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ABSTRACT

N COMPOUND STRIP METHOD FOR THE
[ ¢ ANALYSI1S OF CONTINUOUS ELASTIC PLATES

A finlte strip method (FSM) Is developed for the analysls of |lInear
elastlic flat plate systems which are contlnuous over deflectling supports.
The approach presented Incorporates the effect of the support elements In a
dlrect stiffness methodology. The stiffness contribution of the support
elements have been derived and are gliven in the form of strip matrices
which are directly added to the plate strip stiffness matrix at the element
level. This summation of plate and support stiffness contributions constl-

tutes a substructure which Is termed a compound strip.

The validlty of the compound strlp method |s demonstrated In several
[llustrative problems which Include single and multipanel plates contlnuous
over flexible and rigld beams and columns, The FSM and finite element

method (FEM) compare favorably for displacement and moment.

The rate of convergence of the compound strip method was studied and
results are given for a contlinuous multipanel system. The FSM Is shown to
be computationally more efflclent than the FEM when maximum values for
moment or deflectlion are required. The FEM exhiblts favorable convergence
characteristics In lecations where the magnitudes of dlisplacement and

moment are relatively small.
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CHAPTER I

1, INTRODUCTION
1,1. Theory of Plates

A thin plate is an initially flat structural element for which the
thickness is much smaller than the plan dimensions., Many practical
engineering problems are in the category of ''thin plates in flexure due
to transverse load,’” Familiar examples of plates are the walls and
bottom of tanks, bulkheads, side panels and roofs of buildings, and
floor slabs, The transverse loads act perpendicular to the plane of the
plate surfaces. Rectangular plates composed of &an isotropic limeer

elastic material are governed by the differential equation

Q‘wﬂx.x! +2 a4w§x,zz b 34w§x,zl x alx,v) (1]
4 2.2 4 D
dx ax“dy dy

in which x and y are coordinates and w(x,y) is the deflection of the
midplane of the plate, g(x,y) is the transverse loading and D is the
flexural rigidity. For orthotropic plates the governing differential

equation is

4 4 4
D: Q__',(L;_I)_ + 2{[)1 + Dx ) @...!é_x.l.}l + D a'_'_(%l.xl = gq(x,y) [2]
ax ¥ axay ¥ oay

in which Dx and Dy are the flexural rigidities in the x and ¥

directions, respectively, D. is the rigidity due to Poisson’'s effect and

1

ny is the twisting rigidity. The various plate rigidities are related
-



to the material properties and the plate thickness, Equations 1 and 2
are based upon the fundamental Kirchoff hypotheses (1,2,3)

Direct mathematical solution of Eqs. 1 and 2, incorporating
boundary conditions, is possible and several methods are available
(principally developed by Navier, Kirchoff and Levy) and described in
familiar textbooks (1,2,3)., Naomericazl solution technigues (developed by
Galerkin, Ritz, Wahl, and others) are also described in the same
references, However, for irregular loading and complex geometrical

shapes such techniques are usually intractable,

1,2, The Finite Strip Method——An Alternative to the Finite Element
Method

A contemporary approach to solving such problems by computer
analysis is the finite element method (FEM) (4). The FEM is a powerful
method for analysis of complex plate problems which may have highly
irregnlar plan geometry. However, the necessity of employing a
relatively fine mesh to obtain an accurate model can lead to a large
number of simultaneous structural equations, Design engineers may find
the FEM to be prohibitive for continuous plate systems of reasomable
size, The costs involved can be high, particularly for dynamic
analysis, Further, the core storage and execution time requirements for
an accurate FEM analysis of a large plate system can exceed the capacity
of the available hardware (particular desktop models). This may be true
even  when efficient equation solving techniques are employed.
Additionally, analyst time required for model development , mesh
generation and interpretation of results can be considerable and often
more costly than computing time, In particular, practicing engineers

who are inexperienced in the application of the FEM can have difficulty



selecting appropriate finite elements and determining an efficient,
accurate mesh layout,

Several numerical techniques are available to reduce core storage
and computational time, e.g., use of higher order finite element models
to improve convergence and/or reduce the mesh size, or use of
macroelements which, by themselves, can represent full size structural
components. Alternatively, for plate continua with regular geometry and
boundary conditions, the power and versatility of the conventiomal FEM
is not required. For such continua Cheung (5,6) has developed =
specialized plate element which offers a powerful alternmative to
conventional finite elements, Because the plan geometry of plate is
discretized in one principal direction only, Cheung's methodology is
termed the ''fimite strip method’ (FSH). By avoiding & two-way
geometric discretization, the FSM considerably shortens and simplifies
the analyst input and output effort, reduces computer memory capacity
and time requirements, and offers greater computational efficiency than
the FEM for those types of problems geometrically suited to both
methods, In effect, the FSM reduces s two dimensional analysis to a
series of one dimensional analyses, which results in fewer equations
with a small half band width, In references 5§ and 6, Cheung reports
excellent comparison with classical solutions and significant reduction
in computational effort vis—a-vis several FEM models.

Many common flat and folded plate systems have characteristics that
are amenable to the FSM. Thus considerable research was conducted from
1968 to the present (a review of the pertinent literature is presented
in a subsequent chapter) to advance Cheung’s origimal work. The FSM has

been successfully applied to a variety of plate systems including flat



plates, folded plates, and box girders, Despite this work an impasse
has apparently been reached in attempting to apply the FSM method to one
important category of plate problems, namely any system which is
continuous over flexible beams and columns, Indeed, prior to this work
the simple problem of a single plate supported by 2 column at each of
its cormers is intractable by any FSM techniques presently available,
Some progress was made by researchers using a flexibility formulation,
but the efficiency of the FSM relative to the FEM has been compromised

in those approaches,

1,3, Objective

The objective of the study reported herein was to extend the
capability of the finite strip method to permit a direct stiffness
analysis of rectangular two-way, beam and column—supported plate
systems, Previous researchers have addressed some aspects of the
incorporation of beam and column supports inm a finite strip formulation.
Most of the past work has been based unpon use of a flexibility approach,
Employing a flexibility method of analysis is computetionally
cumbersome, inefficient, &nd generally requires considerable judgment.
Further, the treatment of supporting beams is presently limited to the
case of unidirectional support. In this stndy the significant
limitations of the flexibility approach have been overcome by the
development of a finite strip formulation in which supporting beams and
columns can be readily incorporated in a stiffness methodology. The

incorporation of these supports in the FSM required the development of

new strip elements termed ''compound finite strips."



CHAPTER II

2. FINITE STRIP METHOD - BASIC CONCEPTS
2.1, Definition of a Finite Strip
Cheung has applied the finite strip modeling to a variety of

continuum problems, e.g,, the flat plate structure shown in Figure 2,1,

Figure 2.1. Finite Strip Modeling of a Continuous Plate.

Basically, the continuum is divided into a number of ''finite
strips'’ each having a finite width (dimension '‘a'') and length equal

to the full distance between the discontinuoous edges (dimemsion ''B'').



The flat plate in Figure 2,1 has been divided into five finite strips.
The two opposite ends of dimension ''b'' coincide with the boundaries of

the structure.

2,2, Mathematical Formulation

The principle of stationary potential energy is a fundamental
approach used to develop stiffness models. Briefly, the principle can
be stated ''Of all compatible displacements satisfying given boundary
conditions, those which satisfy equilibrium make the total potential
energy a stationary valoe,' Mathematically stated

(se2-) =0 (3]
kn
where p is the total potential enmergy of the system. The 6kn refers to
an individual displacement parameter or state varisble,.

For the finite strip method ¢ is based upon an approximate
displacement function, ws{x,y) used for each strip. Commonly, ;he
assumed displacement function combines a polynomial function in the
direction transverse to the strip and a series expression in the
direction along the strip., The akn values are the four (k=1 to 4)
nnknown displacement parameters in the nth term of w'(x.yi. The outer
subscript n refers to an arbitrary mode as defined below in Eq. 4.
(Described in more detail in subsequent text.) Minimizing the total
potential energy with respect to each unknown displacement parameter
yields a set of simoltaneous linmear algebraic equations which may be
solved for the 6kn values.

For two dimensional structures such as the flat plate shown in

Firure 2.1, the finite strip displacement function is



w (x,y) = ; (=) ¥ (y) [4)
m=1

Im(x) is an approximate '"shape function'' involving the unknown
displacements =at the transverse (comntinuous) edges (i and j in Figure
7 B I Ym(y) is a '""boundary function'' chosen to satisfy the specified
boundary conditions at the opposite ends of dimension b, and r is the
highest term considered in the series. Each term, m, of the series is
referred to as a ''mode.' The subscript s in subsequent text refers to
the individual element or strip.

Commonly the boundary functions, Ym(y) are functions which =are

derived from the solution of the governing equation for beam vibration,

4 4
f‘—l{fl - L v(y) (5]
dx b

where b is the length of beam (strip) and p is 2 parameter, The
resulting expressions are commonly referred to as basic functions or
eigenfunctions,

The general form of the solution to Eq. 5 is:

Y(y) = B, sin (%F) + B, cos {%F)

1 2

+ B, sizh (4%) + B (6]

LY
5 cosh (b)

4
where 31. etc. are determined from the boundary conditions at the
discontinuous ends of the strip. For example, Ym(y) for a plate bending

strip with simply supported boundaries on the strip ends is

[
Ym(y) = sin ( 5 By = T 2n, 3m,...m0 [71

Other boundary conditioms yield series forms more complex than Eq. 7

(37,38).



Similar to the FEM, the FSM requires integration of the
displacement function and its derivatives over the domain of the strip.
Because eigenfunctions are mathematically orthogonal, the integration is
readily executed, The significance of this aspect is shown later,

The shape function, Xm(x). contains four unknown modal displacement
parameters. A commonly used plate bending element polynomial function

adopted for this study is

6lm
62m
xmf:) = [CI'CZ'CS'C4] e [C] {A}m [8]
3m
64m
whora c,=1- 3X° + 23
Cz=x(l-2;+;2)
C, =3x% - 3%
3
P e S
C4 = x(x x)
T =x/a
Y
and {A]In = {51m, 62n' 63m, 64m} contains the four displacement

parameters for mode m. Determination of these parameters for an
appropriate number of modes establishes the displaced shape of the

finite strip.

2.3, Matrix Formulation

The matrix form of the displacement function [4] is



1
(A1, E
w (x,y) = Y_[[cl(cl...[c]] ’ = I [N] (A} [9]
3 w ' i m m
(A},

where [N]m = Ym [C]; [C] contains the polynomials given in Eq. 8; {A)m,
are modal displacement parameters or state variables; Ym is the
orthogonal boundary function; and r is the highest mode considered.

The curvatures of the plate for mode m are given by

3__
2g2
X
x 2
-’x ‘ =AY S bR 1R (101
¥ 2 m m
X §

The flexural and twisting moments for mode m may be related to the

curvatures for mode m by
{M} = [D] (X} [11]
m m

or in expanded form

M D D 0 X
x x 1 x
M =|D D 0 X [12]
y 1 y ¥
M 0 0 D 6.5
xy xy Iy

where D , D., D , and D are defined in Eq. 2.
£ =1 % xy



1)

The total potential emergy for any staticelly loaded body is
composed of two parts, the internal strain energy and the potential
energy due to extermal surface loads. The internmal flexural strain

energy of a2 finite strip is

t2 |—

o
g = r [ mim av [13]
P m=1 Vol B )k

and substituting Eqs. 10 and 11 into Eq. 13 gives

r r

U = Z
P

1 i T
= (A} J (BIC [D] [B]_ dv_ (A} [14]
il el 2 n Vol n m s m

The potential energy due to external surface load q(x,y) is

T
T T
W=- [ w.i(z,y) qlzx,y) dA_=~- Z {A}. [ INI_ qlx,y) dA [15]
Area : % n=] % Area ® 9

The total potential emergy of the entire plate, p, is the sum of Up

and ¥ contributions from all the strips. Thus

NS NS 1 T [ T
p= X p = T ([5 [A} [B]  [D] (B]_d4v_ (A}
v s gl 2 n Vol n m s m

-l f ] gy dA)

Area [16]
where NS is the number of strips, Note the m and n summation symbols
are omitted for brevity., Substituting Eq. 16 into Eq. 3 gives a set of
simultaneouns equations which is solved to establish displaced state of

the system. This set of equations is written in the matrix format
[K] (A} - {F} = [0} (171

where [E]  the structure stiffness matrix, the assemblage of the

stiffness matrices for the strips comprising the plate system, and (F)



11

is the corresponding assemblage of element load matrices, The element

stiffness matrix, [S], of a single strip is identified as

b r T
(sl = & ¥ J [B1® [D] [B]_ av [18]
n m s

m=1 n=1 Vol

The expanded element stiffness and load matrices are given below,

— T ol
[BIT[D][BII [B]?[D][B]z a5 [BJIIH:][B]r
T T
(B1,(D1(B], (BI;(DI(B], ... [BI,[DI(BI_
(s1 = /[ av  [19]
Vol . » . . . . . . = . LI s
T T T
| (B1_(D1[B], (B [(DI(BI, ... [BI [BI(B]

and

7 E
[N]1
T
[N]2
[F]s = f . glx,y) dA [20]
Area s
T
[N]:

For a prismatic strip with a uniform load 1, Eqs. 19 simplifies to



|'[S]11 [Sl12 ChE [s]
[s1,, [S]22 ¥ e [s]

[s] = Vil : dV’ [211]

_[S]rl [S]rz s sl [S]rr

where the results of the integration are givenm in Figure 2.2, and Eq. 20

reduces to

{Fll
(F),
(F] = : [22]
(F)_
where
b/2
2 b
- b/ 12
(F1_ = q, /2 ! Y dy [23]
- v%/12

2.4, Commentary

A judicious choice of a displacement function can greatly simplify
Bq. 19. As previounsly mentioned, the series expression is a basic

function which possesses the valuable property of orthogonality.

Mathematically stated for m # n,

b 2 2

b a‘y Y
f!.Yndyﬂf(_;J( ) dy = 0 [24]
] o dy dy

This greatly reduces the effort involved in determining the strip

stiffness matrix.
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b
/

o

b
/

[+]

811 812 853 S
TR S22 B3 By
ma a0 ) (sym) 833 334
L S4a)
S = _'S. =5040 D Y. — 504s2D.I. — 504a°D,I, + 156a°D_1, + 2016a°D_1
33 13 1 12 13 v 4 -
2 4 4 6 4
844 1680 a DxI] 56a DlI2 56a D113 + 4a l)yl’4 + 224a nyIS
o = 2520a0 I. — 462e°D.L. — #24°D.1, + 224°D. I, + 168D I
34 x1 12 13 y 4 xy 5
2 4 4 6 4
= = +
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Further, for systems which are simply supported, the eigenfunction

is the sine series givenm in Eq. 7. For this function

b b 23
£rm . & dy=£Ym I, dy [25]

b [ | b L] [} b e rr

-.‘!;Ym Yndy=£1’m¥ndy-£¥n Y dy=0 [26]

These integrations reduce Eq. 21 to a matrix with submatrices along
the diagonal, This nuncouples the equations allowing independent
analyses for each term of the series and superposition of the results
after convergence has been achieved, For other support conditions the
basic FSM method is unchanged but the uncoupling does not occur, Thus,

gll r terms must be solved simultaneously.



CHAPTER I1I

3. STATE-OF-THE-ART
3.1, Literature Review

The finite strip concept just described was introduced by Cheung in
two papers (5,6). A review of pertinent subsequent developments is
necessary to put the reseerch described in subsequent sections in
perspective. Powell and Oden (7) working independently of Cheung,
developed a similar element for applicatiom to orthotropic steel plate
bridge decks, Later, Cheung (8) extended the FSM to the analysis of
folded plate structures, Two new concepts were introduced: (n
treatment of in-plane stresses and (2) rotation of the strip stiffness
matrix to account for the various orientations of the plate elements.
Analytical results compared favorably with the solutions obtained by
DeFries—Skene and Scordelis using classical analysis and a direct
stiffness matrix method (9).

Cheung (10,11,12) also applied the technigues developed for the
analysis of folded plate systems orthotropic right bridges, and box
girders, Applicability of the method was limited to simgle—span
stroctures with end diaphragms, End diaphragms were assumed to be
infinitely rigid in-plane and infinitely flexible ount—of-plane. The
plates did not have intermediate supports or diaphragms.

Soon after the development of the techniques for folded plate and

box-girder analysis, Cheung extended the FSM to the analysis of
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cylindrical orthotropic curved bridge decks (13). Fundamentally, the
finite strip displacement function, Eq. 4, wes expressed in polar
coordinates but the fundamental theory was unchanged, The results
compared closely with FEM solutions obtained by Conll and Das (14) and
test results performed by Cheung on a scale model,

The work just described was limited to systems with clear spans,
i.e., mno intermediate beam or column supports, M, S, Cheung et al,
developed a beam stiffness matrix compatible with the finite strip plate
element (15). However, the method was restricted to beams oriented
parallel to the 1longitudinal direction (y—direction) of the strip.
Cheung also described a flexibility analysis which could be used to
incorporate column supports.

Gutkowski successfully extended the finite strip concept to a
""finite panel’ model which accommodated interior beams (16,17,18). In
this model the rectangular plate was incorporated by a macro—element

using a displacement function of the form

w(x,y) = él[Y‘(y)sinﬂ:-! + X (x)sia] (271

Both 1isotropic and orthotropic systems were treated (17,18) but
applications were limited to two—way plates continuoous over pinned
supports.

Cheung (19) applied the FSM to the analysis of freely vibrating
polygonal plates., In two papers (20,21), Cheung and Cheung treated free

vibration of curved and straight beam—slab and box girder bridges with
clear spans (20) and introduced higher order polynomial displacement
fuorctions (21). These functions require more unknown displacement

parameters per strip than the previously used lower order strips. This
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results in fewer structural equations but increases the bandwidth of the
corresponding stiffness matrix.

The literature cited thus far is restricted to static analyses, In
211 cases, the referenced aunthors have cited the minimal computation and
storage requirements as strong points of the FSM method.

A contribution to the FSM was made by Wu (22) 4in a paper on
frequency analysis of rectangular plates continuous over pinned supports
in either one or two directions. The important aspect of this work is
the formulation of a strip displacement functiom which is the product of
the eigenfunction for a continumous beam and & polynomial function which
contains the displacement parameters., This was the first spplicationm of
the FSM to plate systems continuous over non-deflecting supports without
the use of the flexibility method. This is advantageous because a

flexibility approach requires numerous FSM analyses prior to invoking

_conditions of compatibility. Although this method is a significant

advancement over the flexibility approach the requirement of non-
deflecting beams limits its wuse, Delcourt and Cheung (23) later
extended the mnlti-span FSM to folded plate systems. The technique was
nsed to analyze a continuous folded plate previously studied by Beaufait
(24), and Scordelis and Lo (25) wusing other methods. The results
compared closely with finite element, classical elasticity, and
empirical methods,

Cheung and Chan contributed a paper on the analysis of continuous
curved box girder bridges (26). [Example bridges with intermediate
columns were analyzed with the flexibility amalysis. Cheung also
studied a flexibility analysis for box girder bridges with intermediate

flexible diaphragms, He employed a technique developed by Rao (27) for



the analysis of a folded plate continuous over flexible diagrams.
Compatibility of deflection is enforced at several locations along the
plate diaphragm interface. A finite strip analysis must be performed
for each point where compatibility is invoked.

Dynamic analysis and buckling of plate systems are not included in
work described herein. However, a number of contributions in this ares
have been made by other researchers (28-32) using the FSM. Also thick
plates have been investigated by Cheung (33), and Mawenya and Davies
(34). Recently, Brown and Ghali (35) extended the FSM to guadrilateral
plates, Sisodiys et a&l, (36) have analyzed single— and douoble-celled
box girder bridges.

In summary, the FSM is an efficient structural amalysis tool which
may be used to analyze a wide range of practical problems. It should be
emphasized that the FSM is applicable only when certain boundary and
geometric conditions are met. The FSM is efficient for single-span
structures and may also be applied to continuous systems but requires
involved repetitive analyses using flexibility techniques or specialized
eigenfunction analyses to generate the basic functions required for the
displacement function. In either <case, these techniques lack
generality., Extending either of these techniques to more complex

systems would be a difficult if not impossible task.

3.2. Extension of the Finite Strip Stiffness Formulation

Efficient technigues such as the FSM are advantageons becanse of
the limited computer inpot required, small storage requirements and
computational efficiency. Many FSM models could be used omn =
mic-ocomputer for the static and dynamic analysis of plate systems

traditionally snalyzed with less rigorous approaches. As indicated in



the preceding section, the state—of-the—art of static analysis of plate

systems continuous over flexible beams and columns is a flexibility

approach. This approach has been successfully applied to bridge systems
with small number of redundants, such as a bridge with a few column
supports in the interior. The flexibility approach has also been
applied to plate systems with flexible beam or diaphragm supports. This
approach requires enforcement of compatibility of displacements at a
sufficient number of points along the beam or diaphragm to insure
accuracy. For each chosen point a redundant force is created along each
interface, Separate finite strip analyses are required for each
redundant, Because the number of redundants is usually large the
efficiency of the flexibility technique is oftem compromised., A need
exists to incorporate these features in s direct, computatiomally
efficient manner, A stiffness formulation to accomplish this is
described in remaining sections of this manunscript,

The versatility of the stiffness approach for the analysis of
continuous plate systems has been overlooked in past research. Using
concepts developed herein, beam and column stiffness may be incorporated
directly into the system equations. The advantages of the stiffness
method to be described are:

1. Repetitive FSM analyses, inherent in any flexibility method,

is not be required, thus computational efficiemcy will be
improved.

2. The analyst does not have to determine the number of points

for which to invoke displacement compatibility. This
important task (which requires & grest degree of judgment)

is not a feature of the method described herein.
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The stiffness method is well suited to dynamic and stability

analyses, the flexibility technique is not,



CHAPTER 1V

4, MODELING SUPPORT ELEMENTS
4.1. Scope

At present the FSM lacks 2 general and direct technique for the
enalysis of flat plates continuous over supporting beams and columns,
The primary objective of the study reported hereim is to provide the
capability to include beams oriented tramsverse to the strip (transverse
beam) , beams oriented parallel to the strip (longitudinal beams), and
columns in the FSM by use of a stiffness method. EKey features are the
inclusion of (1) flexural stiffness of beams, (2) torsional stiffness of
beams, (3) axial stiffness of columns, and (4) flexural stiffness of
columns, These are mnecessary advancements which will simplify the
analysis of continuous systems by overcoming the cumbersome features
embodied in the approaches previously discussed, The wversatility and
capability of the FSM is particularly enhanced by incorporating the
second and fourth featnres cited above. Neither torsional stiffness of
transverse beams nor flexural stiffness of columns have been considered
in any past research reported in the literature,

The stiffness formulation is based npon use of the finite strip
displacement functiom, w!(x.y) presented in Eqs. 4, 6 and 8. Supporting
beams and columns are incorporated inm 2 manner mathematically comsistent

with this displacement function and is described in Sectiom 4,3, The
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scope will include disotropic and orthotropic flat plate systems

subjected to static loads.

4.2, Addition of the Support Elements
4.2.1. Finite element method

In the conventional FEM the structure stiffmess matrix is assembled
in a direct manner, At the various nodes of the mesh discrete degrees—
of-freedom are designated as the unknown nodal displacements. The
element stiffness matrix for each individmal structmral componment is
added to the structure stiffness matrix by accounting for its
connectivity to these nodes, The important points are (1) an element
stiffness matrix is developed for each component, whether it be a plate,
¢olumn, beam, or any other type of stroctural element, and (2) the
contents of displacement vector are the independent displacements at the
node points to which the partlcnlkr component is attached, This feature
re;dars the conventional finite element analysis of structures composed
of a combination of different types of elements to a process of directly
adding the contents of individoal element stiffness matrices to
appropriate locations of the strocture stiffness matrix and executionm of
the subsequent matrix operations of the FEM. The inability to employ
this assembly process to incorporate supporting beams and columns has
been the primary drawback of the FSM. This difficulty and a method that

overcomes it are described in the following sectionms.

4,2.2. Finite strip method
In the FSM discrete nodal degrees—of-freedom do not exist. For
example, consider the example finite strip model presented earlier in

Figure 2.1, Attachment of sny finite strip to adjacent strips is only
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possible at the continuvous (transverse) edges i and j. Mathematically,
the contents of [A) in Eq. 17 in & finite strip formulation are modal
displacement parameters and these do not constitute nodal degrees-of-
freedom, Thus, to date the only type of supporting compomnent
successfully treated by the FSM in a stiffness formulationm has been a
beam placed coincident with either edge i or j. A beam stiffness matrix
in series form consistent with Egq. 7 was used. To date no stiffmess
method has been developed which accommodates either transverse beams or
columns,

A proper FSM formulation must produce compatibility of the
displaced support components with the interior displaced shape of the
plate strip inm a manner consistent with superposed edge modal
displacement parameters, In the FEM the connectivity to the
displacements degrees—of-freedom accomplishes this requirement, In the

FSM the direct comnectivity to modal displacement edge functions is aot

possible except for beams coincident with the Ilongitudinal edges. In
subsequent sections, a method to achieve proper compatibility of
supporting beams and columns with the plate strip, regardless of
location, and orientation, by the development and use of ’'compound
strip'’ elements is described. Further, this approach will enable the
nse of conventional direct assembly processes for incorporating element
stiffness matrices into the strocture stiffness matrix.

For reference, consider the compound finite strip shown in Figure
4.1. In the compound strip formulation developed in this work, the
supporting elements are embodied at the outset of the derivation, i.e.,

the total strain energy of the compound strip is expressed in the form



Figure 4.1.

Division into Compound Strips.
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L Ufl ¥ Uft ® Utl E3 Utt X Uac 4 ch T Ucy % Up (28]

Ufl and Utl are the flexunral and torsional strain energy of the
longitudinal support beams, respectively, Uft and Utt are the flexural
and torsional strain energy of the transverse support  beams,
respectively, U

is the axial strain energy of the columns, U i and U‘,.:jr

ac c

are the flexural strain emnergy of the columan and Ub is the flexural
strain energy in the plate. Each of the strain energy terms in Eg. 28
is developed in a manner consistent with the assumed strip displacement
function, Eg. 4, repeated below &s Eq. 29. The derivation is presented

in the following sections,

r
v (x,y) = £ X (x) Y (y) [29]
=1 .

4.3, Mathematical Formulation of Compound Strip Stiffness Matrices
Each term in Eq, 28 is examined individoally in the following
ssctions.
4.3.1. Flexural stiffness-longitudinal beam
The flexural strain energy for a beam is

U

b 2
JEL G 2%wa2

ay?
where EI is the flexural rigidity of the beam and w is its displacement

function,

To incorporate the beam in the FSM the displacement function is

r T
N mfl xlﬁ(X) YN(Y) = nFrl [N]m {A}ﬂ [31]

Taking the derivative of Ufl with respect to SXn gives
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au b 2 2
A T [32)
kn o dy kn By2

where akn is a displacement parameter in mode mn. Substituting the

displacement function of Eq, 31 into Eq. 32 gives

2
00y r b | a“[N]

2
=EI v [ |r B1 (A} 9 (%) 4y (331
L m=lo | ay m) 3By, gyl

where all functions are evaluated at the local x coordinate of the beam.

Letting k=1, the first row of the stiffness matrix is determinad

for mode n, Accordingly, Eq. 33 simplifies to

2 2
au r b |a*[N] 3N
oo = B0z f =2 payy —28 [34]
In m=1 o | ay° | ayz

where N, is the first term of the matrix [Nl,. Using Eq. 8,

2 2
- gy AR 3%y
=328 5 (1.~ 35% 23 1= 1

ay? it 1 oay?

where x is the normalized x coordinate of the beam, Eq. 34 simplifies

to

3Ty,
a5, " EL Gy 1€ € €5 €l 1a1,]

dy [35]

vhere CI—C4 are the polynomials in x given in Eq. 8 evalnated at the

local x coordinate of the beam and the summation in Eq. 34 is implied,
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Similar expressions have been developed for the other rows. The
only change from Eq. 35 is that the first C1 increments to CZ' C3, and

C4. accordingly., The element stiffness matrix associated with the

displacement parameters [A}n is

[S]mn (flexurel-longitudinal) =

B Bl Bl R0
EL(L) CCp GG GGy GG s

[C4C1 C4C C4C3 C4C4)

where C, =1 - 3;2 + 2;3

C, = x - 2;1 * ;21

C, = 3;2 = 223

x(;z - x)

0
]

are evalnated at the local x coordinates of the beam. Due to the nse of

orthogonal boundary functions

e o
14 ) dy m=n
o d ay2

To illustrate the nse of Eq. 36 an example is givem, Let x=0 and

the boundary function be Y = sin %ﬁx Thus I

b
4 = f Ymrndy = m4ﬂ4f2b3 and
[+]

at 1=x=0, CI=1 and Cz‘cs“c4=°- smn(l_lj = n4n4EIIZb3 and all other

entries are zero,



4.3.2, Torsional stiffness—longitudinal beam

The torsional strain emergy is

GJ

2%w,2
> ( )

v dxdy

tl

<] “nﬂ

where GJ is the torsiomal rigidity of the beam,

Substituting Eq. 31 into 37 gives

a [N]
Bxay

r
P
m=

2] f&} dy

which may be minimized with respect to each displacement

the

displacement vector, Taking the
gives
av, r | a%INI
75 =@ uEI 3xdy o {A] a (g&;;] dy

where 211 functions are evaluated at the local x coordinate

Similar to Sec. 4.3.1, let k range from 1 to 4 to give the

element stiffness matrix [S] The boundary functlions are

the litersture in closed form (37,38), but =ere not,

orthogonal for the integral in Eq. 38. Performing

the

[371]

[38]

parameter in

derivative with respect to &

‘[39]

of the beam,
four rows of
available in

in general,

required

differentiation and integration gives the strip stiffmess matrix,



[S] (torsiomal - longitudinal) =

O

GIT, Czcz C%C% C‘;:C‘f [40]
€3 C3C4
| (sym) C;C;_

where the prime denotes the first derivative with respect to x and

b aY ayY
m n
I =1 G G &

Also

¢ &= §3)a 4 6 la

=

c2'=1—41'+327'
C; = 6x/a - 6;2fa
C4 = 3x - 2x

are ovaluated at the local x coordinate of the beam, As an example

consider a simply supported beam located at local x coordinate of zero.
I L r L

It follows C2 =1 and Cl = C3 = Cdl- =0, Assume Iﬂ = sin nﬂy!b thus

15 = m2n2f2b. The stiffness matrix contains one nonzero entry per mode,
Snn(z,Z) = m2n2f2h. Similarly, if the local x is equal to a, the strip

width, this stiffness matrix also contains one nonzero entry per mode,

p 1.
Smn(4.4} = m“n“/2b,

4.,3.3, Flexural stiffness — transverse beam

The flexural strain emergy for the beam is



e S e

30
2
EI 7 (2%w,2
‘ O, == [ (=) dx [41]
¥t s o dz%
Again minimizing with respect to the displacement parameters gives
avu a .2 2
s = B (D) Gl (D) ax [42]
kn o dx kn 9zx
Substituting Eq. 31 into 42 and performing the differentiation gives
2 2
au r a | 9“IN] a“[N. ]
ft k
e BE Pl {AJJ = [43)
kn m=1 o dx 1 ox

where all functions are evaluated at local y coordinate of the beam. As
before, k ranges from 1 to 4 giving the four rows of the stiffness
matrizx per mode, Substituting Eq. 8 into 43, performing the

differentiation and integration yields

[S]mn (flexural-transverse) =

12/ 6/a% -12/8 6/a%

2
EI Y Yn 4:"! "‘6! ls 2!8 s [44]
(sym) 12/a° -6/a
4/a

where Yn and Ym are evaluated at the local y coordinate of the beam,

4.3.4, Torsiomal stiffness — transverse beam

The torsiomal strain of a transverse beam is

2
_ 61 %  a%w,2
Ui = 3 £(313y} dx [45]

where GJ is the torsional rigidity and y is evaluated at the local ¥

cooruinate of the beam., Minimizing with respect to skn gives
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av % Ll 2
5 98 o Loa. DTNRY S L.

T &7 | 35y 55— ‘axay &* 1461
n 0 kn

and substituting Eq. 8 into 46 and differentiating gives

av 3N,

i 5 “‘[_ai_ kn
a5, _ & = £ [3xay (NIpl(8),) 358y 9* [47]

Performing the differentiation and integration yields

[S]mn (torsional—-transverse) =

36 3a =36 3a
6T (a_Y:.E.) {izﬂ) 4a2 =3a 3
30a 'dy ay (sym) 36 -3a

432

[48]

4.3.5., Column stiffness — axial

The axial strain energy in a support column attached to & strip is

1 g | 2 [49]
=g % ['(:c’yc}] o

where KA is the axial stiffness of the column and Wes the axial
deformation is obtained by evaluating the displacement function w at the

local coordinates, LI corresponding to its location in the strip.

Minimizing with respect to the displacement parameter Bkn gives

au
c 2
=K, |w w [50]
aakn A [ c] Eskn [ c]
Substituting Eq. 8 into 50 gives
é?ﬂi =K, - (NI, (A1) T [N {Aim] [51]
kn m=1 kn

which after differentiation simplifies to
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au
c

r
=K, T |IN]_ (A} | N 52
Bbkn A it m m] kn (52]

where Nkn is defined in Eq. 34 and k ranges from 1 to 4 to give the four

rows of the stiffness matrix for mode n. Thus

CIC1 C1C2 CIC3 C1C4

czcz czcs C2C4

(8], (Axial) =K, Y ¥ |0 6, o, (53]

C4C4

where Cl—cd are the polynomials given in Eq. 8 evalunated at x and Yn’zn

are the boundary functions evaluated at yc.

4.3.6. Flexural stiffness — column

The flexural strain enmergy im the columns has two components,
bending transverse and parallel to the strip. The ''bending
transverse'' 1is associated with a rotation im the local ¥y direction
using the right hand rule, This action will be examined first followed
by the orthogonal rotation to be termed ''bending longitndinal,"”

The strain energy for the ‘'bending transverse'’' state is

2 2
» - _L & aw(xc.?c) . l " al [S‘]
cx b MRS 5 ox 2 ¢x |ox

where ch is the flexural stiffness of the column, Minimizing with

respect to the displacement parameter akn gives

aUc: awc 3 avc
3. - Sex |9 b, oz [551

Substitoting Eq. 8 into 55 gives
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30__ B [a[w]mi " [‘”N]m
=K p LAY - J o= (A} [56]
abkn °x ax m] aakn dx m |
which simplifies to
oU r oN.
cx a kn
e P e ¢ TN B (57
kn m=1

where k ranges from 1 to 4 to give the four rows of the stiffness matrix

shown below,

[S]mn (column flexural-transverse) =

ol L] L] r L r " L

CIC1 CIC2 CIC3 CIC4

] r L} ’ ] ’

c.C G € 00
chmYn st ' % % 1 (58]

(sym) C3C3 0304

¥ 1}
| €4S

The strain energy in the column bent orthogonal to the case just

described is given by

aw 2

1 c
U o .= = e~
oy =2 Yoy oy ] [59]

A procedure similar to that described by Eqs. 54-58 may be employed to
yield the stiffness matriz given below,.
[S]nn (column flexnral-longitudinal) =

C.E, L£.C C1C3 c.cC

191 5% 1%
) Aol (ﬂ) €% G 6% [60]
cy 9y ay c303 C3C4

¢.c

474
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where CI—C4 are polynomials given in Eq, 8. The polynomials and their
first derivatives are evaloated at x. Ym and Yn are the boundary
function evaluated at Ve
4.4, Summary

Several strip stiffness matrices have been derived for attached
beams or columns, Each [S]lln matrix has dimensions 4x4 and will add

directly at the element level to the strip matrix described in chapter

tvo.




CHAPTER V

5. PROGRAM STRIP
5.1. Introduction

The theory presented in chepter four has been incorporated in a
computer code which is described herein and is entitled Program STRIP.
A general discussion of the program capabilities and features is
followed by a more extensive discussion of the program algorithm,
Mathematical and coding details are omitted to present a clear view of
the important steps of the algorithm, The reader familiar with
conventional finite element analysis will observe several similarities
between the finite element and finite strip methods., Major distinctions
between the methods are noted and issues relevant to this research are
emphasized,

STRIP has the capability for static, linear elastic analysis of
beam and column supported rectangular orthotropic flat plates. The
Kirchoff assumptions (1,2,3) are used throughont. Each beam may be
oriented either parallel or perpendicular to the lonmgitudinal direction
of the strip. Each column can be located anywhere in plan but must be
perpendicular to the plate surface, In-plane plate deformations are
neglected, STRIP is restricted to straight, prismatic beams, and
rectangular strip elements,. Any strip may be loaded with uniformly

distributed load and/or multiple concentrated loads.
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Program STRIP requires minimal input dats thus economizing analyst
preparation time and avoiding the laborious input often required of
finite element codes, This feature frees the designer/analyst to
investigate many alternative systems at the preliminary stages of design
with the same degree of rigor as typically applied only to the final
system configuration. In addition, the displacements and internal
actions may be calculated and ountput at any location in the system,
Often cumbersome hand calculations or & post—processor routine must be
used with conventional finite element codes to obtain displacements or
actions at chosen points.

Although the input is minimal and straightforward, the reader is
cauntioned that the FSM is an approximate method and, as such, its use is
somewhat an art. Proper use requires judgment based on the experience
of the analyst, Similar to the FEM, the analyst must insure that
convergence of the quantities of interest (deflectioms, etc.) has been
achieved. Illustrative examples in the snbsequent chapter give the
reader an insight into the conmvergence characteristics compound strip

me thod.

5.2, Computer Algorithm

Program STRIP was written in Fortran IV nsing a macro programming
technique which employs an ''executive program'' to control the
algorithm flow via calls to appropriate subroutines, The algorithm used
in STRIP is illustrated in Figure 5.1. Each segment of this flow chart,
which corresponds to a sobroutine im STRIP, is described in the
following sectioms.

The algorithm is composed of the ten parts given in Fig. 5.1.
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READ INPUT DATA
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FORM THE STRIP STIFFNESS
MATRIX

l

FORM THE STRIP STIFFNESS
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COLUMN ELEMENTS
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!
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Figure 5.1, Flow Chart for STRIP
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The first two parts are performed once for each analysis while
parts three through seven are repeated for each strip and for each non—
zero harmonic considered, Nodal line boundary conditions are invoked
after the assembly of the global stiffness matrix and load vectors are
completed, The displacement coefficients are determined using Gauss
elimination to solve the set of linear simultaneous equations which
result, The displacement coefficients establish the displaced shape of
the middle surface of the plate allowing the moments to be calculated in

the final routime, Although possible, shears are pmot calculated,

5.2.1. Read input data

Subroutine INPUT reads and echos all input data. Presently no dats
checks are made imposing the responsibility of logical data input on the
analyst., As previously mentioned much of the laborious input data
required of many finite element codes is not necessary in the FSM.
Further, any tedious input has been omitted in STRIP by employing
coordinate and strip element gemeration routines, This latter step is
comparable to ''antomated mesh generation’" in the finite element

method.

5§.2.2. Integrations

The formation of the element load and stiffness matrices involve
the integrations given in Fignre 2.1. The integrals are evaluated for
each non—zero harmonic considered and stored for later use, STRIP has
two integration options, sixteen point Gaussian quadrature and closed-
form formulae, Sixteen point guadrature is required to accurately
integrate the displacement function of the higher harmonics, The

closed-form formulae were generated by Felgar in 1950 (37,38). To the
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anthor’s knowledge, the availability of these formulse has mot been
reported in the finite strip literature, Employment of these formulae
allows the analyst to consider as many non-zero harmonics as necessary
whereas common numerical integration techniques can produce inaccuracies

at the higher modes,

5.2.3. Formulation of the strip compound stiffness matrices

Each strip stiffness matrix (Figure 2.1) is created for all non~-
zero harmonic and is fed into the global stiffness matrix. This
formation routine is nested in 2 double loop executing the double
summation as shown in Eq. 16. If beam and/or columns are attached to
the strip, the beam and/or column strip stiffness contribotion are
assembled in the same manner as the plate stiffness matriz., The
assembling procedure is a matrix addition performed at the element level
thus producing the '’‘compound strip'' stiffness matrix for subsequent
assembling of the structure stiffness matrizx, g

In general, the bemm and column stiffnesses effect every entry in
the strip stiffness matrix and this can have important implicatioms, A
support element could dominate the strip stiffness matrix making all of
the terms large and a strip with excessive stiffness results, For
example, consider a plate supported by a column somewhere in its plan,
Columns wusnally have a very large axial stiffness relative to the
stiffness of the attached elements in flexure. This large stiffness, IA
in Eq. 57, could '"'overshadow'' the entire strip causing the strip to
behave as if it were rigid. As illustrated in the subsequent chapter,
proper modeling of rigid supports cam be achieved by using elements with

moderate stiffness.



5.2.4. Form and assemble the strip load vectors
The strip load vector is created for each non-zero harmonic and fed
into the global load vector. Contributions of oniform and concentrsted

loads are combined at the element level,

5.2.5. Boundary conditions

Unlike the finite element method, the globel stiffness matrix of a
structure generated in the FSM 1Is non-singular and can be inverted
without the introduction of the boundary constraints. Boundary
constraints, either doe to & real boundary or introduced to take
advantage of symmetry, are imposed by a numerical techmique cszlled the
'""big number method'', For each constrazint this involves scaling the
appropriate diagonal term of the stiffness matrix by a large number, say
1050. In effect, this row is decoupled from the rest of the matrix,
Solving the equation prodoces zero value for the displacement
coefficient associated with that egunation to be zero. If more than ome
harmonic is comsidered, several diagonal terms must be multiplied by the
large number for each individual constraint,

STRIP has the capability to model knife edge, clamped, and guided
support conditions in addition to the free edge. Beams can be placed at
an edge and columns can be placed at an edge or cormer by simply
specifying appropriate coordinates for the structural component. This
is dome without recourse to the features just described for explicit

support conditions,.

5.2.6, Solution of simultaneous equations
The system of simultaneous structural equations which resnlts is

solved to determine the displacement coefficients, These coefficients
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should not be confused with nodal displacements in the FEM, The
coefficients must be suobstitoted into the assumed displacement function
to determine the desired displacements, In general, this involves a
summation of each harmonic’'s contribution to the displacement,

The finite strip model produces a system of eguations whose
coefficient matrices exhibits symmetry about the major diagonal and is
tightly banded. The number of equations, NUMEQ, and the half-bandwidth,

IB can be determined as follows:

NUMEQ = (NST + 1) ® NT * 2 [60]

IB = 4 * NT
where NT is the number of non—zeroc harmonics comsidered and

NST is the number of strip elements,

Note the half-bandwidth is not a function of the number of strips.
Thus the mesh may be very fine and only a few harmonics regquired
resulting in & system of equations with a narrow bandwidth. In pgeneral
the bandwidth is filled with nonzeroc entries, no ''skyline’’ or
""sparse' effects exist. The equation solver employed operates on the
stiffness matrizx stored in an array dimensioned NUMEQ x IB in order to
economize on execution time and storage required. Gauss elimination is
nsed to triangularize the stiffness matrix from which the displacement

parameters may be determined.

5.2.7. Displacements and internal actions
The displacement coefficients are substituted into the assumed
displacement functions to arrive at the displacement at a given

location,




Similarly, to determine internal actions these displacement
coefficients are substituted imto the appropriate derivatives of the
displacement functions and scaled by the welastic constants, For
example, the moments can be found by substituting the displacement
coefficients into the functions for curvatures and multiplying the
curvatores by the compliance matrix, Eq. 12, to arrive at moments,

STRIP calculates deflections, rotations, and moments along any
prescribed 1line at specified intervals. Thos displacements and moments

at any point in the continuum may be determined.

5.3. Summary

A brief genersl description of STRIP has been given. Mathematical
and programming details have been omitted to allow the reader to develop
a clear understanding of the important steps in the FSM.

The beam and/or column stiffness contribution add directly to the
strip stiffne;s matrix, Thus the stiffness of these elements is in
effect ''smeared out'' over the entire strip effecting each entry im the
strip stiffness matrix. This limits the range of valunes for the ratio
of the beam and/or column stiffness to the plate stiffness which may be
successfully modeled with STRIP, As illustrated in the next chapter,
this is not a severe limitation but must be considered when modeling

rigid support elements.



CHAPTER VI

6. ILLUSTRATIVE EXAMPLES
6.1, Introduction

Several plate solutions are presented as verification of the
correctness of the theory. First, a single panel plate was analyzed
with various support conditions which were chosen to exemplify the use
of the compound strip matrices presented in chapter four, Each
extension of the FSM is illustrated separately and then a comprehensive
example is given which incorporstes most of the new elements in a single
panel plate problem. Second, a multi-panel plate system  which
incorporates many of the compound strip elements is given., This problem
exemplifies the capabilities of the compound strip elements with a
practical problem previously studied by other researchers using other
methods (16,17,40). The example presented is also compared to the
results from several finite element analyses,

This chapter concludes with a rate of convergence study, The FSM
and FEM are compared on the basis of accuracy and computation effort

required,

6.2. Single Panel Systems
6.2.1. General description

The single panel plate systems shown in Figore 6.1 have been
analyzed with the finite strip and finite.element methods, This set of

plates incorporates a veriety of boundsry conditions including a clamped



A B e
/|
1.0
/|
/,
I
4 i I _al
G l ‘]E K4=100000,
I 1.0 1
l (a) (b)
Y
LA PN S AN AN AN
4
y
Y
7
7
b
A
EI=GJ=1.0 /
7
Y |
| Ky=1.0
(e) (d)
i
L / EI=GJ=10
/)
/
R —— = !
K,=100000

EI=GJ=1.0
(e) (£)

Units: kip, [eet
Uniform load = 1.0
Isotropic material

Figure 6.1 Single Panel Plate Systems



45

support along AC, & knife edge or pinned support along AG, and two
adjacent free edges along CE and EG. The finite strips are oriented in
the y-direction in &all cases, thus the eigenfunction which corresponds
to a cantilever beam was used. The plates are square with sides of unit
v’ Dl’ ny of 1.0, 1.0, 0.30,
0.35, respectively. The beams’ flexural and torsional rigidities EI and

length and have isotropic rigidities Dx’ D

GI were assigned values of pnity. The column axial stiffness was given
a large value (100000 k/ft.) to limit the deflection at E to a small
fraction of the nunsupported case, Columns usually have a large axial
stiffness as compared to the stiffness of a beam or plate, thus this was

deemed reasonable, The loading was uniform for all cases.

6.2,2, Modeling

The finite element and finite strip methods were used to snalyze
the plate systems described in the previous section. The structural
analysis program SAP IV was nsed for the finite element analyses. This
program uses a gquadrilateral plate bending element composed of four
triangular elements (39) with the common degrees of freedom condensed
out at the element level. SAP IV was chosen on the basis of
availability to the author and familiarity to the engineering community,
The single panel systems were modeled with five by five and nine by nine
meshes with nodal lines equally spaced resulting in square elements for
all analyses, Beam elements were employed to model the beams and
columns,

A nine strip model was used for the finite strip anslysis of the
single panel systems, The number of harmonics was varied, The intent
was not to show convergence but rather to illustrate the FSM with a

constant nomber of strips. Consequently, it cannot be expected that
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6.2.5. Column supported plate

The plate shown in Figure 6.1b was analyzed for a uniform umit
load. The deflections are given in Figures 6.9-6,11 and the moments in
Figures 6.12-6,15, The maximum deflection calculated by the two methods
differed by five percent and the maximum moments differed by six

percent.

6.2.6. Beam oriented along the strip

The plate shown in Figure 6,lc has a2 beam oriented longitudinal
strip direction. As illustrated in Figures 6,16-6.22 the 9,7 FSM and
9x9 FEM methods compare quite well with deflections differing by less
than one half of one percent and the maximum values being identical (to
four significant digits in the output). Moments differed by 1less than
three percent while the computed maximum moments are also the same to

four significant digits,

6.2.7. Rotational spring

A rotational spring was placed at E as shown in Figure 6.,1d. The
stiffness of the spring was moderate (Kx = 1.0 kip), decreasing the
deflection at E 10,6 percent from the unsupported case described in
section 6.2.4., The finite element and finite strip model compared very

well as illustrated in Figures 6.23-6.29.

6.2.8. Beam oriented transverse to the strips

The plate shown in Figure 6.le has s beam oriented transverse to
the strip located near the center of the plate. As shown in Figures
6.30-6.36 the FEM and FSM compare favorably with the maximum deflectionm
wi*hin 1.25 percent and the maximom moment differed by approximately six

percent,
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6.2.9, Comprehensive single panel example

A single panel plate which incorporated the Ilmportant features of
the compound strip method is shown in Figure 6.1f, The system has beams
with flexural and torsional rigidities., One beam is oriented parallel
and the other is transverse to the strip. A pinned column of 10000 k/ft
located at the intersection of the free adjacent edges. The deflections
are given in Figures 6.37-6.39 and the moments are given in Figures 6.40
and 6,41, The FSM and FEM compared favorably for deflection and moment

with the different in the maximums of less than three percent.

6.3. Continuous Plate System

The application of compound strip model to a multipanel plate
system is illustrated with the analysis of the system shown in Figure
6.42. This plate was first snalyzed by Maugh and Pan (40) using a
flexibility approach to 1invoke compatibility along the edge of each
plate, Later Gutkowski (16,17) studied this system and used it to
compare the FEM with his finite panel method (FPM) and the rigorous
solution given by Maugh and Pan., The system is composed of fifteen
pinned supported panels with varying aspect ratios, The entire system
is uwniformly loaded thus symmetry techmiques have been employed. Two
mesh layouts were used and are shown in Figure 6,43, Note, a gquarter of
the plate was modeled. Three strip models were nsed and are shown in
Figure 6.44.

Deflection along A-A, B-B, and C-C and moments along B-B and C-C
are reported giving a representative overview of the systems’ behavior
and equitable comparison of the methods., The deflections are given in

Figures 6.45-6.47., The strip models compared quite well with the 10 x
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14 mesh with a difference in the maximum deflections of two percent,
The moments compared favorably as illustrated in Fignres 6.48-6.51 and
the maximum negative moment calculated by the FSM (14 strip, 13 terms)
differed from the value reported by Maugh and Pan by 11 percent. The
moments at this location were not readily available from the finite
element model, The maximum positive moment occurs near the middle of
the corner panel. The FSM gave a moment in the x-direction of 9.71 k-
ft/ft and the moment given by Maugh and Pan is 9.34 k-ft/ft and the 10 x
14 SAP IV mesh gave 9.78 k-ft/ft Gutkowski reported 9,64 k-ft/ft with
the FPM, The percent difference for the FSM, FEM and the FPM ars 4.0,
4.7, and 3.2, respectively (relative to the Maugh and Pan value),. The
corresponding moments for the moment in the y-direction using the FSM,
FEM, FPM and the Mangh and Pan rigorous method are 4.37, 4,37, 4.37, and
4.27 with percent difference for the FSM, FEM, and the FPM of 2.3

percant.

6.4. Rate of Convergence

The system shown in Figure 6.42 was analyzed as an orthotropic
plate by Gutkowski (18) unsing the FPM and the Melosh rectangular element
using four mesh layouts. The plate has orthotropic material properties

of D, D, D

, and D of 6,0, 3,0, 4,0, and 1.0 k in., respectively. A
x v 1 xy

uniform load of 1.0 ksi was applied and one quarter of the plate was
modeled due to symmetry. The quarter system mesh layouts were 10xz7,
10x14, 15x14, and 15x28 where the first number is the number of elements
in the y-direction, These mesh sizes correspond to 158, 354, 544, and
1146 degrees—of-freedom, respectively. Herein a comparison was made

betwren these results and the developed compound strip model,



8.0

~20.0-16.0 -12.0

LEGEND
a - FEM 1OX14 Mesh
A ©=FSM 14 Sir_, 13 Trms.
¢=F5M 7 Str., 7 Trms.
w=-FSM 10 Str., 9 Trms.
I 1 I I I I I I 1
0.0 35 7.0 18,5 14.0 17.5 21.0 24.5 26.0 31.0

Distance from the edge, ft.

Ftg. 6.48 Moment X along C-C

35.0

96



Moment, kip—ft./ft.

~4.0

10.0

8.0

6.0

2.0 4.0

0.0

-6.0

-10.0-8.0

-2.0
| |

|

20w | 20 .|

s s |

o = ['EN
o - ['SH
¢ = 15N
@ -~ FSH

LEGEND
10X14 Mesh

14 Str.,

PO N

13 Trms.

Trms.

10 Str., 9 Trms.

0.0

35

7.0

1 I | i
10.5 4.0 172.5 21.0 24.5
Distance from theegde, ft.

Fig. 6.49 Moment-Y along C-C

35.0

L6



q-g Buoqo y_qusuwoy g g *614

") “spbe ayy wouy soubysa

0°sz m.wm a.cm mu_: o;._ﬂ 5 21 0°01 G4 0'S 5'¢ 00

| | i 1 | i

o

)

|

)

o

"SuWJ) B UG O WS = m e

"BUL L 98 F ST o0 o
"SWJl ¢l UG b] NS4 =0

Usa FIX01 W14 - e !

(N353 - o

98




Moment—X, kip—ft./ft.

B.0

6.0

. il

2.0

-6.0

-10.0-6.0

= F

Ec OO
mou

F
F
F

LEGEND
£ 10X14 Hesh
SH 14 Str., 13 Trms.

SM 7 Str., 7 Trms.
SH 10 Str., 9 Trms.

T T 1 T 1 1 5 T
215 5.0 7.5 10.0 12.5 15.0 17.5

Distance from the edge, ft.

0.0

“Lg. 6.51 Moment-Y along B-B

T
20.0 B

U
NS,

5.0

66




100

The finite strip models employed are those shown earlier in Figure
6.44 and the 28 strip model shown in Figure 6.52, The number of
harmonics considered was varied for each model up to a maximum of 23 (12
non-zero) for the 28 strip model.

The deflections at the center of each panmel are given in Table 6.1
and the moments are given in Table 6.2, The midedge moments are
reported in Table 6.3, The degrees-of-freedom are stated for each
analysis for comparison of computational effort,

The relative rates of convergence are shown in a series of figures
showing the absolute valne of percent difference between the 15x28
finite element model and the finite strip results. The convergence rate
for deflection at the middle of panel no, 2 is shown in Figure 6.53,
Convergence characteristics for the other large panels (1, 2, and 3) are
similar. The FSM shows a much faster convergence rate with respect to
the number of degrees—of-freedom for mid-panel deflections than the FEM,
For example, for approximately a 1,5 percent difference the FSM requires
approximately 120 degrees-of-freedom while the FEM requires about 450,
thus an apparent computational savings, In the small panels (4, §, and
6), where the deflections are much smaller, the FEM converges more
rapidly than the FSM.

The relative rate of convergence of the moment in the y—-direction
at the center of panel no. 1 is shown in Figure 6.54, The convergence
characteristics of the other mid-panel moments are similar for the
larger panels, The FSM exhibits a faster convergence rate than the FEM
for these actions as illustrated in Figure 6.54. Similar to deflection,

the FEM converges more rapidly for the mid-panel moment of the smaller
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Table 6.1, Deflection at the Center of the Panels,
DEFLECTIONS, IN.

METHOD DOF Wi w2 w3 W4 W5 W6

FEM 10X14 354 0.2781 0.1804 =0.0062 0.0353 0.0435 0.0270
FEM 15X14 544 0.2639 0.1788 -0.0061 0.0320 0.0422 0.0259
FEM 15X28 1146 0.2763 0.1766 -0.0058 0.0321 0.0406 0.0250
FPM - 0.2782 0.1788 -0.0047 0.0331 0.0397 0.0239
FSM 7,3 32 0.2663 0.1711 -0.0015 -0.0770 =0.0495 0.0004
FSM 7.5 48 0.2662 0.1713 -0.0015 -0.0542 -0.0311 0.0042
FSM 7.7 64 0.2828 0.1836 0.0010 _ -0,0285 =0,0107 0.0091
FSM 7,9 80 0.2744 0.1747 -0.0043 0.0107 0.0224 0.0200
FSM 7,11 96 0.2713 0.1716 -0.0058 0.0251 0.0340 0.0230
FSM 7,13 112 0,2751 0.1748 -0.0043 0.0305 0,0386 0.02438
FSM 7,15 128 0.2750 0.1748 -0.0043 0.0302 0.0383 0.0246
FSM 10,7 88 0.2829 0,1827 -0.0022 -0.0284 -0.0103 0.009%91
FSM 10,9 110 0.2745 0.1738 0.0071 0.0108 0.0227 0.0192
FSM 10,11 132 0.2714 0.1707 -0.0086 0,0251 0.0342 0.0219
FSM 10,13 154 0.2752 0.1738 -0.0072 0.0306 0.0388 0.0236
FSM 10,15 176 0.2752 0,1738 =0,0072 0.0303 0.0385 0.0230
FSM 14,9 150 0.2756 0.1765 -0.0043 0.0106 0.0225 0.0197
FSM 14,11 180 0.2725 0,1733 -0.0058 0.0250 0.0445 0.0227
FSM 14,13 210 0.2762 0.1765 =0.0044 0.0304 0.0387 0.0245
FSM 14,15 240 0.2762 0.1765 -0.0044 0.0302 0.0385 0.0242
FSM 28,7 232 0.2849 0.1885 0.0049 -0.0256 0.,0028 0.0182
FSM 28,15 464 02773 0.1795 -0.0004 0.0333 0.0464 0.0334
FSM 28,23 696 0.2777 0.1798 -0.0005 0.0325 0.0454 0.0322
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Table 6,2, Moment at the Center of the Panels.

MOMENT, K-IN,/IN,

METHOD DOF MX1 MY1 MX2 MY2 MX3 MY3
FEM 10X7 158 1733 1182 1335 905 541 355
FEM 10X14 354 1931 1320 1498 1016 301 196
FEM 15314 544 1918 1312 14387 1010 302 196
FEM 15X28 1146 1882 1288 1430 972 243 157
FPM = 1865 1277 1409 958 222 142
FsM 7,3 32 1804 1243 1350 926 657 438
FSM 7,5 48 1804 1243 1350 926 657 438
FSM 7,7 64 2070 1437 1569 1084 787 527
FSM 7,9 80 1764 1210 12388 877 546 358
FSM 7,11 96 1603 1090 1146 772 459 296
FSM 7,13 112 1770 1214 1296 883 573 378
FSM 7,15 28 1770 1214 1296 883 573 377
FSM 10,7 88 2185 1513 1631 1126 562 376
FSM 10,9 110 1880 1287 1346 915 373 243
FSM 10,11 132 1719 1167 1204 810 301 191
FSM 10,13 154 1886 1292 1355 923 393 258
FSM 10,15 176 1886 1292 1355 923 393 258
FSM 14,9 150 1903 1303 1452 987 294 190
FSM 14,11 180 1742 1182 1309 881 224 139
FSM 14,13 210 1910 1308 1461 994 314 206
FSM 14,15 240 1910 1307 1461 994 312 204
FSM 28,7 232 2171 1504 1696 1170 407 274
FSM 28,15 464 1871 1282 1420 966 253 165

FSM 28,23 696 1871 1281 1419 965 248 161
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Table 6.2. Moment at the Center of the Panels (Continmed).

MOMENT, E-IN/IN.
METHOD DOF MX4 MY4 MX5 MY5 MX6 MY6
FEM 10X7 158 763 554 806 579 869 596
FEM 10X14 354 720 530 791 575 645 447
FEM 15X14 544 659 485 734 533 616 427
FEM 15X28 1146 640 470 710 516 567 394
FPM - 596 438 662 481 529 366
FSM 7,3 32 842 600 -597 -423 124 84.5
FSM 7,5 48 -580 -412 -368 -259 -19.2  -10.5
FSM 7,7 64 -250 -174 -86.1  -57,7 193 134
FSM 7,9 80 357 266 455 334 113 82.7
FSM 7,11 96 664 491 719 526 813 563
FSM 7,13 112 846 625 882 646 932 647
FSM 7,15 128 828 612 865 633 911 633
|
FSM 10,7 88 ~267 -186 -89.6  -59.9 161 113
| FSM 10,9 110 348 260 462 338 521 362
‘ FSM 10,11 132 658 487 729 532 655 456
FSM 10,13 154 841 622 893 653 753 526
| FSM 10,15 176 823 609 875 641 738 515
FSM 14,9 150 344 257 451 331 484 338
FSM 14,11 180 655 485 723 529 610 427
FSM 14,15 240 820 607 870 637 689 484
FSM 28,7 232 -265 -185 -97 -70 158 106
FSM 28,15 464 824 609 876 642 667 469

FSM 28,23 696 473 347 560 404 478 329

FSM 14,13 210 815 620 888 650 704 495
|
|
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Table 6.3, Midedge Moments

MOMENT, K-IN./IN,

METHOD DOF M12 M23 M45 M56 M41 M52 M63
FEM 10X7 158 -2674 -1460 638 -667 -1130 -923 -351
FEM 10X14 354 -2959 -1682 -876 =904 -1269 -1050 -356
FEM 15X14 544 -2935 -1669 -842 =867 =1336 -1117 -416
FEM 15X28 1146 -3008 -1723 =940 -953 -1315 -1088 -395
FPM = -3120 -1812 -917 -956 -1422 -119  -463
FSM 10,9 110 =2324 -1072 -396 -360 =571 -436 -89.
FSM 10,11 132 =~2278 -1035 —547 -462 =735 =570 -126
FSM 10,13 154 -2333 -1076 -618 =513 -803 -628 -151
FSM 10,15 176 =2333 -1076 -610 -151 -803 -628 =507
FSM 14,11 180 -2818 -1569 -734 =771 -738 -576 -138
FSM 14,13 210 -2892 -1639 -815 -844 -806 -634 -162
FSM 14,15 240 ~2892 -1639 -815 -844 -806 -634 -163
FSM 28,7 232 =3233 -1943 -265 -90. -279 191 -101
FSM 28,15 464 -2982 -1709 -908 -940 -805 -632 -159

FSM 28,23 696 -2981 -1706 -877 -883 -1011  -813 =249
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panels. The relative rate of convergence for these moments varies
depending on the panel and action under consideration.

The relative rate of convergence of the midedge moments vary
throughout the system. The convergence characteristics of the midedge
moment between panels no. 1 and no. 2, M12' is shown im Figure 6.55.
The convergence rate of the two methods are nearly the same for this
action. This is typical in locations where the midedge moments are
larger; M12' st. For edges where the moments are smaller, usupally
adjacent to the smaller panels, the FEM exhibits a convergence rate
favorable to the FSM as illustrated in Table 6.3.

Based on the numerous example problems investigated and those
presented, the following summary is made:

1. The convergence rate for maximum deflection in a plate is

faster for FSM than the FEM.

2. The rate of convergence for the maximum midpanel moments

is favorable for the FSM.

3, VFor relatively smaller panels, the FEM exhibits =

favorable convergence rate for midpanel moments,.

4, The convergence rate for the maximum midedge moment is

nearly the same for the two methods. Where the midedge
moments are small, typically in the smaller panels of a
system, the FEM is favorable,

5. In general, where actiaons or deflections are large

(relative to the system) the FSM has favorable

convergence characteristics.
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6.5. Summary

Several illustrative examples have been presented in this chapter.
Throughout, the compound strip model compared very well with the more
established FEM. The continuous plate system illustrated the capability
of the compound strip to accurately model multipanel plate systems which
are commonplace in engineering practice., The convergence rate varies
with quantities of interest and location, but generally the FSM is
particularly well suited to determine maximum deflection and moment.

In addition, over two hundred plate systems have been successfully
analyzed with the compound strip method as part of this research,
Examples include many problems found in (referemce 2), plane grids,
continuons beams, and numerous other systems., Some of these will be
presented in future published papers. The compound strip methodology

compared favorably with rigorous and/or FEM solutions im all cases,



CHAPTER VII

7. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH
7.1, Summary

A finite strip method vas developed for the analysis of 1linear
elastic flat plate systems which are continuous over deflecting
supports, The approach presented incorporates the effect of the support
elements in a direct stiffness methodology. The stiffness contribution
of the support elements have been derived and are given in the form of
strip matrices which are directly added to the plate strip stiffness
matrix at the element level. The combination of the plate and support
elements is termed the '‘compound strip.'

The validity of the compound strip method was demonstrated in
several illustrative problems. The FSM and FEM compared favorably for
displacement and moment,

The rate of convergence of the compound strip was studied for a
continuous multipanel system. The FSM was found to be more
computationally efficient than the FEM when maximum values for moment or
deflection are required, The FEM exhibited favorable convergence
characteristics in locations where the magnitudes of displacement and

moment are relatively small,

7.2. Conclusions
The following conclusions can be drawn from this research in this

manuscript.



112

The FSM requires minimal input data, For example, the
systems modeled required less than 30 lines of data.
The interpretation of output is straightforward. Actions

and displacements may be calculated along any line or at

point in the systems,

The stiffness matrices of the support elements add
directly to the conventional strip stiffness matrix
creating the compound element. The gonventional assembly
procedures may be used, thus only minor code
modifications must be made in  existing codes to
incorporate the compound strip elements.
Single and multipanel plate systems can be accurately
modeled with the compound strip method.

Support elements with large stiffness cam be used to
model rigid supports.
The compound strip analysis requires a single solution
where, by contrast, flexibility techmiques require
repetitive analyses,
The system of equations usually has a narrow bandwidth,
Forther the bandwidth is only a function of the number of
harmonics considered and is independent of the number of
strips or nodal lines,
Maximum deflections and moments may be calculated with
less computational effort (fewer degrees—of-freedoms)
than both the FEM used in this study,

Small deflections and moments in the systems are

calculated more efficiently with the FEM employed.
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7.3. Future Research

The scope of the study presented herein was limited to plate
bending. By incorporating in-plane effects, this fundamental concept
can be employed to model more complex continuous systems such as folded
plates, box girders, and slab-girder bridges and floors. Compound strip
concepts could also be applied to create mass matrices for the support

elements allowing dynamic analysis of folded plate systems continuous

over flexible supports.
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