an analyst's understanding of the missile/target interaction during an endgame,

particularly for encounters in which the missile intersects the target body. Knowing where

5-4

missile body components intersect the target during an encounter is important for calculating

probability of kill (pk). Pk calculations are primarily based on warhead fragmentation

intersecting target components, but include intersection of the missile body with the target

[McCardle97]. ENCOUNT provides a means of visualizing this interaction by displaying a

relative velocity vector line through a specified arbitrary point on the missile. This line shows the

path of this point relative to the target, projecting where an intersection occurs. AMVS displays

this line as well; however animation of the encounter improves upon this technique significantly

by providing the engineer immediate understanding of missile/target intersection for the entire

missile and not just a single user specified point.

Animating the encounter also enhances AMVS as a training and briefing tool for

conveying concepts unique to an endgame. Sections 2.2.2 and 2.2.3 identified the fundamental

roles of the missile's fuze and warhead components. AMVS animates these components to assist

individuals in understanding the timing relationship between the fuze and warhead components.

The fuze sensor cones transparency or visibility values are set to change when a target is passing

within the fuze sensor's range. Warhead fragmentation is displayed as both an expanding ring

and a torus. The user witnesses the correlation of fuze sensor target detection and warhead

detonation. Simulation time during animation is displayed in the animation control dialog and

assists in understanding timing issues.

5.2.4 Target Dialog

Figure 5-4 shows the target dialog. The user loads target models and SHAZAM-

produced output files with this dialog as well as set the level of transparency for the aircraft skin

components. Visibility of all aircraft component groups is toggled on or off by the user through

an interface that is patterned off of the IVAVIEW program. If the loaded target file contains

varying levels of detail, the user is allowed select between these using this dialog. This provides

5-5

the user the ability to increase AMVS' performance by reducing the scene graph complexity.

■m*»* iim

Ta^et I Defau1tTarget.lv None

Level of Detail:

3 Coordinate System

I AimPoint

Component Visibility

Sföxxx SjSxxx

53 txxx 12 6xxx

.^2xxx; gS7xxx

ffiSjpxj Ha«;-
fl^Sä 639x»e

■iiMHMianiaMiOTMMia

IpfjM

ZU
Figure 5-4: Target Dialog

The user can load SHAZAM files using the target dialog. The SHAZAM program

produces simulation results showing where simulated fragmentation pieces are at specified times

during the simulation. The fragmentation file flags components that have intersected a target

with AMVS graphically displaying these results. During animation, the time of impact is used to

determine when to turn on impact visibility.

OPEC .out files loaded in the encounter dialog contain target component damage data.

This dialog provides the engineer the ability to view the colored component damage (component

coloring is explained in Section 4.2.5) by setting aircraft skin transparency. The user can isolate

specific target components groups, such as flight control system and hydraulics, by setting

component group visibility.

5-6

5.2.5 Missile Dialog

The missile dialog, shown in Figure 5-5, allows the user to control which missile is

loaded, level of detail for the missile, which velocity vector lines are displayed (both relative and

actual), and information about the warhead. The user sets the warhead position on the missile

through the missile

1 DefaultMisslle«lv

Level of Detail:

J^.C^ihafeSysteni!
 I«! Mill

"^fi'Jj

laüVe Trajectory

WARHEAD:

Warhead Pos X-value(Inches): I BAMMrä
"'<*,.; "n':{,., :"%:; ''*,' ;;£•; - '" ■"■■■'■■■■■■■■■■I

Lateral Veioolä(ft/Sec);

Hrit-i-tiilimt

wmmmmm

Figure 5-5: Missile Dialog

dialog. The warhead position is represented as a vector in the missile coordinate system with Y

and Z values set to 0. Fragmentation lateral fly-out velocity is in inches per second and is set by

the user. The user has control over visualizing the fragmentation fly-out. Fragmentation fly-out

is visualized in two ways: first, as a cone representing the path of warhead fragmentation from the

missile given the fragmentation fly-out velocity along with speed and orientation of the missile.

Second, an animated ring or torus shows the fragmentation dispersal at specifics point in time.

5-7

AMVS includes the visualization of fragmentation fly-out only to convey concepts in

fuzing and warhead detonation. It does not attempt to model the realistic physical phenomenon

of fragmentation. Therefore, effects of air-resistance and gravity have been left out to simplify

the model [Starfield90:8]. Never the less, the simplified model is sufficient to demonstrate the

important effect missile velocity and orientation has on the fragmentation fly-out cone. This

problem of fragmentation pattern skewing due to missile yaw or pitch and its effects on targeting

is discussed in detail in Section 2.2.4. AMVS pictorial demonstration of this principle assists

individuals in understanding this phenomenon and how it effects the performance of air intercept

missiles. Derivation of the fragmentation fly-out skewed cone calculations appears in Section

5.3.2.

5.2.6 Fixed Fuze Cone Dialog

The missile fuze cone dialog is shown in Figure 5-6. This dialog provides the ability to

load a fuze file, modify the fuze attributes, set fuze cone visibility and transparency, and specify

information for animating the fuze cone. Fuze sensor patterns are displayed graphically as

transparent cones.

Icone TrMW^encyt :FI^S m

lifl Cam 2/. AngJesr pi

IIS tone% 'Angle«: {fl-ft

¥!FJ Range: [M^

PRwijjeiFIl men

Figure 5-6: Fixed Fuze Cone Dialog

5-8

Engineers examine existing fuze components by loading fuze files containing the fuze

sensor pattern specifications. They may also edit the fuze specifications with this dialog and

examine the results graphically. As mentioned in Section 2.2.3, the fuze setting effects the type

of missile/target encounter and ultimately the time-to-burst value. For example, larger fuze

angles allow the missile to calculate a valid time-to-burst against a target approaching at a larger

azimuth, while smaller fuze angles allow the missile to calculate a valid time-to-bust for high-

speed head-on encounters. AMVS provides the engineer a tool for experimenting with different

fuze settings for specific encounters. Because fuze cone animation is primarily for training and

briefing purposes, and not sensor analysis, AMVS does not attempt to simulate real fuze sensor

target detection. As a result, the target detection time must be entered manually by the engineer.

Currently, air-intercept missiles are designed and developed with only a single fuze

sensor. Adding additional fuze components to a missile can potentially increase the range of

encounters a missile can properly operate in to effectively kill a target. AMVS provides the

engineer an environment for experimenting with up to three fuze sensors.

5.2.7 Shadow and Grid Dialog

Shadow projections, as introduced in Section 4.2.1, improve the perception and mental

modeling of missile/target inter-object spatial relationships. This is most valuable in analyzing

the endgame parameters of a scenario set by the encounter dialog (see Section 5.2.2). Figure 5-7

shows the dialog for controlling grids and shadows. An example of this visualization technique

appears earlier in Figure 5-1. Using the shadow and grid dialog, the user has the option to turn

the visibility of top, side and back shadows on or off. They may also change grid visibility, units

dimensions and placement.

5-9

""-'"-'■^•'^■■^■^^-"TIT'' fff

•mi*iiiii*jM«mTm!mi,-*<&i^-*<i*m!-«»it*<- 'MIIIIIIII - '■

None None

Model Visibility: S Bottom jg Sjde g] Back

— I»
IE^^^^SJ^

MRSM

 I

Figure 5-7: Shadow and Grid Dialog

5.2.8 Visual Cone Cross Sections

The dialog for setting fuze and fragmentation fly-out cones to 2D cross sections is shown

in Figure 5-8. Figure 5-9 shows an example display of cone cross sections. Once the user selects

the cross section modes, she dials the cone rotation to a desired position.

IFuze ^iie;and^»g^put€^ne.*rOss^^ctIons

Mfuze:£one Rollortijgiii 11 ^WISN E iTFiffi

Figure 5-8: Cone Cross Section Dialog

5-10

Figure 5-9: Example Cone Cross Section View

As mentioned in Section 4.2.3, this visualization technique, patterned after two-

dimensional drawings in missile proximity sensor publications and manuals, is both familiar to

the missile engineer and useful for modeling the interaction of the target and cones.. This

technique is especially useful when the target is not directly intersecting the cone.

5.3 Setting up a Scenario

Now that we have examined AMVS from the user's point of view, we turn our attention

to some of its underlying implementation, beginning with calculations for setting up an endgame

scenario. The current scenario is controlled by the CEncounter class. When the scenario

changes, the CEncounter class notifies all CDataObjects of the new scenario (see Figure 5-10).

As data object in the list is visited the object's virtual SetScenario is called with the CScenario

object holding the current scenario.

5-11

(This line of code is located in CDataObject constructor)

// Get a pointer to the DataObject lists
m_dataList - CDataObject::List();

// Notify all the CDataObjects of the new CScenario
for(m_listlndex=m_dataList->begin();m_listlndexl-m_dataList->end(); \

m_listlndex++)
(*m listlndex)->SetScenarlo(m scenario^:

NOTE:
The following are defined in the CDataObject header file:

typedef vector<CDataObject*> DataObjectList;
typedef DataObjedList::iterator DataObjectListlterator;

The following are member variables of the CEncounter class:

DataObjectList* m_dataList;
DataObjectListlterator mjistlndex;

Figure 5-10: Notifying Data Objects of the New Scenario

Since CDataObject's constructor adds each newly instantiated data object to the data

object list, all classes inheriting from CDataObject will be automatically notified of changes to

the current scenario. Each CDataObject is then responsible to modify its state according to the

new scenario. The following sections outline some of the state changes that occur with a new

simulation.

5.3.1 Target, Missile and Relative Velocity Vector Transformations

Scenarios contain data derived from ENCOUNT or OPEC files. This data primarily

effects the orientation of the target and missile. ENCOUNT and OPEC calculate missile and

target orientation in the same way. This section outlines the transformations required to position

the target, missile, and relative velocity vectors based upon the current scenario. Variables from

the scenario, along with additional variables for calculation, can be seen in Table 5-1. All vectors

are normalized unless otherwise specified.

5-12

Table 5-1 Endgame Scenario Variables

1 i^'^fV^W "■Sfcif'l dS^'^Ak 1 f,^MS^P?^^^!%'%f^^i^^&^^i^p- !■■■■■ ■ -I^iilll
AZ Degree Azimuth of missile attach
EL Degree Elevation of missile attach

MAA Matrix Attack angle (azimuth and elevation)
VM\ Vector Missile's unit velocity vector

Mvel Float Missile's velocity
VTV Vector Target's unit velocity vector
Tvel Float Target's velocity
VRV Vector Relative velocity vector
Rvel Float Relative velocity

MRVCS Matrix Relative velocity vector coordinate system
(rotational transformation only).

VAP Vector Aimpoint in target space
VMP Vector Miss point in relative velocity vector

coordinate system.
VxYZMfes Vector Aimpoint miss value in relative velocity

vector coordinate system
VTP Vector Tracking point on the missile

MTPT Matrix Tracking point translation matrix, holds
values in vector VTP

^MYaw, A/MPltcl» Matrix Missile yaw, pitch and roll
MMROU

A^TYaw, MTPUCI,, Matrix Target yaw, pitch and roll
A^TROH

MMR Matrix Missile rotation
MTT Matrix Target's total transformation
MMT Matrix Missile's total transformation

MRVAPT Matrix Relative velocity vector and aimpoint
transformation

A/TPRVT Matrix Tracking point relative velocity vector
transformation

nrPosAtZero Vector Target translation value for an animation time
of 0.0. (used in Section 5.4.1) This value is
extracted from Mn.

^MPosAtZero Vector Missile translation value for an animation
time of 0.0. (used in Section 5.4.1) This value
is extracted from MMT-

5.3.1.1 Calculating the velocity vectors

The target velocity vector is always along the world coordinate x-axis and is not effected

by target yaw, pitch or roll. The missile velocity vector is based upon the attack azimuth and

elevation and is also not effected by missile yaw, pitch or roll. An azimuth value of 0 degrees is

defined to be a head-on attack with the target, while an azimuth of 180 degrees is an attack from

5-13

behind. A positive elevation represents an attack from above. Equation 1 shows the angle of

attack calculation. Equation 2 shows how to calculate the missile velocity vector (VMV) by

multiplying a unit vector in the X direction through the angle of attack matrix. For a discussion

on three-dimensional transformations, see [Hearn97],[Rogers90] or [Watt93].

MAi = lAA

cos 180 + AZ -sin 180 + AZ 0 0'

sin 180 + AZ cos 180 + AZ 0 0

0 0 10

0 0 0 1

cos EL 0 sin EL 0

0 10 0

-sin EL 0 cos EL 0

0 0 0 1

(1)

VMV=MAA (2)

5.3.1.2 Calculating the relative velocity and relative velocity vector

The relative velocity vector is found using vector subtraction on the missile and target

velocity vectors as shown in Equation 3. This vector has a magnitude of relative velocity.

Equations 4 and 5 show the calculation of the unit relative velocity and the relative velocity

vector, respectively.

VRV = (VMVMVel)- (VTVTVel) (3)

V
V = RV
'RV

\ RV\
(4)

Rvel = \VÜ (5)

5.3.1.3 Calculating relative velocity vector coordinate system for XYZMiss translation

A miss occurs when the missile is unable to intercept the target at the aimpoint during an

5-14

endgame [Mack87:2]. The miss value is a point in a coordinate system centered at the aimpoint

with x-axis being the relative velocity vector. This coordinate system must be calculated for

proper placement of the missile as well as proper orientation of the aimpoint cross-hairs. More

specifically, to calculate the transformation for the aimpoint cross-hairs, we need the inverse

rotation of this coordinate system (see Section 5.3.1.6) and can ignore aimpoint translation.

The relative velocity vector rotation matrix is calculated using unit the local coordinate

system's unit axis vectors (described below) as columns in the matrix [Hearn97:428-9]. The

relative velocity vector is used as the x-axis unit vector for this matrix (positive x represents the

direction of the missile's movement towards the target). The z-axis unit vector is found by taking

the cross product of the relative velocity vector with the world-coordinate y-axis unit vector. The

cross product of the x-axis unit vector and z-axis unit vector define the y-axis unit vector for the

miss coordinate system. These calculations appear in Equations 6,7 and 8. The rotation matrix

for defining the relative velocity vector coordinate system centered at the origin is shown in

Equation 9.

Vx=VRV (6)

Vz'=Vx'x[0 1 0] (7)

(8)

(9)

yY = V yx xVz'

YXl Vn VZ1 0

MRVCS
=

VX2

V YX3

vY2

V VY3

YZ2

V VZ3

0

0
0 0 0 1

5.3.1.4 Calculating the target transformation

The target's initial orientation is located at the origin, facing in the positive x-axis with

the y-axis out the left wing. The target's orientation is defined by yaw, pitch and roll values. The

5-15

calculation for the target's rotation is shown in Equation 10.

MJJ MTYawMTPitchMTRoU (10)

5.3.1.5 Calculating the missile transformation

The missile's initial orientation is the same as the target's. The transformations for

orienting the missile according to the current scenario are summarized as follows:

The missile is aligned with the attack angle,

The yaw, pitch and roll rotation is applied to the missile,

The missile is translated by the miss vector in the relative velocity vector coordinate system.

The missile is translated to the aimpoint in the target coordinate system.

To make the final two transformations, we introduce two temporary vectors VAPW and VMPW

representing the aimpoint and miss point translation vectors respectively in the world-coordinate

system, and two temporary matrices MAFT and MMPT to represent these two translations. These

calculations are shown in Equations 11 through 14. MMT and MMPT are used again later when

calculating the transformations of the relative velocity vector lines.

V = M V YAPW lrlTTyAP

V =M V YMPW 1V1RVCSYMP

(11)

(12)

iVl ADT ~—
"■APT

1 0 0 V APWr

0 1 0 V, APW,

0 0 1 V,

0 0 0
APWt

1

(13)

5-16

M-UPT — lMPT

1 o 0 V, MPW,

0 1 0 V, MPW,

0 0 1 V,

0 0 0
MPWt

1

(14)

The missile's total rotation matrix calculation is shown in Equation 15. This matrix is saved for

later calculation of the displayed relative velocity vector through the missile's tracking point.

Equation 16 shows the missile's total transformation.

M = M M M M lrl MR "l MYaw iY1 MPitch m MRoll1¥1 AA (15)

M-Mi — M.APJMMPTMMR (16)

5.3.1.6 Calculating transformations for the relative velocity vector lines

At this point, the calculations of the missile and target transformations are complete. The

next step is to calculate transformations for the relative velocity vectors. Figure 5-11 shows the

visible aimpoint, missile tracking point and relative velocity vectors. In this figure, the

^^^L ** ^r

m
mm

Figure 5-11: Aimpoint on the Target and Tracking Point on the Missile

aimpoint is placed directly above the nose of the target (larger cross-hair), the missile tracking

5-17

point is centered on the missile, the missile has a miss point of [0, -25,75]. The ideal relative

velocity represents the flight path of a missile with zero miss value and is therefore always

displayed directly at the aimpoint. The missile's actual relative velocity vector is centered at the

tracking point on the missile.

The ideal relative velocity vector and aimpoint on the target are placed in the target's

scene graph and will follow the target during animation. The relative velocity vector displayed

through the tracking point on the missile is placed in the missile's scene graph and moves with it

during animation. Calculating the ideal relative trajectory and aimpoint transformation, shown in

Equation 17, requires first an inverse of the target's rotation, a rotation according to the relative

velocity vector coordinate system, then a translation to the aimpoint. The transformation of the

relative velocity vector through the missile's tracking point likewise requires first an inverse of

the missile's total rotation, a rotation according to the relative velocity vector coordinate system,

then a translation to the tracking point on the missile. This can be seen in Equation 18.

""■RVAPT = -™ APT™RVCS"*TR (^)

"^TPRVT = "^TPT"^RVCS"^MR (18)

5.3.2 Calculating the fly-out pattern's skewed cone

Section 2.2.4 discusses the fragmentation fly-out skew pattern. Recall that the missile

flies along the x-axis of a coordinate system defined by the attack azimuth and elevation.

Warhead fragmentation is projected perpendicular to the missile's longitudinal axis. Elapsed

over time, the warhead fragmentation pattern produces a cone. If the missile has a yaw or pitch

at the point of detonation, a skewing of the cone results due to the fact that the missile's flight

path and missile's orientation are not the same. This causes one side of the missile's fragments to

travel away from the missile's original position faster than those on the opposite side. The

5-18

resulting pattern is a cone skewing towards the flight path of the missile.

To properly display the skewing effect on the fly-out cone, we use a shearing matrix.

This section demonstrates how to set up the fragmentation fly-out cone's shear matrix. Table 5-2

shows the important variables.

MMR
Mvel
Fvel

Matrix
Float
Float

height
radius

VrotUnlt
XRot

Float
Float

Vector
Vector
Degree

SA Degree

Afro Matrix

MAM
MShear

Matrix
Matrix

MRX Matrix

MTW Matrix

Time Float

Table 5-2: Skewed Cone Calculation Variables

Missile's yaw, pitch and roll rotation
Missile's velocity
Warhead fly-out velocity (perpendicular to the
missile)
Cone height
Cone base radius
X-axis unit vector (1,0,0)
xunit rotated by MR'1

Amount of rotation needed to rotate the
sheared cone to the x-axis
Shear angle: angle between the missile's axis
and the missile's flight path.
Matrix to translate the cone in its default
position to cone tip at the origin.
Matrix to align the cone with the missile.
Matrix to shear the cone in the positive y
direction.
Matrix to rotate the sheared cone around the
missile's x-axis to the origin's x-axis.
Matrix to translate the cone to the position of
the warhead on the missile.
Simulation Time in milliseconds.

First, the shearing angle must be calculated. This is the angle between the missile's longitudinal

axis and its flight path (the x-axis), and it is found using a dot product between the missile's

longitudinal axis and the flight path. The missile's longitudinal axis is simply the flight path

vector multiplied by the inverse of the missile rotation matrix, MMR. An inverse is used because

our goal is to rotate the cone back to the x-axis after the shear. These calculations are shown in

Equations 19 and 20.

VrotUmt=MMR* XUTlit (19)

5-19

SA = arccos Vro[Unil • xunit (20)

Next we calculate the height and base radius of the cone is calculated. The height of the

cone is a user specified value ^controlled via a thumbwheel widget. This gives the user control

over the size of the cone. The height and base radius must have the same ratio as the missile

velocity and fragmentation fly-out velocity. Shearing the cone will alter the height of the cone

and must be taken into account. Equations 21 and 22 shows the calculation of the cone's height

and base radius.

height = y/1 cos SA

radius = (height x Fvel) I Mvel

(21)

(22)

At this point, we are ready to set up our transformation matrices. The first transformation

is a translation to move the default cone (centered at the origin of the missile coordinate system)

along the y-axis to position the apex at the origin. Next, the cone is rotated 90 degrees to align

with the missile. Figure 5-12: A shows the cone now oriented with its apex at the origin and

aligned with the x-axis of the missile's coordinate system. Now a shearing in the positive-y

direction can be applied based upon the shearing angle. The shearing matrix is shown in

Equation 23 [Hearn97:203,423]. Figure 5-12:B shows the shearing effect for our example.

ABC

Figure 5-12: Sheering and Orienting the Fragmentation Cone

5-20

Mc,.„ = 1 Shear

1 0 0 0

tan SA 1 0 0

0 0 10

0 0 0 1

(23)

The cone is then rotated around the missile's x-axis to align it with the origin's x-axis. To

calculate this rotation, we use the rotUnit vector. This vector points along the x-axis of the origin

(recall, we used the inverse of the missile's rotation to calculate this vector). We can therefore

use this vector's y and z components to find the necessary rotation amount. This rotation amount

is calculated in Equation 24, and placed in the rotation matrix in Equation 25. Figure 5-12:C

shows the effects of this rotation.

Mmot = arctan VrotUni I VrotUni, (24)

MBV = lRX

10 0 0

0 cos XRot - sin XRot 0

0 sin XRot cos XRot 0

0 0 0 1

(25)

The final transformation is a translation to the missile's warhead and is calculated by the

matrix TW. Equation 26 now shows the combination of these transformations to properly shear

the cone and orient it along the missile's flight path.

MShearConcTransfbrm ~ "^TW"^RX^Shear^AM^TO (26)

5.3.3 Shadows

Target and missile shadows are implemented in the CShadow class (see Figure 5-13 for

an example). Shadowing is done by manipulating the polygonal coordinate values to match the

orientation of the target or missile while setting one of the principle coordinate values to zero.

The result is a "flattened" projection of the original model, having the same orientation.

5-21

Shadowing is implemented as follows: Four reduced models are loaded, one for the top, side and

back shadows and one to control the original polygonal values. The three shadow models are

then placed in the scene graph along with their respective grids. Flat shading is applied to the

models to improved rendering performance. As the scenario changes, the shadows are set to

match the missile and target orientations. This is done by iterating through all the model's

coordinates values (found in SoCoordinate3 nodes). Iteration is done simultaneously for all four

models. Each polygon vector coordinate is passed through the respective transformation (missile

or target). This vector is then placed in the each of the respective shadow models (top, side or

back), zeroing out one of the axis values (e.g., models representing side shadows will have their

Y values set to zero).

Figure 5-13: Example View using Shadow Projections

5.4 Animation

The current simulation time is controlled by the CAnimControl class. When the

5-22

Simulation time changes, the CAnimControl class notifies all CRenderObjects of the new time

with its UpdatePosition function (see Figure 5-14). As UpdatePosition iterates through its list of

render objects, each render object's virtual NewSimTime is called with the current simulation

time. Since CRenderObject's constructor adds each newly instantiated render object to the render

object list, all classes inheriting from CRenderObject will be automatically notified of changes to

the current simulation time.

(This line of code is located in CAnimControls constructor)

// Get a pointer to the RenderObject lists
m_renderList - CRenderObject::List();

void CAnimControls::UpdatePositlonO
{

// Notify all the CRenderObjects of the new simulation time
for(m_listlndex=m_renderList->begin(); m_listlndexUm_renderList->endO; \

m_listlndex++)
Cm listlndex)->NewSlmTime(m SIM TIME):

}

NOTE:
The following are defined in the CRenderObject header file:

typedef vector<CRenderObject*> RenderObjectList;
typedef RenderObjectList::iterator RenderObjectListlterator;

The following are member variables of the CAnimControls class:

RenderObjectList* m_renderList;
RenderObjectListlterator mjistlndex;

Figure 5-14: Updating the Simulation Time

5.4.1 Target and Missile Animation

The target and missile position during animation is dependent upon the animation mode

the user has selected. If the user has selected "BOTH" for animation motion, then both positions

are modified (see Equations 27 and 28). Equations 29 and 30 show missile and target position

calculations for the "MISSILE" animation mode. In this mode, the missile moves along the

relative trajectory while the target remains stationary. Equations 31 and 32 show position

5-23

calculations for the "TARGET" mode. Where not specified, variable descriptions can be found in

Table 5-1 and Table 5-2.

VTPos = VwosAOero + (VTV X Tvel X Time) (27)

V
MPOS = VuposAiUro + (VMv x M^l x Time) (28)

*TPos = *TPosAtZero (29)

V
MPOS = VMPosAtZero + (VRV x Rvel x Time) (30)

VTTos = VjTosAtZero + ("Vjnr X Rvel X Time) (31)

*MPos = *MPosAtZero (32)

5.4.2 Fragmentation Fly-out Animation

Warhead fragmentation is displayed as an expanding ring. The ring represents the

fragmentation's center of mass while the torus represents fragmentation dispersal. In general,

fragmentation extends perpendicularly from the missile depending upon warhead type. For

AMVS, the sponsor has chosen a dispersal pattern of about 80 to 100 degrees [McCown97]. As

stated previously in Section 5.2.5, animation of warhead fragmentation fly-out is for briefing and

training purposes and not for scientific analysis.

Fragmentation fly-out is animated by scaling the ring and torus. The fragmentation ring

is centered at the origin with a radius of one meter. The warhead fly-out velocity, specified by

the user, is first converted to meters per millisecond, then when the missile receives a new

simulation time, the ring and torus are scaled as shown in Equation 33.

ScaleValue = FVel X Time (33)

5.4.3 Time Adjustment by Focal Distance

As mentioned in Sections 4.3.3 and 5.2.3, the animation control dialog's time adjustment

5-24

thumbwheel is configured to adjust the simulation time based upon the viewing distance. When

the user is zoomed in on a component, movement of the thumbwheel results in small changes to

the simulation time and vice-versa for a zoomed out configuration. My goal is to create a means

for controlling the animation movement that positions the missile and target roughly from one

screen edge to the other in a single movement of the mouse, regardless of the focal distance.

Equation 34 shows the function of thumbwheel movement to simulation time change that

achieves this goal.

SimTime = SimTime + TMx(l- e"0005*™) {34)

Where : TM = Thumbwheel movement

FD = Focal distance

5.5 Target and Missile Levels of Detail

AMVS' performance is increased by using reduced target and missile models. At times,

however, the user may prefer more complete and accurate models. To provide the user control

between rendering quality and performance, AMVS provides configurable levels of detail (LOD)

for selected target and missile models.

5.5.1 Using Reduced Models Through Decimation and Web Retrieval.

Target and missile models are received from the sponsor in GEORGE format. Many of

these models have a large number of polygons (over 20 thousand) which have an adverse effect

on AMVS' performance. To alleviate this problem, I include polygon reduction in the conversion

process from GEORGE to Inventor format using a decimation algorithm from the Visualization

Tool Kit [Schroeder96]. To create LOD models, I apply a series of varying levels of decimation

to the model. The resulting decimated models are later combined into a single Inventor file (see

Section 5.5.2). Figure 5-15 shows a C-130 LOD model created using varying degrees of

decimation.

5-25

Full Model 55% Reduced

Figure 5-15: C-130 LOD Model

80% Reduced

Since AMVS reads Inventor files, other target and missile models can be used to improve

performance. Many aircraft models available on the World Wide Web are designed with reduced

polygon counts. I use Coryphaeus' Software's Designers Workbench (DWB) to scale, oriented

and convert those models downloaded from the Web for use within AMVS.

5.5.2 Creating LOD Target and missile models.

The reduced models described above can each be loaded directly into AMVS. However,

these models are more easily managed when combined into a single Inventor file. The MakeLOD

program takes .iv files containing target or missile models and makes a new model having an

Inventor SoSwitch as the scene graph root. MakeLOD takes file description comments found in

the .iv files and places them in the newly created file. These comments are used by AMVS to

label the LOD option menu button found in the CMissile and CTarget dialogs (see Figure 5-4 and

Figure 5-5). LOD models can be made from any combination of GEORGE-derived files, or other

Inventor compatible formats mentioned above.

5.5.3 Using LOD Models in AMVS

When a new model is loaded, AMVS checks to determine if it is a GEORGE-derived

model, non-GEORGE derived model, or an LOD model containing any combination of these. If

AMVS determines that the newly loaded model contains levels of detail, the LOD option button

5-26

is updated with the LOD description of each sub-model.

AMVS handles GEORGE derived and non-GEORGE derived target models differently.

If a GEORGE derived target model is loaded, the model is searched for key component visibility

root nodes (SoSwitch's) and the skin transparency node (SoMateriat). These nodes are

manipulated when the user modifies skin transparency or component visibility. When non-

GEORGE derived models are loaded, these features are disabled. When a user manipulates

component visibility or transparency on an LOD target model, AMVS updates all GEORGE-

derived models accordingly.

5.6 Multi-threading AMVS

Multi-threading a GUI-based application improves user interface responsiveness,

particularly when the applications performs file I/O or computation that can be deferred

[Kleiman96:4]. For this reason, I have multi-threaded two of AMVS' features: 1) loading a

simulation and 2) setting target damage for LOD models. Threading simulation loading gives the

benefit of allowing the user to view the scene as it loads. The user may perceive a reduced

response time, but is not kept from viewing components that have already been loaded and has

complete control over viewpoint manipulation during this process. Likewise, threading target

damage coloring for LOD models improves user responsiveness. When the user requests to see

component damage on an LOD model, the current level of detail is colored first, then other levels

of detail are colored within the thread. The user is then allowed to view target damage on the

immediately visible model while component coloring of other levels of detail is deferred.

5.6.1 Software Quality

In Section 1.4.3,1 listed four development intentions. These include creating an

application with increased stability, maintainability, extendibility and performance. This section

5-27

addresses each of these intentions in relation to AMES.

5.6.1.1 Stability

I evaluate AMVS' stability in the same manner as was done for AMES (as mentioned in

Section 4.5.1): use of automated tools and stress testing. Parasoft's Insure++, as mentioned in

Section 3.5.2.4, is an effective tool for ensuring the stability of a program. Insure's evaluation of

AMES' code revealed only a few warnings, mostly regarding unused or un-initialized variables,

which were later fixed.

5.6.1.2 Maintainability

AMVS is more maintainable than AMES due to improved design and documentation,

along with cleaner, more efficient code. AMVS has been well documented, using both in-line

documents and documentation found in AMVS' continuity directory. Also, AMVS has been

implemented in fewer lines of code, resulting from good design and code re-use. Writing AMVS

with the same capabilities of AMES was done in one-third the number of lines of code. It is

generally accepted that an application written with fewer statements results in cleaner, more

maintainable code.

5.6.1.3 Extendibility

Extending AMVS will most likely involve adding new rendering object, new dialogs, or

perhaps, even new scenario types. The process to do so has been simple. The ease in which new

rendering objects are added to AMVS was outlined in Section 4.6.4. The creation of new dialogs

in simplified through code re-use. Classes inheriting from CDlgDataObject can take advantage

of all methods provided by it. New interfaces can be quickly constructed using the panel and

panel object classes AMVS provides.

AMVS has been designed to allow for the implementation of new missile/target

5-28

scenarios. One such example was the extension of AMVS to include animation of a VisSim fly-

out simulation. All that was required was the creation of a CVisSimScenario class inheriting from

CScenario. Each CDataObject was then modified to handle this new scenario type. The only

modifications necessary for each object involved small changes to the user-interface, and actions

performed in the SetScenario and NewSimTime functions.

5.6.1.4 Performance

Through-out this document, I have mentioned methods used to improve AMVS'

performance. I will summarize techniques for increasing performance here:

1. Using fewer transformation nodes in the scene graph by performing many of the

calculations prior to rendering. Also using translation or rotation nodes rather than

full transformation matrices where applicable.

2. Providing each CRenderObject with all necessary information (through the

CScenario) needed for calculating each frame. This low coupling reduces function

call overhead. In addition, objects calculate and save as many variables as possible

before animation begins (such as velocity vectors).

3. Only performing computation when necessary. If an object's visibility is turned off,

the object will not perform calculations for position updates during animation.

4. Inlining functions [Meyers92:10].

5. Using a single directional light in the fuze-cone sub-scene graph rather then six point

light sources for the entire scene-graph.

6. Flat shading shadows.

7. Using reduced models (described in Section 5.5.1).

5-29

Performance test results between AMES and AMVS can be seen in Table 5-3. All tests

were performed with a missile containing 284 polygons. These test results show an average

performance increase of almost 200%.

Table 5-3: AMES I AMVS Performance Tests

:^-zS^vg£^.

21124 2.985 8.95 200%

688 26.785 72.25 170%

70434 0.830 2.60 213%

34433 1.71 5.15 201%

47879 1.10 3.15 186%

5.7 PC Based Animation of VisSim results

As mentioned in Chapter n, the sponsor is interested in seeing VisSim results animated

on the PC. I have elected to explore this area by creating two prototypes to run on both the PC

and SGI, one written in C++/OpenGL, the other written in Java/VRML and viewed through a

web browser.

5.7.1 OpenGL

Figure 5-16 shows the C++/OpenGL VisSim animation prototype. This program was

developed on an SGI workstation and then rehosted on the PC. To make this program completely

portable, I did not use any existing libraries for the user interface. The user interface is written

entirely in OpenGL. This prototype provides the basic capability to load a VisSim file from the

command line, display the full fly-out path, and animate the missile along this path.

5-30

»lag

. ^p^r-Zett^tMf,!.; „ ,^9 .
'» Z7.90G

Figure 5-16: C++/OpenGL VisSim Animation Prototype

5.7.2 Java/VRML platform independent version.

Figure 5-17 shows the Java/VRML implementation as viewed in a Netscape browser.

This version provides the same capabilities as stated above, with one addition: being able to load

a new VisSim file with the Java applet. Also, the animation control more closely matches the one

found in AMVS.

5-31

S4.......j,.,......j> ^^tiiiiiijiiiiirörtiiiifoi^ EimwBittiiiitovhlfaiM^wWiiiiifcffiBw

File Edit View Go Bookmarks Options Directory Window Help

I Back
<X$,\

All [Reload Imosesi

r <*•;

! Open Lf!2!Lj I Stop

Location: file:/home/getty2/97d/jbush/thesis/src/VRML/VisSim2/VisSiir!

!ül PS^iiJl I^PÜ IlIPlll IBIÄI I1MP

; Position: 1780, »26.1, -8920 Orientation: -0.0725, -0 212, 0.00754 \

Time: ||o£|^ | Stutj Stopj Speed (X): 0

< ►

Viewpoint Follow Missile G2*MissileLoc»tor

| FILE j fdeVhome/getty2S7oV)biish/thesis/src/VRML/VisSiin2/DATA/Sdof d<

ÜH:
Figure 5-17: Java/VRML VisSim Animation Prototype

5-32

5.7.3 Comparison

Both software platforms allowed for object oriented programming. The biggest

advantage OpenGL has over Java/VRML is in rendering performance. The Java/VRML version

viewed through the web browser rendered at about half the former's frame rate. However, the

Java/VRML software platforms has a few advantages over OpenGL. First, both Java and VRML

are platform independent; no additional effort was needed to port it to the PC. As a result,

software delivery has been greatly simplified. The Java/VRML application can also be posted at

a web site, readily available to anyone with Internet access. Finally, since Java includes a user

interface API, the GUI was easier to develop. Although the Java/VRML software platform

(currently) has lower rendering performance, it has potential in the area of missile fly-out

visualization. The next chapter summarizes my contributions to visualization and animation of

missile/target encounters.

5-33

6. Contributions

6.1 Introduction

This chapter summarizes my research efforts to enhance visualization and animation of

endgame and full fly-out missile/target encounters. I begin by presenting major and minor

contributions to the field followed by major and minor enhancements to the previous research

done by Lt. Joseph Moritz. Next I make suggestions for future work in this field and then

conclude with a summary of this research.

6.2 Contributions

Previous work at AFJT in the field of visualizing endgame scenarios was accomplished

by Lt. Joseph Moritz [Moritz96]. His research resulted in the creation of the AFTT Missile

Endgame Simulator (AMES). My research extends Moritz's work. In particular, this research

focuses upon visualizing the fragmentation fly-out skewing, improving endgame animation and

extending the animation to include the complete endgame encounter from target detection to

fragmentation impact. This research also investigates animation of a full fly-out simulation.

Furthermore, it explores new techniques for visualizing the spatial relationships present in a

missile/target encounter. These new capabilities and concepts in visualizing and animation

missile/target encounters are implemented in the AFJT Missile Visualization System (AMVS).

While AMVS development necessarily involved reusing ideas found in AMES, the sections to

follow represent only those original contributions embodied in AMVS.

6-1

6.2.1.1 Visualizing the Fragmentation Fly-out Skewed Cone

The fragmentation fly-out cone skewing phenomenon, as discussed in Section 2.2.4,

effects the performance of air-intercept missiles. Previously, engineers had no graphical tool for

dynamically visualizing this phenomenon. AMVS displays the skewed cone both as a two-

dimensional cross section and as full, transparent cone. Visualization of the skewed cone assists

engineers in achieving a better understanding fly-out cone skewing and thereby discover solutions

to combat its effects. It is also useful in briefing decision makers on this problem.

6.2.1.2 Full Animation of an Endgame Scenario

Previously, there did not exists a three-dimensional graphical tool for animating the full

endgame encounter to include visualizing fuze-cone target detection, warhead fragmentation fly-

out, and fragmentation/target impacts. AMVS animates the full endgame encounter. Fuze cones

are animated by changing their transparency or visibility during target detection (see Section

5.2.6). Warhead fly-out is displayed as an expanding ring or torus (see Sections 5.2.5 and 5.4.2).

Fragmentation/target impacts are displayed using SHAZAM output and correctly correlated with

the impact time.

Such an animation tool not only helps the engineers understand encounter timing issues

and the missile/target interaction during an endgame, it also provides an improved method for

communicating endgame concepts to people not familiar with them.

6.2.1.3 Visualization and Animation of Full Fly-out Simulation Results

Engineers previously had no three-dimensional tool for visualizing and animating VisSim

full fly-out simulation results. The lack of such a tool makes assimilation of these results

difficult. Engineers needed to be able to understand the missiles flight path in relation to the

target, as well as its orientation through out the flight. AMVS reads, displays, and animates the

6-2

missile's flight path using a VisSim output file.

6.2.1.4 Fixed Fuze-cone Attribute Experimentation

AMES was implemented to allow the engineer to visualize fixed fuze cone sensor pattern

coverage based upon antenna azimuth and range attributes loaded in from a FUZE file. However,

engineers needed an environment not only to visualize this sensor coverage, but to experiment

with fuze cone antenna azimuth and range settings within a single graphical application. AMVS

provides such an environment. Engineers can load a fuze file, modify the fuze attributes,

examine the results interactively, and save their work.

6.2.1.5 Endgame Scenario Creation

As stated in Section 2.4.4, engineers need an efficient means of creating an endgame

scenario. Although AMES was implemented to load an ENCOUNT file, no effort was made to

allow for saving or creating new ones. As a result, engineers were still left editing these files via

text editors. The task of creating an endgame scenario is much more efficient in AMVS due to its

GUI interface for parameter entry, including error checking, and a graphical display to show the

results of the settings. Furthermore, these modifications can then be written out to a user

specified ENCOUNT file for archival or reuse.

6.2.2 Minor Contributions

6.2.2.1 Modifiable Levels of Detail

To improve performance while still providing high fidelity models, Moritz suggested the

implementation of user modifiable levels of detail (LOD) with future versions of AMES

[Mortiz96:6-3]. AMVS allows the user to select between varying levels of detail for the missile

and target. Thus, the user may choose between efficiency and accuracy depending upon the task

at hand. During some tasks, such as examining target/fuze-cone interaction, lower fidelity in

6-3

target and missile models may suffice. When using AMVS as a briefing tool, however, improved

rendering may be more desirable.

6.2.2.2 Saving a Simulation

AMVS enables the user to work efficiently by allowing the engineer to save her work and

return to it later. AMVS not only saves such information as currently selected missile and target

models and as the currently loaded ENCOUNT or OPEC file, but also such states as the fuze cone

attribute settings, the cone, grid and shadow visibility settings, the current rendering view, and the

five "saved" rendering views.

6.2.2.3 Visualized Missile and Target Velocity Vectors

AMVS displays the missile and target's actual velocity vector lines in addition displaying

relative velocities. Displaying the missile's actual velocity vector is critical when examining

fragmentation skewing, since the fragmentation fly-out cone is centered along the missile's flight

path and not the missile's longitudinal axis.

6.2.2.4 Target Component Group Visibility

Each target consists of several hundred components. To reduce scene complexity,

IV A VIEW provides the user the ability to set component group visibility. AMVS likewise

provides this capability.

6.2.2.5 View Control

To further enhance understanding of the scenario, engineers are given the current view

position and orientation feedback relative to the target. Also, the engineer is able to save and

restore key viewpoints.

6-4

6.2.2.6 Rendering Scene Image Capturing

To support training and briefing, AMVS captures its rendering scene and save it to a user

specified image file. These image files can then be incorporated into briefing slides or training

manuals.

6.2.3 Major Enhancements to AMES' Capabilities

6.23.1 Improved Rendering Performance

As mentioned in Section 2.4.3.2, AMES surfers from poor rendering performance,

resulting in a degraded animation and lower fidelity. Section 5.6.1.4 summarizes the efforts to

improve rendering performance in AMVS' implementation. Performance test results show

almost a 200% increase in rendering performance.

6.2.3.2 Improved Animation Control User-Interface

AMES user interface for animation limited the user. AMVS' animation control dialog is

significantly improved as a result of prototyping and user testing. It now provides valuable

feedback during the animation and complete control of the simulation time. The feedback given

to the engineer includes the current simulation time and the current target and missile positions

displayed in target, missile, or world coordinate systems. Additionally, positions are displayed in

inches or meters. The engineer also has three separate means of controlling the animation time

including text field direct entry, dial control, and animation start/stop with speed control. Finally,

the user has complete control over the simulation time without the need to focus on the animation

control dialog.

6-5

6.2.4 Minor Enhancements over AMES' Implementation

6.2.4.1 Corrected Endgame Scenario Calculations

AMES makes a few calculation errors when displaying an endgame based upon

parameters found in ENCOUNT and OPEC files. Incorrect calculations include miss-placed

visible target coordinate system, arbitrary point on the missile, and visual display of velocity

vectors as well as miss-calculated center of rotation of the missile and direction of flight for

missile and target during animation. AMVS corrects these problems.

6.2.4.2 Ability to View OPEC Target Damage

Although AMES implemented color coding target internal components based upon the

component damage information found in an OPEC .out file, component damage was not easily

visible due to occlusion by the aircraft skin. AMVS fixes this problem by applying user

configurable transparency to the aircraft skin, allowing the internal components to be visible.

6.2.4.3 Inter-object Visualization Techniques

In order to provide insight into inter-object spatial relationships, AMES used three

additional windows showing the top, side and front views of the encounter in addition to the main

rendering window. Section 4.2.1 discusses problems with this approach and presents an

improved visualization technique using shadow projections. AMVS implements shadow

projections of the missile and target in order to improve visualization of inter-object spatial

relations between them.

AMVS also improves visualization of the target/fuze cone relationship. Although using

transparent cones to visualize fixed fuze cone sensor coverage patterns effectively shows

target/cone relationships when the target is penetrating the cone, it is ineffective in revealing the

relationship when the target is positioned before or behind the cone. A better visualization

6-6

technique in this case is to use cone "cross sections." AMVS optionally displays the fuze cones

as two-dimensional cross sections patterned after text book and manual drawings. Rendering the

cone as a cross-section allows the user to better determine how far the target is from the cone at a

specific point in time.

6.2.4.4 Alternative Warhead Fragmentation Visualization

AMES displays warhead fragmentation trajectories as lines emanating from the warhead

origin point [Moritz96:4-17]. The sponsors expressed disinterest in this approach. Therefore,

AMVS implements a preferred visualization technique involving an expanding ring or torus

representing a mass of fragmentation emanating from the missile at a specific point in time. The

size of the ring is modified accordingly during animation.

6.2.4.5 Improved Target Damage Coloring Scheme

Component damage produced by OPEC is represented by a scalar value ranging from 0.0

to 1.0, with 1.0 representing complete damage. AMES visualizes this target component damage

using a coloring index scheme in 1/10 increments with one color arbitrarily assigned to each of

the ten increments, thereby loosing some information. AMVS uses a coloring technique which

does not loose information and more logically conveys damage amounts (see Section 4.2.5).

6.3 Recommendations for Future Work

AMVS significantly improves visualization of missile/target encounters. Graphically

displaying the results of computer based simulation systems makes these systems more valuable

to the engineers. However, there is one drawback. The engineer must run the endgame on one

system, and view the results on another. For the case of viewing OPEC and VisSim results, this

requires transferring simulation results from a PC to the SGI before viewing them in AMVS. A

single application combining the modeling and simulation capability of OPEC, SHAZAM and

6-7

VisSim with the visualization and animation capability found in AMVS would be a valuable step

in improving the engineer's efficiency and realizing the objective of providing a fully capable

visual environment for missile fuze engineering.

6.4 Conclusion

My research results in the discovery and implementation of improved techniques for

visualizing and animating missile/target encounters. For the first time, engineers are provided an

interactive three-dimensional graphical display of the fragmentation fly-out skewing

phenomenon. Visualizing this phenomenon allows engineers to understand its negative effects

against air-intercept missile performance, leading them further towards the development of fuzing

and warhead components that overcome this problem. Furthermore, engineers are provided a full

animation of the endgame, from target detection to fragmentation/target interception. In addition,

the engineer is given complete temporal and spatial control over the animation through an

improved animation control interface and viewpoint feedback and control. Visualization

techniques such as shadow projections and cone cross-sections enhance the animation by

providing the engineer more information about complex spatial relationships during the endgame.

This results in an environment which allows the engineer the ability to enter into, control, and

freely witness an endgame in ways previously not possible. Furthermore, engineers are provided

a simple to use graphical application for creating endgame scenarios and experimenting with

fixed fuze-cone attributes. Finally, during my thesis efforts, I have extended my research to

include three-dimensional visualization and animation of full fly-out simulations, where

previously only static two-dimensional display of these results where available to the engineer.

Displaying and animating the fly-out simulation results allows the engineer complete

comprehension of simulation results, thereby increasing the value of the system producing them,

and enhancing the engineers efforts in developing air-intercept missiles.

6-8

Bibliography

[Adams88] Adams, Lee. High-Perforamance Graphics in C. Summit PA: Windcrest
Books. 1988.

[Ames97] Ames, Andrea L. et al. VRML 2.0 Sourcebook. New York: John Wiley &
Sons, Inc. 1997.

[Arnold96] Arnold, Ken and Gosling, James. The Java Programming Language.
Menlo Park, CA: Addison Welsey Publishing Company. 1996.

[Booch91] Booch, Grady. Object Oriented Design with Application.
Benjamin/Cummings Publishing Company Inc. 1991.

[Card86] Card, Stuart K. and Moran, Thomas P. "User Technology: From Pointing
to Pondering," Association for Computer Machinery. 1986.

[Coad93] Coad, Peter and Nicola, Jill. Object Oriented Programming. Yourdon
Press. 1993.

[Coffield86] Coffield, Patrick C. et al. User Manual for the Air-to-Air Effectiveness
Program SHAZAM(U). Eglin AFB, FL, Defense Technical Information
Center, ADB-104959L. 1986.

[Cooper84] Cooper, C.N. and Shepard, R. N. 'Turning something over in the mind".
Scientific America, 251(6): 106-114. 1984.

[Cramer85] Cramer, Rüssel E. and Hilbrand, Roy. FASTGEN 3 Target Description
Computer Program. Washington D.C., Defense Technical Information
Center, AD-B103-850. 1985.

[Cunard] Cunard, Donald A. Programmable Integrated Ordnance Suite (PIOS).
WL/MNMF, Eglin AFB FL. Briefing slides. Unpublished.

[Cnnard97] Cunard, Donald A. Proximity Fuze Team Leader, USAF Wright
Laboratory. Armament Directorate. Fuzes Branch (WL/MNMF).
Personal Interview. 19 June 1997.

[Ege92] Ege, Raimund K. Programming in an Object Oriented Environment. San
Diego, CA: Academic Press Inc. 1992.

[Foley92] Folye, James D. et al. Computer Graphics. Menlo Park, CA: Addison-
Wesley Publishing Company. 1992

[Fowler97] Fowler, Martin. Analysis Patterns, Reusable Object Models. Menlo Park,
CA: Addison-Wesly. 1997.

[Gamma95] Gamma, Erich, et al. Designing Patterns: Elements of Reusable Object-

BIB-1

Oriented Systems. Menlo Park, CA: Addison-Wesly. 1995.

[Goldman91]

[Gottisdiner95]

[Grotch83]

[Holub95]

[IRIS95]

[Kleiman96]

[Kobza74]

[Heller92]

[Heam97]

[Hemdon92]

[PMC]

[Mack87]

[Marcus93]

[McCardle97]

[McGown]

Goldman, Ronald N. "More Matrices and Transformations: Shear and
Pseudo-Perspective". Graphics Gems II. San Diego, CA: Academic Press
Inc. 1991.

Gottisdiener, Ellen. "RAD Realities: Beyond the Hype To How RAD
Really Works". Application Development Trends. Vol 2, No 8. August
1995. pp. 28-38.

Grotch, Stanley L. "Three-dimensional and stereoscopic graphics for
scientific data display and analysis". IEEE Computer Graphics and
Applications, pp. 31-43. November 1983.

Holub, Allen I. Enough Rope to Shoot Yourself in the Foot. New York:
McGraw-Hill. 1995.

IRIS Performer Programmer's Guide. Silicon Graphics, Inc. 1995.

Kleiman, Steve, et al. Programming with Threads. New Jersy: Prentice
Hall. 1996.

Kobza, Norm, et al. Air-to-Air Missile Fuze Sensor. Eglin AFB, FL.
Defense Technical Information Center, AFATL-TR-74-197. 1974.

Heller, Dan. Motif Programming Manual. O'Reilly & Associates, Inc.
1992.

Hearn, Donald and Baker, M. Pauline. Computer Graphics, C Version.
New Jersey: Prentice Hall. 1997.

Herndon, Kenneth P. et al. "Interactive Shadows". Monterey, CA, ACM
UIST'92. 1992.

PMC Inc. Ordnance Package Evaluation Code User's Manual. Socorro,
NM. Unpublished.

Mack, Rodney E. A Time-To-Go Algorithm for Optimal Two-Dimensional
Target Intercept. Masters Thesis, University of Texas at Austin.
December 1987.

Marcus, Aaron; Letz, Grant; and Heidrich, Wolfgang. "Graphic Design
for User Interfaces," ACM SIGGRAPH Course Notes 24,1993.

McCardle, Kevin. Branch Chief, Weapons Effects Engineer. USAF
Wright Laboratory. Development Planning Directorate, Weapons Effects
Division (ASC/XRWA). Personal Interview. 18 June 1997.

McGown, Douglas. Aerial Target Lethality Analysis Using SHAZAM.
ASC/XRWA, Eglin AFB FL. Briefing slides. Unpublished.

BIB-2

[McGown87]

[McGown97]

[Moritz96]

[Nielson93]

[Nye92]

[0'Brien96]

[OIAG94]

[ParaSoft96]

[Pohl97]

[Rogers90]

[Rumbaugh91]

[Schroeder92]

[Schroeder96]

[Sessions92]

[Shirley93]

McGown, Douglas. A Computer Program for the Graphical Illustration
of a Missile and Target Encounter (GIMATE) User Manual. Defense
Technical Information Center, ADB-110-553L. 1987.

McGown, Douglas. Weapons Effects Engineer, USAF Wright
Laboratory. Development Planning Directorate, Weapons Effects
Division (ASC/XRWA). Personal Interview. 19 June 1997.

Mortiz, Joseph E. Grahpical Display of a Missile Endgame Scenario.
Masters Thesis, AFTT/GCS/ENG/96D-20, Air Force Institute of
Technology, Wright-Patterson AFB, OH. 1996.

Neilson, Jakob. Usability Engineering. London: Academic Press Inc.
1993.

Nye, Adrian and O'Reilly, Tim. X Toolkit Intrinsics Programming
Manual. Sebastopol CA: O'Reilly & Associates, Inc. 1992.

O'Brien, Larry. "The RAD Stuff'. Software Development. Vol 4. No 4.
April 1996. pp. 27-33.

Open Inventor Architecture Group, Open Inventor C++ Reference
Manual. Menlo Park, CA: Addison Wesley Publishing Company. 1994.

Unknown, Insure++ User's Guide, Version 3.0.1, ParaSoft Corporation.
1996.

Pohl, Ira, Object Oriented Programming using C++, Menlo Park, CA:
Addison-Wesley. 1997.

Rogers, David F. and Adams, J. Alan. Mathematical Elements for
Computer Graphics, 2nd Edition. New York: McGraw-Hill Publishing
Company. 1990.

Rumbaugh, James, et al. Object Oriented Modeling and Design. New
Jersey, Prentice-Hall Inc. 1991.

Schroeder, William J. et al. "Decimation of Triangle Meshes".
SIGGRAPH '92 Conference Proceedings, pp. 65-68. New York: ACM
Press. 1992.

Schroeder, William J. et al. The Visualization Toolkit. New Jersey:
Prentice Hall PTR. 1996.

Sessions, Roger, Class Construction in C and C++: Object-Oriented
Programming Fundamentals., Prentice Hall. 1992.

Shirly, William K. A Guide to FASTGEN Target Geometric Modeling.
Fort Walton Beach: Defense Technical Information Center, ADA-273-
171,1993.

BIB-3

[Starfield90]

[Stroustrup91]

[SURVICE92]

[Tufte87]

[Tufte90]

[Tufte97]

[Wanger92]

[Watt93]

[Wernecke94]

[Woo97]

Starfield, Anthony M. et al. How to Model It, Problem Solving for the
ComputerAge. New York: McGraw-Hill, Inc. 1990.

Stroustrup, Bjarne. The C++ Programming Language, Second Edition.
Menlo Park, CA: Addison-Wesley. 1991.

The SURVICE Engineering Company. FASTGEN Ivaview User's
Manual. Aberdeen, Maryland, Unpublished. 1992.

Tufte, Edwared R. The Visual Display of Quantitative Information.
Cheshire CT: Graphics Press. 1987.

Tufte, Edward R. Envisioning Information Cheshire CT: Graphics Press.
1990.

Tufte, Edward R. Visual Explanations, Cheshire CT: Graphics Press.
1997.

Wanger, Leonard R. et al. "Perceiving spatial relationships in computer
generated images". IEEE Computer Graphics and Applications. May
1992.

Watt, Alan. 3D Computer Graphics. Menlo Park, CA: Addison Wesley.
1993.

Wernecke, Josie. The Inventor Mentor. Menlo Park, CA: Addison
Wesley Publishing Company. 1994.

Woo, Mason. Neider, Jackie. Davis, Tom. OpenGL Programming
Guide, Second Edition. Menlo Park, CA: Addison Wesley. 1997.

BIB-4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions searchina existina data sources
Bathering and rnamta.mng.the data needed, and completing and reviewing the collection of information. SendComments regardingthis"burden°S«imate or my She? asnlct of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operatic-™ and Reports 215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork ReductionProjec™ 704-018^Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1997
4. TITLE AND SUBTITLE

Visualization and Animation of a Missile/Target Encounter

3. REPORT TYPE AND DATES COVERED

Master's Thesis

6. AUTHOR(S)

Jeffrey T. Bush, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Thechnology
2750 P Street
WPAFB, OH 45433-7126

9- SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
WL/MNMF
Don Cunard
101 West Eglin Blvd, Suite 219
Eglin AFB, FL 32542-6810

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/97D-05

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ~ "

Existing missile/target encounter modeling and simulation systems focus on improving probability of kill models. Little
research has been done to visualize these encounters. These systems can be made more useful to the engineers by
incorporating current computer graphics technology for visualizing and animating the encounter. Our research has been to
develop a graphical simulation package for visualizing both endgame and full fly-out encounters. Endgame visualization
includes showing the interaction of a missile, its fuze cone proximity sensors, and its target during the final fraction of a
second of the missile/target encounter. Additionally, this system displays dynamic effects such as the warhead fragmentation
pattern and the specific skewing of the fragment scattering due to missile yaw at the point of detonation. Fly-out
visualization, on the other hand, involves full animation of a missile from launch to target. Animating the results of VisSim
fly-out simulations provides the engineer a more efficient means of analyzing his data. This research also involves
investigating fly-out animation via the World Wide Web.

14. SUBJECT TERMS ~ —

Computer graphics, modeling and simulation, missile endgame simulation, data visualization

17. SECURITY CLASSIFICATION
OF REPORT

 Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

114
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard h-orm 298 (Kiev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Visualization and Animation of a Missile/Target Encounter
	Recommended Citation

	/tardir/mig/a336994.tiff

