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Abstract: Accurate day-ahead prediction of solar energy plays a vital role in the planning 

of supply and demand in a power grid system. The previous study shows predictions based on 

weather forecasts composed of numerical text data. They can reflect temporal factors 

therefore the data versus the result might not always give the most accurate and precise 

results. That is why incorporating different methods and techniques which enhance accuracy 

is an important topic. An in-depth review of current deep learning-based forecasting models 

for renewable energy is provided in this paper. 
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1. Introduction 

  
At the moment, fossil fuels remain the world's most 

important source of energy. Hydrocarbons or its 

derivatives, such as coal, oil, and natural gas, are 

examples of fossil fuels. Fossil fuels develop over 

millions of years, and existing viable reserves are 

depleting more quicker than new fossil fuels are 

being created. Simultaneously, fossil fuels generate 

greenhouse gases, which exacerbate climate change 

such as global warming, endangering the 

environment on which humans rely. As a result, 

renewable energy has gained widespread attention 

in recent years. Renewable energy is energy that can 

be recycled in nature, such as solar, wind, tidal, and 

geothermal energy. Renewable energy sources 

outperform fossil fuels. Renewable energy provides 

at least two benefits over fossil fuels. First, 

renewable energy resources are numerous and 

renewable around the planet, and they are limitless. 

Second, renewable energy is clean, green, and low 

in carbon, making it advantageous to environmental 

protection. In particular, renewable energy may 

efficiently reduce sulphide (SO2), carbide (CO), and 

dust emissions, lowering the danger of atmospheric 

pollution and the warming impact. Furthermore, the 

usage of renewable energy can help to limit the 

exploitation of natural fossil resources. 

 

Renewable energy can also help to cut CO2 

emissions. Renewable energy can help minimise 

waste gas and waste liquid emissions during usage, 

so saving water resources. As a result, renewable 

energy has grown at a remarkable pace in recent 

years. Renewable energy accounted for 19.3% of 

worldwide energy consumption and 24.5% of power 

output in 2016, according to REN21's 2017 study 

[1]. Many nations, like the United States and China, 

have adopted a variety of regulatory regulations, 

incentives, and subsidies to stimulate the use of 

renewable energy. 

 

Although renewable energy is regarded as 

the most promising alternative to fossil fuels 

because it is clean, green, and naturally replenished 

in a wide geographical area, it also introduces 

unscheduled uncertainty, endangering the reliability 

and stability of energy systems, particularly with 

large-scale renewable energy integration. On the one 

hand, renewable energy demonstrates high 

volatility, intermittentness, and unpredictability, 

which will surely raise the capacity of electric 

energy systems, raising the cost of power 

generation. 

 

Physical techniques rely on numerical 

weather prediction (NWP) models, which simulate 

atmospheric dynamics based on physical principles 

and boundary conditions [2]. Limited area models, 

such as the fifth-generation mesoscale model and 

high-resolution fast refresh, are included in NWP 

models, as are global models, such as the global 

forecast system and integrated forecast model [3]. 

Many meteorological and geographical data, such as 

temperature, pressure, jaggedness, and orography, 

are considered input to NWP. Although physical 

approaches are effective for forecasting atmospheric 

dynamics, they necessitate a substantial amount of 

computer resources due to the vast amount of data 

required for calibration [8]. This is exacerbated 

when physical approaches make surprising 

predictions. As a result, physical approaches are 

unsuitable for short-term forecasting. 
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Aiming to reveal the mathematical 

connections between online time series data of 

renewable energy, statistical models are used by 

J.Hu et al. describing a research and application of a 

hybrid model based in “Meta learning strategy for 

wind power deterministic and probabilistic 

forecasting” [5]. The literature widely embraced the 

auto regressive moving average proposed by Aasim 

et al. [6], Bayesian method proposed by Y. Wang et 

al. [7], Kalman filter proposed by D. Yang [8], 

Markov Chain model proposed by W. Yun et al. in 

“A hybrid wind speed forecasting model based on 

phase space reconstruction theory and Markov 

model: a case study of wind farms in northwest 

China”  [9], and grey theory proposed by L.Wu et 

al. in “Using a novel multi-variable grey model to 

forecast the electricity consumption of Shandong 

Province in China” [10]. O. Ait Maatallah et al. 

describes the development of a novel forecasting 

algorithm based on the Hammerstein model that can 

handle various asymmetric distributions, non-

stationary profiles, and chaotic dynamics of wind 

energy [11]. A Bayesian-based adaptive resilient 

multi-kernel regression model for deterministic and 

probabilistic wind power forecasting was suggested 

by Y.Wang et al. in “Deterministic and probabilistic 

wind power forecasting using a variational 

Bayesian-based adaptive robust multi-kernel 

regression model” [12]. To achieve the time-series 

prediction of wave energy, a Kalman filter and time-

varying regression technique were proposed by G. 

Reikard in “forcasting ocean wave energy: tests of 

time-series models” [13]. The case study 

demonstrates that the suggested strategy yields the 

most accurate predictions. 

 

Due to their potential for data-mining and 

feature extraction, artificial intelligence-based 

forecasting models consistently outperform physical 

methods and statistical approaches with the advent 

of soft computing techniques. The nonlinear 

connection between input and output was commonly 

handled by support vector machines, artificial neural 

networks, extreme learning machine, and adaptive 

fuzzy neuron networks through error reduction. To 

perform real-time forecasting of carbon pricing in 

Shenzhen, a hybrid of mixed data sampling 

regression and back propagation neural network was 

built, which led to superior performance proposed 

by M. Han et al. in “Forecasting carbon prices in the 

Shenzhen market, China: The role of mixed-

frequency factors” [18]. 

 

Based on generative adversarial networks 

and convolutional neural networks, W. Fei et al. [19] 

proposed a weather classification model for day-

ahead photovoltaic power forecasting. It was 

discovered that weather classification is crucial in 

determining the most effective photovoltaic power 

forecasting model. A novel wave energy forecasting 

framework built on ANN was put out by J. Oh et al. 

in “Real-time forecasting of wave heights using 

EOF-wavelet-neural network hybrid model” [20]. 

Historical wave height and local meteorological 

information are included in this framework's inputs. 

The wave energy's current peak height is the output. 

On the basis of measurement data from China's east 

coast, the forecasting framework's validity was 

confirmed. A. Tascikaraogly et al. [21] provided a 

thorough analysis of the forecasting models 

currently in use for renewable energy, 

demonstrating the benefits of each model. To 

balance forecasting accuracy and parameter 

stability, for instance, a hybrid forecasting system 

made up of a denoising approach, multi-objective 

differential evolution algorithm, and fuzzy time 

series method was devised. To examine the large 

multi-step wind speed forecasting performance, the 

hybrid technique proposed by Y. Li et al. in “Smart 

wind speed forecasting approach using various 

boosting algorithms, big multi-step forecasting 

strategy” [23] based on wavelet packet 

decomposition, Elman neural networks, and 

boosting algorithm was developed. Furthermore, 

wavelet decomposition and least square support 

vector machines were employed to significantly 

reduce the stochasticity and unpredictability in wind 

energy. M. Ali et al. in their research titled 

“Significant wave height forecasting via an extreme 

learning machine model integrated with improved 

complete ensemble empirical mode decomposition” 

[16] suggested a new machine learning framework 

for forecasting significant wave heights in 

Australia's eastern coastline region based on 

extreme learning machines and empirical model 

deconstruction. This framework is essential for 

creating dependable ocean energy converters and 

may be thought of as a pertinent decision support 

framework. The approaches for forecasting 

renewable energy listed above, however, typically 

use shallow models as their central tenet of learning 

principles. Neural networks with no hidden layers or 

only one hidden layer are referred to as shallow 

models. In order to learn statistical principles from a 

large number of training samples and forecast 

unknown occurrences, shallow models were 

suggested in the 1980s. Back propagation 

algorithms, support vector machines, Boosting, and 

maximum entropy techniques are the primary types 

of shallow models. However, shallow model 

training requires a lot of expertise and experience. 

Additionally, superficial model theoretical analysis 

is challenging. As a result, shallow models have 

several limitations when used in real-world 

scenarios. In other terms, there are at least three 

major issues with shallow models:  

 

(i) Feature selection via hand engineering: To 

manually choose characteristics from data on green 

http://tinyurl.com/ajeee-adbu


ADBU Journal of Electrical and Electronics Engineering (AJEEE)    | www.tinyurl.com/ajeee-adbu 

 

 

Sutnga et al., AJEEE, ISSN: 2582-0257, Vol. 5, Issue 1, January 2023, pp. 24-35     | Page |   26 

 

energy, shallow learning algorithms need significant 

domain expertise proposed by M. Khodayar et al. in 

“Internal deep generative neural network for wind 

speed forecasting” [24]. Shallow models are 

ineffective for identifying the underlying nonlinear 

characteristics and high-level invariant patterns in 

renewable data because the time-consuming feature 

selection procedure heavily depends on subjective 

experience and is therefore inherently inaccurate.  

(ii) Limited capacity for generalization: Shallow 

models have shown to be excellent in approximating 

smooth target functions. The chaotic nature of the 

earth's weather system and the noisy environment, 

however, make renewable energy data intermittent, 

stochastic, and extremely variable, which introduces 

non-smooth properties to the forecasting target 

function. Therefore, limited generating capabilities 

and shallow models may not be appropriate to 

understand the intricate patterns in data on 

renewable energy.  

(iii) Sample complexity: When the training dataset 

is tiny, shallow models perform well. But when 

environmental metres, remote sensors, and other 

pertinent technologies become more widely used, 

we enter the big data age, with the training data's 

exponential growth pattern clearly visible.  

 

As a result of the abundance of renewable 

energy data, shallow models may experience 

network instability and parameter non-convergence. 

Because of the hand-engineered feature selection, 

poor generalisation capacity, and sample 

complexity, we are motivated to reconsider the deep 

learning-based renewable energy forecasting issue. 

Due to three key differences between deep learning 

and shallow models- strong generalisation 

capability, big-data training, and unsupervised 

feature learning - deep learning has gained a lot of 

attention in recent years. It has been widely used in 

pattern recognition, image processing, defect 

detection, classification, and forecasting 

applications and is naturally a type of shallow model 

substitute. A deep stochastic architecture based on 

the Boltzmann machine was recommended by the 

authors C. Zhang et al. in “Predictive deep 

Boltzmann machine for multiperiod wind speed 

forecasting” [26] for autonomous feature extraction. 

The acquired properties are quite useful and 

appropriate for wind energy forecasting. For day-

ahead PV power production, Chang suggested a new 

integrating technique based on grey theory and deep 

belief networks, showing that the prediction 

accuracy and computing efficiency are better than 

the benchmarks. A fresh deep machine learning 

technique was created by L. Li et al. in 

“Maximization of energy absorption for a wave 

energy converter using the deep machine learning” 

[27] to forecast short-term wave energy. The 

outcomes of the forecasting are beneficial for the 

effective and efficient management of wave energy 

in the present. Deep recurrent neural network, deep 

convolutional neural network, and stacked extreme 

learning machine have also been regularly reported 

for forecasting renewable energy. It is well 

acknowledged that forecasting models based on 

deep learning demonstrate appealing performance in 

terms of accuracy, stability, and efficacy, which is 

advantageous for energy system planning, 

scheduling, and management. Statistics to date 

reveal that more than 100 papers have focused on 

predicting models based on deep learning. To the 

best of our knowledge, no one publication has yet 

been published which reviews them all collectively. 

Therefore, a thorough review article focusing on 

deep learning-based renewable energy forecasting is 

urgently needed to offer an overview of the state of 

the art in research as well as a systematic evaluation 

of the relevance and validity of individual studies. 

Renewable energy forecasting has recently attracted 

a lot of attention in the literature, and multiple 

review articles have been released. S. Sobri et al. in 

“Solar photovoltaic generation forecasting 

methods” [28] addressed time-series statistical, 

physical, and ensemble methodologies for PV power 

generation forecasting. F. Barbieri et al. in “Very 

short-term photovoltaic power forecasting with 

cloud modelling” [29] gave readers a thorough 

overview of numerous methods for estimating solar 

output over a relatively short time frame. In order to 

accomplish the massive integration of wind energy, 

C. Gallego-Castillo et al. in a review on the recent 

history of wind power ramp forecasting [30] 

published a survey on wind energy ramp 

forecasting. Additionally, the current state of 

cooperative and competitive ensemble approaches 

for forecasting wind and solar energy has been 

thoroughly examined. Solar and wind energy 

forecast's effects on electrical power and energy 

systems' consequences, operating costs, and benefits 

have been compiled by the author G. Notton et al. in 

“Intermittent and stochastic character of renewable 

energy sources: Consequences, cost of intermittence 

and benefit of forecasting” [31]. P.A.E.M. Janssen 

et al. in “Progress in Operational Wave Forecasting” 

[32] explored the development of sea wave energy 

operation prediction subject to energy balancing and 

statistically assess the interdependence of wave 

energy and thermal energy by carefully examining 

the input function of wind energy. Even though 

relevant studies have been thriving recently, the 

evaluation of renewable energy forecasting from the 

standpoint of deep learning has not yet been 

explored. This paper's major contribution is to 

examine the literature on renewable energy 

forecasting from the perspective of deep historical 

analysis, which contrasts with the previous works on 

related themes. So, the purpose of this study is to 

close this gap. The primary contribution of this 

work, as compared to other research on related 

subjects, is to examine the literature on predicting 
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renewable energy from the perspective of deep 

learning-based techniques. Concisely, we group the 

essential building blocks of deep learning into four 

categories, including deep belief networks, stacking 

auto-encoders, deep recurrent neural networks, and 

others. We also group the associated training 

procedures. We investigate how deep learning-

based forecasting models enhance forecasting 

precision. We review and analyse existing 

approaches, such as data preparation and mistake 

post-correction procedures. We also talk about the 

obstacles and potential future research directions in 

addition to the ongoing research activity. A broad 

introduction and categorization of forecasting for 

renewable energy based on deep learning are 

provided in Section 2 of this paper. Section 3 

provides an overview of the often-applied deep 

architecture for deterministic and probabilistic 

forecasting of renewable energy. Section 4 discusses 

a number of methods for increasing accuracy. In 

Section 5, we also discuss the statistically promising 

performance, potential difficulties, and potential 

future paths of deep learning-based approaches. 

Finally, Section 5 draws conclusions. 

 

2.  Basic structures of Deep learning 
 

The fundamental building blocks of deep learning, 

which is essential to improving forecasting accuracy 

for renewable energy sources, are presented in this 

section. In the literature, the three primary forms of 

deep learning-stacked auto-encoder, deep belief 

network, and deep recurrent neural network-were 

commonly used. Additionally, forecasting models 

based on stacked extreme learning machines, deep 

reinforcement learning, and deep convolutional 

neural networks have been published. We now go 

into further detail on their fundamental architecture 

and related training processes. 

 

 
Figure 1: The basic unit of an auto-encoder 

 
2.1  Stack auto-encoder (SAE) 

 

The outputs of each layer of an auto-encoder in a 

stacked auto-encoder (SAE), which is a feedforward 

neural network, are coupled to the inputs of the layer 

above them. As seen in fig. 1, each auto-encoder 

(AE) consists of an encoder and a decoder and aims 

to rebuild its own inputs unsupervisedly. More 

specifically, the encoder uses the input u Rd to create 

a latent map y Rd in the hidden layer. The latent 

variables are then mapped into a reconstruction 

output vector u' that is the same size as u by the 

decoder. According to the predetermined 

distributional assumptions across the input space, 

the AE is trained to minimise the reconstruction 

error. As a general rule, the minimization objective 

function may be defined using the conventional 

squared error and cross-entropy. The fact that the 

decoding process only uses the latent information in 

the hidden layer to recreate the inputs shows that the 

latent variables have already stored a lot of the 

input's information. Because of this, the nonlinear 

transformation created by the encoder and decoder 

may be thought of as a sophisticated feature 

extractor that can preserve input's latent abstractions 

and invariant structures. A SAE is then produced by 

eliminating the decoder and stacking the encoders 

hierarchically. In more detail, the input is used as the 

training dataset for the first layer of an SAE, which 

is trained as an independent AE. The first auto-

hidden encoder's layer and the second hidden layer 

are considered as a new auto-encoder when the 

training process is finished. The training procedure 

is the same as the initial AE procedure. By applying 

each layer's encoding rule in bottom-up order, 

numerous auto-encoders may be built hierarchically, 

and, at the end, an SAE is created as per S. Li et al. 

[33]. 

 
2.2  Deep Belief Network (DBN) 

 

Hinton is credited with creating the deep belief 

network (DBN), which has been used in many 

fields. It is basically a generative graphical model 

made up of bidirectional and symmetrical 

connections between the various layers of restricted 

Boltzmann machines (RBM), which are simple, 

unsupervised networks as proposed by K. Wang et 

al. [34]. As depicted in Fig. 2, a limited Boltzmann 

machine functions as a stochastic neural network 

and consists of a layer of Boolean visible neurons 

and a layer of binary-valued hidden units, with a and 

b standing for the layers' respective biases. A RBM's 

main goal is to learn a probability distribution across 

the space of its input data in order to configure it 

with desirable attributes. An energy model that is 

optimised as a function of network characteristics 

using thermodynamics is used to learn the 

distribution. 

 

Deepening the hidden-to-output function in 

the second formulation of deep RNN makes it 

possible for the hidden states to be smaller. The main 

advantage of this formulation is that it is very 

effective in summarising the history of prior inputs, 

which makes it simpler to anticipate the output in 

real time. The third kind of deep RNN is deep 

hidden-to-hidden transition. It augments the total of 
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the prior inputs, which are represented by the fixed-

length hidden states, with a fresh data source. The 

hidden-to-hidden transition enables the hidden 

layers to quickly adapt to the varied patterns of the 

input while preserving an important summary of the 

prior knowledge. The universal approximation 

property of the deep hidden-to-hidden transition is 

its major benefit. The last form of deep RNN is 

created by piling several recurrent hidden layers on 

top of one another. Each stacked layer is encouraged 

to function at a distinct timeframe by this 

arrangement. To put it another way, stacked RNN 

may take into account various temporal scales in the 

input sequence. For projecting renewable energy, 

several deep RNN models have been put out by the 

authors Y. Qin et al. in “Hybrid forecasting model 

based on long short term memory network and deep 

learning neural network for wind signa” [35]. Deep 

RNNs, however, may make computations more 

complicated, particularly when time series data has 

lengthy tails proposed by C. Fan et al. in 

“Assessment of deep recurrent neural network-

based strategies for short-term building energy 

predictions” [36]. Adopting recurrent and 

convolutional operators for model creation is one 

workable method. Bidirectional computations, 

which may account for the effects of both past and 

future conditions, are another potential remedy. 

Additional stored state that is directly controlled by 

the neural network may exist in a deep RNN. 

Additionally, a different neural network with time 

delays or feedback loops can replace the recorded 

states. These regulated storages serve as the 

foundation for gated recurrent units and extended 

short-term memory networks. 

 

 
Figure 2: The basic unit of an Boltzman machine 

 
2.3  Other Deep Learning Structures 

 

Deep convolutional neural network (DCNN), 

stacked extreme learning machine, and generative 

adversarial networks are just a few of the additional 

deep learning architectures that have been suggested 

for feature extraction. Based on translation 

invariance features and shared-weights architecture, 

DCNN functions as a version of multilayer 

perceptions with little preprocessing put by the 

author H. Liu et al. in “Smart deep learning based 

wind speed prediction model using wavelet packet 

decomposition, convolutional neural network and 

convolutional long short term memory network” 

[37]. It was motivated by biological information 

processing, where the connection pattern between 

neurons mimics the structure of the visual system in 

animals. Basically, DCNN is made up of several 

pooling and convolution layers. When mapping low-

level maps with local features into multiple high-

level maps with global characteristics, the 

convolution layer uses a convolution operator. At 

order to decrease the memory footprints and number 

of network parameters and to make the feed forward 

and back propagation process simpler, weight 

sharing technique is typically used in the 

convolution layer. With this method, inputs from 

neurons in various locations are all given the same 

weight and bias across all neurons in the same output 

map. The input maps are really represented more 

succinctly by the pooling layer. By combining the 

input layer neuron clusters into a single neuron in 

the output layer, it minimises the size of the data 

dimensions. In this layer, average pooling and 

maximum pooling techniques are widely employed. 

A DCNN structure is created by alternately stacking 

the pooling layer and the convolution layer. A 

feedforward neural network with many layers is 

called a "Stacked Extreme Learning Machine" 

(SELM). A huge extreme learning machine (ELM) 

neuron network is split up into several stacked mini 

ELMs by SELM. The first two layers are essentially 

an original ELM in which the weights and biases of 

hidden neurons are generated at random. Expect the 

output weight vector that will be propagated after 

being reduced down to a proper dimension, even 

though the parameters of the subsequent ELM can 

either be produced at random or inherited from their 

ancestors. As long as the preceding ELM was 

properly trained, the input information is transferred 

to the following ELM. Another common 

unsupervised learning technique is the generative 

adversarial network (GAN). It is made up of a 

discriminative network and a generative network. In 

the context of a zero-sum game, these two networks 

compete with one another proposed by Z. Chen et 

al. in “Building occupancy modelling using 

generative adversarial network” [38]. The 

discriminative model in this paper seeks to learn a 

mapping function that translates the input to some 

desired output class label, whereas the generative 

network attempts to learn the joint probability 

distribution of the input data through the Bayes rule. 

In general, the discriminative network assesses 

candidates whereas the generative network produces 

them. GAN's ability to comprehend and explain the 

underlying structure of the input information, even 

in the absence of labels, is its greatest advantage. 

This advantage holds great promise for forecasting 

renewable energy since the unsupervised 

characteristics in the input data may be 

automatically learnt. 
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3.  Deep Learning based forecasting 

models 
 

Various deep learning models have been discussed 

in Section 2. These models, however, are actually 

utilised for feature extraction and cannot be used 

directly for projecting renewable energy. The 

overall organisation of predicting deterministic and 

probabilistic renewable energy based on deep 

learning is described in this section.  

 

3.1  Deterministic forecasting models 

 

In recent decades, researchers have explored both 

deterministic and probabilistic approaches to 

enhance the precision of wind power forecasting 

models. Figure 3 displays the various methodologies 

that have been devised and employed over time to 

improve the predictive outcomes of wind power 

forecasting [59]. Each technique offers distinct 

benefits, so it is essential to assess these benefits in 

relation to the specific area being studied. 

 

The existing optimization approaches may 

be used to fine-tune the network architecture and 

model parameters. After then, all of the forecasted 

components are combined to recreate the forecasting 

findings. The rebuilt forecasting findings can then 

be corrected using a variety of error post-processing 

approaches. 

 

 

 

 
 

Figure 3: Cataloguing of different wind power forecasting methodologies [59] 

 

 
3.2  Data processing techniques 

 

Original raw data on renewable energy always 

shows a range of anomalies, including fluctuation 

and spike. The forecasting ability is harmed by these 

abnormalities' nonlinearity and nonstationary 

characteristics. In order to break down the 

renewable energy signal into many components with 

better behaviour in terms of data variance and 

outliers, numerous data pre-processing approaches 

have been proposed. These data pre-processors can 

effectively reduce the detrimental effect of 

anomalies on predicting accuracy. Two of the most 

popular techniques in literature are wavelet 

decomposition (WD) and empirical mode 

decomposition (EMD) proposed by J. Wang et al. in 

“Wind Speed Forecasting Based on Multi-Objective 

Optimization and Echo State Network” [40]. In 

addition, many decomposition techniques, including 

the Fourier transform, the seasonal adjustment 

method, and the variational mode decomposition, 

have been presented. Wavelet transform and wavelet 

packet decomposition are the two components of 

WD. Both of them are used to analyse time series 

data in the time and frequency domains at many 

resolutions. The approximation and detail subseries 

are obtained using a low-pass and a high-pass filter, 

respectively. Wavelet transform decomposes the 

original signal into one low frequency component 

and numerous high frequency components, whereas 

wavelet packet decomposition separates the same 

signal into several low and high frequency 

components. Because the de-composed sub-signals 

usually display better outliers and reduced 
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uncertainty, it has been shown by F. Ziel et al. in 

their research titled “Probabilistic mid- and long-

term electricity price forecasting” [42] that WD 

approaches are particularly beneficial in predicting 

performance enhancement. The Fourier transform is 

a crucial tool for digital electronics and signal 

processing. A signal's original form is broken down 

into several sine and cosine components using this 

method proposed by Z. C. Yang in “Modelling and 

forecasting monthly movement of annual average 

solar insolation based on the least-squares Fourier-

model” [43]. Each component repeatedly displays a 

certain frequency in time. The Fourier transform's 

ability to eliminate random noise and highlight 

frequency change trends is its greatest advantage. 

However, it also has an obvious flaw: if there are too 

many frequency components, the computational 

load will definitely increase. A statistical technique 

called the seasonal adjustment method separates the 

input signal into trend and seasonal components. 

 

To reach the final forecast result, the trend 

component's prediction is corrected using the 

seasonal prediction put by J. Wang et al. in “A novel 

hybrid approach for wind speed prediction” [44]. 

Similar to this, a time series signal is divided into a 

number of band-separated modes with distinct 

sparsity characteristics using a process called 

varying mode decomposition. Each mode, or 

subseries, has properties that are known in advance. 

The implementation of this decomposition approach 

for predicting renewable energy has been the subject 

of several researches proposed by J. Naik et al. in “A 

multi-objective wind speed and wind power 

prediction interval forecasting using variational 

modes decomposition based Multi-kernel robust 

ridge regression” [45]. Other decomposition 

techniques have also been used for signal 

decomposition in recent research, including atomic 

sparse decomposition, intrinsic time-scale 

decomposition, and bernaola galvan algorithm put 

by Z. Qian et al. in “A review and discussion of 

decomposition-based hybrid models for wind 

energy forecasting applications” [46]. 

 

3.3  Probabilistic forecasting models 

 

Deterministic point predictions may not be enough 

in actual electric power and energy systems to 

capture the inherent uncertainty of data from 

renewable sources [47]. In order to help with the 

planning, management, and operation of the electric 

energy systems, probabilistic predictions that 

include quantitative uncertainty information about 

renewable energy are anticipated to be useful. The 

main goal of the probabilistic forecasting approach 

is to give each predicted outcome a probability. A 

probabilistic forecast is represented by a whole 

probability set. There are two types of approaches 

for probabilistic renewable energy prediction: 

parametric and nonparametric methods, with or 

without assumptions on distribution shape. The time 

series data for renewable energy is typically 

considered in parametric approaches to follow prior 

distributions like Gaussian proposed by H. Wang et 

al. in “Deep learning based ensemble approach for 

probabilistic wind power forecasting” [25], beta 

proposed by H. Bludszuweit et al. in “Statistical 

Analysis of Wind Power Forecast Error” [48], and 

gamma put by A. Bracale et al. in “A Bayesian 

Method for Short-Term Probabilistic Forecasting of 

Photovoltaic Generation in Smart Grid Operation 

and Control” [49]. Once the distribution is known, a 

variety of statistical techniques, including the auto-

regression model, maximum likelihood, and quick 

Bayesian approach, may be used to determine its 

parameters. In order to statistically evaluate the 

distribution parameters of historical wind power, 

Pinson suggested a parametric auto-regression 

model [50]. On the basis of 10-mins-ahead 

probabilistic forecasting at the Horns Rev wind farm 

in Denmark, the suggested method's superiority is 

shown. A novel multivariate Kalman filter model for 

multi-step probabilistic wind power forecasting was 

proposed in by M. Poncela et al. in “Automatic 

tuning of Kalman filters by maximum likelihood 

methods for wind energy forecasting” [51]. An 

expectation maximisation algorithm-based quasi-

maximum likelihood technique was used to update 

the model parameters in real-time. The probabilistic 

prediction intervals for horizons of 15 min and 24-

48 h were constructed using a stochastic time series 

developed using a Bayesian technique put by A. 

Bracale et al. in “A Bayesian-based approach for the 

short-term forecasting of electrical loads in smart 

grids” [52]. The results show a 27-31% 

improvement over probabilistic persistence. 

However, parametric probabilistic forecasting 

techniques have a tendency to convert deterministic 

forecasts into probabilistic ones, necessitating the 

use of a deterministic forecaster beforehand. As a 

result, probabilistic forecasters tend to use 

nonparametric techniques. 

 

Table 1: Probabilistic forecasting methods used in 

the literature 

Category Methods Ref. 

Parametric 

method 

Auto-regression model [50] 

Regression model [56] 

Maximum likelihood [51] 

Bayesian approach [51] 

Nonparametric 

method 

Bootstrapping method [42], [37] 

Quantile regression [12], [32] 

Lower upper bound 

estimate 

[26], [31] 

Gradient boosting [33], [42] 

Kernel density 

estimation 

[46], 

[47], [48] 

Analog ensemble [49], 

[50], [51] 
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Table 2: Merits, demerits and Applications of various deep-learning algorithms 

 

Algorithms Merits Demerits Applications 

DRNN Able to process tome 

series data, High 

computation efficiency. 

Incapable of accurately describing 

the characteristics of the incoming 

data. 

There is time-series data in the data 

on renewable energy. 

DCNN Capable of processing 

image data, great for 

feature extraction. 

Low computation efficiency. Images are either included in the 

renewable energy data or can be 

created from it. 

DBN Unsupervised feature 

extraction. 

Processing of multidimensional 

renewable energy data is not 

possible. 

The characteristics of data on 

renewable energy cannot be 

identified. 

GAN Can generate new data 

from the same input 

data. 

Incapable of accurately describing 

the characteristics of the incoming 

data. 

Renewable energy data has lot of 

missing data. 

DMP Ease of implementing. Incapable of accurately describing 

the characteristics of the incoming 

data. 

There is less renewable energy data. 

SELM High computation 

efficiency. 

Its power to extract features has 

not been thoroughly shown. 

The computing power available is 

constrained. 

SAE Easy to be implemented. Network optimization might be 

challenging. 

Data on renewable energy is rather 

incomplete. 

 

 

4.  Conclusion 

 
In-depth analysis of current deep learning-based 

forecasting models for renewable energy is provided 

in this paper. A multi-layer perceptron with several 

hidden layers is what deep learning is. It combines 

low-level characteristics to create higher-level, more 

abstract features or characterises attribute groups to 

determine the fundamental nature of incoming data. 

The five categories DCNN, DRNN, DBN, SAE, and 

additional deep learning models are used to 

categorise deep learning-based forecasting models 

in this research. We thoroughly describe each sort of 

forecasting model. The accuracy of the predictions 

can be increased by using various data preparation 

and postprocessing techniques, which are also 

covered in this work. The study then provides a 

substantial amount of simulation data that 

demonstrate the viability and efficiency of the deep 

learning-based forecasting models. Finally, we go 

through a number of issues and potential future 

research areas for prediction models based on deep 

learning. The accuracy of the predictions can be 

increased by using various data preparation and post 

processing techniques, which are also covered in this 

work. The study then provides a substantial amount 

of simulation data that demonstrate the viability and 

efficiency of the deep learning-based forecasting 

models. Finally, we go through a number of issues 

and potential future research areas for prediction 

models based on deep learning. 
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