Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1997

An Incompleteness Handling Methodology for Validation of
Bayesian Knowledge Bases

David J. Bawcom

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Bawcom, David J., "An Incompleteness Handling Methodology for Validation of Bayesian Knowledge
Bases" (1997). Theses and Dissertations. 5574.

https://scholar.afit.edu/etd/5574

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5574?utm_source=scholar.afit.edu%2Fetd%2F5574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DIBTHINUTICE STATEMENT X

. Approvea 1z purac reieasal
i L.
imrem, - Digtmbuncs Unimited

19980210 062

An Incompleteness Handling Methodology
for Validation of

Bayesian Knowledge Bases

THESIS
David J. Bawcom
First Lieutenant

AFIT/GCS/ENG/97D-02

Dr1e gy,
DEPARTMENT OF THE AIR FORCE ¥ ticciuzgy o

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GCS/ENG/97D-02

An Incompleteness Handling Methodology
for Validation of

Bayesian Knowledge Bases

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

David J. Bawcom, B.S.

First Lieutenant

December, 1997

Approved for public release; distribution unlimited

AFIT/GCS/ENG/97D-02

An Incompleteness Handling Methodology
for Validation of

Bayesian Knowledge Bases

David J. Bawcom, B.S.

First Lieutenant

Approved:

Nl 6 It 16 oy AF

Dr. Sheila B. Banks Date
Thesis Advisor

&W ,L:\% 1§ Mov? 7

Dr. EQene Santos Jr. Date

Committee Member

S W /8 o 77
Dr. Hex&y Potoczny Date

Committee Member

Acknowledgements

Many thanks go out to the people that made this research possible. Thanks to my com-
mittee members: Maj Sheila Banks, Dr. Eugene Santos, and Dr. Henry Potoczny for their
insights and assistance throughout this work.

A special thanks to Capt Scott Brown, who gave much of his valuable time assisting
and discussing this research with me. Without his help I would still be scratching my head
trying to figure out where to start with all that PESKI code. Thanks Scott!

Thanks and best wishes also go out to all of my fellow GCS/GCE students: partic-

ularly the basketball bunch whom helped relieve my stress level on a weekly basis.

Last, but certainly not least, thanks to my family: Shelley, Braden, Bryce, and Kai.
Your understanding and love helped make this possible and made this degree even more

meaningful.

- David J. Bawcom

iii

Table of Contents

Acknowledgements i e e e e

List of Figures o v v v ittt it i et i e e

Abstract

IL

III.

..

Tntroduction . & v v v e

Problem Background i
2.1 Verification & Validation Testing
2.2 Methods of Verification & Validation.

2.3 V & V of knowledge based systems versus conventional software

2.4 Knowledge Acquisition 000
2.5 Knowledge Representation
2.6 The Bayesian Knowledge Base representation
2.7 Knowledge Base Errors
Methodology v v v v v i it e e e
3.1 PESKI Validation ovovvvvnennnnennns
311 TestCases . . v v v v v v v v v v vt e it

3.1.2 Direct Dependency Regions

313 BVAL i e e

3.2 Graphical Incompleteness Handling
3.21 Methodology 000

33 SUMMAIY . . v v v e e e e e e e e e e e
Graphical Incompleteness Toolo
41 AddModettt e
42 Tmsert Mode. v i it it i e

iv

Page

iii

vi

vii

2-1
2-1
2-3
2-4
2-5
2-6
2-7
2-9

3-1

3-2
3-3

3-6
3-7
3-11

4-1
4-5
4-13

Page

V. Results v v v i ittt it ettt ettt e e 5-1
51 AddMode-Caseltuiueennonn 5-1

52 AddMode-Case2t nnnenon 5-5

53 Imsert Mode. v i i i i i vt i e 5-9

54 Functionmality v 5-9

VI ConclusBionS « « v v v v v v e e e et et e e e e e 6-1
VIL Recommendations for Future Research 7-1
7.1 Graphical Incompleteness Tool enhancement 7-1

7.2 BKBopatternanalysis, 7-1

7.3 Toolutilization vt 7-2

7.4 Knowledge Acquisition Enhancements 7-2

7.5 BKB representation enhancement, 7-2
Bibliography ¢ o v it i e e e e BIB-1
Appendix A. PESKI . . . ittt e ittt i e e e e e A1
Appendix B. BKB Incompleteness Relative to Bayesian Networks B-1
V£ 7 U VITA-1

List of Figures

Figure Page
2.1. Example BKB..0 ittt i it i 2-8
3.1. Test Case FIOW. . . . v o v v v v vt it e e i et e e e e e v e 3-4
3.2, Direct Dependency Region.o v i 3-5
4.1. Direct Dependency Regions. 4-2
4.2. Overlapping Direct Dependency Regions. 4-3
4.3. Extended I-nodeinaddmode. oo oo 4-6
4.4. Targeting S-node in Addmode. 4-7
4.5. Resulting BKB.00ttt i vt i i i e 4-8
4.6. Extending I'node in Add mode - Case 2. 4-10
4.7. Targeting S-node in Add mode - Case 2. 4-11
4.8. Resulting BKB.ottt ittt ey 4-12
4.9. Extending I'node in Insert mode. 4-14
4.10. Targeting S-node in Insert mode. - 4-15
411, ResultingBKB.t 4-16
5.1. AddMode Case 1. v v v vt it vttt e s et e 5-2
5.2. Add Mode Case 1 - Extended I-node and Targeted S-node. 5-3
5.3. Add Mode Case 1 - Resulting BKB. 5-4
5.4. AddMode Case 2. v v v v i it i e e 5-6
5.5. Add Mode Case 2 - Extended I-node and Targeted S-node. 5-7
5.6. Add Mode Case 2 - Resulting BKB. 5-8
5.7. Insert Mode v v v it i ittt e e e 5-10
5.8. Insert Mode - Extended I-node and Targeted S-mode. 5-11
5.9. Insert Mode - Resulting BKB. 5-12
Al The PESKI architecture.o v v v vt v v A-1

vi

AFIT/GCS/ENG/97D-02

Abstract

The PESKI (Probabilities, Expert Systems, Knowledge, and Inference) system at-
tempts to address some of the problems in expert system design through the use of the
Bayesian Knowledge Base (BKB) representation. Knowledge gathered from a domain ex-
pert is placed into this framework and inferencing is performed over it. However, by the
nature of BKBs, not all knowledge is incorporated, i.e. the representation need not be
a complete representation of all combinations and possibilities of the knowledge, as this
would be impractical in many real-world systems. Therefore, inherent in such a system
is the problem of incomplete knowledge, or spaces within the knowledge base where areas
of lacking knowledge preclude or hinder arrival at a solution. Some of this knowledge is
intentionally omitted because its not needed for inferencing, while other knowledge is er-
roneously omitted but necessary for valid results. Intentional omission, a strength of the
BKB representation, allows for capturing only the relevant portions of knowledge critical
to modeling an expert’s knowledge within a domain. This research proposes a method
for handling the latter form of incompleteness administered through a graphical interface.
The incompleteness is then able to be detected and corrected by the knowledge engineer

in an intuitive fashion.

vii

An Incompleteness Handling Methodology
for Validation of

Bayesian Knowledge Bases

1. Introduction

Knowledge based systems, also known as expert systems, are a growing area in the
field of artificial intelligence. These systems exist in many different types of applications
and their uses include reasoning and decision making capabilities. The knowledge contained
in these types of systems often involve difficult domains in which few experts exist. By
providing a knowledge based system with this type of rare intelligence, the knowledge is
able to be used more often and the human origin is allowed to concentrate on more complex

problems.

The first knowledge based system can be traced back to the mid 1960’s. Researchers
at Stanford University decided to try encoding the heuristic knowledge of an expert chemist
into a system later named DENDRAL [13]. This knowledge was used to elucidate the
structure of complex molecules from mass spectrograms and often outperformed human
experts. The project was a success, and for the first time highlighted the fact that an
intelligent computer program could be developed to emphasize what the program knew
about a problem rather than on some clever search algorithm [7]. Other systems soon
followed in other domains: MYCIN [34] diagnosed blood disorders in the medical field,
HEARSAY [8] was created for spoken language understanding, PROSPECTOR [6] in the
geology domain, and XCON [17] in manufacturing. These systems proved that constrained
real-world problems using specific heuristic knowledge could be solved through applied
knowledge representation and reasoning techniques. Knowledge based systems continue to
flourish even today. This availability is fueled by advancing computer technology and an
increasing availability of sophisticated development environments [19]. The predominant
role of expert systems has been in the diagnosis arena, due mostly to the fact that it is the

same role that experts most often play [7].

1-1

Developing these knowledge based systems is far from trivial. There are many facets
in the construction of a complete knowledge based system. First, in the knowledge acqui-
sition phase of a system, knowledge engineers must thoroughly extract knowledge from an
expert. Methods of extracting this knowledge are numerous. A representation scheme for
this knowledge must then be chosen. The knowledge engineer must carefully build this
knowledge representation into an expert system for which it can be inferenced over. There
are many opportunities for inputting incorrect, incomplete, or inconcise information while
building a new system. Often many modifications to the knowledge base are necessary in
existing systems as well, which can often adversely affect other areas unintentionally. For
these reasons, and others which will be discussed in the following chapter, verification and
validation (V & V) of these knowledge based systems is an increasingly important part of

today’s sophisticated knowledge based systems.

A great amount of research has been performed in the area of V & V over the past
few years. However, with the large number of representations, inferencing techniques, and
knowledge acquisition techniques, there is no common consensus on the best method of V
& V. This research will center on one particular representation scheme known as Bayesian
Knowledge Bases (BKBs). This BKB representation scheme is part of an overall expert
system shell known as Probabilities, Expert System, Knowledge, and Inference! (PESKI),

which is an integrated framework for expert system development [28].

This research focuses on developing a methodology to correct one problematic area
of V & V, namely unintentional incompleteness that may be present in the knowledge base.
The results are currently integrated into the PESKI system. The incompleteness is recog-
nized in the validation phase, and a tool for correcting this lack of knowledge is introduced.
Test cases are the instrument used for validating BKBs in PESKI. These test cases are
submitted to the system and its results are compared to expected results. Incompleteness
occurs when the inferencing cannot reach an expected solution as defined by a test case.
This incompleteness can come from several different sources and are investigated in the

following chapter. After identifying incompleteness does exist in the BKB, the knowledge

1See Appendix A for further information about PESKIL

1-2

engineer can implement within PESKI the existing data mining utility? for correction as
well as the graphical incompleteness tool developed within this research. The graphical
incompleteness tool assists the knowledge engineer in locating the area of incompleteness
and then extracts the missing information from him/her for insertion into the knowledge

base.

In chapter II, we provide a thorough discussion of the problem background. Chapter
111 discusses the methodology to identify and repair BKB incompleteness developed within
this research. Chapter IV introduces the tool built within this methodology framework.
Specific test-case examples and results are explored in Chapter V. Chapter VI discusses
conclusions drawn from this research, while recommendations for further research are of-

fered in Chapter VII.

2Information about the data mining utility can be found in Stein [37].

1-3

II. Problem Background

The difficulties in the development of knowledge based systems, particularly with knowl-
edge representation and knowledge acquisition, often leads to errors in several forms. One
of these types of errors is incompleteness. This research stems from a need to handle in-
completeness during the validation stage of development. This chapter provides some of
the necessary background material for understanding the need for this type of validation

and error handling.

2.1 Verification & Validation Testing

As expert systems become more and more common as well as more critical in their
application domains (e.g. medicine, air traffic control), their success will hinge upon their
performance and the validity of their results. This performance will depend upon, among
other things, thorough verification and validation (V & V) and, more specifically, the
techniques used in performing this V & V. A knowledge based system is built for its
“intelligence.” If this “intelligence” is filled with mistakes leading to erroneous problem
solving, or incompleteness leading to a shortfall of reasoning capability, their credibility,
and the credibility of expert systems in general will decrease. Much work has been done
in the last few years to address some of these issues; however, at this time there seems to

be no agreed upon methodology for performing knowledge base V & V.

While the main objectives of V & V are closely knitted together, it is important to
understand the distinct differences between them. Verification is best defined as making
sure the system is built correctly. Critical to this step is ensuring all information deemed
necessary is included and that this information is interpreted and applied correctly by the
system being inspected. If specifications exist for a particular system, verification will
check for compliance with these specifications. It also oversees the correct software syntax

from which it was built [1]. Verification is often referred to as clear-box testing.

Validation, on the other hand, is used to ensure the output of the system is correct.
It is also used to check the system developed is what the users requested. It must assume

the knowledge base was built satisfactorily. Typically, expert system validation consists

of running a sequence of test cases through the system and comparing system results
against known results or expert opinions [22]. This is a time-consuming process and never
guarantees finding all errors, especially in larger systems. O’Keefe et al. stated “Validation
can be considered the cornerstone of evaluation (of an expert system), since highly efficient
implementations of invalid systems are useless” [22]. Validation is often referred to as black-
box testing. Concern is placed not upon what is inside the system, but what the results
are coming out of the system. Despite the importance of validation, the majority of V &
V literature is solely concerned with verification, specifically automatic rule-based error
checking. This aspect of V & V has now become reasonably mature [27], and many such
automated tools exist [20, 21, 26, 36, 18, 25]. This automation is often built into the system
so that verification is continually addressed throughout knowledge base construction to

ensure a quality final product.

Testing, including validation, is best done throughout the entire development of the
knowledge base. Incremental testibng can aid in finding inaccuracies or incompleteness early
in the development of the system rather than later when corrections can be much more
difficult to detect, locate, and correct. In determining the overall validity of a system, it
is often beneficial to determine how well human experts do in the problem area and to
create reasonable expectations of the systems performance [15]. Typically, expert systems
and their knowledge bases’ performance can change drastically from initial release to later
stages of use. Some systems can be field tested and validated in its early use without harm.
In critical applications where lives may be at risk, field testing is not always possible!. The
expert whose knowledge was modeled should maintain involvement throughout develop-
ment of the system whenever possible. This can often assist in identifying errors early on

in the development cycle that may not have been detected until later stages of validation.

Validating after modifications or enhancements have been implemented is just as
important as earlier testing. Testing needs to ensure that the original system was not
degraded as well as that the modifications made were correctly implemented. Comparison
of previous test case results and their performance after the modifications is an effectjve

way of testing the updated system remains validated in areas both inside and outside of

! An exception exists in some cases when the system can be ran in conjunction with a human expert.

2-2

the modified areas. This type of testing can be particularly important in probabilistic

representations, since chains of inference can be unintentionally altered.

2.2 Methods of Verification & Validation

We have discussed the importance of V & V testing, and when this testing is appro-
priate. Let’s now investigate how this testing is done. Brute force testing of all possible
cases is impossible in systems with any size. Understanding the ways in which the knowl-
edge base will be used by a problem solver can help determine a set of test cases to see
whether important features of the system’s problem solving behavior are being exercised.
In some systems a false alarm is not as bad as missing an alarm, while in others the inverse
is true. For example, in an air traffic control system a missed alarm could result in a catas-
trophe, where in some other type of preventive system a false alarm could mean a great
deal of time and/or money to fix a problem that actually never existed. Either of these
occurrences could equally result in abandonment of the system. In testing a system it is
also important to verify that the system used the appropriate line of reasoning in deriving
its conclusion. Explanations describing how and why the system arrived at its solution can
be extremely helpful. Being able to investigate intermediate rules and constraints used for
a result can often lead to errors that would possibly have never been detected in normal

testing.

Methods of validation testing are numerous. Using a group of experts for a face
validation is common. This group of experts together assess the validity of the performance
of the system using an agreed upon evaluation range. A group of six experts validated
R1/Xcon, an early expert system, reviewing its performance on 50 orders [22]. Predictive
validation, or using historic test cases with known results and measures of human expert
performance, is also frequently used. The choice of test cases must be handled carefully.
The test cases should extensively test the knowledge base. The number of test cases may
not be as important as the coverage of the test cases [22]. Test cases that were used
throughout development of the system are obviously not good test cases for validation

purposes. The system will certainly have been altered to handle these developmental cases.

Test cases should include obvious conditions, subtle conditions, boundary conditions, and

even meaningless combinations of valid and invalid data.

Turing tests are also an effective validation technique. Turing tests solely examine
human performance, without knowledge of the system being tested. After acquiring enough
data, the examination results can be used to validate the performance of the system. Such
tests have been successfully used on a number of early knowledge based systems including
MYCIN [10]. Sensitivity analysis can be performed by changing input variable values
and parameters over some range of interest and observing the effects. This technique is
especially useful for dealing with uncertainty measures [10]. All of the V & V techniques
mentioned above have their strengths and weaknesses and can be used in combinations to

provide more thorough testing.

2.8 V & V of knowledge based systems versus conventional software

There are some difficulties in applying verification and validation to expert systems
that are not typically found in other software systems. An appropriate analogy: evaluating
an expert system is to evaluating conventional software as grading an essay examination
is to grading a true-false examination [11]. Tests of conventional software yield true-false
results, while tests of experts systems yield more complex results. There may be more

than one acceptable answer, or there may be more than one way of stating the answer.

As the above analogy implies, one of the biggest difference in conventional versus
knowledge based systems is the fact that knowledge contained in these systems can be
very subjective. The knowledge they contain are often the impressions and thoughts of a
human expert. Experts certainly do not always agree with one another. The same problem
can often be given to two experts in a particular field with two different but correct solutions
returned. Both experts will certainly state his/her solution is optimal. Another common
occurrence is that software requirements and specifications are nonexistent, imprecise, or
rapidly changing [11]. It is often argued it is more work to write the specifications than it is
to write the knowledge base directly. When systems are built by refinement and customer

interaction, requirements change rapidly.

As is typical in the emergence of newer technologies, lack of a design standard is
certainly found in knowledge based systems. There have been many different techniques
developed to represent knowledge based systems. Example representations include rule-
based systems, frames, objects, and semantic nets. Each representation has its unique
characteristics leading to different methods of V & V. Other related problems encountered
include dependency on other components (e.g. knowledge acquisition tools, inference en-

gines), unreliable human expert evaluations, and a lack of modularity.

2.4 Knowledge Acquisition

Key to the development of any knowledge based system is knowledge acquisition
(KA). KA can be defined as the process of extracting knowledge from a source, usually
in the form of a human expert or experts, into a computer system. Because of problems
in the areas of knowledge elicitation and knowledge representation, KA has often been
termed the “bottleneck” of knowledge based system development [22]. KA can be the
most difficult and critical component in the development of these systems. Knowledge
must be transformed many times over before being used in a knowledge based system.
First, a human must acquire expertise in some domain through experience and/or study.
Next, the knowledge engineer must somehow extract this knowledge from the expert and
express it in the internal representation of the knowledge base. This extraction process is
far from trivial. It is often done by means of interviewing the expert repeatedly for weeks
or even months, depending on the complexity of the system. Other ways of acquiring
this knowledge include observation, intuition, induction, and data mining. A thorough
investigation of a variety of knowledge elicitation techniques can be found in Cooke [4]. A
process called incremental development is often used during this stage of development [10].
A chunk of knowledge is elicited, implemented, and tested. Once this chunk is developed

and tested, another chunk is chosen and the process begins again.

Much work is currently being done in creating automated knowledge based systems.
These systems extract data while continually checking for inconsistencies and gaps. As
mentioned previously, there are commercially many available system shells for catching

common errors in syntax and rule misuse. These tools are invaluable as knowledge bases

2-5

increase in size. They are also often beneficial in providing some type of understandable
display of the knowledge as the system uses it. Completely automated KA systems, where
the domain expert interacts directly with a knowledge elicitation tool to build the knowl-
edge base, can assist in avoiding the pitfalls created when a knowledge engineer interviews
an expert. These pitfalls include insufficient understanding of the domain, misinterpreted
information, and the amount of interview time of both the knowledge engineer and ex-
pert(s). The MORE [12] system is an example of an automated KA system that helps
refine an existing knowledge base. SALT [16] is a KA tool that identifies weaknesses in its

knowledge base and tailors the KA process with the expert to strengthen these areas.

2.5 Knowledge Representation

A knowledge representation scheme suitable for the problem domain is critical to the
success of any KBS. The knowledge engineer must weigh the strengths and weaknesses
of different representations in an attempt to decide upon the most suitable one for the
particular problem domain. Rule-based systems are by far the most commonly used type
of representation. This choice is partly due to the natural expression of knowledge by
humans as condition/action relationships [10]. These rules are most often in the form of
If-Then expressions. Other representations include semantic nets, frames, objects, logic,

or a combination of these.

One major consideration when choosing a representation is its handling of uncer-
tainty. Uncertainty is an important and difficult problem in the development of knowledge
based systems and is found in most tasks requiring any kind of intelligent behavior. Hu-
mans constantly accomplish handling uncertainties, but getting a computer to deal with
uncertainty is much more difficult. There are many sources for uncertainty in systems.
Data is often missing, unreliable, ambiguous, conflicting, or even just a user’s best guess.
Given this, uncertainty schemes have been developed to represent these cases. These in-
stances are where mathematics, particularly probability, makes its mark on knowledge
based systems. Schemes dealing with uncertainty include Fuzzy logic [38], certainty fac-

tors [35], influence diagrams [32], Dempster-Shafer Theory of Evidence [5, 33], Bayesian

probabilities [24], and the representation used in this research - Bayesian Knowledge Bases

[30]. Each of these approaches have their unique advantages and disadvantages.

2.6 The Bayesian Knowledge Base representation

BKBs are a new, powerful, and highly flexible knowledge representation [30]. BKBs
are closely related to Bayesian networks [24] and in fact subsume them. BKBs, just as
Bayesian networks, are strongly based upon probability theory. This foundation allows
a framework for enabling inferencing over incomplete knowledge. In contrast to BKBs,
Bayesian networks demand for a complete specification of probability distributions can
make knowledge acquisition, knowledge base creation, and inferencing quite difficult and
cumbersome. When incompleteness exists in Bayesian networks, inferencing is not possi-
ble. Even when no incompleteness exists, the computation for computing belief networks
through conditional probabilities given some observed evidence is in fact NP-hard [3].
These limitations of Bayesian networks have been overcome through the use of BKBs.
BKBs avoid an over-defined system easing maintainability, verification, and validation.
They are more powerful from the fact that they are specifically designed for allowing in-
completeness [30]. However, when desired conclusions are unable to be drawn from the
knowledge base given the appropriate evidence, this incompleteness needs to be corrected

through incorporation into the knowledge base.

In the BKB representation, as in Bayesian networks, random variables (RVs) are
used to represent objects and/or events in the world. These RVs are then instantiated
with state values and are used in combination with one another to model the current
state of the world. Inferencing over this knowledge representation then involves computing
the joint probabilities of these RVs. This type of inferencing is known as belief revision.
Belief updating is also possible and involves finding the probability of any I-node based
upon some evidence. Belief revision is more useful in diagnostic domains where the exact

probability of any particular element is not as useful as the inclusion of an element [9].

BKBs are built through the combination of instantiation nodes, support nodes, and
arcs. An example BKB is shown in figure 2.1. Instantiation nodes, or I-nodes for short,

are represented by an oval. An I-node represents one instance of an RV. The arcs represent

2-7

the relationships between these I-nodes. Support nodes, or S-nodes, are represented by
smaller rectangles or circles. S-nodes are assigned probabilities that are associated with
one or more I-nodes. In figure 2.1, I-node Clouds = Heavy is supported by a single
S-node with a probability of 0.1500. I-node Sidewalk = Wet is supported by the single
I-node Clouds = Heavy through an S-node probability of 0.8500. In order for the S-node

to be active, the supporting I-node, in this case Clouds = Heavy, must be active.

y

Sidewalk =
Wet

Figure 2.1 Example BKB.

daVinci V2.1 aipha3

Some constraints of this BKB representation include the following:

e All I-nodes must have at least one parent S-node.

e All I-nodes are unique. Different instantiations of the same RV must have distinct

values.

e Support conditions for an RV instantiation must be mutually exclusive. Only one

S-node may be active at any one time in the support of an I-node.
e Cyclic knowledge is not allowed. A node is not allowed to support itself.

e Only one instance of an RV may be active at any one time. Being concerned with

only one particular state of the world at a time mandates this constraint.

e Probabilities from the same RV may not sum to values greater than 1. Probabilistic

reasoning demands do not allow this.

For a complete discussion of these constraints see Banks [2].

2.7 Knowledge Base Errors

Imperfect information is ubiquitous - almost all the information that we have about
the real world is not certain, complete, or precise [23]. It is critical for the knowledge
engineer to understand that these conditions exist during creation of a knowledge base.
Three concepts that are essential for V & V of BKBs are inconsistency, incompleteness, and
incorrectness [31]. Inconsistency in a BKB is primarily related to probabilistic values. For
example, conditional probabilities summing to greater than one. These types of errors are
often discovered and corrected within the knowledge acquisition process. When this form
of inconsistent knowledge is introduced into the PESKI system, the knowledge engineer
is immediately informed through a continuously updated status window. This process

assures that knowledge is consistent throughout the entire knowledge building process.

Incorrectness is probably the most difficult of errors to detect and correct, and is
certainly the least addressed area of validation. This form of error occurs when a query
to the system results in an incorrect solution. Finding the location of the error can be
difficult, and correcting it even harder. This aspect of validation will continue to be
addressed through a variety of approaches such as sensitivity analysis and neural network

reinforcement learning techniques [31, 29].

Incompleteness exists when a set of input values is passed to the system and fails to
arrive at a conclusion. This type of omission can be very difficult to detect and locate as

well. Knowledge base incompleteness can be both intentional, particularly in the case of

2-9

BKBs, or unintentional as in an oversight. Incompleteness can come from several different
sources. Human error is often the major source for this type of error. Experts often have
difficulties in conveying complete heuristic knowledge to the knowledge engineer. This lack
of information often leads to incompleteness in the knowledge base. Often information is
missing during development of the knowledge base and is left out for future modifications.
Other types of knowledge are yet to be discovered, particularly in some areas such as
medicine, where new types of drugs and medications are constantly under development.
For these and other reasons, the ability to handle incompleteness is critical in the validation
of these systems. This ability is even more critical in a representation like BKBs, in which
the ability to incorporate incompleteness is an advantage and a normally desired quality

of the representation.

Incompleteness can occur in several different ways:

e Missing links - Relationships between I-nodes are missing.
e Missing RVs
e Missing states

Each of these are addressed in this research and are further discussed in the following

chapter.

The origin? of incompleteness in a BKB is the direct dependency region? of an ev-
idence item from a test case. This direct dependency region must be modified through
the addition of a link or links to the corresponding answer item or it’s direct dependency
region in the BKB. This addition of a link must be done in a mannér that places the
answer item in the direct dependency region of the evidence. Only then is the incomplete-
ness dissipated. Without some type of automatic correction, the knowledge engineer must
be presented the information contained in the BKB in a manner suitable for the addi-
tion of this incompleteness. The methodology developed through this research graphically

presents the BKB in a manner suitable for a knowledge engineer to locate this area of

2Qrigin in the sense that this is where you will begin the search for the necessary location of the

incomplete link.
3Direct dependency regions are defined and discussed in detail in section 3.2.2.

2-10

incompleteness. The incompleteness link can then be added to the BKB for future infer-
encing. This link is added by the tool in a manner that forces maintaining the rules of the
BKB representation. The next chapter discusses further these ideas and the methodology
developed through this research.

2-11

III. Methodology

This chapter describes a methodology to handle incompleteness caused by missing links in
a Bayesian knowledge base (BKB). The incompleteness links are identified and located in
the BKB using test cases. As discussed in the previous chapter, test cases are a commonly
used method for validating knowledge bases. When test cases lack a direct dependency
connection (formally defined in section 3.2.2) from the evidence and answer items, the
knowledge engineer previously had only the option to begin the data mining utility, or
return to the normal knowledge acquisition mode to correct the incompleteness. This
chapter will introduce another method of handling incompleteness through a graphical
approach. This graphical presentation of the BKB gives the knowledge engineer a means
of locating and correcting the incompleteness found in the test case. Some other desired

traits of this methodology include the following:

e Maintain the structure of the previous information contained in the BKB. Correcting
the incompleteness while at the same time removing other necessary information con-
tained in the knowledge base is obviously an ineffective way of performing validation.
An assumption is made that information not addressed by the current test case in
the BKB is correct. Any structural changes the methodology permits are contained

in the evidence/answers direct dependency regions.

o Not allow the knowledge engineer to input information into the BKB that violates
the knowledge representation rules (e.g. circularity, mutual exclusion, etc) [2). The
ability to allow only solutions that do not violate BKB knowledge representation

constraints should be presented to the user.

e Inherent with any large knowledge base is the problem of finding where the incom-
pleteness exists in order to fix the problem. The tool should avoid presenting too
much information that overwhelms the knowledge engineer, particularly in larger

knowledge bases.

e Similar to the first goal, correcting one area of incompleteness will not undo a previ-

ously made correction.

31

8.1 PESKI Validation

This section defines some important terms, and discusses the methodology used to

handle validation in the PESKI system.

8.1.1 Test Cases. Test-cases are formally defined in the following definition from

Lyle [14].

Definition 1 Let A be the set of all random variable instances specific to the test-case as
answers, and A # 0.

Let E be the set of all random variable instances specific to the test-case as evidence, and
E #0.

Let random variable(A;) be the random variable of the ith element of A.

Let random variable(Ej) be the random variable of the jth element of E.

e For all elements A; in A, there does not exist an element A; in A, i # j, such that

the random variable(A;) = random variable(A;).

o For all elements E; in E, there does not exist an element Ej in E, i # j, such that

the random variable(E;) = random variable(E;).

o For all elements A; in A, there does not exist an element E; in E such that the

random variable(A;) = random variable(E;).

e For all elements E; in E, there does not ezist an element A; in A such that the

random variable(E,-). = random variable(A;).

As mentioned previously, test cases are the basis for validation in the PESKI system.
These test cases are submitted to the system and the results are compared to expected
results. The test cases are used to validate the BKB through a number of steps using the
PESKI system. Figure 3.1 depicts the flow of a test case through PESKI. The PESKI
system validation tools place some assumptions upon the supplied test cases. The test
cases used in knowledge base validation are constrained in that they are assumed correct
in their entirety. The knowledge engineer’s burden is to ensure that each test case is

completely valid. In addition, it is important to understand that each evidence item is

3-2

directly related to each answer item, and vice versa. If this is not so, the non-contributing
evidence or answer item should not be a part of the “valid” test case. Since all answers are
in each evidence item’s dependency region, the intersection of all the evidence dependency

regions should be non-empty and contain, at a minimum, all answer instances [14]

PESKI internal validity tests also ensure there are at least one evidence and one an-
swer item in the test case, and that the evidence/answer(s) are currently contained in the
knowledge base. Incompleteness existing from missing random variables and/or states in
the knowledge base must be handled through the regular knowledge acquisition process or
through data-mining information queries. The PESKI data mining and knowledge acqui-
sition tools allow the addition of the necessary random variables and their instantiations
to the BKB for future validation efforts. The verification and validation (V & V) user
interface only allows for RVs and states already existing in the currently loaded BKB for
selection as either an evidence or answer node. If the test case is invalid, resubmission of
a valid test case is required. If the test case is valid, it’s then checked to ensure enough
information is contained in the knowledge base so that inferencing can occur. This check

uses the concept of direct dependency regions which are described in the following section.

3.1.2 Direct Dependency Regions. Direct dependency regions are the key to val-
idation efforts in the PESKI environment and are formally defined below. RV instances
directly dependent upon one another are connected by a sequence of parent or child rela-
tionships. Therefore, I-node A is directly dependent upon I-node B if there is a sequence of
parent nodes, or a sequence of child nodes, between A and B that connect the two nodes.
Figure 3.2 shows the direct dependency region for the evidence item D = 1. Formally

from Lyle [14],

Definition 2 A random variable instance A is directly dependent on a random variable

instance B, if and only if there exists a sequence of n random variable instances

{A,X2,..., Xn_1, B}, where n is positive integer, and

3-3

START
Submit Test Case

Valid Test Case?

Resubmit
Valid
Test Case

Figure 3.1 Test Case Flow.

BVAL
Y
Direct
Dependency
Check
N
KA Graphical
Data Mining Incompletenes
Edit Supports Tool

Test case flow through the PESKI system

1. Each element S; in the sequence of random variable instances is an element of a

support condition of S;_1, for all i,2 < i < n,

or

2, Each element S; in the sequence of random wvariable instances is an element of a

support condition of Siy1, for all 4,1 <i<n-1.

After validating a test case, the next step is to check for direct dependency region

connections between the evidence and answer items. If the evidence and answer(s) are

found to be both contained in the same direct dependency region, in the case that no

incompleteness exists, the BKB is then passed to a tool for probabilistic validation. This

tool is further described in section 3.2.3.

If the direct dependency region check fails, incompleteness exists in the test case and

needs to be corrected in the knowledge base structure. The knowledge engineer then has

3-4

Figure 3.2 Direct Dependency Region. Region within dotted line is the direct
dependency region of item D = 1.

three options for correcting this incompleteness. The PESKI data mining tool can be used
if the knowledge engineer feels electronic information may be available to the tool that will
correct the BKB incompleteness. This information can be in the form of data files, text-
based web pages, on-line encyclopedias, and others. If the data mining process is unable
to solve the incompleteness, the graphical incompleteness tool built within this research
can be utilized. If the incompleteness requires complex modifications to the knowledge
base and data mining is not able to solve the problem, the normal knowledge acquisition
mode in PESKI should be used. Complex modifications can include the addition of missing
I-nodes and/or S-nodes, multiply connected incompleteness links passing through nodes
outside of the direct dependency regions of the test cases’ evidence and answer(s), the

correction of any incorrectness located, or any necessary deletions in the BKB.

3.1.3 BVAL. When either the identified incompleteness from the test case is
corrected or no test case incompleteness exists in the BKB, the BKB is passed to BVAL
for further validation testing [9]. BVAL is a tool used for validating probabilistic BKBs.

3-5

It incorporates validation through rule-based and neural network techniques to provide
some automatic correction of the probabilistic knowledge in the BKB. BVAL incorporates
upscaling and downscaling of the probabilities of S-nodes as necessary to ensure the test
case is valid in the BKB. A limitation of BVAL is its handling of incompleteness. When
BVAL encounters incompleteness, it will either make assumptions about the test case or
remove test case information (either evidence or answer items). This can result in invalid
test cases and incorrect conclusions by the system. This research identifies incompleteness
before BVAL is invoked, so that when BVAL is executed the incompleteness no longer

exists. Further details concerning BVAL can be found in Gleason [9].

3.2 Graphical Incompleteness Handling

Although consideration of a methodology to present possible solutions through a
textual interface was considered, the combinatorial explosion of possibilities as the size of
the BKB increa,sed' made this approach infeasible. Therefore, a graphical solution for the
incompleteness handling was pursued. A visual interactive approach allows the knowledge
engineer to examine the knowledge base for completeness as well as accuracy. The knowl-
edge engineer interacts with the system and actively influences the solution, thereby not
forcing the generation of possible solutions from which the user must select a preferred
choice. This type of correction also avoids any non-sensical modifications and/or assump-
tions that an automatic validation tool may make. The ability to view portions of the
knowledge base where problems are occurring can provide a great deal more information
than a text-based method would provide. Graphical depictions of the BKB were already
implemented in the PESKI system for use with other tools, namely the knowledge acqui-
sition phase. The incompleteness methodology extends the graphical presentation of the

BKB into a display for allowing incompleteness correction in an intuitive fashion.

Ideally, incompleteness would be handled through some type of automatic process
that would ensure correction. However, automatically performing this correction requires
some “sense” and awareness of the knowledge that is missing. If this “sensing” was pos-
sible, then the incompleteness should already have been corrected by the system and not

ever allowed to exist in the knowledge base. Previous work by Lyle [14] attempted this

3-6

automated form of correction. These manipulations involved examining the nearby rela-
tionships of the evidence and answer nodes and attempting to correct the incompleteness
discovered. Lyle states one limitation of this approach is indeed the idea of “choice.” With
any automated choice, there is the possibility that invalid information will result. Assump-
tions and modifications that were made during Lyle’s work proved to be invalid in other

domains.

The most reliable source for incomplete knowledge leads back to the expert or the
knowledge engineer. Data mining provides a mechanism for automatic incorporation of
knowledge into a knowledge base; however, this incorporation can only occur if the knowl-
edge is contained in the data that is to be mined. Certainly this electronic form of informa-
tion will not always be available, particularly when the knowledge base was created from
this information. Completely automatic changes may also be unwelcome to a knowledge
engineer who has been creating a knowledge base for what is often a very lengthy period of
time, without, at a minimum, the approval of these changes. For these reasons, the knowl-
edge engineer should be responsible for the handling or approval of any modifications of

the knowledge base.

3.2.1 Methodology. We have defined incompleteness in three ways.

e Missing links
e Missing RVs
e Missing states

As mentioned previously, incompleteness caused by missing RVs or states can be cor-
rected through data mining or through the normal knowledge acquisition modes of PESKI.
Of concern in the remainder of this research is unintentional incompleteness caused by miss-
ing links or relationships between I-nodes. After the test case direct dependency region
check has discovered this type of incompleteness, the methodology begins by presenting
the BKB in a graphical format that allows for the location of the incompleteness. This is
further aided by distinctly displaying the direct dependency regions of the evidence and

answer items from the incomplete test case in the BKB. The ability to traverse anywhere

3-7

in the BKB is also allowed to assist the knowledge engineer by allowing him/her to search
for pertinent information. The incompleteness link should be allowed irregardless of the
location of the nodes within the BKB, as long as the BKB representation constraints are
not violated. The addition of a link can cause constraints to be violated if care is not taken
to avoid these situations. Some links between nodes cannot be allowed at all, while others

must be specially handled.

This methodology contains two modes of incompleteness correction - an add mode
as well as an insert mode. These modes allow for correction of incompleteness in several
forms. The methodology embodied in these modes, as well as examples of their usage will

be discussed further.

After locating the source node(s) of incompleteness, the knowledge engineer is al-
lowed to select an extend! I-node for correction of the incompleteness. The extend I-node
must be either the evidence or answer node or a direct dependency descendant of either
the evidence or answer node. The location of the target S-node is dependent upon the cur-
rently active mode. In add mode, the target node must be a direct dependency ancestor of
the corresponding evidence or answer node. In insert mode, the target node may be any
node, either descendant or ancestor, in the direct dependency region of the corresponding
evidence or answer node. These restrictions ensure that the directed link will be placed
in the correct cause/effect direction and will also resolve the current incompleteness prob-
lem. Selection of the extend and target nodes in any other manner will not correct the

incompleteness due to the direct dependency relationships between the nodes.

After extending the I-node, these allowed target S-nodes are clearly identified to
the knowledge engineer. These allowed target S-nodes will guarantee the correction of
the incompleteness and avoid any BKB constraint violations. Reasons for a non-colored

S-node in each of the two separate modes follow:

In add mode:

IThe extend I-node can be considered as a causal node, while the targeted node is the effected node.
This terminology previously existed in the graphical knowledge acquisition mode of PESKI.

. The S-node is in the child segment of the target’s direct dependency region and would

not solve the incompleteness problem if targeted.

. The S-node is not in the direct dependency region of the current test cases evidence or
answer’s item (depending upon which was extended), and will not provide a solution

to the current incompleteness problem.

. The S-node is a parent of an I-node that is an instantiation of the same RV and cannot
be dependent upon one another due to Constraint 6 of the BKB representation rules

from Banks [2].

In insert mode:

. The S-node has a child I-node or parent I-node which is an instantiation of the same
random variable and cannot be connected to one another due to Constraint 6 from

Banks [2].

. The S-node is not in the direct dependency region of the current test cases evidence or
answer’s item (depending upon which was extended), and will not provide a solution

to the currently focused incompleteness problem.

8.9.1.1 Add Mode. The add mode allows for the addition of a link between

an extended I-node and a targeted S-node. The add mode never removes any links, and

therefore avoids creating any added incompleteness. This addition alone also ensures that

correcting one area of incompleteness does not invalidate any previously made corrections.

After the location of the needed incompleteness link has been found and the selection of

the extend I-node and target S-node have been selected, with the exception of one case,

the link may be simply added. If the selected target S-node has as a parent a different

instantiation of the same RV as the extended I-node, the link is not able to be simply added.

In this case, a new S-node must be created before the addition of any links. Probabilities

of any affected or added S-nodes must then be modified by the knowledge engineer. At

no time are probabilities modified automatically through this graphical incompleteness

methodology.

The following methodology is introduced for the addition of a link:

3-9

e If the targeted S-node has a parent with the same RV:

1. Create a new S-node.

9. Link the extend I-node and the target I-node through the new S-node with the

addition of links.

3. Link the remaining parents of the original targeted S-node, other than the com-

mon RV I-node, to this new S-node.

o Else,

1. add the new link from the extended I-node to the targeted S-node.

e The probability of any affected S-node, whether new or structurally modified, can

be adjusted through the interface menu.

3.2.1.2 Insert Mode. The insert mode allows for the insertion of a selected
I-node into the region containing a targeted S-node. The location of this target S-node
becomes a new location for the selected I-node, while maintaining any parent and child
relationships the selected I-node previously contained. The target S-node becomes a child
of the extended I-node. Again, probabilities of any affected S-nodes must then be modified
by the knowledge engineer. The following methodology is introduced for the insertion of

an I-node:

o Create a new S-node.

e If only a single S-node exists above the extended I-node with no further parents
above the S-node, delete this parent S-node. This is to prevent the mutual exclusion

conflict of Constraint 4 from Banks [2].

Delete the links, if any, from the targeted S-node to its parents.

Link the parents of the targeted S-node, if any, to the new S-node.

Link the new S-node to the extend I-node.

e Link the extend I-node to the target S-node.

3-10

e The probability of any affected S-nodes, whether new or structurally modified, can

be adjusted through the interface menu.

3.8 Summary

Summarizing this chapter, a high level methodology was introduced for PESKI vali-
dation. This methodology involves test case validation using the concept of direct depen-
dency regions to locate incompleteness in a BKB. The different forms of incompleteness and
how each of these may be addressed through the existing data mining utility and knowledge
acquisition modes of PESKI, as well as the graphical incompleteness handling methodology
introduced within this chapter, are discussed. This methodology uses a graphical represen-
tation of the BKB to assist the knowledge engineer in locating and correcting the area of
incompleteness. Two modes, an add mode and insert mode, are introduced for the addition
of this incompleteness link. The next chapter will introduce the graphical incompleteness

tool which embodies the methodology introduced in this chapter.

3-11

IV. Graphical Incompleteness Tool

This chapter introduces the tool developed through this research and based upon the
methodology introduced in the previous chapter. The incompleteness tool first begins by
presenting a graphical depiction of the BKB, which contains the currently focused evidence
and answer items, as well as a varying number of direct dependency related nodes. The
evidence and answer direct dependency regions are presented in unique colors from the
remainder of the BKB for easy identification (See figure 4.1). The evidence and answer
items themselves are also easily identified through the distinct rhombus shape of the I-node
itself. The evidence in this case is the node b = 1, while the answer is the node containing
f = 1. In this particular example, the entire BKB is displayed to the user. It is important
to note that the evidence and answer items may share areas in their direct dependency
regions; however, incompleteness may still exist. These shared areas of direct dependency
region are displayed in a unique color as well. An example of shared direct dependency

regions is shown in figure 4.2.

When the knowledge base is small enough (which is most likely rare), one can examine
all relationships in order to ensure completeness and accuracy. When the knowledge base
is large, care has to be taken that an overload of information does not occur. The number
of direct dependency region parent and child nodes, or levels! , first presented to the user
of the tool is dependent upon the size, particularly the width, of the first level of the direct
dependency region. In order to avoid an overload of information to the user, the tool will
present a number of levels that, at a maximum, will contain three levels up and down the
direct dependency region for both the evidence and answer nodes. The user has the ability,
as needed, to traverse up and down the direct dependency regions to locate any particular
nodes of interest or nodes necessary for correction of the incompleteness. This action is
accomplished by selecting a node in the current display region, which then displays any
parent or children nodes of the selected node, if not already displayed. These new nodes

will be displayed to the user in their appropriate shapes and colors.

1A level can be considered one generation of parents and children from the focused I-node, therefore
two levels would be two generations of both parents and children.

41

Figure 4.1 Direct Dependency Regions. The direct dependency region of the
evidence a = 1 is shown in orange, the answer f = 1 is shown in green.

Figure 4.2 Overlapping Direct Dependency Regions. The overlapping direct
dependency region of the evidence e = e and answer f = f is shown in blue.

4-3

The user also has the ability through the user interface to display any I-node whether
the item is contained in a direct dependency region or not. This “goto” feature allows for
locating other instantiations of RVs in the BKB that can sometimes be used to help more

quickly identify where missing links of incompleteness should exist.

The user, in order to correct the incompleteness, must select areas within the direct
dependency regions of the evidence and answer to be connected to one another. The
connections allowed by the tool maintain the allowable structure of the BKB representation
by not permitting any violations of established constraints. It’s important to realize test
cases can be presented with the evidence item(s) located anywhere in the BKB, even at
the bottom leaves of the BKB structure. The same can be stated for the answer item(s)
in a test case. The tool allows for the ability to handle the incompleteness correction in

either cause/effect direction.

It may be necessary to run the tool multiple times for any given test case, dependent
upon the number of evidence and answer items, as well as the quantity of incomplete-
ness present in the test case. This is partly because of the fact that fixing one link of
incompleteness may or may not fix all remaining incompleteness in a test case. The tool
presents one incomplete occurrence at a time, with the relevant evidence item and answer
item. Only after correcting the current incomplete occurrence, does the tool present any
remaining incompleteness occurrences that may still exist in the test case. Therefore, the
tool may execute a maximum number of times equal to the cardinality of the evidence

items times the cardinality of the answer items in the test case.

The user must first select an extend I-node as well as a target S-node for incorporation
of a new link into the BKB. As mentioned in the previous chapter, the selected I-node must
be the evidence or answer, or a child of either. This ensures the connection will be placed
in the proper direction. After selection of an extend I-node, the tool displays highlighted
S-nodes that may be selected for addition of a link while at the same time correcting
the incompleteness between the evidence and answer items. The allowable S-nodes are
displayed in red for identification purposes and are dependent upon which mode the user
is currently in. Figure 4.3 shows an extended I-node in add mode, in this case b=1,and

the selectable target S-nodes, which are displayed in red. At any time, the user is allowed

4-4

to change modes through the menu interface, which will unselect all I-nodes and reset any
colored S-nodes currently in the BKB. The following sections provide further information
and demonstrates the methods developed. Appendix B also discusses a measure of BKB
incompleteness and the graphical incompleteness corrections’ effects relative to a complete

Bayesian network.

4.1 Add Mode

The add mode allows for the addition of a link between an extended I-node and a
targeted S-node. The add mode does not remove any links, and therefore, does not create
any additional unintentional incompleteness. There is only an addition of information to
the BKB. This addition alone also ensures that correcting one area of incompleteness will
not invalidate a previously made correction. There are two separate cases that can occur

in this mode:

Casel: This case occurs when a simple addition of a link is required, and there are no
common RVs found between the extend I-node and the surrounding I-nodes of the target
S-node. Figures 4.3 through 4.5 demonstrate case 1 sequentially. In this test case, b=
1 was presented as evidence and f = 1 as the answer. The I-node b = 1 was selected as
the extend node. Notice the S-node above the I-node A = 2 is not allowed to be targeted
because it’s a different instantiation of the same RV and therefore may not be linked to
the extended I-node A = 1. The S-node with a value of 0.7500 is displayed in red as
an allowable target S-node. After targeting this S-node as is shown in figure 4'.4, and
next extending, the resulting BKB is displayed as in figure 4.5. The probabilities of any
affected S-nodes may now be adjusted through the interface menu. It can be seen that the
evidence and answer are now contained within the same direct dependency region. This

BKB can now be passed on to BVAL for probabilistic validation.

Figure 4.3 Extended I-node in add mode. Allowed target S-nodes are shown in
red.

4-6

Figure 4.4

-

Targeting S-node in Add mode. The S-node with value of 0.7500 is
targeted for incompleteness correction

4-7

Figure 45 Resulting BKB. Add mode - Case 1

Case2: This case occurs when an I-node is extended that targets an S-node that
has as a parent a different instantiation of the same RV. These nodes cannot be directly
linked to one another due to constraint 6 of the BKB representation from Banks [2]. When
this situation occurs, the tool must create a new S-node for extend purposes. Figure 4.6
through figure 4.7 demonstrates case 2 occurring sequentially. In this test case, a = 1
was presented as evidence and f = 1 as the answer. The I-node a = 1 was then selected
as the extend node. It can be seen that the I-node f = 1 has as a parent the I-node a
= 2. The S-node with a value of 0.7500 was highlighted in red as an allowable target
S-node. The S-node has also changed form from a rectangle to a circle. This is a signal
to the user that if this node is chosen as the target S-node, a new S-node will be created
when extended. This is shown in figure 4.6. After targeting the node as is shown in figure
4.7, and next extending, the resulting BKB is displayed as in figure 4.8. The probabilities
of the S-nodes, whether new or structurally modified in any way, can then be adjusted
through the interface menu. Probabilities of S-nodes are not automatically changed at any

time during the usage of the tool.

4-9

daVinci V2.1 alpha3

Figure 46 Extending I-node in Add mode - Case 2. The I-node a =1 is chosen
for extending.

4-10

0.5000 0.2200

daVinci V2.1 alpha3

Figure 47 Targeting S-node in Add mode - Case 2. The S-node with value of
0.7500 is targeted.

4-11

Figure 4.8 Resulting BKB. Add mode - Case 2

4-12

4.2 Insert Mode

The insert mode allows for the insertion of a selected I-node into the region containing
a targeted S-node. The location of the S-node selected becomes a new location of the
selected I-node, while at the same time keeping any parent and child connections the
selected I-node previously possessed. After selecting an extend I-node, the allowed S-
nodes are once again highlighted in red as shown in figure 4.9. This is quite similar to
the add mode, except it’s important to realize that both the parent S-nodes as well as the
child S-nodes are possible candidates for target selection now due to the insertion of the
extended node into the direct dependency region of the applicable answer/evidence item.
Unlike in add mode, the insertion can correct the incompleteness in either of these parent
or child regions. In this example, the test case presented b = 1 as evidence and f = 1 as
the answer. The I-node b = 1 was selected as the extend node. The S-node with a value
of 0.7500 is displayed in red as an allowable target S-node. After targeting this node as is
shown in figure 4.10, and next extending, the resulting BKB is displayed as in figure 4.11.

4-13

Figure 49 Extending I-node in Insert mode. The I-node b = 1 is chosen for
extending.

4-14

Figure 4.10 Targeting S-node in Insert mode. The S-node with a value of 0.7500
is targeted.

4-15

[mo] [am]

daVina V2." alphad

Figure 4.11 Resulting BKB. Insert mode

4-16

It’s important to note mutual exclusion can possibly occur from the changes made in
insert mode. Mutual exclusion occurs when the support conditions of an RV state are not
uniquely distinguishable from one another. Therefore only one of its supports are allowed
to be active at any one moment in time. When a mutual exclusion violation is present in
the BKB, the knowledge engineer is informed through the status window. This problem
can then be corrected in the PESKI knowledge acquisition tools or the data mining tool.
Mutual exclusion is allowed in this mode to give the knowledge engineer freedom to make

the needed changes, even if mutual exclusion occurs sometime during these changes.

4-17

V. Results

The previous chapter presented the graphical incompleteness tool used for resolving test
case incompleteness. This chapter presents some concrete examples of the incompleteness

corrections presented in Chapter 3.

5.1 Add Mode - Case 1
The following test case is presented to PESKI:

Evidence is: Sprinkler = On

Answers are: Sidewalk = Wet

The evidence and answer are not directly dependent upon one another due to incom-
pleteness in the BKB as shown in figure 5.1. In this case Sprinkler = On and Sidewalk
= Wet logically should be connected to one another. These I-nodes cannot be simply
linked to one another through an additional S-node due to the mutual exclusion restraint.
If Sprinkler = On was linked directly to Sidewalk = Wet, two I-nodes with their
respective S-nodes could be active at the same time. Therefore, the graphical incomplete-
ness tool ensures that the connection is linked to an already existing S-node. The I-node
Sprinkler = On is extended and the S-node with a value of 0.75 is targeted as shown
in figure 5.2. The resulting BKB is shown in figure 5.3. From these results, the evidence
and answer items are now contained within each others direct dependency regions, and the

incompleteness is resolved.

0.8500

daVinci V2.1 aipha3

Figure 51 Add Mode Case 1. Evidence: Sprinkler = On, Answer: Sidewalk = Wet

5-2

Figure 5.2 Add Mode Case 1 - Extended I-node and Targeted S-node.

5-3

daVinci V2.1 alpha3

Figure 5.3 Add Mode Case 1 - Resulting BKB.

5-4

5.2 Add Mode - Case 2
The following test case is presented to PESKI:

Evidence is: Sprinkler = Off
Rain = Heavy

Answers are: Sidewalk = Wet

The evidence and answer are not directly dependent upon one another due to in-
completeness in the BKB as shown in figure 5.4. In this case Sprinkler = Off and Rain
= Heavy are both evidence that can cause Sidewalk = Wet. The I-node Sprinkler
= OfF is unattached to the dependency region of Sidewalk = Wet. Currently, only the
combination of Sprinkler = On and Rain = Heavy is currently contained in the BKB.
The I-node Sprinkler = OfF is extended and the S-node with a value of 0.75 is targeted
as shown in figure 5.5. This S-node is circular in shape signifying that a new S-node will
be created. The new S-node contains the desired evidence as parents. The resulting BKB

is shown in figure 5.6.

0.1600 [orem0]

daVinci V2.1 aipha3

Figure 5.4 Add Mode Case 2 . Evidence: Sprinkler = Off, Rain = Heavy, Answer:
Sidewalk = Wet

5-6

Figure 5.5

o e

daVinci V2.1 alpha3

Add Mode Case 2 - Extended I-node and Targeted S-node.

5-7

daVinci V2.1 alpha3

Figure 5.6 Add Mode Case 2 - Resulting BKB.

5-8

5.9 Insert Mode

The following presents an example of when the insert mode is necessary for correction
of existing incompleteness. The following test case is used for the BKB shown in figure

5.7:

Evidence is: Rain = Heavy

Answers are: Sidewalk = Wet

When there are dark clouds in the sky, the probability of rain is often quite high.
In this case the RV Rain = Heavy has been accidentally omitted from the dependency
region of Sidewalk = Wet. It is intuitive that Rain = Heavy needs to be placed
between the RVs Clouds = Heavy and Sidewalk = Wet. The user, after changing to
insert mode, can then extend the I-node Rain = Heavy and target the S-node above
Sidewalk = Wet as in figure 5.8. After extending, the resulting BKB is shown in figure
5.9.

5.4 Functionality of the Graphical Incompleteness Methodology

With the understanding of the functionality of the graphical incompleteness tool, the
question arises whether or not this functionality allows for any addition of an incomplete-
ness link between two nodes direct dependency regions. The functionality of the add and
insert modes together have been used to recreate a highly connected BKB starting with
only non-connected I-nodes. All links in this BKB were removed so that only the required
single S-node existed above each of the I-nodes. The graphical incompleteness tool was
then able to recreate the BKB links after receiving the necessary number of test cases.
The order the test cases were given to PESKI determined the amount of insertions versus
additions that were necessary. Since this BKB was able to be totally constructed using
only the graphical incompleteness tool, this demonstrates that any one incompleteness link

may be handled by the graphical incompleteness tool for even a highly connected BKB.

Figure 5.7

daVinci V2.1 alpha3

Insert Mode .

Evidence: Rain = Heavy, Answer: Sidewalk = Wet

5-10

daVinci V2.1 aipha3

Figure 5.8 Insert Mode - Extended I-node and Targeted S-node.

5-11

daVinci V2.1 alpha3

Figure 5.9 Insert Mode - Resulting BKB.

5-12

VI. Conclusions

With the increasing presence of knowledge based systems, and the critical nature of many
of its applications, verification and validation (V & V) of these systems is becoming in-
creasingly important. While verification is at the forefront of currently focused research,
validation methods of handling inconsistency, incompleteness, and incorrectness are scarce.
PESKI is designed to be an integrated framework for the entire lifecycle of a knowledge
based system using the Bayesian knowledge base (BKB) representation. This integrated
framework includes V & V and the handling of these types of errors. Understanding that
incompleteness in a BKB is a feature of the knowledge representation makes incompleteness
handling in PESKI even more critical. The methodology developed through this research
graphically presents a BKB to a knowledge engineer for the correction of incompleteness.
This graphical incompleteness tool in conjunction with the data mining tool and BVAL
provides a knowledge engineer the ability to efficiently validate a knowledge base. The
combination of these tools provide PESKI the ability to handle the entire lifecycle of a
knowledge based system; from the knowledge acquisition phase using the knowledge ac-
quisition and/or data mining modes of PESKI, to the V & V and subsequent use of the

knowledge base.

Both strengths and weaknesses of this approach were brought forth through this

research. Some of the advantages noted include the following:

e The presenting of BKBs in a graphical user interface seems intuitive. The ability
to quickly identify areas of direct dependency regions of both the evidence and an-
swers from a test case can greatly aid the visualization of incompleteness. Graphical
depictions of the knowledge provides explanation in the form of intermediate nodes
that can be investigated for correctness and completeness. This graphical means of
accessing and editing knowledge is fairly unique in the knowledge based systems field.
Some commercial systems exist that allow knowledge base creation through graphical
visualization, however, these systems do not extend knowledge base activity into the

validation realm.

6-1

e The incremental fixing of incompleteness in test cases is achieved. As mentioned pre-
viously, the correction of one link of incompleteness can often correct other incomplete
links involved in the same test case. Incremental fixing can simplify correcting test
cases with multiple instances of incompleteness, rather than requiring the knowledge

engineer to resolve the test case in a single step.

e The problem space is limited by displaying only direct dependency regions, which
often may be small areas relative to the overall size of the BKB. The tool often made
incompleteness changes fairly trivial despite a large display of nodes in some larger
BKBs. Despite the large size of the BKB, after locating and extending the desired
I-node, the number of possible target S-nodes were quite small and easily located
and targeted. This visual assistance can really limit the amount of time that may be

spent finding the incompleteness location(s).

e The manner in which the tool graphically displays the BKB and its surrounding
nodes makes it possible to discover incorrectness when incompleteness may have
been suspected. This detection can be very important. If automatic corrections were
attempted, the system may have made non-sensical corrections and further damaged
the knowledge base. When incorrectness is discovered, it can be noted and corrected

in the normal knowledge acquisition mode of PESKI.

Some of the disadvantages include the following:

e Inherent with any large knowledge base is the difficulties of locating the incomplete-
ness nodes as well as making the proper corrections for validation. The display region
can, depending upon overall size as well the direct dependency region sizes of the
active evidence and answer nodes, be rather large. This scalability issue will remain
a problem in any type of visual format for knowledge bases. Techniques for reducing

this problem would greatly assist these types of tools.

e The tool is not a “cure-all” for any incompleteness that is discovered. It may be
necessary to partially correct or completely correct the incompleteness through the
normal knowledge acquisition mode of PESKI. This situation occurs when the in-

completeness fix demands more than the addition of a single link or the addition of

6-2

a link which ties to an S-node which currently does not exist. If the S-node does
not already exist, then further incompleteness has been discovered. It can often be
helpful when finding incompleteness in a test case, to further break down the test
case into smaller test cases that are subsets of the previous test case. This technique
can assist in both the discovering and the handling of multiple incompleteness links

that may exist.

VII. Recommendations for Future Research

This chapter presents some ideas for future work related to this research area. Some
enhancements to both the graphical incompleteness tool and the knowledge acquisition

phases of PESKI are discussed.

7.1 Graphical Incompleteness Tool enhancement

An extension to further enhance the graphical incompleteness tool to allow multiple
links of incompleteness to be added to a BKB. The tool currently allows only a connection
from the direct dependency region of the evidence/answer to the direct dependency region
of its corresponding evidence/answer. If the incompleteness consists of a multiple link
through a node outside of either dependency region, then either the normal knowledge
acquisition mode must be used to repair the incompleteness or the test case must be broken
down into smaller test cases that can then be handled by the graphical incompleteness tool.
An ability to allow the knowledge engineer to make these types of additions, while still
ensuring that when completed that the incorrectness has been handled as well as that the
BKB representation rules are still maintained, would be an added enhancement to the
tool. The tool, after allowing addition of links outside of the direct dependency regions,
would need to check to ensure the first and last nodes chosen were valid nodes, or would
correct the incompleteness. If this were not the case, a warning message to the user would

be necessary.

7.2 BKB pattern analysis

A BKB pattern analysis that can attempt to automatically correct or recommend
suggestions of fixing incompleteness may be useful to a knowledge engineer, particularly for
larger systems. One method of approaching this problem is to explore common instantia-
tions of the random variables presented in the test cases. These state nodes can sometimes
form similar patterns that may be detected and used to handle the incompleteness present
in the current test case. These type of corrections may be automatic or textually presented

to the knowledge engineer for approval before inclusion.

7.8 Tool utilization

Combining the graphical incompleteness tool with data mining could provide further
assistance when attempting to fix incompleteness. When viewing the graphical incomplete-
ness tool, it may be helpful if you could concurrently choose I-nodes and then data mine for
relations between the selected I-nodes. Then by selecting the desired relationship from the
data mining results, the desired incompleteness corrections would be implemented. This

could make data mining more efficient by reducing the problem space.

7.4 Knowledge Acquisition Enhancements

Combining some of the ideas used in the graphical incompleteness handling method-
ology with the knowledge acquisition phase of PESKI could assist in easing some of the
inherent difficulties of building the knowledge base. Displaying highlighted direct depen-
dency regions as nodes are selected could assist the knowledge engineer in placing nodes and
their appropriate links in their proper locations. The ability to traverse up and down the
displayed nodes while not removing other nodes can be helpful as well. Currently as new
nodes are requested in the graphical knowledge acquisition tool in PESKI, other nodes
previously displayed are removed based upon a ranking of these nodes. Any assistance
during the knowledge acquisition phase can certainly help ease the inherent difficulties of

creating a knowledge base.

7.5 BKB representation enhancement

An extension to the BKB representation to allow some type of graphical or structure
could assist a knowledge engineer by simplifying the graphical presentation of a BKB.
The mutual exclusion constraint of the BKB representation could prove to be a limitation
for knowledge acquisition. It can make knowledge base creation difficult. For example,
an automobile failing to start can occur for multiple reasons like fuel system, air system,
starter system, etc. These can be each independent systems, however, when placed into
the BKB representation they must be tied to one another through S-nodes. This often
takes the form of one system being true while all others are false. This creates difficulties

for the knowledge engineer when building this type of structure in a BKB. By creating

7-2

this type of S-node, the number of links needed would be greatly reduced. This would ease
visualization of the BKBs in a graphical sense as well. Certainly, all probabilities would
still be necessary for input to the inference engine. The inference engine would require the

ability to recognize this type of node and to inference correctly over the BKB.

10.

11.

12.

13.

14.

15.
16.

Bibliography

Bahill, Terry A. Verifying and Validating Personal Computer-Based Ezpert Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991.

Banks, Darwyn O. Acquiring Consistent Knowledge for Bayesian Forests. MS the-
sis, AFIT/GSO/ENG/95M-01. Graduate school of engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 1995.

Charniak, Eugene. “Bayesian Networks without Tears,” Al Magazine, 50-63 (Winter
1991).

Cooke, Nancy J. “Varieties of Knowledge Elicitation Techniques,” International Jour-
nal of Human-Computer Studies, 41(6):801-849 (1994).

Dempster, A. “Upper and Lower Probabilities Induced by a Multi-valued Mapping,”
Annals of Mathematical Statistics, 38(2):325-399 (1967).

Duda, R., et al. “Development of the PROSPECTOR Consultation System for Mineral
Exploration,” SRI Report: Stanford Research Institute (October 1978).

Durkin, John. “Expert Systems: A View of the Field,” IEEE Ezpert, 56-63 (April
1996).

Erman, D.L., et al. “The HEARSAY-II Speech Understanding System: Integrating
Knowledge to Resolve Uncertainty,” Blackboard Systems, 31-86 (1988).

Gleason, Howard T. Probabilistic Knowledge Base Validation. ~ MS thesis,
AFIT/GSO/ENG/95D-04. Graduate school of engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, December 1995.

Gonzalez, Avelino J. and Douglas D. Dankel. The Engineering of Knowledge-based
Systems. Englewood Cliffs, NJ: Prentice Hall, 1993.

Green, C.J.R. and M.M. Keyes. “Verification and Validation of Expert Systems,”
Western Conference on Expert Systems, 3843 (1987).

Kahn, G., et al. “MORE: An Intelligent Knowledge Acquisition Tool,” Proceedings of
the IJCAI-85, 581-584 (1985).

Lindsay, P.H., et al. Applications of Artificial Intelligence to Chemistry: The DEN-
DRAL Project.. New York: McGraw-Hill, 1980.

Lyle, Louise J. A Test-Case Based Approach to Bayesian Knowledge Base Incom-
pleteness Detection and Correction. MS thesis, AFIT/GCS/ENG/96D-17. Graduate
school of engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,
December 1996.

Marcot, B. “Testing Your Knowledge Base,” AI Ezpert, 42-47 (August 1987).

Marcus, S., et al. “Knowledge Acquisition for Constructive Systems,” Proceedings of
the IJCAI-85, 637639 (1985).

BIB-1

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

McDermott, J. “R1: A Rule-Based Configurer of Computer Systems,” Artificial In-
telligence, 19(1):39-88 (September 1982).

Meseguer, P. and A. Verdaguer. “Verification of Multi-level Rule-based Expert Sys-
tems: Theory and Practice,” International Journal of Ezpert Systems, 6:163-192
(1993).

Nazareth, Derek L. “Issues in the verification of knowledge in rule-based systems,”
International Journal of Man-Machine Studies, $0:255-271 (1989).

Nguyen, T.A. “Verifying Consistency of Production Systems,” Proceedings of the Third
IEEE Conference on Artificial Intelligence Applications, 4-8 (February 1987).

Nguyen, T.A., et al. “Checking an Expert System’s Knowledge Base for Consistency
and Completeness,” Proceedings of the Ninth International Joint Conference on Arti-
ficial Intelligence, 375-378 (August 1985).

O’Keefe, Robert M., et al. “Validating Expert System Performance,” IEEE Ezpert,
81-89 (Winter 1987).

Parsons, Simon. “Current Approaches to Handling Imperfect Information in Data and
Knowledge Bases,” IEEE Transactions on Knowledge and Data Engineering, 8:353—
372 (June 1996).

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, San Mateo, CA, 1991. (Revised Second
Printing).

Prakash, G. Ravi and H.N. Mahabala. “SVEPOA: A Tool to Aid Verification and
Validation of OPS5-based AI Applications,” International Journal of Ezpert Systems,
6:193-236 (1993).

Preece, A.D. “Towards a Methodology for Evaluating Expert Systems,” Expert Sys-
tems, 7:215-223 (1990).

Preece, Alun D. “Validation of knowledge-based systems: Current trends and issues,”
The Knowledge Engineering Review, 10(1):69-71 (1995).

Santos, Jr., Eugene. “A Fully Integrated Probabilistic Framework for Expert Systems
Development.” Research proposal from Air Force Institute of Technology to Air Force
Office of Scientific Research. March 1993.

Santos, Jr., Eugene. “Verifying and Validating Uncertain Knowledge-Bases.” Research
proposal from Air Force Institute of Technology. September 1995.

Santos, Jr., Eugene and Darwyn O. Banks. “Acquiring Consistent Knowledge in the
Face of Uncertainty,” IEEE Transactions on Knowledge and Data Engineering (1995).
(Submitted to).

Santos, Jr., Eugene and Sheila B. Banks. “Verifying and Validating Knowledge in the
Face of Uncertainty: The PESKI System.” January 1997.

Shachter, Ross D. “Evaluating Influence Diagrams,” Operations Research, 36:871-872
(1986).

BIB-2

33.

34.

35.

36.

37.

38.

Shafer, G. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University
Press, 1976.

Shortliffe, E.H. Computer-Based Medical Consultations: Mycin. New York, NY: Amer-
ican Elsevier, 1976.

Shortliffe, E.H. and B.G. Buchanan. “A Model of Inexact Reasoning in Medicine,”
Mathematical Biosciences, 28:351-379 (1975).

Stachowitz, R., et al. “Building Validation Tools for Knowledge- Based Systems,” First
Annual Workshop on Space Operations Automation and Robotics (SOAR 87), 7:209-
216 (1987).

Stein II1, Daniel J. Utilizing Data and Knowledge Mining for Probabilistic Knowledge
Bases. MS thesis, AFIT/GCS/ENG/96D-25. Graduate school of engineering, Air
Force Institute of Technology, Wright-Patterson AFB, OH, December 1996.

Zadeh, L.A. “Fuzzy Sets,” Information and Control, 8 (3):338-353 (1965).

BIB-3

Appendiz A. PESKI

PESKI is an integrated framework for the development of knowledge based systems. The
Bayesian Knowledge Base is a key element of the expert system architecture called PESKI
(Probabilities, Expert System, Knowledge and Inference)[28).

|
User Interface Reasoning Mechanism

Enplish Natural Inference
Tranglation Language Knowledge>
P Interface Hase

|

Consultationfiies

Knowledge
Acquisition
&

Interpretatio
P " Maintenance

|

|

|

|

|

|

} Explaé:aﬁon
i

|

l_

m—— e ——
|

KE Tools

Abstracted

EXPERT

Rules & Facts ' {?ASI'E%UCGNI:N‘

Knowledge Organization & Validation

Figure A.1 The PESKI architecture. The broken boarder components Knowl-
edge Engineer and KE Tools are considered optional.

As shown in Figure A.1, the PESKI architecture is composed of four major compo-

nents:

¢ Natural Language Interface—provides for user-system communication by trans-

lating user queries, and system responses, into English.

e Inference Engine—the mechanism responsible for the reasoning actions of the sys-

tem, controlling choice and application of information contained in the knowledge

base.

e Explanation & Interpretation—tracks paths used by the inference engine in

reaching its conclusion.

e Knowledge Acquisition & Maintenance—provides the tools for incorporating

new or updated expert knowledge into the knowledge base.

There is some measure of overlap between these four components, hence PESKI facilitates

the combination of these components into three overlapping subsystems:

e User Interface—composed of the Natural Language Interface and the Explanation

& Interpretation components.

o Knowledge Organization & Validation—consists of the Explanation & Interpretation
component along with the human expert, the optional knowledge engineer, and the
knowledge engineering tools. Communication with the the Knowledge Acquisition
& Maintenance component facilitates organization, and then assists in Validation
when coupled with feedback from the Reasoning Mechanism through Explanation

&Interpretation.

e Reasoning Mechanism—combines the Inference Engine and the Knowledge Acquisi-
tion & Maintenance components. The merging of these two components stems from
the belief that in order for new knowledge to be placed in the knowledge base, some
form of reasoning (and possibly learning) must be involved. Additionally, the inclu-
sion of the Knowledge Acquisition & Maintenance component provides some degree
of information hiding with respect to the knowledge representation used with the

knowledge base.

The PESKI architecture is sufficient for the construction of knowledge-based systems

in nearly any domain.

A-2

Appendiz B. BKB Incompleteness Relative to Bayesian Networks

The total amount of global incompleteness in a BKB, whether desired or in error, can be
related to the amount of necessary information in a Bayesian network. Again, a Bayesian
network requires complete conditional probability tables (CPTs) between linked nodes to
inference over the network. In a BKB, an S-node represents one CPT entry in a Bayesian
network. The amount of incompleteness in a BKB relative to a complete Bayesian network
can therefore be determined with the following formula:

Number of S-nodes
i [CPT

Amount of Incompleteness =1 —

where N = Number of RVs

and |CPT;| = (H;’il Number of states of Parent RV;) * Number states of RV}

where M = Number of parents of RV;

This formula can be used to consider the results obtained through the different
approaches used in the graphical incompleteness handling methodology. In add mode Case
2, the addition of a new S-node and its appropriate links is similar to filling in a missing
item in the CPT of a Bayesian network. Therefore, the total amount of incompleteness
in the BKB relative to a complete Bayesian network is always decreased with this type of
correction. However, in add mode Case 1, conditional probability tables are increased in
size in addition to filling in a missing probability. This correction will result in an increase
in overall incompleteness; however, validation of BKBs is more concerned with relevance
and correctness of the fix more so than the amount of incompleteness relative to a Bayesian
network. The increased amount of incompleteness may not be relevant to the inferencing
necessary for the system, therefore the amount of incompleteness that can be considered
mandatory for the system very well may have decreased. Insert mode is concerned with
the restructuring of the BKB rather than a decrease in overall incompleteness. Again,
correctness of the BKB is of more concern than the amount of incompleteness relative to

a Bayesian network.

Vita
David Bawcom was born in ||| [[| | GG i v:s 2varded a
Bachelor of Science in Electrical Engineering from McNeese State University in December,
1990. While pursuing his degree and until he joined the U.S. Air Force through Officer
Training School in January, 1995, he was a member of the U.S. Navy Reserves. His first
assignment with the Air Force was to the Air Force Operational Test and Evaluatation
Center where he did modeling and analysis for a number of different test programs. He

arrived at the Air Force Institute of Technology in May 1996.

Permanent address: [

VITA-1

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
: December 1997 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Incompleteness Handling Methodology for Bayesian Knowledge Bases

6. AUTHOR(S)
David J. Bawcom, First Lieutenant USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
WPAFB OH 45433-7765

AFIT/GCS/ENG/97D-02
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ AFMC/CI AGENCY REPORT NUMBER
WPAFB OH 45433
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The PESKI (Probabilities, Expert Systems, Knowledge, and Inference) system attempts to address some of the problems in
expert system design through the use of the Bayesian Knowledge Base (BKB) representation. Knowledge gathered from a
domain expert is placed into this framework and inferencing is performed over it. However, by the nature of BKBs, not all
knowledge is incorporated, i.e. the representation need not be a complete representation of all combinations and possibilities
of the knowledge, as this would be impractical in many real-world systems. Therefore, inherent in such a system is the
problem of incomplete knowledge, or spaces within the knowledge base where areas of lacking knowledge hinder arrival at a
solution. Some of this knowledge is intentionally omitted but necessary for valid results. Intentional omission, a strength of
the BKB representation, allows for capturing only the relevant portions of knowledge critical to modeling an expert's
knowledge within a domain. This research proposes a method for handling the latter form of incompleteness administered
through a graphical interface. The incompleteness is then able to be detected and corrected by the knowledge engineer in an
intuitive fashion.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Knowledge engineering, Expert systems, Incompleteness handling, Bayesian Knowledge Bases

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION }20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANS! Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	An Incompleteness Handling Methodology for Validation of Bayesian Knowledge Bases
	Recommended Citation

	tmp.1679066984.pdf.dOyH9

