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Abstract This paper introduces an early prognostic model for attempting to predict the
severity of patients for ICU admission and detect the most significant features
that affect the prediction process using clinical blood data. The proposed model
predicts ICU admission for high-severity patients during the first two hours
of hospital admission, which would help assist clinicians in decision-making
and enable the efficient use of hospital resources. The Hunger Game search
(HGS) meta-heuristic algorithm and a support vector machine (SVM) have
been integrated to build the proposed prediction model. Furthermore, these
have been used for selecting the most informative features from blood test data.
Experiments have shown that using HGS for selecting features with the SVM
classifier achieved excellent results as compared with four other meta-heuristic
algorithms. The model that used the features that were selected by the HGS
algorithm accomplished the topmost results (98.6 and 96.5%) for the best and
mean accuracy, respectively, as compared to using all of the features that were
selected by other popular optimization algorithms.
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1. Introduction

In December 2019, the coronavirus disease that was caused by a virus called se-
vere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infected many people
around the world and caused many deaths and a global pandemic [72]. The disease is
fast-moving and has spread among many people [15]. There are patients with strong
immunity and minor infections who may need a general ward and regular health care,
while others of advanced ages with weak immunity, strong infections, and associated
diseases who are exposed to major health crises such as difficulty breathing, a lack of
oxygen, and blood clots and may require critical health care in intensive care units
(ICUs) [9,47]. ICUs are special wards in hospitals for monitoring critical patients all
of the time and providing required treatments like providing oxygen and ventilation
to maintain a patient’s life [13,57]. The number of ICU beds is very limited and spe-
cialized for only those patients with the most dangerous cases [56]. The management
of infected patients according to their severity is very important and controversial for
saving patients’ lives and hospital resources [57].

The World Health Organization (WHO) announced that reverse transcription-
polymerase chain reaction (RT-PCR) is the standard way to diagnose COVID-19
patients [20,48] despite the misdiagnosis of some cases where a PCR may be negative
and the patient has positive COVID-19 [7]. The findings of the RT-PCR test may
take many hours or days to appear and are expensive [1, 53]. So, many experts
recommended using alternative tools that take less time with accurate results, like
vital signs, blood lab tests, and chest radiological images [1,43,48,70]. Clinical blood
tests are available in all hospitals to provide information about the disease and other
pre-existing diseases for a full view of a patient’s trajectory [1]. This helps doctors
monitor changes in organ functions and detect factors that change with the severity
of the patient [39]. The results of blood lab tests and vital signs are very fast and
inexpensive [3].

Detecting the most significant indicators is an important matter that may assist
doctors by using informative features rather than using noisy or messy features. There
are many methods for selecting features like filters, wrappers, and embedded tech-
niques [36, 46, 53]. Nowadays, meta-heuristic algorithms have been used for selecting
features as an optimization problem in healthcare and many domains [28,44,54].

In this paper, a new prediction model has been proposed for predicting the sever-
ity of COVID-19 patients for ICU transfer based on demographic data, previously
grouped diseases, blood parameters, and the vital signs of patients. The novelty of
this model is that it uses a public time series window data set to achieve the following:

1. identify best time window for performing medical tests correctly;
2. determine most significant features in this time window by applying hybrid model

that consists of recent optimization algorithm called Hunger Game search (HGS)
for feature-selection step followed by using SVM classifier.



Ea
rly

bir
d

Applying Hunger Game Search (HGS) for selecting significant blood indicators. . . 117

The performance of the HGS-SVM model has been compared with four well-
known meta-heuristic algorithms: the flower pollination algorithm (FPA), Harris
Hawks optimization (HHO), the whale optimization algorithm (WOA), and the bat
algorithm (BA). The proposed prediction model may help hospitals make plans and
take the right decisions toward patients by transferring them to other hospitals if there
are not enough beds in an ICU or by supplying the hospital with other resources to
accommodate the patients within the time frame that they can be saved.

The remaining paper is sectioned as follows: Section 2 summarizes related works;
Section 3 explains the main steps and methods of the proposed model; Section 4
contains the experimental results and a discussion; Section 5 states our conclusions.

2. Related work

Several studies have used clinical blood data with different machine-learning algo-
rithms to build models with different targets. The objectives most of the published
research papers that are based on laboratory blood tests can be categorized into these
goals: detecting the COVID-19 disease, predicting the severity of COVID-19 patients
for ICU admission, and predicting the risk of a patient’s mortality.

For detecting the COVID-19 disease, some research studies have utilized machine-
learning classifiers for diagnosing COVID-19 based on blood lab results like [2], [3],
and [55]; these achieved 86% accuracy by deep-learning LSTM, 99.8% accuracy by
Xtreme gradient boosting (XGBoost), and 75% sensitivity by XGBoost, respectively.
The used data is from Hospital Israelita Albert Einstein in São Paulo, Brazil.

For COVID-19 patients’ mortality prediction, the research work in [6] proposed a
mortality-prediction model with an SVM algorithm and achieved an accuracy of 92%
in prognoses that were based on socio-demographic and medical information from
South Korean patients; another work [4] built a prediction model by random forest
(RF) and achieved an accuracy of 95% using the data of patients that were admitted
to King Fahad University Hospital in the Kingdom of Saudi Arabia (KSA).

For predicting the severity of COVID-19 patients for ICU admission, [1] compared
some statistical methods with various machine-learning algorithms. They used a
public clinical data set with different time windows from Kaggle [60] to predict a
patient’s severity for ICU transfer. The applied statistical methods in their model
were the t-test, chi-square test, and Pearson correlation, which were used for the
feature-engineering process. The data set samples were divided into three categories:
with noncommunicable disease (with-NCD), without NCD, and all of the combined
data. RF and gradient boosting machine (GBM) achieved 93% accuracy for the with-
NCD and without NCD data, respectively, and 89% accuracy for all of the combined
data. The SHapley Additive exPlanations (SHAP) method [42] was used to select
the best parameters according to each category in which respiratory rate, lactate,
diastolic blood pressure, systolic blood pressure, neutrophils, and oxygen saturation
were common for those groups that included all patients.
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Also, the authors in [22] used the same data set to introduce a machine-learning
assistance model to help experts determine a patient’s priority for ICU admission
according to biological laboratory findings. According to their results, the XGBoost
classifier achieved the best results (97% accuracy) as compared to other classifiers:
SVM, decision tree (DT), k-nearest neighbors (KNN), RF, and artificial neural net-
work (ANN). The SHAP method was used to select the top-most significant statistics
like PCR, respiratory rate, lymphocytes, diastolic blood pressure, P02 venous blood
gas, GGT, neutrophils, urea concentration, creatinine, glucose, sodium, those aged
above 65, TGO, and lactate, which all had important impacts on the performance of
the XGBoost prediction model. While [18] used the ANN classifier to predict ICU ad-
mission using the same data set, their model achieved an accuracy of 96.9%, and the
GSInquire method was used for gaining the quantitative effect of the clinical variables.

Alotaibi et al. [5] developed different machine-learning models using ANN, SVM,
and RF. The relief algorithm was used for selecting the features by computing and
assigning weights for the parameters according to their importance. The models were
built based on a data set from Beijing Hospital in China. The best performance
was achieved (with an accuracy of 90%) by employing ensemble RF using LPBoost,
GentleBoost, and AdaBoostM1 decision trees.

Cheng et al. [16] developed a machine-learning-based risk-prioritization system to
predict ICU severity within the first 24 hours with 76.2% accuracy using the RF clas-
sifier based on data from Mount Sinai Hospital in New York City. The features were
selected by the importance of the Gini metric for training the RF model, which in-
cluded respiratory rate, oxygen saturation, C-reactive protein, white blood cell count,
systolic and diastolic blood pressures, blood urea nitrogen, anion gap, serum creati-
nine, and lymphocyte count features.

Different meta-heuristic algorithms have been used by different research studies
to select the significant features of COVID-19 laboratory blood tests. [26] utilized
the particle swarm optimization (PSO) algorithm with a Bayesian network classifier
to build a diagnosis model of COVID-19 disease with 95.1% accuracy. Also, genetic
algorithm and AdaBoost classifiers [58] were exercised for a prediction model to dis-
tinguish the infected cases of COVID-19 based on clinical features and symptoms. In
addition, the butterfly optimization algorithm (BOA) was hybridized with the PSO
algorithm in [23] to determine the main attributes and features that provided an
efficient decision for manipulating patients; it achieved an accuracy of 91.07%.
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3. Proposed system for COVID-19 severity prediction

Figure 1. Structure of proposed prediction model

3.1. Data set

The study used a data set called "COVID-19 Clinical Data to Assess Diagnosis"
to help specialists and hospitals predict a patient’s needs for ICU admission. The
data set is public and available on Kaggle [60]; it includes anonymized data from
384 COVID-19-positive patients from Hospital Sĺrio-Libanês in São Paulo, Brazil.
The data was aggregated by windows in chronological order to reflect the real-life
scenarios of events for each patient. There were five time windows for each patient,
where time window "0–2" meant that the data had been taken from between 0 and
2 hours of the patient’s admission, time window "2–4" denoted that the data had
been obtained from between 2 and 4 hours of admission, and so on for the other time
windows ("4–6", "6–12", and "above-12"). Each patient had four main categories of
information: demographics, previously grouped diseases, blood lab tests, and vital
signs. According to the data set’s description, there was some static information
(usually once) like demographic and previous grouped diseases, while vital signs were
sampled more frequently (usually hourly) than blood lab tests (usually daily) over
the windows. The description of the data for each category is described in Table 1,
where the total was 54 features; when expanded to the mean, median, maximum
(max), minimum (min), difference (diff), and relative differences when pertinent, this
generated a total of 231 features. The original data set contained 1925 samples with
231 features.
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Table 1
Description of data set

Category Number of features Data Examples
Demographic 3 Age - Gender

Pre-existing Diseases 9
hypertension;

immunocompromised.

Blood lab tests 36

albumin serum, arterial base excess,
venous base excess, arterial bicarbonate, venous bicarbonate,

bilirubin, blast, calcium, creatintine, FFA,
GGT, glucose, hematocrite, hemoglobin, INR,
lactate, leukocytes, lymphocytes, neutrophiles,

arterial PO2, venous PO2, arterial PCO2, venous PCO2,
PCR, arterial pH, venous pH, platelets,

potassium, arterial O2 saturation, venous O2 saturation,
sodium, aspartate aminotransferase (AST/TGO),
alanine aminotransferase (ALT/ TGP), PATT,

urea, D-dimer.

Vital Signs 6
systolic and diastolic blood pressure,

heart rate, respiratory rate,
temperature, oxygen saturation.

3.2. Preprocessing

The publicly available data set required some preparation steps in order to be ready
for use by the proposed model, such as the following:

1. Fill in the missing data: some patients may have a clinically stable state that
does not have a new measurement in a time window, so the values may be like
the values of neighboring windows as described by the data set’s authors [60].
Therefore, the data for a specific window is filled using the next or the previous
window of the same patient as recommenced in the data set description.

2. Convert the categorical variables into their values, like the age percentile vari-
able (where, for example, the value "60th" is converted to 60, "above 90th" is
transformed to 100, and so on).

3. Get rid of the duplicate data. When applying this step, the number of variables
was reduced from 231 to 85.

4. Label the sample by the final decision of the patient, where "1" means the patient
has ICU admission and "0" does not.

The descriptions of the data set did not recommend using the sample data when
the target variable was available, as there were some problems in the order of the
events [60]. As a result, the samples from the last event window that was labeled
"above-12" was excluded, as were the samples from the patient’s ICU admission.
Then, the data of each window was separated to be a detached data set; so, the
original data set was split into four sub-data sets (their descriptions are presented in
Table 2).
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Table 2
Description of data set windows

Data set Window Number of samples Samples per class

Window 0–2 353
0: 190
1: 163

Window 2–4 326
0: 190
1: 136

Window 4–6 286
0: 190
1: 96

Window 6–12 255
0: 190
1: 65

3.3. Support Vector Machine (SVM)

A support vector machine (SVM) is a machine-learning algorithm for solving re-
gression and classification problems as optimization problems [19], where it finds an
optimal line or hyperplane to separate data with different classes by the highest mar-
gin. The optimal line/hyperplane is the best decision boundary where several decision
boundaries can separate data samples without error; however, the best one is that
which has a maximum margin from the nearest points of the different classes [11].

SVM can work well with linearly and non-linearly separable data and achieve the
best results. When dealing with non-linearly separable data, SVM employs the kernel
technique to transform the data from a low-space dimension (nonseparable space) to
a high-space dimension (separable space) and then seeks the best decision boundary
that divides the data points with the greatest margins [21]. There are different types
of kernels: sigmoid, polynomial, linear, and radial basis function (RBF), which are
selected according to the type of data and those that yield good results [51]. In
addition to kernels, there are two additional hyper-parameters: the cost (C) and
gamma (γ) parameters [11] that are tuned by the developer when creating a classifier
to achieve the best performance [27,59]. The cost (C) regularizes the misclassification
of the decision boundary by adding a penalty for each misclassified training sample
[37]. The gamma γ parameter determines the distance of the effect of a single training
data point. The values of these parameters in our model are described in Table 3. 1
represents the steps of how the SVM classifier works.

The reason for applying SVM in the proposed model is that SVM has been used
in various studies and has achieved promising results for detecting COVID-19 (like
in [29, 43]) based on clinical blood results. Studies like [6, 32, 69] have used the SVM
classifier and achieved promising results (like 80% accuracy, 81.4% accuracy, and
92.8% sensitivity, respectively) for predicting severity and mortality risks based on
clinical blood tests.
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Algorithm 1 SVM classifier
Input: train data, test data, and SVM parameters
Output: Accuracy(Acc)
1: while (stopping ?) do
2: Train SVM classifier using training data samples;
3: Test SVM trained_model using testing data samples;
4: Compute accuracy by comparing predicted test samples with original test samples.
5: end while
6: return Accuracy(Acc);

3.4. Feature selection by Hunger Game search (HGS) optimization
algorithm

Hunger Game search (HGS) is a population-based optimization algorithm that was
first presented in 2021 [68]. The optimization concept of the algorithm mimics the
social conduct of animals when they are hungry. The idea of “hunger” is the main
reason behind the actions and behaviors of animals when making decisions and op-
timizing food searches to save their lives. In this research, the methodology of the
algorithm has been exploited for the feature-selection problem. Feature selection is
an operation for finding out the most relevant features that have a significant impact
on a machine-learning model. Many researchers have considered this problem to be
an optimization problem [28, 44, 54], searching for the best features among all of the
features. The steps for using HGS for feature selection are explained as follows:

1. Initialize the population of agents: initially, a group of agents (A) has been
created with dimensions that are equal to the number of the data set features
(F ); then, they loop on these dimensions of each agent and apply the uniform
random by Eq. 1.

afj = lwBf + (upBf − lwBf ).u j = 0, .., A; f = 0, .., F, (1)

where afj is the current agent; lwBf and upBf denote search space boundaries
0 and 1, respectively; for the feature-selection issue, u is an uniform random
number between [0,1]. The result of this operation is a population of random
initialized agents (A).

2. SVM classifier to compute fitness values of agents: evaluating the fitness values
is the primary reason behind updating the positions of the agents to optimize
the solutions. Since the feature-selection problem is a discrete problem, the real
values of all solutions should be converted into binary values to deal with this
problem. So, Eq. 2 is first used to convert the solutions to binary versions.

binf
j =

{
1, if binf

j > 0.5

0, otherwise
(2)

Then, the features that have “1” values are selected, while those with “0” values
are discarded. The quality of the selected features of each solution is evaluated
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by the fitness value that is calculated by Eq. 3.

fitj = λ . (1−Accj) + (1− λ) .
|binj |
F

, (3)

where fitj denotes the fitness value of agent j, (1−Accj) represents the classifi-
cation error (where Accj is the accuracy of agent j computed by SVM), λ=0.99
is for making the balance between the classification error and the number of se-
lected features, |binj | is the number of solution features that have “1” values, and
F is the total number of all of the features.

3. HGS for updating positions The search strategy of HGS follows the following
rules for reaching food:
Search individually: the agents in this category search individually for food
without any participation from the team. They use Eq. 4 to update their posi-
tions randomly.

−−−−−→
A(i+ 1) =

−−→
A(i).(1 + rndm(1)), rd1 < l, (4)

where
−−→
A(i) refers to the agents in the current iteration, rndm(1) is a random

number that is uniformly distributed, and rd1 is a random value that is within
a range of [0,1].
Search with team participation: the agents in this category cooperate with
each other, forming a team to search for food. Eqs. 5 and 6 mimic these types
of search rules.

−−−−−→
A(i+ 1) =

−−→
Wt1.

−→
Ab +

−→
R.

−−→
Wt2.|

−→
Ab −

−−→
A(i)|, rd1 > l, rd2 > E (5)

−−−−−→
A(i+ 1) =

−−→
Wt1.

−→
Ab −

−→
R.

−−→
Wt2.|

−→
Ab −

−−→
A(i)|, rd1 > l, rd2 < E, (6)

where
−→
Ab refers to the best agent in this iteration,

−−→
Wt1 and

−−→
Wt2 are the hunger

weights,
−→
R is a ranging controller, rd1 and rd2 are random values that are within

a range of [0,1], E is a variation control, and
−→
R ,

−−→
Wt1,

−−→
Wt2, and E are variables

that are calculated by the equations that are explained in detail in the original
paper [68].
As long as the termination iterations are not reached, the search process is con-
ducted, and the agents update their positions by using Eqs. 4, 5, and 6 to reach
the best global solution with the best-selected features. The steps of the HGS
algorithm with the SVM classifier for the feature-selection operation are stated
in Algorithm 2.
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Algorithm 2 Step of HGS algorithm with SVM classifier for feature selection
Input: population size M, maximum number of iterations n_iters
Output: Selected features.
1: for each agent j (∀j = 1, 2, ....M) do
2: for each dimension f (∀f = 1, 2, ...F ) do
3: af

j (0)← Eq.1;
4: end for
5: end for
6: while (i < n_iters) do
7: Convert solutions to binary version by Eq. 2;
8: Calculate fitness of agents using SVM algorithm 1 and Eq. 3;
9: Sort agents according to their fitness values;

10: Update best agent Ab, best fitness Bfit, and worst fitness Wfit;
11: Calculate list of hungry agents;
12: for each agent j (∀j = 1, 2, ....M) do
13: for each dimension f (∀f = 1, 2, ...F ) do
14: Calculate R, E, Wt1, and Wt2 variables using equations in [68];
15: rd1 = rand();
16: rd2 = rand();
17: if (rd1 < l) then
18: update solution by Eq. 4;
19: else if rd2 > E then
20: update solution by Eq. 5;
21: else
22: update solution by Eq. 6;
23: end if
24: end for
25: end for
26: Locate best agent Ab that has best features based on highest fitness value;
27: i = i+ 1;
28: end while
29: return Best selected features.

Finally, map the selected feature indices of the best solution output from the
previous feature-selection step onto the data set to create new train and test sub-sets
with the most significant features. Then, the SVM classifier uses the new train and
test sets to train and evaluate the model with these features by Algorithm 1.

3.5. Experimental setup

The experiments were evaluated by computing various measurements where Eqs. 7,
8, 9, and 10 were used for calculating the accuracy, recall, precision, and F1-score,
respectively, of the proposed model.

acc =
TP + TN

TP + TN + FP + FN
(7)
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recall =
TP

TP + TN
(8)

precision =
TP

TP + FP
(9)

f1− score =
2.(Recall × Precision)

Recall + Precision
, (10)

where FP, FN, TP, and TN refer to False Positive, False Negative, True Positive, and
True Negative, respectively.

The average performance of the proposed model was implemented by running
each algorithm for 30 independent executions and computing the mean value of the
mentioned metrics using Eq. 11.

AV Gmetric =

∑Nr

i metrici
Nr

. (11)

The standard deviation of the algorithms over the different executions was computed
by 12.

STDmetric =

√√√√ 1

Nr
.

Nr∑
i

(metrici −AV Gmetric)2. (12)

The hyper-parameters of the experiments, SVM, and the used optimization al-
gorithms are shown in Table 3.

Table 3
Hyper-parameters of experiments

Method Parameters

General

Number of optimization runs: Nr = 30

Population size: M = 20

Max iterations: n_iters = 500

Lower bound: lwB = 0
Upper bound: upB = 1

SVM
kernal = rbf

γ = 0.01

C = 10

HGS LH = 10, l = 0.25
FPA P = 0.8, λ = 1.5
HHO Levy component λ = 1.5
WOA b = 1
BA α = 0.9, γ = 0.9, fmin = 0, fmax = 2, A = 2, r = 1

4. Experimental results and discussion

The main objectives of the proposed model were to detect the most suitable time
for applying the medical tests correctly and to identify the most significant blood
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indicators for the early prediction of COVID-19 patients’ severity for ICU admission.
So, the experiments were divided into the following sections (which corresponded to
the study’s objectives).

4.1. Best time window

The first objective of this study was to predict the best time to apply clinical tests to
a patient in order to determine the severity level and her/his needs for ICU transfer.
In order to accomplish this, the SVM classifier was applied to the four data sets (as
described in Table 2) that contained diverse patient data with different time windows.
The experiment used all of the original features of the data set: demographics, previ-
ous grouped diseases, blood lab results, and vital signs. The results are presented in
Table 4. It is clear that the data of the (0–2) time window was the best time window
for applying medical blood lab tests according to the values of accuracy, precision,
recall, and f1-score.

Table 4
Results of different time windows using SVM and all features

Window Accuracy Precision Recall F1-score
0–2 91.5 92.3 91.1 91.4
2–4 83.3 83 82.7 82.8
4–6 84.4 84.9 79 80.9
6–12 84.3 84.9 71.7 75.1

4.2. Most significant features

Another objective of the study that would help decision-makers easily and correctly
handle a patient case was to determine the most significant indicators in the blood
data that would affect the performance of the proposed model. Five meta-heuristic
optimization algorithms were used and compared for the feature-selection experiment
(HGS, FPA, HHO, WOA, and BA), where SVM was used as an objective function.
The experiment used the (0–2) time window data set as the outcome of the first ex-
periment. For each optimization algorithm in the experiment, the measures in Section
3.5 like accuracy, recall, precision, and fitness values were computed to compare the
performances of the competitive algorithms in selecting the most significant features
among the variables of the clinical blood data.

Table 5 presents the accuracy results of the compared algorithms, where the
HGS algorithm exceeded the competitors in terms of the mean, std, best, and worst
values. HGS achieved a promising mean accuracy value of 96.5%, while the second
mean rank value was 93.6%. Also, the best solution over the different executions
accomplished a 98.6% topmost accuracy. The performance of the HGS algorithm
against the other compared algorithms over the 30 distinct runs is displayed in Fig. 2
to show the boxplots of the mean accuracy of the competitive algorithms, where the
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HGS algorithm recorded excellent performance over all the iterations compared with
the others.

Table 5
Mean, Std, Best, and Worst Accuracy values that were obtained from different optimizers

Algorithm Mean Std Best Worst
HGS 96.5 0.008 98.6 95.8
FPA 93.6 0.012 95.7 91.5
HHO 91.9 0.019 95.8 88.7
WOA 91.9 0.018 95.8 88.7
BA 93.3 0.015 97.2 90.1

Figure 2. Boxplots of average accuracy levels that were obtained from different optimizers

The results that are illustrated in Tables 6 and 7 indicate that the HGS algo-
rithm outperformed the competitor algorithms in terms of the recall and precision
measurements, respectively, according to the mean, std, best, and worst values. HGS
accomplished ≈ 96.6% of the measures with the minimal Std value (which proved the
stability of the algorithm), while the second rank was FPA with a value of ≈ 93.6%.

Table 6
Mean, Std, Best, and Worst Recall values that were obtained from different optimizers

Algorithm Mean Std Best Worst
HGS 96.4 0.009 98.7 95.5
FPA 93.6 0.012 96 91.3
HHO 91.8 0.019 95.9 89.1
WOA 91.8 0.019 95.9 88.5
BA 93.2 0.016 97.2 89.8

The fitness value results of the compared algorithms are stated in Table 8, where
HGS surpassed the competitor algorithms by achieving the lowest mean cost value of
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Table 7
Mean, Std, Best, and Worst Precision values that were obtained from different optimizers

Algorithm Mean Std Best Worst
HGS 96.6 0.008 98.5 95.7
FPA 93.7 0.012 95.8 91.5
HHO 92.1 0.019 95.9 89
WOA 92.1 0.019 95.9 88.7
BA 93.4 0.015 97.2 90.1

0.037, with a Std of 0.008 over the 30 different independent runs with the high-speed
convergence (as shown in Fig. 3). These obtained results refer to the ability of the
HGS algorithm in exploring and exploiting the search space in order to find the best
solution with the highest convergence as compared with the other algorithms.

Table 8
Mean, Std, Best, and Worst Fitness values that were obtained from compared optimiziers

Algorithm Mean Std Best Worst
HGS 0.037 0.008 0.017 0.045
FPA 0.067 0.011 0.045 0.088
HHO 0.084 0.019 0.044 0.116
WOA 0.083 0.018 0.046 0.116
BA 0.071 0.015 0.032 0.102

Figure 3. Fitness convergence curves of compared optimiziers
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The obtained results in Table 9 revealed that HGS selected the fewer number of
features where the mean result was 16.9 features, and the best solution uses the least
number of features (23) with the best accuracy and fitness value. The boxplot results
show that HGS selected the fewest number of features over the distinct runs against
the competitors (as in Fig. 4).

Table 9
Mean, Std, and Best number of features values that were obtained from different opti-

mizers

Algorithm Mean Std Best
HGS 16.9 5.05 23
FPA 37.5 3.97 43
HHO 31.4 8.5 25
WOA 29.9 7.8 38
BA 37.8 4.2 32

Figure 4. Boxplots of selected features that were obtained from different optimiziers

The HGS algorithm was evaluated statistically using the Wilcoxon signed-rank
test. Wilcoxon is a statistical non-parametric test that is meant to assess any signifi-
cant difference between two different meta-heuristic algorithms. The p-value result of
this test indicated that there was a difference between the algorithms when its value
was less than .05; otherwise, the algorithms were identical [64]. Table 10 presents a
p-value comparison between HGS and the other competitor algorithms; it is obvious
that HGS was statistically more significant where all of the p-values were ⩽ 0.05.



Ea
rly

bir
d

130 Safynaz AbdEl-Fattah Sayed, Abeer ElKorany, Sabah Sayed

Table 10
p-values of Wilcoxon test between HGS and competitor algorithms

Algorithm p-value
HGS vs FPA 4.7E-06
HGS vs HHO 1.5E-06
HGS vs WOA 2.3E-06
HGS vs BA 3.4E-06

Finally, to compare the correctness of the proposed model (HGS-SVM) with
the most related studies in the literature, Table 11 reports the classifiers, the feature-
selection method (FS-Method), whether a time series was applied or not (TS-Applied),
and the accuracy of the related research that used the same public Kaggle data
set [60] to predict the severity of COVID-19 patients for ICU admission. It is worth
mentioning that most of these studies did not take the time series of the data into
account in their work in spite of the description of using the time for the data. The
superiority of our model (HGS-SVM) over other published studies is obvious despite
the fact that we used the time factor when building our model.

Table 11
Comparison of proposed model (HGS-SVM) with existing studies

Study Classifier FS-Method TS-Applied Accuracy
[1] GBM SHAP No 89%
[22] XGBoost SHAP No 97%
[18] ANN GSInquire No 96.9%

HGS-SVM SVM HGS Yes 98.6%

4.3. Justifications of selected features

According to the aforementioned results, the HGS algorithm achieved the topmost
results, where its best solution accomplished an accuracy of 98.6% with 23 selected
features. The selected features were the age variable from the demographic category,
3 types of pre-existing diseases, 13 features from blood lab parameters (venous base
excess, creatinine, FFA, hematocrit, lactate, lymphocytes, neutrophils, venous PO2,
arterial PH, platelets, potassium, venous O2 saturation, and sodium), and 6 features
from vital sign variables (systolic blood pressure, diastolic blood pressure, median
value of heart rate, max value of heart rate, respiratory rate, and temperature).

The age feature from the demographic category was selected as one of the most
significant features in the model. Many studies [10,34,41,49,66] have been published
that have demonstrated the importance of age in disease progression – particularly in
elderly patients.

The increased serum creatinine in COVID-19 patients led to acute kidney injury
(AKI) in 5.1% of the patients [17]; this is a serious factor in risk assessment that
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suits the outcomes of various models [12, 65]. Raised free fatty acids (FFAs) cause
lipo-toxicity, leading to harm to some organs such as the pancreas and liver; they
also cause some problems with insulin and proinflammatory [45], which increase the
patient’s severity. An increase in lactate levels is a factor of cell damage and one of
the most vital markers of lung injury [35]. Elevated lactate levels refer to the worst
outcome [30]; this feature was selected by many other statistical and machine-learning
methods [1, 34,38,66,67].

It has been noted that a low value of lymphocytes is an important indicator for
the severity of a patient where lymphocytes are responsible for preserving immune
homeostasis and the response of inflammatory cells; this may expose the patient
to death [1, 14, 25, 61]. The opposite is true for neutrophils, where a high value of
this test reflects the severity of the illness; this is consistent with the findings of
the machine-learning models in [1, 34]. Neutrophils are white blood cells, and their
activation is related to the high severity of enabling immune cells to defend against
attack [8, 62]. Hematocrits and platelets are serious variables that are related to
sepsis, and low values of these tests are indices for developing a patient’s state [31,33].
The blood gas analysis variables (venous base excess, venous PO2, arterial PH, and
venous O2 saturation) are among the leading features that agree with the findings
in [1,24,25,38,63]. Also, abnormalities in potassium and sodium have been associated
with severe disease [3, 40].

The respiratory rate is one of the most common vital sign tests for detecting
severity, where a high value indicates a critical symptom [1, 71]. Also, systolic and
diastolic blood pressure, heart rate, and temperature are among the most significant
features in severely affected COVID-19 patients [50,52,71].

The selection of such features by our model with evidence of their significance
from other published research increases the reliability and stability of the proposed
model and emphasizes the importance of the selected features.

5. Conclusions

Some COVID-19 patients may be in a good state that requires only minimal treat-
ment in a hospital ward or staying at home, while others are exposed to blood clots
and a lack of oxygen (which require critical care in an intensive care unit [ICU]).
Making correct early decisions for these patients is an important matter for two rea-
sons: first – to save patients’ lives, and second – to conserve hospital resources and
give priority according to the level of the severity of patients’ health situations. Clin-
ical blood samples are widely available and are used in all hospitals, so this study
proposes a machine-learning model for the automatic prediction of the COVID-19
patients’ needs for incentive care based on blood lab tests for predicting ICU trans-
fers to assist doctors with decision-making methods that facilitate the efficient use
of hospital resources. The proposed model used a public time series window data
set to identify the most suitable time window for applying medical tests correctly.
Then, the Hunger Game search (HGS) meta-heuristic algorithm and support vector
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machine (SVM) classifier were integrated for building the proposed prediction model
and selecting the most informative features from the blood test data of the suitable
time window. The experiments proved that using HGS for selecting the features with
the SVM classifier achieved excellent results as compared to the results of four public
meta-heuristic algorithms: the flower pollination algorithm (FPA), Harris Hawks op-
timization (HHO), the whale optimization algorithm (WOA), and the bat algorithm
(BA). According to the results, the proposed model also selected the most informative
indicators in the input blood data, where the obtained features were validated with
the results of the other published studies to increase the consistency of the proposed
model and assert the significance of the selected features.

Despite the high-level results of the proposed model, the study has some limita-
tions that may be addressed in future work. First, the proposed HGS-SVM model
was used as a binary classification to predict only a patient’s severity for ICU admis-
sion, which does not support the mortality or different levels of severity; this may
be solved by training the model based on a data set that includes different types
of severities. Also, the size of the used data set was small, with some imbalance in
the data window samples that can be solved by the availability of more data with
different cases to improve the model’s results. The proposed model may suffer from a
generalization where the model was validated based on a data set that was taken from
one hospital and from one country; so, the generalization may be improved when the
proposed model is validated externally by using new data sets from more hospitals
and countries. The HGS algorithm was integrated with the SVM classifier, which will
be executed with more machine-learning classifiers in future work to help compare
and achieve the best results.
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