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ABSTRACT 

COMPOUND STRIP METHOD FOR THE 
ANALYSIS OF CONTINUOUS ELASTIC PLATES 

A finite strip method (FSM) Is developed for the analysis of I I near 

elastlc flat plate systems which are continuous over deflecting supports. 

The approach presented Incorporates the effect of the support elements In a 

direct stiffness metbodology. The stiffness contribution of the support 

elements have been derived and are given In the form of strip matrices 

which are directly added to the plate strip stiffness matrix at the element 

level. This summation of plate and support stiffness contributions consti­

tutes a substructure which Is termed a compound strip. 

The val ldlty of the compound strip method Is demonstrated In several 

I I lustratlve problems which Include single and muitlpanel plates continuous 

over flexible and rigid beams and columns. The FSM and finite element 

method (FEM) compare favorably for displacement and moment. 

The rate of convergence of the compound str ip method was studied and 

results are given for a continuous muitlpanel system. The FSM Is shown to 

be computationally more efficient than the FEM when maximum values for 

moment or deflectlon are required. The FEM exhibits favorable convergence 

characteristics In locations where the magnitudes of displacement and 

moment are reiatJvely smal I, 
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CHAPTER I 

l • IN'IRODUCTION 

1.1. Theory of Plates 

A thin plate is an initially flat structural element for which the 

thickness is much smaller than the plan dimensions . Many practical 

engineering problems are in the category of "thin plates in flexure due 

to transverse load.'' Familiar examples of plates are tho walls and 

bottom of tanks, bulkheads, side panels and roofs of buildings, and 

f loor slabs, The trusverse loads act perpendicular to the plane of the 

plate suxfaces. Rectangular plates composed of an isotropic linear 

elastic material are governed by the differential equation 

[ 1] 

in which x and y are coordinates and w(x,y) is the deflection of the 

midplane of t he plate, q(x,y) is the transverse loading and Dis the 

flexural rigidity. 

equation is 

For orthotropic plates the governing differential 

D 
X 

a4 (:x ) a4w(~ • ..-) 
w ,Y + 2(Dl + D ) =-.::...,,,;-•=--L---- + D 

in which D 
X 

ax4 xy ax2ay2 Y 

and D
1 

are the flexural rigidities 

[2] 

in the X ud y 

direc tions, respectively, D1 is the rigidity due to Poisson ' s effect and 

Dxy is the twisting rigidity. The var ious plate rigidities are related 



to the material properties and the plate thickness. Equations 1 and 2 

are based upon the fundamental Kirchoff hypotheses (1,2,3) 

Direct mathematical sol:a.tion of Eqs. l and 2, incorporating 

boundary conditions. is possible and several methods are available 

(principally developed by Navier, Kirchoff and LeyY) and described in 

familiar textbooks (1,2,3). Numerical solution techniques (developed by 

Galerkin. Ritz, Wahl, and others) are also described in the same 

references. However, for irregular loading and complex geometrical 

shapes such techniques are usually intractable. 

1.2. The Finite Strip Method--An Alternative to the Finite Element 

Method 

A contemporary approach to solving such problems by computer 

analysis is the finite element method (FEM) (4). The FEM is a powerful 

method for analysis of complex plate problems which may have highly 

irregular plan geometry. However, the necessity of employing a 

relatively fine mesh to obtain an accurate model can lead to a large 

number of simultaneous structural equations. De.sign engineers may find 

the FEM to be prohibitive for continuous plate systems of reasonable 

size. The costs involved can be high, particularly for dynamic 

analysis . Further, the oore storage and execution time requirements for 

an accurate FEM analys is of a large plate system can exceed the capacity 

of the available hardware (particular desktop models ) . This may be true 

even when efficient equation solving techniques are employed. 

Additionally, ana lyst time required for model develo~ment mesh 

generation and interpretation of results can be considerable and often 

more costly than computing time, In particular, practicing engineers 

who are inexperienced in the application of the FEM can have difficulty 



selecting appropriate finite elements and determining an efficient, 

accurate mesh layout, 

Sev~ral numerical techniques are available to reduce core storage 

and computational time , e.f., use of higher order finite eleme,nt models 

to improve convergence and/or reduce the mesh size, or use of 

macroelements which, by themselves , can represent full size structural 

components. Alternatively, for plate continua with regular geometry and 

boundary conditions, the power a,nd versatility of the convent ion al FEM 

is not required. For such continua Cheung (5,6) has developed a 

specialized plate element which offers a powerful alternative to 

conventional finite elements. Because the plan geometry of plate is 

discretized in one principal direction only, Cheung's methodology is 

termed the "finite strip method" (FSM) • By avoiding a two-way 

geometric discretization, the FSM considerably shortens and simplifies 

the analyst input and output effort, reduces computer memory capacity 

and time requirements, and offers greater computational efficiency than. 

the FEM for those types of problems geometrically suited to both 

methods. In effect, the FSM reduces a two dimensional analysis to a 

series of one dimensional analyses, which resul ts in fewer equations 

with a small half band width. In references Sand 6, Cheung reports 

excellent cow,parison with classical solutions and significant reduction 

in computational effort vis-a-vis several FEM models. 

Many common f l at and folded plate systems have characteristics that 

are amenable to the FSM. Thus considerable research was conducted from 

1968 to the present (a review of the pertinent literature is presented 

in a subsequent chapter) to advance Cheung' s original work. The FSM has 

been successfully applied to a variety of plate systems including flat 
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plate a, folded pl ates. and box girders. Despite this work an impasse 

has apparently been reached in attempting to apply the FSM method to one 

important category of plate problems , namely any 1y1tem which is 

continuous over flexible beam, and columns. Indeed, prior to this work 

the simple problem of a single plate supported by a column at each of 

its corners is intractable by any FSM techniques presently available. 

Some progress was made by researchers using a flexibility formulation , 

but the efficiency of the FSM relative to the FEM has been compromised 

in those approaches. 

1.3. Objective 

The objective of the study reported herein ,ras to extend the 

capability of the finite strip 

analysis of rectangular two-way, 

method 

beam 

to per111it a direct stiffness 

and column-supported plate 

systems . Previous researchers have addressed some aspects of tho 

incorporation of beam and column supports in a finite strip formulation. 

Mos t of the past work has been based upon use of a flexibility approach. 

Employing a flex ibility method of analysis is computationally 

cumbersome , inefficient, and generally r equires considerable judgment. 

Further, the treatment of suppor ting beams is presently limited to tho 

case of unidirectional support. In this study the significant 

limitations of the flexibility approach have been overcome by the 

development of a finite strip formulation in which supporting beams and 

co lWD11s oan be readily incorporated in a stiffness methodology. The 

incorporation of these supports in tho FSM required the development of 

new strip elements termed "compound finite strips." 



CHAPTER II 

2. FINITE STRIP METHOD - BASIC CONCEPTS 

2.1. Definition of a Finite Strip 

Cheung has applied the finite strip modeling to a variety of 

continuum problems , e.g., the flat plate structure shown in Figure 2,1, 

a 
I _ x 

b 

y I 
y 

Figure 2.1. Finite Strip Modeling of a Continuous Plate. 

Basically, the continuum is divided into a number of "finite 

strips" each having a finite width (dimension "a'' ) and length equal 

to th~ full distance be tween the discontinuous edges (dimension "b" ) . 



The flat plate in Figure 2 .1 has been divided into five finite strips. 

The two opposite ends of dimension "b" coincide 1d th the boundaries of 

the structure. 

2.2. Mathematical Formulation 

The principle of stationary potential energy ls a fundamental 

approach used to develop stiffness models . Briefly, the principle can 

be stated "Of all compatible displacements satisfying given boundary 

conditions, those which satisfy equilibrium make the total potential 

energy a stationary value." Mathematically stated 

[3 ] 

where pis the total potential energy of the system. The 6b. refers t o 

an individual displacement parameter or state variable. 

For the finite strip method p i1 based upon an approximate 

displacement function, w (x,y) 
s 

used for each strip. Commonly, the 

assumed displacement function combines a polynomial function in the 

direction transverse to the strip and a series expression in the 

direction along the strip. The 6kn values are the four (k .. l to 4) 

unknown displacement parameters in the nth term of w (x,y). 
s The outer 

subscript n refers to an arbitrary mode as defined below in Eq. 4. 

(Described in ~ore detail in subsequent text.) Minimizing the total 

potential energy with respec t to each unknown displacement parameter 

yields a set of simultaneous linear algebraic equations which may be 

solved for the 6kn values. 

For two dimensional structures suoh as the flat plate shown in 

Fi ;:ure 2.1. tl1e finite strip displacement function is 



w (.:a:,y) = 
s 

7 

r 
!: X (:a:) y (y) 

m=l m m 
(4) 

I ( x) ii an appro.:a:ima t o "shape function" 
m 

involving tho unknown 

displacements at tho transverse (continuous) edges (i and j in Figure 

2,1), Y (y) is a "boundary function'' chosen to satisfy the specified 
m 

boundary conditions at the opposite ends of dimension b, and r is the 

highest term considered in the series. Each term, m, of the series is 

referred to as a " mode." The subscript s in subsequent te:r.t refers to 

the individual element or s trip. 

Colllll1only tho boundary functions, y ( y) 
m 

are functions which are 

derived from the solution of the governing equation for beam vibration, 

(SJ 

where bis the length of beam (strip) and µ is a parameter. The 

resulting expressions are commonly referred to as basic fllllctions or 

eigenfunctions. 

Tho general form of the solution to Eq. S is: 

( 6] 

where B
1

, etc . are, de tor.mined from the boundary conditions at the 

discontinuous ends of the strip. For example, Y (y) for a plate bending 
m 

strip w,ith simply supported boundaries on the strip ends is 

r (y) = sin 
m 

[71 

Othe1· boundary conditions yield series forms more complex than Eq. 7 

(37 ,38). 
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Similar to the FEM, the FSM requires integration of t he 

displacement function and its derivatives over the domain of the strip. 

Because eigenfll-Jlctions are mathematically orthognnal, the integration is 

readily executed. The significance of this aspect is shown later. 

The shape function, X {:t). contains four unknown modal displacement 
m 

parameters. A commonly used plate bending e l ement polynomial function 

adopted for this study i s 

where Cl .-c 

cz z 

c3 = 

c4 = 

X"" 

X ( x) 
m 

1 - -2 
3x + 2~ 

x(l - 2x + ~) 

-1, 
3x -

-3 
2x 

-2 x(x - x) 

x/a 

[ 8] 

contains the four displacement 

parameters for mode m. Determination of these parameters for an 

appropr ia te number of modes establishes the displaced shape of the 

finite strip. 

2.3. Matrix Fot"lDulation 

The matrix form of the displacement function [4] is 



9 

r 
w (x,y) ., Y [ [CJ [CJ • • • [Cl] 

s m - :r 
m-1 

( N] {A) 
m m 

[9] 

(A } 
r 

where [NJ = Y [C]; [CJ contains the polynomi als given i n Eq . 8; {A} , m m m 

are modal displacement par ameters or state variables; Y is the 
m 

or thogonal boundary function; and r is the highes t mode considered . 

The curvatures of the plate f or mode m are given by 

- a2,, 

X 
h2 

X - a2,, (10 ] {X} = X "" • [ BJ [A) 
m y ai m m 

X 
ry a2 .. 2 ady 

The f l exura l and twisting moment s for modem may be rel ated t o the 

curvatures for modem by 

{M} 
m 

C [DJ {X} 
m 

[11] 

or in expanded f orm 

M 

[ :: Dl 0 

l 
X 

X X 

M = D 0 X 
y y y 

M 0 D X 
ry xy xy 

[12] 

where D , Dl , D • a.nd D are defined in Eq . 2. 
X y ry 
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The total potential energy for any statically loaded body is 

composed of two parts, the internal strain energy and the potential 

energy due to external surface loads. 

energy of a finite strip is 

The internal flexural strain 

u 
p 2 

r 
f 

m=l Vol 
(M)T(X) 

m 111 
dV 

s 

and substituting Eqa. 10 and 11 into Eq. 13 gives 

0 
p 

r r 
2: 2: 

m==l n=l 
1 (A} T f (Bl T [DJ (Bl dV {&} 
2 n Vol n m s m 

The potential energy due to external surface load q(x,y) is 

w: - f 
Area 

w (x,y) q(x,y) dA 
s s 

= -
r 
I: 

n=l 
(A)T / [NJT q(x.y) dA 

n Ar ea n s 

[ 131 

( 14 l 

[15] 

The total potential energy of the entire plate, p, is the sum of U 
p 

and W contributions from all the strips. Thus 

NS 
(> = L fJS = 

s=l 

NS 
2: eel (AlT f [B]T [DJ [BJ dV {A) 

s= l 2 n Vol n m s 111 

- (AlT f [NlT q(x.y) dA) 
n Area n s (16) 

where NS is the number of strips. Note them and n summation symbols 

are 0111itted for brevity. Substituting Eq. 16 into Eq. 3 gives a set of 

simultaneous equations which is solved to establish displaced state of 

the system. This set of equations is written in the matrix format 

(I) (A} - (F) = [OJ ( 17] 

wht~e [KJ the structure stiffness ma trix, the assembl age of the 

stiffness 111atrices f or the strips comprising the plate system, and (F) 
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is the corresponding assemblage of element load matrices. 

stiffness matrix, [S], of a single strip is identified as 

The element 

r 
[S] = !: 

JP! 

r 
!: 

n•l 
f 

Vol 
[Bl T [DJ [BJ dV 

n m s 
[18) 

The expanded element stiffness and l oad matrices are given below, 

[BJ~ [D][B] 1 [BJ i(D] [BJ 2 
. . (B]~[DJ(B]r 

[B]~[D][BJ 1 [Bli[DJ[BJ 2 
[B]r[DJ[B)r 

(SJ = f dV 
Vol s 

[BJ; [D] [B) l [B] ;cnJ [Bl 2 
[BJ T[B] [BJ 

r r 

and 

[N]T 
1 

[N]T 
2 

{F} -= I q(x,y) dA 
s 

Area 
s 

[NJT 
r 

For a prismatic strip with a uniform load q Eqs. 19 simplifies to 
0 

(19] 

(20) 
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[SJ 11 [SJ12 [S]lr 

[Sl 21 (SJ22 (SJ2l' 

[SJ= I dV [21] 
Vol 

$ 

[S)rl (S) r2 [SJ rrJ 

where the results of the integration are given in Figure 2.2 , and Eq. 20 

reduces to 

{F) l 

{F} 2 

(F) [22) 

{F) 
r 

where 

b/2 

h2/ 12 b 
{F) = qo b/2 

I y dy [23) 
Ill m 

- b 
2 

/ 12 
0 

2.4. Collllllentary 

A judicious choice of a displacement function can greatly simplify 

Eq. 19. As previously mentioned, the series e%pression is a basic 

function which possesses the valuable property of 

Mathematically stated form F n, 

b b d
2

Y d2Y 
f y y dy = I (--m) (--D) dy .. 0 

Ill n dl dl 0 0 

or tJiogonali ty . 

(24) 

Thh &reatly r educes the ef!oct involved in determining the a trip 

stiffness matrix. 



["" •12 
s13 

[S] 
I 

8
22 

8
23 =-- ( sym) an 

420a
3 8

33 

L 

s
14

1 8
24 

s34 

8
44J 

s11 
2· 2 . 4 2 = s

33 
= - s

13 
= 5040 Dxll - 504a D112 - 504a D113 + 156a OYI4 + 2016a D1 yIS 

8
22 

8
44 

2 4 4 6 4 
1680 a Dxll - 56a 0

1
12 - 56a 0 113 + 4a Dyl4 + 224a Dxyl S 

3 3 5 3 
s12 = - s.34 = 2520al>xl l - 462a D112 - 42 a 0113 + 22a Dyl 4 + 168a D.11:ls 

2 4 4 6 4 
s

23 
= 1680a D

1
1

1 
- 56a D112 - 56a D113 + 4a Dyl,4 + 224a D

1
yl S 

2 4 4 6 4 
s
24 

= 840a D
1

1
1 

+ 14a D112 + 14a D113 - 3a Dyl◄ - 56a DxylS 

11 

b 
/ Y Y d ; I

2 
0 

m n y 

b • • • • 
1

4 
= / Y Y d; 15 o • n y 

b • • 
/ Y Yd; 1

3 m D y 
0 

b ' , • 
= f Y Y d 

0 
m n y 

b ' ' = f Y Y d ; 
m D y 

0 

(for m ~ n, 1
1 

= 1
4 

O) 

Figure 2.2. Strip Stiffness NAtrix. 

,,_. 
w 
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Further, for systems which are simply supported, the eigenfunction 

ia the sine series given in Eq. 7. For this function 

b b , , 
f y y dy :: f y y dy 

m n m n 
0 0 

[2.SJ 

b I I b , b , , I I 

= f y y dy = f y y dy "' f y y dy "Z 0 
m n m n .II n 

0 0 0 

(26) 

These integrat ion s reduce Eq , 21 to a ma trii with submatrice s along 

the diagonal. This uncouples the equa t ions al lowing independent 

analyses for each term of t he series and superposition of the r esults 

after convergence has been achieved. For other support conditions the 

basic FSM method is unchanged but the nncoupl ing does not occur. 

all r terms must be solved simultaneously, 

Thus , 



3. STATE-OF-THE-ART 

3.1. Literature Review 

CHAPTER 111 

The finite strip concept just described was introduced by Cheung in 

two papers (5,~). A review of pertinent subsequent developments is 

necessary to put the research described in subsequent sections in 

perspective. Powell and Oden ( 7) working independently of Cheuna, 

developed a similar element for application to orthotropic steel plate 

bridge decks. Later, Cheung (8) extended the FSM to the analysi1 of 

folded plate structures. Two new concepts were introduced: (1) 

treatment of in-plane stresses and (2) rotation of the strip stiffness 

matrix to account for the various orientations of the plate elements. 

Analytical results compared favorably with the solutions obtained by 

DeFries- Skene and Scordelis using classical uialysis and a direct 

stiffness matrix method (9) . 

Cheung (10,11,12) also applied the techniques developed for the 

analysis of folded plate systems orthotropic right bridges, and box 

girders. Applicability of the method was limited to single- span 

structures with end diaphragms. End diaphragms 

infinitely rigid in-plane and infiAitely flexible 

were assumed to be 

out-of-plane. The 

plates did not h~ve inte-rmediate supports or diaphragms. 

Soon after the development of the techniques for folded plate and 

box-gi rder analysis, Cheung extended the FSM to the analysis of 
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cylindrical orthotropic cur ved bridge decks (13). 

finite strip displacement function. Eq . 4. 

Fundamentally, the 

was expressed in polar 

coordinates but the funda.mental theory was unchanged, The results 

compared closely with FRM solutions obtained by Coull and Das (14) and 

test results performed by Cheuna ou a scale model. 

The work just described was limited to systems with clear spans. 

i.e., no intermediate beam or colu.mn supports. M. S. Cheung et al. 

developed a beam stiffness matrix compatible with the finite strip plate 

element ( lS). However, tho method was restricted to beams oriented 

parallel to the longitudinal direction (y-direction) of the strip. 

Cheung also described a fle xibility a~alysis which could be used to 

incorporate colWDll supports . 

Gutkowski successfully extended the finite strip concept to a 

"finite panel" model which accommodated interior be1.111s (16,17,18). In 

this model the rectangular plate was incorporated by a macro-element 

using a displacement function of the form 

( 271 

Both isotropic and orthotropic systems were treated (17,18) but 

applicat ions were l i mited to t~o-way plates continuous over pinned 

support s . 

Cheung (19) applied the FSN to tho analysis of freely vibrating 

polygonal plates. In two papers (20,21), Cheung and Cheung treated free 

vibra t ion of curved and s traight beam-slab and box girder bridges with 

clear spans (20) and introduced higher order polynomial displacement 

f1ll'ctions (21). These functions require more unknown displacement 

parameters per strip than the previously used lower order strips. This 
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results in fewer structural equations but increase s the bandwidth of the 

corresponding stiffness matrix. 

The literature cited thus far is restricted to static analyses, In 

all cases, the referenced authors have c ited the minimal computation and 

storage requirements as strong points of the FSM method. 

A contribution to the FSM was made by Wu (22) in a paper on 

frequency analy1i1 of rectangular plates cont i nuous over pinned suppor t s 

in either one or two directions. Tho important aspect of this work is 

the formulation of a strip displacement function which is the product of 

the eigenfunction for a continuous beam and a polynomial function which 

contains the displacement parameters. This was tho first applicat ion of 

the FSM to plate systems continuous over non-deflecting supports without 

the use of the flexibility method, This is advantageous because a 

flexibility approach requires numerous FSM analyses prior to invoking 

conditions of compa tib ili ty. Although this 

advancement over 

method is a significant 

requirement of non-the flexibility approach t he 

deflecting beams limits its use. Delcourt and Choung (23) later 

extended the multi-span FSM to f olded plate systems. The technique was 

used to analyze a continuous folded plate previously studied by Beaufait 

(24), and Scordel is and Lo (25) us ing other methods. The result& 

compared closely with finite element, classical elasticity, ud 

empirical methods . 

Cheung and Chan contributed a paper on tho analysis of continuous 

cunsed box 

columns were 

girder bridges 

analyzed with 

( 26) • Example 

the fluibil i ty 

bridges with intermediate 

analysis. Cheung also 

studied a flexibility analysis for box girder bridges with intermediate 

flexible diaphragms. He employed a technique developed by Rao (27) for 
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the analysis of a fo lded plate continuous over flexible d iagrams, 

Compatibility of deflection is enforced at several locat ions along the 

plate diaphragm interface. A finite strip analysis must be performed 

for each point where compatibil ity is invoked. 

Dynamic analysis and buckling of plata systems are not included in 

work described herein. However, a number of contributions in thi s area 

have been made by other r esearchers (28-32) using the FSM. Also th ick 

plates have been investigated by Cheung (33), and Mawenya and Davies 

(3 4). Recently, Brown and Ghali (35) extended the FSM to quadrilateral 

plates. Sisodiya et al, (36) have analyzed single- and doubl e-celled 

box girder bri dges. 

In summary, the FSM is an efficient atrnctural analysis tool which 

may be used to analyze a wide range of practical problems, It should be 

emphasized that the FSM is applicable only when certain boundary and 

geometric conditions are met , The FSM is effic ient for single-span 

structures and may also be applied to continuous systems but requires 

involved repetit ive analyses using fle%ibility techniques or specialized 

eigenfunction analyses to generate the basic functions required for the 

displacement funct i on. In either c as e, these techniques lack 

generality. Extending either of these techniques to more complex 

systems would be a difficult if not imposs ible t ask. 

3.2. Extension of the Finite Strip Stiffness Formulation 

Efficient techniques such as the FSM are advantageous because of 

the l imited computer input required, small storage requirements and 

computational efficiency. Many FSM models could be used on a 

mic: ocomputer for t he static and dynamic analysis of plate systems 

traditionally analyzed with less rigorous approaches. As indicated in 
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the preceding section. the state-of-the-art of sta tic analysis of plate 

~ystems continuous over flexible beams and columns is a flexibility 

approach. This approach has been. successfully applied to bridge systems 

with small number of redundants, such as a bridge with a few column 

supports in the interior. The flexibility approach has also been 

applied to plate systems with flexible beam or diaphragm supports, This 

approach requires enforcement of compatibility of displacements at a 

sufficient number of points along the beam or diaphragm to insure 

accuracy. For each chosen point a redundant force is crea ted along each 

interface. 

redundant. 

Separate finite strip analyses are required for each 

Because the nwnber of redundants is usually large the 

efficiency of the flexibility technique is often compromised, A need 

exists to incorporate these feature s in a direct, computationally 

efficient manner. A stiffness formulation to accomplish this is 

described in remaining sections of this manuscript. 

The versatility of the stiffness approach for the analysis of 

continuous p late systems has been overlooked i n past research. Using 

concepts deve loped herein, beam and column stiffness may be i ncorporated 

directly into the sys tem equations. The advantages of the stiffness 

method to be described are : 

1. Repetitive FSM analyses, inherent in any fle~ibility method, 

is not be required, thus computational efficiency will be 

improved. 

2. The analyst does not have to determine the number of points 

for which to invoke displacement compatibility. This 

important ta~k (wh ich requires a great dearee of judgment) 

is not a f eature of the method described herein, 
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3. The stiffness method is well suited to dynamic and stability 

analyses , the flexibility technique is not. 



4. MODELING SUPPORT ELEMENTS 

4 .1. Scope 

CHAPTER IV 

At present the FSM lacks a general and direc t technique for the 

analysis of flat plates continuous over supporting beams and columns . 

The primary objective of the study reported herein is to provide the 

capabil i ty to include beams oriented transverse to the strip (transverse 

beam), beams oriented parallel to the strip (longitudinal beams) , and 

columns in the FSM by use of a stiffness method. Key fe atures are tho 

inclusion of (1) flexural stiffness of beams, (2) torsional stiffness of 

beams, (3) axial stiffness of columns, and (4) flexural stiffness of 

columns. These are necessary advancements which will simplify tho 

analysis of continuous systems by overcoming the cumbersome features 

embodied in the approaches previously discussed. The versatility and 

capability of the FSM is particularly enhanced by incorporating the 

second and fourth features cited above. Neither torsional stiffness of 

transverse beams nor flex~ral stiffness of columns have been considered 

in any past resear ch reported in the literature. 

The stiffness fonnulation is based upon use of the finite strip 

displacement function, ws(x,y) presented in Eqs. 4, 6 and 8 . Supporting 

beams and columns are incorporated in a manner mathematically cons istent 

with this displacement function and is described in Section 4.3. The 
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scope will include isotropic and orthotropic flat plate 

subjected to static loads. 

4.2. Addition of the Support Elements 

4.2.1. Finite element method 

systems 

In the conventional FEM the structure stiffness matrix is assembled 

in a direct manner, At the various nodes of the mesh discrete degrees­

of-freedom are designated as the unknown nodal displacements. The 

element stiffness matrix for each individual structural component is 

added to the structure stiffness matrix by accoUDting for its 

connectivity to these nodes. The important points are (1) an element 

stiffness matrix is developed for each component, whether it be a plate, 

column, beam, or any other type of structural element, and (2) the 

contents of displacement vector are the independent displacements at the 

node points to which the particular component is attached. This feature 

renders the conventional finite element analysis of structures composed 

of a combination of different types of elements to a process of directly 

adding the contents of individual element stiffness matrices t o 

appropriate locations of the structure stiffness matrix and execution of 

the subsequent matrix operations of the FEM. The inability to employ 

this assembly process to i ncorporate supporting beams and columns has 

been the primary drawbac~ of the FSM. This difficulty and a method that 

overcomes it are described in the followi~g sections. 

4.2.2. Finite strip method 

In the FSM discrete nodal degrees-of-freedom do not exiat. For 

example , consider the example finite strip model presented earlier in 

Figu:e 2.1. Attachment of any finite strip to adjacent strips is only 
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possible at the continuous (transverse) edges i and j. Mathematically, 

the contents of(~} in Eq. 17 in a finite strip formulation are modal 

displacement parameters and these do not constitute nodal degrees-of-

freedom. Thus, to date the only type of supporting component 

successfully treated by the FSM in a stiffness formulation has been a 

beam placed coi~cident with either edge i or j. A beam stiffness matrix 

in series form consistent with Eq. 7 was used. To date no stiffness 

method has been developed which accommodates either transverse beams or 

col11111ns. 

A proper FSM formulation must produce compatibility of the 

displaced support components with the interior displaced shape of the 

plate strip in a manner consistent with superposed edge m.odal 

displacement par a.meters. In the FEM the connectivity to the 

displacements degrees-of-freedom accomplishes this requirement. In the 

FSM the direct connectivity to modal displacement edge functions is not 

possible except for beams coincident with the longitudinal edges. In 

subsequent sections, a method to achieve proper compatibility of 

supporting beams ~d columns with the plate strip, regardless of 

location, and orientation, by the development and use of "compound 

strip" elements is described, Further, this approach will enable the 

use of conventional direct assembly processes for incorporating element 

stiffness matrices into the structure stiffness matrix. 

For reference , consider the compound finite strip shown in Figure 

4 . 1. In the compound strip formulation developed in this work, the 

supporting elements are embodied at tho outset of the derivation. i.e .• 

the total strain energy of the compound strip is expressed in the form 



I 7 ' 7 

1/ /i ~ Transverse beam 
I 

Longitudinal beam 

'/;11--_ Column I 

Figure 4.1 . Division into Compound Strips . 

N 
JO-
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[28] 

Ofl and Otl are the flexural and torsional strain energy of the 

longitudinal support beams, respectively, Oft and Utt are the flexural 

and torsional strain energy of the transverse support beams, 

respectively, Uac is the axial strain energy of the columns, Ucx and Ucy 

are the flexural strain energy of the coltlllln and u 
p is tho flexural 

strain energy 1n the plate , Each of the strain energy terms in Eq. 28 

is developed in a manner consistent with the assumed strip displacement 

function, Eq. 4, repeated below as Eq. 29, The derivation is presented 

in the fol lowing sections. 

r 
• 5 (x,y) % r Xm~x) Ym(y) 

IP' 1 

4.3. Mathematical Formulation of Compound Strip Stiffness Matrices 

[29] 

Each term in Eq. 28 is examined individually in the following 

sections . 

◄ .3.1 , Flexural stiffness-longitudinal beam 

The flexural strain energy for a beam is 

b 2 
Ufl = EI f (.a.:.!)2 dy [30] 

2 o a-,2 

where EI is the flexural rigidity of the be&J11 and• is its displacement 

function . 

To incorporate the beam in the FSM the displacement function is 

r r 
w = I: X (I) Y ( ) • !: (N] {A} m 

!Fl m m y IIP""l m 
[31) 

Taking the derivative of Ufl with respect to 6kn gives 
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!32] 

where &kn is a displacement parameter in mode n. Substi t'tlting the 

displacement function of Eq. 31 into Eq . 32 gives 

aubl r b [ a2
(N]• 

CAJ•l 
_ a_ 2 --= EI !: f [ i1- ] (D) dy [331 a&k:n m=l o a a&kn ay2 

where all functions are evaluated at the local x coordinate of the beam. 

Lotting k=l, tho first row of the stiffness matr i x i s determined 

for mode n. Accordingly, Eq. 33 simplifies to 

aufl r b [a2
[N]mj 

- = EI !: f ---= (A) 
36 2 111 ln m=l o ay J 

[34] 

where Nln ls the first term of the matrix [N)n. UsiJlg Eq. 8 , 

2 a2y a2Y a Nln -2 -3 n 
Cl 

__ n 
2 ( 1 - 3x + 2x) -- .. 

ayl ayl ayl 

where xis the normal i zed x coordinate of the beam, Eq. 34 simplifies 

t o 

where Ci-c4 are the polynomials in x given in Eq. 8 evaluated at tho 

local x coordinate of tho beam and tho summation in Eq. 34 is i mpl ied. 
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Similar expressions have been developed for the other ro~s. The 

only change from Eq. 35 is that the first c1 increments to c
2

, c
3

, and 

c4 , accordingly. The element stiffness matrix associated with the 

displacement parameters (A} is 
n 

[SJ 
mn ( flexural-longitudinal) = 

re, c1c2 Cl C3 Cl C4 

EI(I
4

) 
C2C1 C2C2 C2C3 C2C4 

(36] 
C3C1 C3Cz C3C3 C3C4 

LC4C1 C4Cz C4C3 C4C4J 

where Cl 
-2 -3 .. 1 - 3x + 2x 

c2 II: :r. - 2xX + 
-2 
X Z. 

c3 
-2 

= 3:r. 
-3 - 2x 

-2 c4 = x(x - x ) 

are evaluated at the local x coordinates of the beam. Due to the use of 

orthogonal boundary functions 

111""11 

To illustrate the use of Eq. 36 an example is given. Let x-0 and 

b 
the boundary functiou be Ym = sin if:! Thus r4 = f YmYndy; m4n4/2b3 and 

0 

entries are zero. 
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4.3 .2. Torsional stiffness-longitudinal beam 

The torsional strain energy is 

b 2 
U "' il f (...L.!!..) 2 dy 

t1 2 axay 
0 

where GJ is the torsional r igidity of the beam. 

Substituting Eq. 31 into 37 gives 

GJ b 
utl. T f 

0 

[37) 

which may be minimized with respect to each displacement parameter in 

the displacement vector. Taking the derivative with respect to 60 

gives 

2 
a (~) dy 

at>kn axay ' [3 9) 

where all functions are evaluated at the local 1 coordinate of the beam. 

Similar to Sec. 4.3.1, let k ruge from 1 to 4 to give the four rows of 

element stiffness matrix [S] . The boundary functions are available in 
111D 

the literature in closed form (37,38), but are not, in 1eneral, 

orthogonal for the integral in Eq. 38. Perfor111ing the required 

differentiation and integration gives the strip stiffness matrix. 
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[S]m.n (torsional - longitudinal) = 

' I ' I ' ' ' ' c1c1 c1c2 clc3 cl c4 

' I I I I I 

GJIS 
C:z c2 c2c3 c2c4 

' I ' ' C3C3 C3C4 

[40] 

I , 
( sym) C4C4 

where the prime denotes the first derivative wi th respect to x and 

Also 

I 

6x/ a 
-2 

Cl = - + 6x / a 

I 

4i -2 
c2 = 1 - + 3x 

I 

6x/a -2 
c3 = - 6x / a 

, 
3i 2i c4 = -

are evaluted at the local x coordinate of the beam. As an example 

consider a simply supported beam located at local x coordinate of zero. 

I I I f 

It follows c2 z 1 and c1 • c3 = c4 = 0. Assume Ym = sin mrcy/b thus 

r
5 
~ m2n2/2b. The stiffness matrix contains one nonzero entry per mode, 

S (2,2) • m2n2/2b . Similarly, if the local xis equal to a, the strip 
llD 

width, this stiffness matrix also contains one nonzero entry per mode, 

4.3.3. Flexural stiffness - transverse beam 

The f lexural strain energy for the beam i s 
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[41] 

Again minimizing with respect to the displacement parameters gives 

[421 

Substituting Eq. 31 into 42 and performing the differentiation gives 

r a 
I'. f [43 ) 

m=l o 

where all functions are evaluated at local y cootdinate of t he belllll, As 

before, k ranges from 1 to 4 giving the four rows of the stiffness 

matrix per mode. Substituting Eq. 8 into 43. perfoniing the 

differentiation and integration yields 

[SJ 
mn (flexural-transverse) = 

12/ a3 6/ .2 -12/a3 6/ .2 

4/a 
2 2/ a [44) EI Y YD 

-6I a 
m 

12/ a3 - 6/ .2 (sym) 
4/ a 

where Yn and Ym are evaluated at the local y coordinate of the beam. 

4.3 .4. Torsional stiffness - transverse beam 

The torsional strain of a transverse beam is 

GJ a il 2 
Utt= -2 f ( ) dx axay 

0 

[45] 

where GJ is the torsional rigidity and y is evaluated at the local y 

cooriinate of the beam. Minimizing with respect to 6kn gives 
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and substituting Eq. 8 into 46 and differentiating gives 

autt r a [ L ] a2Nkn 
~6 • GJ ~ f fa•ay (Nlm]{A)m a•ay dx 

kn m=l o ... ... 

Performing the differentiation and integration yie lds 

(SJmn (torsional-transverse·) = 

[ 

36 

( sym) 

4.3 . 5. Colwnn stiffness - axial 

3a 

4a2 
-36 

-3 a 

36 
3a l al 
-3a 

4a2 

{461 

[47] 

[48] 

The axial strain energy in a support column attached to a strip is 

[ 49] 

where XA is the axial stiffness of the column and •c• the axial 

deformation is obtained by evaluating the displacement function w at the 

local coordinates, x , y , corresponding to its location in the strip. 
C C 

Minimizing with respect to the displacement para.meter 6tn gives 

[50] 

Substituting Eq. 8 into 50 gives 

[51) 

which after differentiat i on simplif ies to 
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32 

(52) 

where Nk.n is defined in Eq, 34 and k ranges from l to 4 to give the four 

rows of the stiffness matrix for mode n. Thus 

c1c1 cl c2 c1c3 clc4 

[S] (Aiial) = KAY Y 
c2c2 c2 c3 c2c4 

[S3l mn m n ( sym) c3c3 c3c4 

c4c4 

where c1-c
4 

are the polynomials given in Eq. 8 evaluated at xc and Ym,Yn 

are the boundary functi ons evaluated at y. 
0 

4.3.6. Flexural stiffness - column 

The flexural strain energy in the columns has two components , 

bend ing transverse and parallel to the strip. The "bending 

transverse" h associated with a rotation in the local y direction 

using the right h and r ule. This action will be examined first followed 

by the orthogonal rotation to be termed "bending longitudinal," 

The strain energy for t he "bending transverse" state is 

where K is the flexural stiffness of the column. 
ex 

respect to the displacement parameter 6k.n gives 

Substituting Eq. 8 into 55 gives 

(54] 

Minimizing with 

[SS] 
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au r aN 
~ - K t [a:CNlm(aJmJ a~ 
o6kn - ex m=l • • 

[56] 

[ 57 J 

where k ranges from l to 4 to give the four rows of the stiffnes s matrix 

shown below. 

[SJ (column flexural-transverse)~ 
mn 

' 
, I , 

c1c1 c 1c2 
I I 

K y y 
c2c2 

ex m n ( sym) 

, , I I 

clc3 c1c4 
I , I I 

c2c3 c2c4 
I , , , [58] 

c3c3 c3c4 
I , 

c4c4 

The strain energy in t1e column bent orthogonal t o the case just 

described is given by 

u cy [ 5 91 

A procedure similar to that described by Eqs. 54-58 may be employed to 

yield the stiffness matrix given below . 

[SJ 
mn 

(column flexural-longitudinal) • 

c1c1 c1c2 clc3 c1c4 
ay ay c2c2 c2c3 c2c4 [60] 

.I ( ~ ) (_J!) 
cy ay ay Cl3 cl4 

c4c4 
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where c1-c4 are po l ynom i als given in Eq. 8. The polynomials and their 

first derivatives are evaluated at x . Y and Y are the boundary 
C m n 

function evaluated at y . 
C 

4.4. S11111mary 

Several s trip s tif f ness matr ice s hav e been derived f or attached 

beams or col11111ns . Each [SJ matrli has dimensions 4x4 and wi l l add mn 

directly at the element level to tho strip matrix described in chapter 

two. 



CHAPTER V 

S. PROGRAM STRIP 

5.1. Introduction 

The theory presented in chapter four has been incorporated in a 

computer code which is described herein and is entitled Program STRIP. 

A general discussion of the program capabilities and features is 

followed by a more extensive discussion of the program algorithm. 

Mathematical and coding details are omitted to present a clear view of 

the important steps of the algorithm. The reader familiar with 

conventional finite element analysis will o~serve several similarities 

between the f.inite element and finite strip methods. Major distinctions 

between the methods are noted and issues relevant to this research are 

emphasized. 

STRIP has the capability for static, linear elastic analysis of 

beam and column supported rectangular orthotropic flat plates. The 

Kirchoff assumptions (1,2,3) are used throughout. Each beam may be 

oriented either parallel or perpendicular to the longitudinal direction 

of the strip. Each column can be located anywhere in plan but must be 

perpendicular to the plate surface. In-plane plate deformations are 

neglected. STRIP is restricted to straight, prismatic beams, and 

rectangular strip elements. Any strip may be loaded with uniformly 

distributed load and/or multiple concentrated loads. 
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Program SlRIP requires minimal iAput data thus economi~ing analyst 

preparation time and avoiding tho laborious input often requ i red of 

flnite element code s . This feature frees the de•isner/analyst to 

investigate many alternative systems at the preliminary stages of design 

with the same degree of rigor as typically applied only to the fi nal 

system configuration. In addition, the displacements and internal 

actions may be calcula ted and output at any location in the system. 

Often Clllllbe.rsome hand calculations or a post-processor routine must be 

used with conventional finite element code s to obtain displacements or 

actions at chosen points. 

Although the input is minimal and straightforward, the reader is 

cautioned that the FSM is an approximate method and, as such, its use i s 

somewhat an art. Proper use requires judgment based on the experience 

of tbe analyst. Similar to the FEM, the analyst must insure that 

convergence of t ho quantities of i nterest (deflections, etc. ) has been 

achieved. Illustrative examples in 

reader an insight into the convergence 

method . 

S .2, Compute.r Algorithm 

the subsequent chapter give the 

characteristics compound strip 

Program STRIP was written in Fortr an IV using a macro programming 

technique which employs an "executive program" to control the 

algorithm flow via calls to appropriate subroutines. The algorithm used 

in STIUP is illustrated in Figure .S.l. Each seg~ent of this flo,r chart, 

whi ch corresponds to a subroutine in S'IltIP, ls described in the 

following sections. 

The algorithm is composed of the ten parts given in Fig • .S .1. 
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START 

t 
READ INPUT DATA 

t 
INTEGRATIONS 

' FORM THE STRIP STIFFNESS 
MATRIX 

+ 
FORM THE STRIP STIFFNESS 
MATRIX FOR THE BEAM AND 

COLUMN ELEMENTS 

l 
FEFD THE COMBINED STIFFNESS 

MATRIX INTO IBE GLOBAL 
STIFFNESS MATRIX 

l 
FORM THE STRIP LOAD VECTOR 

J 
ACCOUNT FOR THE BOUNDARY 

CONDITIONS 

i 

LOOP FOR EACH STIUP 

SOLVE THE SYSTEM OF EQUATIONS 
FOR THE DISPLACEMENT COEFFICIENTS 

l 
OUTPUT DISPLACEMENT COEFFICIENTS 

J 
CALCULATE DISPLACEMENTS 

AND INTERNAL ACTIONS 

! 
STOP 

Figure 5.1. Flow Chart for STRIP 
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The first two parts are performed once for each analysis while 

parts three through seven are repeated for each strip and for each non­

zero harmonic considered. Nodal line boundary conditions are invoked 

after the assembly of the global stiffness matrix and load vectors are 

completed. The displacement coefficients are determined using Gauss 

elimination to solve the set of linear simultaneous equations which 

result. The displacement coefficients establish the displaced shape of 

the middle surface of the plate allowing the moments to be calculated in 

the final routine. Although possible, shears are not calcul ated. 

S.2.1. Read input data 

Subroutine INPUT reads and echos all input data. Presently no data 

checks are made imposing the .responsibility of logical data input on the 

analyst. As previously mentioned much of the laborious input data 

required of many finite element codes is not necessary in the FSM. 

Further, any t ed ious input has been omitted in STRIP by employiAg 

coordinate and strip element generation rout ines. This latter step is 

comparable to "automated mesh generation" 

method. 

in the finite element 

S.2.2. Integrations 

The formation of the element load and stiffness matrices involve 

the integrations given in Figure 2.1. The integrals are evaluated for 

each non-zero harmonic considered and s t ored for later use. STRIP has 

two integration options, sixteen point Gaussian quadrature and closed­

form formulae, Sixteen polut quadrature is required to accurately 

integrate the displacement function of tho higher harmonics . The 

close1-form formulae were generated by Folgar in 1950 (37,38). To the 



39 

author's knowledge, the availability of these toniulae haa not been 

reported in the finite strip llteraturo, Enlploymont of these formulae 

allows the analyst to consider as many non-zero harm.onics 11 necessary 

whereas common numerical integration technique ~ can produce inaccuracies 

at the hi1hor modes . 

S.2.3. Formulation of the strip colllpound stiffness matrices 

Each strip stiffness matri x (Fi1ure 2 . 1) i s created for all non­

zero hanionic and is fed into the global stiffneas matrix. This 

formation routine is nested in a double loop execatin1 the double 

aummation as shown in Bq. 16. If beam and/or col11J11n1 are att1ohcd to 

tho strip, the beam and/or column strip stiffness contribution are 

assembled in the same manner as the plate stiffness matrix. Tho 

assembling procedure is a matrix addition perfor111od at tho element level 

thus producing the "oompotlnd strip" stiffness matrix for subaoquont 

assembling of tho structure stiffness matrix, 

In general, tho beam and colum.u stiffnesses effect every entry in 

tho strip stiffness matrii and thia can have important lmpllcationa. A 

support element could dominate the strip st!ffnesa matrix makina all of 

the terms large and a strip with excessive stiffness results. For 

example, consider a plate supported by a co lumn somewhere in its plan, 

Columns usually have a very large axial atiffnoss relative to tho 

stiffness of the a ttached elements in flexure. This larao stiffness, tA 

in Bq. 57, could "overshadow'' tho outire strip causins the strip to 

behave as if it were rigid. As illustrated in t he subsequent chapter, 

proper modeling of rigid supports can be achieved by using element, with 

moderate stiffness . 
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5.2 . 4 . Form and assemble the str ip load vectors 

Tbe strip l oad vector is created for each non-zero harmonic and f ed 

into the gl obal l oad vector. Contributions of un iform and concentrPted 

load• are combined a t the el ement level. 

5.2. 5. Boundary conditions 

Unlike the finite element method, the global st iffness matrix of a 

structure generated in the FSM l s non- singular and can be inver ted 

without the introduction of the boo.ndary constraints. Boundary 

constraints, either due t o a real boundary or introduce d to take 

adv antage of symmetry, are imposed by a numerical technique called the 

"big numbe r method " • For each constraint this involves scaling the 

appropriate diagonal term of the stiffnes s matrix by a large number, say 

1050 • In effect, this row is decoupled from the res t of the matrix . 

Solving the equation produces zero value for the displacement 

coefficient associated with that equation to be z ero . If more than one 

harmonic is considered, several diagonal t erms mus t be mult i plied by the 

l arge number for each individual constra i nt. 

S'IRIP has the capabil ity t o model knife edge, cl &mped, and guided 

support conditions in addit ion t o tho free edge. Beams c an be placed at 

an edge and columns can be placed at an edge or corner by s imply 

specifying app ropriate coor dinates for the structural component. This 

is done •ithout recourse t o the features just described for explicit 

support condit i ons. 

S.2.6. Solution of simultaneous equations 

Tbe sys t em of simultaneous struc t ural equations wh ich result s is 

solv •d to determine the displacement coefficients, Thos e coefficients 
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should not be confused with nodal displac ements in the FEM. The 

coefficients must be substituted into the assumed displacement function 

t o determine the deaired displacement s. In general, this involves a 

summation of each harmonic's contribu t ion to the displacement, 

The finite strip model produces a syst em of equations whose 

coef ficient matr ices exhibits sy111111etry about the maj or diagonal and is 

tightly banded. The number of equations, NUMEO, and the half-bandw idth , 

m can be determined as follows: 

NUMEQ 2 (NST + 1) •NT• 2 

IB • 4 • NT 

where NT is the number of non-zero harmonics considered and 

NST is the nOJDber of strip elements. 

[60] 

Note the half-bandwidth la not a function of the number of str i ps. 

Thus the mesh may be very fine and only a few har111onics required 

resulting in a system of equations with a narrow bandw idth. In general 

the bandwidth is filled with nonzero entries, no "skyline" or 

"sparse " effects exist. The equation solver empl oyed operates on t he 

atiffness matrix stored in an array dimensioned NUMEQ x IB in order to 

economize on execution t ime and storage required. Gauss elimination is 

used to triangularize the stiffness matrix from which the displacement 

parlllleters may be determined. 

5.2.7. Displacements and int ernal actions 

The displacement coefficients are substituted into the assumed 

displacement functions to arrive at the displacement at a given 

loca t ion. 
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Similarly, to determine internal actions these displacement 

coefficients are substituted iuto the appropriate derivatives of the 

displacement functions and scaled by the elastic constants. For 

e%ample, the moments can be found by substituting the displacement 

coefficients into the functions for curvatures and multiplying t~e 

curvatures by the compliance matri%, Eq. 12, to arrive at moments , 

S'IRIP calculates deflections, rotations, and moments along any 

prescribed line at specified intervals. Thus displacements and moments 

at any point in the continuum may be determined. 

5,3. Summary 

A brief general description of S'IRIP has been given. Mathematical 

and programming details have been omitted to allow the reader to develop 

a clear understanding of the important steps in the FSM. 

The beam. and/or column stiffness contribution add directly to the 

strip stiffness matrix. Thus the stiffness of these elements is in 

effect "smeared out" over the entire strip effecting each entry in the 

strip stiffness matrix. This limits the range of values for the ratio 

of the beam. and/or column stiffness to the plate stiffness which may be 

successfully modeled with STiiIP. As illustrated in tho next chapter, 

this is not a severe limitation but must be considered when modeling 

rigid support elements . 



6. ILLUSTRATIVE EXAMPLES 

6.1. Introduction 

CHAPTER VI 

Several plate solutions are presented as verifioation of the 

correctness of the theory. First, a single panel plate was analyzed 

with various support conditions which were chosen to exemplify the use 

of the compound strip matrices presented in chapter four. Each 

extension of the FSM is illustrated separately and then a comprehensive 

example is given which incorporates most of the new elements in a single 

panel plate problem. Second, a multi-panel plate system which 

incorporates many of the compound strip elements is given. This problem 

eiemplifies the capabilities of the compound strip elements with a 

practical problem previously studied by other researchers using other 

methods (16,17,40). The example presented is also compared to the 

results from several finite element analyses. 

Th i s chapter concludes with a rate of convergence study , The FSM 

and FEM are compared on the bas i s of accuracy and computation effort 

required. 

6.2. Single Panel Systems 

E.2,1. General description 

The single panel plate systems shown in Figure 6 .1 have been 

analyzed with the finite strip and finite . element methods. This set of 

plates i ncor~orates a variety of boundary conditions including a clamped 
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support along AC, a knife edge or pinned support along AG, and two 

adjacent free edges along CE and ~G. The finite strips are oriented in 

the y-direction in all c ases, thus the eigenfunction which corresponds 

to a cantilever beam was used . The plates are square with sides of unit 

length and have isotropic rigidities D, D, o1 , D of 1.0, 1.0, 0.3 0 , 
I y ry 

0.35, respectively. The beams' flexural and t ors ional rigidities EI and 

GJ were assigned values of unity. The co lumn ax ial stiffness was given 

a large value ( 100000 k/f t. ) to limi t the deflection at E to a s~all 

fraction of the unsupported case , Columns usua l ly have a large axial 

stiffness as compared to the stiffness of a beam or plate. thus this was 

deemed reasonable . The loading was uniform for al l cases. 

6 ,2,2, Modeling 

The finite element and finite strip methods were used to analyze 

the plate systems described in the previous section. The structural 

analysis program SAP IV was used f or the finite element analyses. This 

program uses a quadrilateral plate bending element composed of four 

triangular elements (39) with the common degrees of freedom condensed 

out at the element level. SAP IV was chosen on the basi s of 

avtilabi lity to the author and ftmiliarity to the engi neering community . 

The single panel systems were model ed with five by five and nine by ni ne 

meshes with nodal lines equally spaced r esulting i n square element s for 

all analyses. Beam elements were employed to model the beams and 

columns. 

A nine strip model was used for the finite strip analysis of the 

single panel systems. The number of harmonics was varied, The intent 

W& $ no t to show convergence but rather to illustrate the FSM wi th a 

constant number of strips . Consequen tly, it cannot be expected that 



48 

a 

(JI rn !f) en 
E EE 

0 (_ I.. I.. 
?- f--'1--

t'"J ll) {'.. 
..c ..c 

0 
CJ (fJ ...... ..._ en z (II ••• Q) 

a:, wI:LLl..:C 
C!l .., .., ..J 

w~cncn<n~ a 
-l Gl 01 m O'l I.Ji 

I::CI:I:Z::: 
WCf)(fl U)W 
c.....c.....c.....r.,._c... 
• • u I I t-.... 

• 0 0 • • 0 

.....) 
(.JJ l--
a ... 

(.9 

E 
L/) 0 

(__ 
Ol._ 

(J) 
(J 

C 
<r' 0 

...) 
C) 

(I) 
. ..). 
0 

t"'1 

a 

N 

a 

0 

0 

i---"T""- -""T'-- --,--- '!"'. - ---,--- - ---i,---'!"', ----,---t- 0 

01 · 0 so ·o ao ·o LO'O so·o so·o &o·o rn ·o 20 · 0 rn ·o oo·o 
. '1.J 'UO 't F)81J80 

w 
I 

C.El 

0) 
C 
0 

_) 

0 

C 
0 

. ..) 
....) 

(J 
Q) 

_) 
(.._ 

Q) 
0 

.n 
(D 

CT) 
_..) 

u.... 



49 

0 

--------------------------------~ U") 

u, 
0 

0 ...J 
O") I.-. 
0 .. 

a: 
E 

U") 0 
c--.. L 
o<-

~ 
' 0 

U"l ..,. . 
0 

~ . 
0 

U") 

0 

8 

Q) 
u 
C 
0 

+J 
(/) . ..) • 

Cl 

1---..-, ---.----.---------------------,,---+,..O 
01 ·o so·o so·o Lo·o 90 · 0 so·o vo·o rn·o eo·o rn ·o oo·o 

' 1J ' uo:1oa7Je□ 

w 
I 

a:: 
01 
C 
0 

,_) 

0 

C 
0 . ..) 

..,) 
(.) 
(l) 

,_) 

<-
Q) 

Cl 

-~ 
• c.o 

O') 
. ..) 
(... 



CJ ...... 
a 

co 
0 

0 

lO 
D 

0 

'1"' 
0 

+J 0 
t ,-

' ("\J . o 
-,J ~ · 

(.,_ 

I 
o...8 
J . _, 

..:i::: 0 

._ N 
+> 0 
C · -Q) ? 
E 
O "" 

l:: ~ -
0 
I 

(D 

0 

0 
I 

(D 

0 

0 
I 

0 -
0 

' 0. 00 0. I 5 0 . 30 0.15 0 .60 0 .7S 0. 90 
OLs l o nce f rom A, f l. 

FLg . 6. 5 MomenL - X along A- E 

LEGEND 
• = FEM 9X9 Mesh 
o = FSM 9 S Lr ., 3 Trms . 
0 

- f SM 9 SLr . , 5 Tr rns . 
0 

- FSM 9 St r . ~ 7 Tr ms . 
• - fEt1 SX~ Mesh 

□ 
1.05 1.20 I. 35 I. SO 

v, 
0 



0 ..... 
0 

ro 
0 

0 

lO 
0 

0 

..,... 
D 

+> 0 

<+-
'--..N 

. o 
+> a 
<+-
I o 
o_D 

• ..J 
_y D 

"'N 
..,_) D Co 
(l) t 
E 
0 <:r 

L ~ 
0 
J 

<n 
0 

0 

' 
ro 
0 

D 
I 

D -. 
0 

' 0.00 0 . 15 0 . 30 0.45 0 .60 0.75 0 . 90 
DLslonce from A, ft. 

FLg. 6.6 MomenL - Y along A-E 

LEGEND 
• - FEt1 9X9 Mesh 
o = FSN 9 S tr . , 3 T rms . 
o - FSM 9 Str ., 5 Trms . 
6 - FSM 9 St r ., 7 Trms. 
• = FTM 5X5 Mesh 

0 
1.05 1.20 1.35 

V, 
t-

1.50 



C) -. 
CJ 

CD 
0 

0 

lO 
0 

C) 

'I"' 
0 . 

• ,.J 0 

4-
"-.N 

. o 
-.J o 
'-

I □ 
O..o 

. J • -l 

~ o 

..,N 
➔JD 
C • 
(l) ? 
E 
0 'T' 
~o 

0 
I 

tD 
D 

CJ 
I 

CD 
0 . 
0 

6 -. 
0 

I 

0 .00 0. 15 0.30 0.15 0 .60 0 .75 0. 90 
OL s lance f rom C, fl . 

f~g . 6. 7 MomenL- X al ong G-C 

LEGEND 
• - FEM 9X9 11esh 
o - f'St1 9 Sl r ., 3 l m s . 
a - FSl1 9 SLr. , 5 Trms . 
0 - FSM 9 5Lr . , 7 T r ms . 
• - f[M SXS Mesh 

D 
I. OS I. 20 1. 35 I .SO 

V, 
N 



Cl 
'<t"' 

D 

N 
M 

0 

<r 
N 

0 

CD -• - I 

..J 0 

4---
"- (0 

0 

..J 0 
4--
l a 
Cl.a 

- ...) . 
....Y: 0 

"'CD 
-,..) 0 
C • 
(I) ? 
E o w 

::E:~ 
D 
I 

.... 
('\J 

D 
I 

N 
M .. 
0 

I 
0 

"" 
0 

I 

0.00 0 . JS 0. 30 0 . 15 0 .60 0 . 75 0. 90 
0L slonce fr o m C 7 fl. 

fLg. 6 .8 MomenL- Y a l ong G-C 

LEGEND 
• - FEM 9X9 11esh 
o - FSM 9 SLr . , 3 Trms . 
o - FSM 9 SLr. , 5 Trms . 
" - FSl"I 9 Slr ., 7 T rms . 
• ~ FEM SXS Mesh 

□ 
1. 05 l. 20 1. 35 I .50 

V1 
w 



54 

6.2.5 . Column supported plate 

The plate shown in Figure 6.lb was analyzed for a unifor111 unit 

load. The deflections are given in Figures 6.9-6,11 and the moments in 

Figures 6.12-6,15. The maximum deflection calculated by the two methods 

differed by five percent and the maximum moments differed by six 

percent. 

6.2.6. Beam oriented along the strip 

The plate shown i n Figure 6 . lc has a beam oriented longitudinal 

strip direction. As illustrated in Figures 6.16-6.22 the 9,7 FSM and 

9x9 FEM methods compare quite well with deflections differing by less 

than one half of one percent and the maximum values being identical (to 

four significant digits in tho output), Moments differed by leas than 

throe percent while the computed maximum moments are also the same to 

four significant digits . 

6.2 .7. Rotational spring 

A rotational spring was placed at E as shown in Figure 6 .ld. The 

stiffness of the spr i ng was moderate (Xx= 1.0 kip), decreas ing the 

deflection at E 10.6 percent from the unsupported case described iu 

section 6.2.4. The finite el ement and finite strip model compared very 

well as illustrated in Figures 6.23-6.29. 

6.2.8. Beam oriented transverse to the strips 

The plate shown in Figure 6.le bas a beam oriented transverse to 

the strip located near the center of the plate. As shown in Fi1ure• 

6 .30-6 .36 the FEM and FSM compare favorably with the maximum deflection 

wi ~hin 1.25 percent and the maximum moment differed by approx imately six 

percent, 
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6.2.9. Comprehensive single panel exuiple 

A sin&lo panel plate which incorporated the important fe atures of 

the oowrpound strip method is shoWll in Figure 6,lf. The system has beams 

~ith flexural and torsional rigidities, One beam is oriented parallel 

and the other i• transverse to tho strip . A pinned column of 10000 k/ft 

located at the intersect ion of tho free adjacent edges, Tho deflections 

are given in Fiaures 6.37-6 .39 and tho moments are given in Figures 6.40 

and 6.41. The FSM and FEM compared favorably for deflection and moment 

with the different in the maximams of less than three percent. 

6.3. Continuous Plate System 

The application of compound strip model to a multipanel plate 

system is illustrated with tho analysis of tho system shown in Figure 

6.42. This plate was first analyzed by Maugh and Pan (40) using a 

flexibility approach to invoke compatibility alon& tho edge of each 

plate. Later Gutkowski (16,17) studied this system and used it to 

compare tho FEM with his finite panel method (FPM) and the rigorous 

solution given by Maugh and Pan. Tho system is composed of fifteen 

pinned supported panels with varying aspect ratios. The entire system 

is uifonaly loaded thus symmetry technique s have been employed. Two 

mesh layouts were used and are shown in Fiauro 6.43 . Noto, a quarter of 

tbo plate was modeled. Three strip models were used and are shown in 

Fig-ure 6 .44. 

Deflection along A-A, lrB, and C-C and moments alona B-B and C-C 

are reported alving a representative overview of tho systems' behavior 

and equitable comparison of the methods. Tho defleotions are aivon in 

Figues 6,45-6 .47 . The strip 11todels compared quite ,r·ell with the 10 x 
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14 mesh with a difference in the maximum deflections of two percent, 

The moments compared favorably as illustrated in Figures 6.48-6,51 and 

the maximum negative moment calculated by tho FSM (14 strip. 13 terms) 

differed fr0111 the value reported by Maugh and Pan by 11 percent. The 

moments at this locat i on were not readily available from t he fini te 

element model, The maximum positive moment occurs near the middle of 

the corner panel. The FSM gave a moment in the x-direction of 9.7 1 k­

ft/ft and the moment given by Maugh and Pan is 9 .34 k-f t /f t and the 10 1 

14 SAP IV mesh gave 9,78 k-ft/ft Gutkowski reported 9.64 k-ft /ft wi th 

the FPM, The percent difference for t he FSM, FEM and the FPM are 4.0 , 

4.7, and 3 .2 , respectively ( relative to tho Maugh and Pan value). The 

corresponding moments for the moment in they-direction using the FSM. 

FEM, FPM and the Maugh and Pan rigorous method are 4 .37, 4 ,37 , 4.37 , and 

4.27 with percent difference for the FSM, FEM, and the FPM of 2.3 

percent. 

6.4. Rate of Convergence 

The system shown in Figure 6.42 was analyzed a s an orthotropic 

plate by Gutkowski (18) using the FPM and the Melosh rectangular element 

using fou.r mesh layouts. The plate has orthotropic material properties 

of D , D , D1 , and D of 6.0, 3,0 1 4.0. and 1 . 0 kin,, respectively. A 
X y ~ 

uniform load of 1.0 ksi was applied and one quarter of the plate was 

modeled due to symmetry. The quarter sys tem mesh layout s were 10x7. 

10xl4, 15x14 , and 15x28 where the first number is the number of elements 

i n the y-direction. These mesh sizes correspond to 158, 354 , 544, and 

1146 degrees-of-freedom, respectively. Her ein a comparison ••• made 

betw~en these results and the developed compound strip model. 
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The finite strip models employed are those shown earlier in Figure 

6 ,44 and the 28 strip model shown in Figure 6.52. The number of 

harmonics considered was varied for each model up to a maximum of 23 (12 

non-zero) for the 28 strip model. 

The deflections at the center of each panel are given in Table 6. l 

and the moments are given i n Table 6.2. The midedgo moments are 

reported in Table 6.3 . The degrees-of-freedom are stated for each 

analysis for comparison of computational effort . 

The relative rates of convergence are shown in a series of figures 

showing the absolute value of percent difference between the 15128 

finite element model and the f inite strip results. The convergence rate 

for deflection at the middle of panel no. 2 is shown in Figure 6.53 . 

Convergence characteristics for the other large panels (1, 2, and 3) are 

similar. The FSM shows a much faster convergence rate with respect to 

the number of degrees-of-freedom for mid-panel deflections than tbe FEM. 

For example, for approximately a 1.5 percent difference the FSM requires 

appr oximately 120 degrees-of-freedom while tho FBM requires about 450, 

thus an apparent computational savings. In the small panels (4, S, and 

6), where the deflections are much smalle~, the FEM converges more 

rapidly than the FSM. 

The relative rate of convergence of the moment in the y-direction 

at the center of panel no. l is sbo'WD in Figure 6 .54. The convergence 

characteristics of the other mid-panel moments are similar for the 

larger panels. The FSM exhibits a faster convergence rate than the FEM 

for these actions as i l lustrated in Figure 6 .54 . Similar to deflection. 

t~e FEM converges moro rapidly for the mid-panel moment of the smaller 
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Table 6.1. Deflection at the Center of the Panels . 

DEFLECTIONS IN. 

METIIOD DOF n W2 W3 W4 W6 

FEM 10114 354 0 .2781 0 .1804 -0.0062 0 .0353 0 .0435 0,0270 
FEM 15114 544 0.2639 0 .1788 -0.0061 0.0320 0 .0422 0.0259 
FEM 1SX28 1146 0.2763 0.1766 -0.0058 0 .03 21 0 .0406 0.0250 

FPM 0,2782 0,1788 -0.0047 0. 0331 0 .03 97 0 .023 9 

FSM 7,3 32 0.2663 0 .1711 -0.0015 -o. 0770 -0 .0495 0.0004 
FS.M 7,5 48 0.2662 0 .1713 -0.0015 -0.0542 -0 .0311 0.0042 
FSM 7,7 64 0.2828 0 ,1836 0,0010 -0.0285 -o .0107 0.0091 
FSM 7,9 80 0.2744 0.1747 -0.0043 0.0107 0 .0224 0.0200 
FSM 7,11 96 0 .2713 0,1716 -0.0058 0.0251 0.0340 0,0230 
FSM 7,13 112 0.2751 0.1748 -0 .0043 0.0305 0 ,03 86 0.0248 
FSM 7,15 128 0.2750 0,1748 -0.0043 0.0302 0 .03 83 0 .0246 

FSM 10,7 88 0 .2829 0 ,1827 -0.0022 -0.0284 -0 .0103 0.0091 
FSM 10,9 110 0.2745 0 .1738 0.0071 0.0108 0.0227 0 ,0192 
FSM 10,11 132 0.27U 0 .1707 -0 . 0086 0.0251 0 .0342 0.0219 
FSM 10,13 154 0.2752 0,1738 -0 .0072 0 .0306 0.0388 0.0236 
FSM 10 ,15 116 0 .2752 0 .1738 -0.0072 0.0303 0 .03 85 0 .0230 

FSM 14,9 150 0.2756 0.1765 -0.0043 0,0106 0,0225 0 .0197 
FSM 14,11 180 0.2725 0 .1733 -0.0058 0.0250 0.0445 0.0227 
FSM 14,13 210 0.2762 0.1765 -0.0044 0.0304 0 .03 87 O.OHS 
FSM 14,15 240 0 .2762 0 .1765 -0 ,0044 0.0302 0 , 0385 0.0242 

FSM 28,7 232 0 .2849 0.1885 0,0049 -0.0256 0.0028 0 .0182 
FS.M 28,15 464 0 .2771 0 .1795 -0.0004 0.0333 0.0464 0.0334 
FSM 28,23 696 0 .2777 0.1798 -0,0005 0 .032-' 0.0454 0.0322 
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Table 6,2. Moment at the Center of tho Panels. 

MOMENT. K-IN 1 /IN 1 

METHOD DOF MX1 MYl MX2. MY2 MX3 MY3 

FEM 10X7 158 1733 1182 1335 905 541 35S 
FEM 10Il4 354 1931 1320 1498 1016 301 196 
FEM 1SX14 544 1918 1312 1487 1010 302 196 
FEM 15X28 1146 1882 1288 1430 972 243 151 

FPM 1865 1277 1409 958 222 142 

FSM 7 ,3 32 1804 1243 1350 926 657 438 
FSM 7,S 48 1804 1243 1350 926 651 438 
FSM 7,7 64 2070 1437 1569 1084 787 S21 
FSM 1,9 80 1764 1210 1288 877 546 358 
FSM 7,11 96 1,03 1090 1146 772 459 296 
FSM 7,13 112 1770 1214 1296 883 513 378 
FSM 7 ,15 28 1770 1214 1296 883 513 377 

FSM 10,7 88 2185 1513 1631 1126 562 376 
FSM 10,9 110 1.880 1287 1346 915 373 243 
FSM 10 ,11 132 1719 1167 1204 810 301 191 
FSM 10,13 154 1886 1292 1355 923 393 258 
FSM 10,15 116 1886 1292 1355 923 393 258 

FSM 14,9 150 1903 1303 1452 987 294 190 
FSM 14,11 180 1742 1182 1309 881 224 139 
FSM 14 , 13 210 1910 1308 1461 994 314 206 
FSM 14,15 240 1910 1307 1461 994 312 204 

FS.M 28, 7 232 2171 1504 1696 1170 407 274 
FS.M 28,15 464 1871 1282 1420 966 253 165 
FSM 28,23 696 1871 1281 1419 965 248 161 
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Table 6.2 . Moment at the Center of the Panels (Continued), 

MOMENT X-IN/IN. 
METHOD DOF MX4 MY4 MIS MYS MX6 MY6 

FEM 1017 158 763 S54 806 S19 869 596 
FEM 10Xl4 354 720 S30 791 515 645 447 
FEM 1SX14 544 659 485 734 533 616 427 
FEM 15128 1146 640 470 710 516 567 394 

FPM 596 438 662 481 529 366 

FSM 7 , 3 32 842 600 -597 -423 124 84.5 
FSM 1,5 48 -580 -412 -368 -259 -19 .2 -10 .5 
FSM 7,7 64 -2S0 - 174 -86.1 -57. 7 193 134 
FSM 7,9 80 357 266 455 3S4- 113 82 . 7 
FSM 7,11 96 664 491 719 526 813 563 
FSM 7,13 112 846 625 882 646 932 647 
FSM 7,15 128 828 612 865 633 911 633 

FSM 10,7 88 -267 -186 -89.6 - 59 .9 161 113 
FSlf 10 , 9 110 348 260 462 338 521 362 
FSM 10,11 132 658 487 729 532 655 456 
FSM 10,13 154 841 622 893 653 153 526 
FSM 10 ,15 176 823 609 875 641 73 8 515 

FSM 14,9 150 344 B7 451 331 484 338 
FSM 14,11 180 655 485 723 529 610 427 
FSM 14,13 210 815 620 888 650 704 495 
FSM 14 ,15 240 820 607 870 637 689 484 

FSM 28,7 232 -265 - 185 -97 · L 70 158 106 
FSM 28 ,15 464 824 609 876 642 667 469 
FSM 28,23 696 473 347 560 404 478 329 
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Table 6.3. Hidodge Moments 

MOMENT, K-IN ./IN, 
METHOD DOF Ml2 M23 M45 M56 M41 M52 M63 

FEM 1017 158 -2674 -1460 -638 - 667 -1130 -923 -351 
FEM 10114 354 -2959 -1682 -876 -904 -1269 -1050 -356 
FEM 15X14 544 -2935 - 1669 -842 -867 -1336 -1117 -416 
FEM 1S128 1146 - 3008 -1723 -940 - 953 -1315 -1088 -395 

FPM -3120 -1812 -917 -956 -1422 -1196 -463 

FSM 10,9 110 - 2324 -1072 -396 -360 -571 - 436 -89. 
FSM 10 , 11 132 -2278 -1035 -541 -462 - 735 -570 - 126 
FSM 10 ,13 154 -2333 -1076 -618 -513 -803 - 628 -151 
FSM 10,1S 176 -2333 -1076 -610 -151 -803 -628 -507 

FSM 14,11 180 -2818 -1569 -734 - 771 -738 -576 -138 
FSM 14,13 210 -2892 -1639 -815 - 844 - 806 -634 -162 
FSM 14,1S 240 - 2892 -1639 -815 -844 -806 - 634 -163 

FSM 28,7 232 -3233 -1943 - 265 -90. -279 191 -101 
FSM 28,1S 464 -2982 -1709 -908 -940 -805 -632 -159 
FSM 28,23 696 -2981 -1106 -877 -883 -1011 -813 -249 
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panels. Tho relative rate of convergence for those moments varies 

depending on the panel and action under consideration. 

The relative rate of convergence of the midedge moments vary 

throughout the system. The convergence characteristics of the midodge 

moment between panels no. 1 and no. 2, M
12

• 1s shown in Figure 6.55. 

The convergence rate of the two methods are nearly the same for this 

action. This is typical in locations where the midedge moments are 

1 arger; ~
2

, .M
23

• For edges where the moments are smaller, usually 

adjacent to the smaller panels, the FEM exhibits a convergence rate 

favorable to the FSM as illustrated in Table 6 .3. 

Based on the numerous example problems investigated and those 

presented, the following summary is made: 

1. The convergence rate for maximum deflection in a plate is 

faster for FSM than the FEM. 

2. The rate of convergence for the maximum m1dpanel moments 

is favorable for the FSM. 

3. For relatively smaller panels, the FEM exhibits a 

favorable convergence rate for midpanel moments. 

4. The convergence rate for the maximum mldedge moment is 

nearly the same for the t,ro methods. Where the midedge 

moments are small, typically in the smaller panels of a 

system, the FEM is favorable. 

S. In general, where actions or deflections are large 

(relative to the system) the FSM has favorable 

convergence characteristics. 
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6.5. Summary 

Several illustrative examples have been presented in this chapter. 

Throughout, the compound strip model compared very well with the more 

established FEM. The continuous plate system illustrated the capability 

of the compound strip to accura tely model multipanel plate systems which 

are commonplace in engineering practice . The convergence rate varies 

with quantities of interest and location, but generally the FSM is 

particularly well suited to determine maxim1111 deflection and moment. 

In addition, over two hundred plate systems have been successfully 

analyzed with tne compound strip method as part of this research. 

Examples include many problems found in (reference 2), plane grids, 

continuous beams , and numerous other systems . Some of these will be 

presented in future published papers. The compound strip methodology 

compared favorably with rigorous and/rn FEM solutions in all cases. 



ClIAPTER VII 

7. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

7 . 1. Summary 

A finite strip methoa was developed for the analysis of linear 

elastic flat plate sywtems which are continuous over deflecting 

supports. The approach presented incorporates the ef fect of the support 

elements in a direct stiffness methodology. The s tiffness contribution 

of the support elements have been derived and are given in the form of 

strip matrices which are directly added to the plate strip stiffness 

matrix at the element level. The combination of the plate and support 

elements is termed the "compound strip." 

The validity of the compound str ip method was demonstrated in 

several illustrative problems. The FSM and FEM compared favorably for 

displacement and m0111ent, 

The rate of convergence of the compound strip was studied for a 

continuous multipanel system, The FSM was found to be more 

computationally efficient than the FEM when maximum values for moment or 

deflection are required. The FEM exhibited favorable convergence 

characteristics in locations where the magnitudes of displacement and 

moment are relatively smal l, 

7.2. Conclusions 

The follo,ring conclusions can be drawn from this research i n this 

manuscript , 



112 

1. The FSM requires minimal input data . For example, the 

systems modeled required less than 30 lines of data. 

2 . The interpretation of output is straightforward. Actions 

and displacements may be calculated along any line or at 

point in the systems. 

3. The stiffness matrices of the support elements add 

directly to the conventional strip stiffness matrix 

creating the compound element. Th• conventional assembly 

procedures may be used, th~s only minor code 

modifications must be made in existing codes to 

incorporate the compound strip elements. 

4. Single and multipanel plate systems can be accurately 

modeled with the compound strip method. 

5. Support elements with large stiffness can be used to 

model rigid supports. 

6. The compound strip analysis requires a single solution 

where, by contrast, flexibility techniques require 

repetitive analyses, 

7 . The system of equations usually has a narrow bandwidth . 

Further the bandwidth is only a function of the number of 

harmonics considered and is independent of the number of 

strips or nodal lines . 

8. Maxi.lll.um defl ections and moments may be calculated with 

less computational effort (fewer degrees-of-freedoms) 

than both tho FEM used in this study. 

9. Small deflections and moments in the systems are 

calculated more efficiently with the FEM employed, 
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7,3. Future Research 

The scope of the study presented herein was limited to plate 

bending. By incorporating in-plane effects, this fundamental concep t 

can be employed to model more complex continuous systems such as folded 

plates, box girders, and slab-girder bridges and floors. Compound strip 

concepts could also be applied to create mass matrices for the support 

elements allowing dynamic analysis of folded plate systems continuous 

over flexible supports. 

J 
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