

ISSN 0022-9032

KARDIOLOGIA Polska

Polish Heart Journal The Official Peer-reviewed Journal of the Polish Cardiac Society since 1957

Online first

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon

e-ISSN 1897–4279

Mechanical thrombectomy in acute ischemic stroke: Upper-Silesian Medical Center in Katowice experiences based on the treatment of the first 500 patients

Authors: Katarzyna Wilkosz-Musiał, Andrzej Kułach, Grzegorz Smolka, Wojciech Wojakowski, Anetta Lasek-Bal, Wacław Kuczmik, Radosław Parma, Krystian Wita Article type: Short communication Received: May 25, 2022 Accepted: November 13, 2022 Early publication date: March 16, 2023

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Mechanical thrombectomy in acute ischemic stroke: Upper-Silesian Medical Center in Katowice experiences based on the treatment of the first 500 patients

Katarzyna Wilkosz-Musiał¹, Andrzej Kułach², Grzegorz Smolka¹, Wojciech Wojakowski¹, Anetta Lasek-Bal³, Wacław Kuczmik⁴, Radosław Parma¹, Krystian Wita⁵

¹3rd Department of Cardiology, School of Medicine, Medical University of Silesia, Katowice, Poland

²2nd Department of Cardiology, School of Medicine, Medical University of Silesia, Katowice, Poland

³Department of Neurology with the Stroke Division, Katowice, Poland

⁴Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Poland

⁵1st Department of Cardiology, School of Medicine, Medical University of Silesia, Katowice, Poland

Correspondence to:

Katarzyna Wilkosz-Musiał, MD, 3rd Department of Cardiology, School of Medicine, Medical University of Silesia, Ziołowa 47, 40–635 Katowice, Poland, phone: +48 32 359 88 90, e-mail: katarzyna.wilkosz@gmail.com

INTRODUCTION

Cardiovascular diseases constitute a significant clinical and economic problem. Stroke is also one of the most important causes of disability in Europe [1].

Subsequent randomized clinical trials (MR CLEAN [2], ESCAPE [3], REVASCAT [4]) confirmed the validity of mechanical thrombectomy (MT) for the acute phase of ischemic stroke therapy.

The pilot program for the treatment of ischemic strokes by MT based on a centralized system is being carried out in the Silesian Province. Patients are referred to the central treatment center after preliminary diagnosis in regional centers for targeted treatment. In order to provide medical services for the 24/7, various groups of specialists were engaged into medical duty: interventional cardiologists (ICs), vascular surgeons, interventional radiologists (other specialists OS)

The aim of the study is to compare clinical outcomes of acute stroke patients treated by ICs or

treated by OS. MT was used as a treatment method. In order to perform the MT procedure the available infrastructure of the invasive cardiology department (CathLab) was used.

METHODS

We present the single-center, prospective study. We included 500 ischemic stroke patients (mean [standard deviation, SD]) age 67 (9) years; 52% women) with confirmed large vessel occlusion (LVO). The first patient included in the study was in November 2018 and the last one in June 2021. The patients were consecutive. The procedures were performed by ICs (n = 174), and by OS (n =326). The study was conducted over a two-year period. The study was based on a protocol approved by the Bioethical Committee of the Medical University of Silesia. Based on the assumptions of the central system, patients were referred for treatment from 20 regional neurological departments for further investigation. After initial verification and confirmation of the ischemic stroke in an imaging examination in a regional hospital, a patient was transferred to a central hospital. The final decision and qualification of the patient for treatment was made by a neurologist at the central hospital. The maximum time from the onset of symptoms to starting treatment could not exceed 6 hours. The detailed exclusion criteria, periprocedural pharmacological therapy and technical aspects of the procedure are described in detail in another publication. [5]. Catheter thrombectomy was performed according to the weekly schedule of 3 vascular surgeons (covering 3 days a week), 2 neuroradiologists (operating 2 days a week) and 2 ICs (2 days a week). The ICs training included: (1) participation in 150 procedures in the field of neuroradiology, including at least 50 performed independently (supplying cerebral vascular malformations, embolization of aneurysms, angiomas, fistulas, placement of intracranial stents, thrombectomy) or performing 50 procedures in the field of endovascular treatment, including at least 5 performed independently in the presence of a proctor; (2) participation in the training course Intravascular treatment of ischemic cerebral strokes or a course at a foreign MT treatment center; (3) 3-month internship in a ward in a neurology department with a stroke unit, in order to learn about the MT treatment procedures applicable in Poland.

Statistical analysis was performed with SPSS v25.0 Softwere (IBM Corp, Armonk, NY, US). The original data were presented on the basis of median (interquartile range [IQR]) and quantitative variables were described as the mean and standard deviation (SD) (parameters with normal distribution). Throughout the analysis, the Student's T-test was used for normal distribution, while the Mann-Whitney U test was used to compare continuous variables with abnormal distribution. The assumption of the normal distribution was tested using the Shapiro Wilk test. Pearson's chi-square test was used for the qualitative parameters. A *P*-value of less than 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Five hundred patients were enrolled in the study. Patients were allocated to two groups: treated by ICs or treated by OS, according to the randomization described previously. The study groups did not differ statistically in basic characteristics (Supplementary materials, *Table S1*). The procedure was performed on median 255 (IQR, 210–302) minutes after the onset of symptoms. In 13% (61 strokes) strokes concerned the internal carotid artery basin. TICI (Thrombolysis in Cerebral Infarction) score 2b or 3 was considered to be angiographic success. TICI 2b or 3 was obtained in 341 patients (68.2 %). Clinical results were assessed using a modified Rankin scale (mRS). The median of mRS score on discharge was 4 (IQR, 2–5). The thrombectomy procedure was performed in 174 patients (34.8%) by the ICs. There was no difference in the angiographic results (TICI 2b or 3 ICs vs. OS, 65.8% vs. 69.6%; P = 0.68) in procedures performed by ICs or OS. In-hospital deaths have been reported in 21.7% in ICs group and 16.3 in OS group (P = 0.13), the 3-month mortality and the mRS score after 3 months are correspondingly: 30.6% vs. 28.1% ICS group vs. OS group (P = 0.58) and mRS median score 3 (IQR, 1–4) vs. median 3 (IQR, 1–4) ICs group vs. OS group (P = 0.1) (Figure 1).

Widespread acceptance of the efficacy of MT in treating acute stroke occurred in 2015 with the publication of a series of clinical trials demonstrating benefit of endovascular treatment methods. Currently, 17 centers conduct a MT program in Poland. MT to treat LVO causing a stroke is one of the most effective treatments in medicine, with a number needed to treat to improve clinical outcomes as low as 2.6 [6]. The effectiveness of the therapy largely depends on the time from the starting symptoms to the beginning of the therapy. This time period is referred to as "door to puncture" (DTP) -time from arrival to hospital to groin access for MT. A centralized system allows to shorten the DTP time. Research confirms that referring patients from local centers to central ones, operating in the 24-hour on-call mode, does not worsen the long-term prognosis of patients [7].

Cardiologists have a long track record in cardiovascular interventional therapy. Functioning today CathLabs provide consistent and reliable management for the majority of patients concerned. Experienced cardiologists achieve a similar percentage of satisfactory MT angiographic results (TICI 2b or 3) as vascular surgeons, interventional radiologists or neurosurgeons [8]. However, despite successful attempts to use CathLab facilities in Poland and the experience of ICs in the treatment of ischemic stroke using MT, there are still few cardiology centers offering this method of treatment [9]. As noted by Grunwald et al. in their editorial, not all neurologists agree that large medical centers with a neurosurgical and radiological background are only proper way of reporting the MT program. The availability of such highly specialized centers is limited. It should be remembered that the clinical outcomes of MT treatment depend mainly on early reperfusion, and not on the type of center that performs the procedure [10].

It should be noted that, there are significant differences between the coronary and cerebral vessels, such as the fragility of the cerebral circulation. Perhaps this is the reason why procedures performed by cardiologists took longer than those performed by other specialists. However, the short-term and long-term outcomes of patients after MT procedure do not differ significantly depending on specialty of the operator. It is worth noting that ICs quickly mastered the treatment technique at a level comparable to that of OS. In the first study published from our center, 55.7% of ICs obtained the TIMI 2b-3 value, in the current study, which was carried out on 500 patients, this percentage increased to 65.8% (ICs 65.8% vs. OS 69.6%; P = 0.43) [8]. In our study and in the results of other centers, the treatment result depends mainly on the extent of the stroke, duration of symptoms and comorbidities, and not on the operator's specialization [11].

Taking into account, not worse results of the treatment of ischemic stroke by ICs using the MT method, a wider involvement of ICs should be considered.

Supplementary material

Supplementary material is available at https://journals.viamedica.pl/kardiologia_polska

Article information

Conflict of interest: None declared.

Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.

REFERENCES

- Malmivaara A, Meretoja A, Peltola M, et al. Comparing ischaemic stroke in six European countries. The Euro HOPE register study. Eur J Neurol. 2014; 22(2): 284–291, doi: <u>10.1111/ene.12560</u>, indexed in Pubmed: <u>25196190</u>.
- Berkhemer OA, Fransen P, Beumer D. A randomized trial of intraarterial treatment for acute ischemic stroke. New Eng J Med. 2015; 372(1): 11–20, doi: <u>10.1056/NEJMoa1411587</u>, indexed in Pubmed: <u>25517348</u>.

- Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015; 372(11): 1019–1030, doi: <u>10.1056/NEJMoa1414905</u>, indexed in Pubmed: <u>25671798</u>.
- Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015; 372(24): 2296–2306, doi: <u>10.1056/NEJMoa1503780</u>, indexed in Pubmed: <u>25882510</u>.
- Wita K, Kułach A, Wilkosz K, et al. Mechanical Thrombectomy in Acute Ischemic Stroke-The Role of Interventional Cardiologists: A Prospective Single-Center Study. JACC Cardiovasc Interv. 2022; 15(5): 550–558, doi: <u>10.1016/j.jcin.2021.11.041</u>, indexed in Pubmed: <u>35151607</u>.
- Samaniego EA, Roa JA, Limaye K, et al. Mechanical thrombectomy: emerging technologies and techniques. J Stroke Cerebrovasc Dis. 2018; 27(10): 2555–2571, doi: <u>10.1016/j.jstrokecerebrovasdis.2018.05.025</u>, indexed in Pubmed: <u>29960666</u>.
- Kaaouana O, Bricout N, Casolla B, et al. Mechanical thrombectomy for ischaemic stroke in the anterior circulation: off-hours effect. J Neurol. 2020; 267(10): 2910–2916, doi: <u>10.1007/s00415-020-09946-6</u>, indexed in Pubmed: <u>32468118</u>.
- Widimsky P, Koznar B, Peisker T, et al. Feasibility and safety of direct catheter-based thrombectomy in the treatment of acute ischaemic stroke. Cooperation among cardiologists, neurologists and radiologists. Prospective registry PRAGUE-16. EuroIntervention. 2017; 13(1): 131–136, doi: <u>10.4244/EIJ-D-16-00979</u>, indexed in Pubmed: <u>28242586</u>.
- Pawłowski K, Klaudel J, Dziadkiewicz A, et al. Cardiac CathLab-based stroke thrombectomy routine service by the BRAIN team in a recently established Thrombectomy-Capable Stroke Center in Poland. Kardiol Pol. 2021; 79(6): 684–686, doi: 10.33963/KP.a2021.0013, indexed in Pubmed: <u>34002846</u>.
- Grunwald IQ, Podlasek A, Nizankowski R. Cardiology CathLab-based multispecialty stroke thrombectomy - Poland is moving on! Kardiol Pol. 2021; 79(6): 612–613, doi: <u>10.33963/KP.a2021.0032</u>, indexed in Pubmed: <u>34196373</u>.
- Bob-Manuel T, Hornung M, Guidera S, et al. Outcomes following endovascular therapy for acute stroke by interventional cardiologists. Catheter Cardiovasc Interv. 2020; 96(6): 1296–1303, doi: <u>10.1002/ccd.29180</u>, indexed in Pubmed: <u>32776664</u>.

Figure 1. Angiographic characteristic of both groups

Abbreviations: ICS, interventional cardiologists; ICA, internal carotid artery; IQR, interquartile range; MCA, middle cerebral artery; OS, other specialists; TICI, Thrombolysis in Cerebral Infarction