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ABSTRACT 

Background: Breathing pattern alterations change the variability and the spectral content of 

the RR intervals (RRi) from electrocardiogram (ECG). However, actually there is no solution 

on how to record and control participant’s breathing without influencing its natural rate and 

depth in heart rate variability (HRV) studies. 

Aim: The aim of the study was to assess the validity of the Pneumonitor for acquisition of 

short-term (5 min) RRi in comparison to the reference ECG method for analysis of heart rate 

(HR) and HRV parameters in the group of pediatric patients with cardiac disease.  

Methods: Nineteen patients of both sexes participated in the study. ECG and Pneumonitor 

were used to record RRi from 5 min static rest conditions, the latter also to measure the 



relative tidal volume and respiratory rate. The validation comprised the Student’s t-test, 

Bland-Altman analysis, Intraclass Correlation Coefficient and Lin’s concordance correlation. 

The possible impact of the respiratory activity on the agreement between ECG and 

Pneumonitor was also assessed. 

Results: Acceptable agreement for number of RRi, mean RR, HR and HRV measures 

calculated based on RRi acquired using ECG and Pneumonitor was presented. There was no 

association between breathing pattern and RRi agreement between devices. 

Conclusions: Pneumonitor might be considered appropriate for cardiorespiratory studies in 

the group of pediatric cardiac patients in rest condition. 
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WHAT’S NEW? 

The paper describes the validity assessment of the research device — Pneumonitor — for the 

simultaneous acquisition of single-lead electrocardiogram (ECG) and impedance-based 

respiratory activity from the same set of electrodes. It enables to derive RR intervals (RRi) 

along with instantaneous frequency and depth of breathing. Importantly, the two latter signals 

can be directly measured as changes of trans-thoracic impedance, and not be solely derived 

from ECG or photoplethysmography. Both information can be utilized to perform heart rate 

variability (HRV) analysis supported not only by the assessment of RRi stationarity 

(requirement for the frequency domain calculations), but also by the assessment of respiratory 

stationarity and activity itself (e.g. HRV analysis can be distorted by too slow breathing 

pattern). The assessment is performed in the specific clinical context, within the group of 

pediatric cardiac patients and demonstrates the acceptable agreement of RRi and HRV with 

the reference device. 

 

INTRODUCTION 

Heart rate variability (HRV), calculated based on consecutive RR intervals (RRi) between 

adjacent QRS complexes resulting from sinus node depolarizations [1], have been used to 

investigate the cardiac autonomic responsiveness in various populations [2]. Importantly, 

HRV is affected by respiratory parameters [3‒5]. Classical interpretation of the high 

frequency (HF) component of HRV as the vagal influence on the heart rate (HR) is flawed in 

subjects with 3‒9 breaths per minute (breaths/min) [6]. Respiratory rate (RespRate) below 6-7 



breaths/min results in the respiration-related part of spectrum to be within (partly or totally) 

the low frequency (LF) band. Additionally, variability in respiratory period and mean tidal 

volume (TV) generates LF respiratory oscillations, even if the RespRate is within the HF band 

[7]. The highest value of root mean square of successive RRi differences (RMSSD) was 

obtained at 7 breaths/min [8]. On the other hand, in populations known to breath faster — 

more than 24 breaths/min — a wider than generally recommended [1] frequency bands for HF 

should be set [9, 10]. Despite the evidence that the respiratory alterations change the 

variability and the spectral content of the RRi, there is no optimal solution on how to record 

and control breathing without influencing its natural pattern in HRV studies [4, 11].  

The electrocardiogram (ECG) is a gold standard method for collecting RRi [1] but can be also 

used to derive RespRate [12]. ECG-derived respiration might avoid potential influence of 

mask or belt on breathing parameters. However, the multi-lead ECG recorders’ and Holter 

monitors’ costs, limited portability, and limited stationarity of the signal acquisition during 

activities reduce their practical utility in real-world settings [13].  

Last years, new convenient wearable devices have been developed to record parameters in 

cardiovascular populations more easily, quickly and frequently [14‒16]. Pneumonitor is 

portable, academically developed device designed for environmental physiology and sports 

medicine analyses and offering synchronized recording of RRi (single-lead ECG) and 

respiratory mechanics using impedance pneumography (IP) technique with the same set of 

electrodes [17]. IP records changes of trans-thoracic impedance as the result of changes of the 

amount of air in lungs and thorax movements. It was shown the specific electrode 

configuration enables obtaining linear relationship between impedance and TV [18]. 

However, these relationships depend on subject’s demographic parameters, e.g., sex and 

weight [19]. Therefore, to measure TV in liters, each participant should perform calibration 

before the main session, which is considered logistically challenging. However, this can be 

omitted, as the very high linear agreement between impedance and TV allows relying on 

relative volume changes (even divided into inspiratory- and expiratory-TV) [20]. On the other 

hand, detected respiratory onsets can be used to determine the RespRate series.  

Before using a new tool or method of measurement in clinical practice, it is crucial to verify 

its agreement with the gold standard [21, 22]. Absence of measurement validation is among 

the barriers to the widespread use of wearable medical technologies in current practice [23]. 

Importantly, most wearable biosensors, have not been designed for children, despite 

numerous pediatric cardiac diseases that could benefit from this technology [16]. IP has been 

already applied in the pediatric population [24]. Addition of ECG registration, especially 



using the same electrode configuration, does not affect the application. The main aim of this 

study was to assess the validity of the Pneumonitor for acquisition of short-term RRi in 

comparison to the reference ECG method in the group of pediatric cardiac patients for 

analysis of vagally-mediated HRV. Furthermore, this study aimed to extend the typically used 

setup with separate cardiac recording with simultaneous acquisition of respiration. 

 

METHODS 

Population 

The study group consisted of 19 (7 female) pediatric cardiac patients of both sexes. The 

inclusion criteria were: age between 7 and 18 years, absence of infection, and in case of 

constant pharmacological treatment – absence of change of medications in the last 3 months. 

The study was approved by the University Bioethical Committee (KB/70/2021) and followed 

the rules and principles of the Helsinki Declaration, all parents or legal guardians and patients 

16 years and older gave their informed written consent. 

 

Procedures and measurement conditions 

Patients and their parents/legal guardians were informed about the study objectives, 

measurement protocol, potential risks involved and its benefits by conversation. Recordings 

were performed in a hospital quiet, bright room, with stable, controlled temperature and 

humidity between 8:30 am and 2:00 pm. Patients were instructed to refrain from physical 

activity the day before and on the day of study, avoid junk food, sugar drinks, snacking, and 

use the toilet (if needed) on the day of study before examinations. The examination was 

carried out at least 1 hour after breakfast.  

 

RRi data acquisition using ECG and Pneumonitor 

For ECG, 10 electrodes were placed on standard positions. For Pneumonitor, 5 electrodes 

were placed according to the scheme presented elsewhere [17]. Patients were placed in supine 

position for 5 min to stabilize HR. RRi were recorded simultaneously using ECG (Custo 

cardio 100 12-channel PC ECG system; sampling frequency fs = 1000 Hz, Custo med GmbH, 

Ottobrunn, Germany) and Pneumonitor in supine position for 6 min.  

Pneumonitor measured single-lead ECG signals along with IP with the same set of electrodes 

(standard Holter-type, disposable ones), with fs = 250 Hz, considered sufficient for HRV 

analysis [1]. For Pneumonitor, ECG signal pre-processing comprised: (1) baseline alignment; 

(2) R peaks detection using Stationary Wavelet Transform [25]; (3) manual correction of 



mistakenly detected R peaks (if applicable, based on the visual inspection) and (4) estimation 

of RRi between successive R peaks. The IP signal was measured with the tetrapolar method 

using specified electrode configuration [18]. RespRate were estimated as follows: (1) raw IP 

were smoothed (1 s window) to remove the cardiac component [26]; (2) respiratory onsets 

were found based on the differentiated, flow-related signal; (3) RespRate were estimated 

between successive respiratory onsets.  

We did not transform impedance into volume in liters, assuming impedance changes 

reproduce the TV signal in terms of shape [20]. The first breath was hence assigned with the 

value of 1, and all next ones were related to this first. Inspiratory and expiratory phases were 

detected from the differentiated signal, and then, inspiratory- and expiratory-TV were 

estimated as the difference between the maximum after the inspiration and the minimum 

before the inspiration, and between the maximum before the expiration and the minimum 

after the expiration, respectively (Figure 1). 

 

Data synchronization, artifacts identification and correction 

Registered ECGs were inspected by a pediatric cardiologist for confirmation of sinus rhythm 

and identification of ectopic beats. The RRi were exported from the ECGs software and the 

analytical scripts prepared for Pneumonitor data, then imported into a single .xlsx spreadsheet 

file to carry out raw RRi time series synchronization, identify artifacts based on graphical 

presentation of raw RRi from both devices and implement manual editing according to 

recommendations [27]. Physiological artifacts (ectopic beats, premature atrial and/or 

ventricular beats) were replaced by interpolated RRi from adjacent RRi [28]. 

 

Stationarity assessment  

Stationarity, requirement for spectral HRV indices [29], was verified before HRV analysis 

(Statistical analysis).  

 

HR and HRV 

The corrected RRi from both devices were imported into Kubios HRV Standard 3.4 software 

(University of Eastern Finland, Kuopio, Finland) [30] to calculate mean RR, mean HR (HR), 

time-domain (standard deviation of NN intervals — SDNN, RMSSD) and frequency-domain 

(low frequency — LF, HF, LF/HF) parameters based on 5 min recordings. Smoothness priors 

based on the detrending approach was applied (smoothing parameter, Lambda value = 500) 

[31], and then, RRi series were transformed to an evenly sampled time series using a cubic 



spline interpolation followed by 4-Hz resampling. The detrended and interpolated RRi series 

were used to compute spectra by employing a fast-Fourier transform with Welch’s 

periodogram method (300 s window, without overlap). The following bands for spectral 

components were set: LF (0.04–0.10 Hz) and HF (0.10–0.40 Hz). The power at both bands 

were estimated in absolute (ms2). Natural log transformed (ln) absolute powers in the LF 

(lnLF) and HF (lnHF) bands were also presented. 

 

Statistical analysis 

All analyses were carried out in Python 3.9. The stationarity analyses were performed using 

Phillips–Perron test [32] for patients’ RRi and RespRate series separately for ECG and 

Pneumonitor. Agreement of parameters between ECG and Pneumonitor was verified using a 

Bland–Altman plot with limits of agreement (LoA) [21, 33] and Intraclass Correlation 

Coefficient (ICC, model 3.1) with the a priori interpretation: 0‒0.30 – small, 0.31‒0.49 — 

moderate, 0.50‒0.69 — large, 0.70‒0.89 — very large, and 0.90‒1.00 — nearly perfect [34]. 

Agreement sufficient for the interchangeable use of two methods is suggested when a lower 

95% CI (confidence interval) value exceeded 0.75 [35]. To compare the values of parameters 

obtained using both devices, the Student t test was used. The smallest worthwhile change 

(SWC) was calculated by multiplying the between-subject ECG standard deviation values by 

0.2 (SWC0.2 small effect) and 0.6 (SWC0.6 medium effect) and used to define the maximum 

allowed difference between methods presented in Bland–Altman plots. Two methods are 

considered in agreement if the LoA do not exceed the SWC between methods. Lin’s 

concordance correlation coefficient (CCC) was also calculated [36]. To assess whether the 

agreement between ECG and Pneumonitor is affected by the respiratory depth and rate, 

Pearson’s correlation tests were performed between standard deviations of relative TV and 

RespRate, and the difference between HRV parameters calculated using ECG and 

Pneumonitor. Descriptive data for quantitative features with normal distribution were 

presented as mean and standard deviation (SD). In all cases, the significance level was set at α 

= 0.05. 

 

RESULTS 

Participants characteristics 

Results of 3 patients out of 19 were excluded due to poor signal quality (n=2) and non-

confirmed diagnosis (n = 1). Consequently, results of 16 (6 female) pediatric Polish 

Caucasian cardiac patients (congenital heart disease n=5, cardiac arrhythmia n = 4, 



cardiomyopathy n = 7) from the following voivodeships of Poland: Mazowieckie (n = 11), 

Lubuskie (n = 1), Podlaskie (n = 1), Kujawsko-Pomorskie (n = 1), Podkarpackie (n = 1) and 

Świętokrzyskie (n = 1) were included in the analysis. The mean (SD) age, body mass, stature, 

body mass index (BMI) were: 12.6 years (3.4), 57.8 kg (25.3), 158.4 cm (18.1), 21.8 kg/m2 

(5.5). 

 

Number of RRi, synchronization, artifacts identification and correction, stationarity 

There were 5917 and 5813 RRi from ECG and Pneumonitor, respectively. Data from both 

devices required synchronization for 6 patients — from 5 to 11 RRi from the beginning of 

ECG signal was excluded. There were 27 technical artifacts notified in both ECG and 

Pneumonitor — 0.005% error rate. The most often detected type of error included short 

interval, followed by a long interval (n = 21) and missed interval(s) on the Pneumonitor, 

equivalent to 2 or 3 ECG RRi (n = 6). RRi series obtained using both devices appeared 

stationary for all patients.  

 

Agreement of HR and HRV parameters 

Results of agreement statistics for parameters calculated based on RRi obtained using ECG 

and Pneumonitor are presented in Table 1. There were no significant differences between 

parameters (P >0.66 for all). Mean absolute percentage difference between parameters ranged 

from 1.5% to 15.8%. ICC and CCC ranged between 0.96 and 1.00.  

The Bland–Altman plots are presented in Figure 2. SWC0.2, SWC0.6 and number of patients 

for whom LoA exceed the defined SWC (LoA > SWC) for selected parameters are presented 

in Table 2.  

 

Respiratory rate and its stationarity, TV relative changes 

The RespRate was between 8 and 25 breaths/min and was stationary for all patients with one 

exception (Figure 1). There was no statistically significant correlation between neither 

standard deviation of relative TV nor standard deviation of RespRate and the difference 

between parameters calculated using ECG and Pneumonitor (R between ‒0.36 and 0.38; P 

>0.14 for all), suggesting lack of association between breathing pattern and RRi agreement 

between devices. 

 

DISCUSSION 

Number of RRi, mean RR, HR and HRV parameters calculated based on edited RRi acquired 



during rest condition using ECG and Pneumonitor presented sufficient agreement in pediatric 

cardiac patients.  

Widespread use of wearable devices in medical practice is hampered due to the lack of 

validation studies [23]. Polar chest strap seems to be the most popular wearable device used to 

register RRi, validated mostly in adults and rarely in children [37,38]. Nevertheless, breathing 

monitoring is not incorporated into such wearable sensors [39]. Like mentioned in plenty of 

previous studies, information on breathing is necessary to interpret HRV data accurately (see 

[4]), especially in populations with respiratory disturbances. Increased RespRate is a common 

symptom in children with congestive heart failure [40], integral to the diagnosis of acute 

lower respiratory infection [41].  

Pneumonitor can be considered a wearable device allowing to record both cardiac and 

respiratory activity extending the possibilities to evaluate cardiorespiratory coupling and 

cardiorespiratory fitness [42] in various measurement conditions (also dynamic), still 

preserving the quantitativeness of the results. This enables assessing the flow between cardiac 

and respiratory systems within the causal domain (to identify of directionally and strength of 

cardiorespiratory coupling and interactions) [43]. It was studied both from the methodological 

and physiological perspective [44‒46]. Procedures and tests developed to explore the 

coupling between time series in general (e.g., Granger causality) applied for cardiorespiratory 

data recorded during spontaneous and controlled activity showed ambiguous insights into 

causalities. Cardiorespiratory interaction has been regarded as primarily respiration-to-heart 

rate [47] heart rate-to-respiration [48], quasi-cyclical (TV through HR changes and rate to 

RespRate [45]) or bidirectional [49]. However, these differences probably depend on the 

different analytical technique employed [4], which could be studied further with the 

Pneumonitor, and applied specifically in pediatric cohort [50].  

The following limitations can be pointed out: the exploratory character of the study, relatively 

small and heterogenic study size, no inclusion of the control group of healthy pediatric 

subjects, the differences in sampling frequencies between devices and the procedure assuming 

only the static conditions. An extension of the study could be to use the Lomb–Scargle 

periodogram — method that allows more efficient computation of a Fourier-like power 

spectrum estimator from unevenly sampled data. 

Pneumonitor might be considered appropriate for cardiorespiratory studies in the group of 

pediatric cardiac patients in rest condition. 
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Table 1. Results of agreement statistics for HRV parameters 

Parameter Mean (SD) 

ECG 

Mean (SD) 

Pneumonitor 

Mean difference 

(95% CI) 

LoA 95% CI for lower; upper 

LoA 

ICC (95% CI) CCC 

RRi, n 348.7 (55.3) 342.6 (54.0) 6.1 (5.3–7.0) 3.1; 9.1 (1.7–4.5); (7.7–10.6) 1.00 (1.00–1.00) 0.99 

Mean RR, ms 

881.4 (124.8) 896.9 (126.6) 

‒15.5 (‒17.0 to 

‒14.0) ‒20.7; ‒10.3 

(‒23.2 to ‒18.2); (‒12.8 to 

‒7.9) 1.00 (1.00–1.00) 0.99 

HR, bpm 69.7 (10.9) 68.5 (10.8) 1.2 (1.0–1.4) 0.4; 2.0 (0.1–0.8); (1.6–2.3) 1.00 (1.00–1.00) 0.99 

SDNN, ms 45.8 (17.4) 48.2 (16.9) ‒2.4 (‒3.6 to ‒1.2) ‒6.7; 1.9 (‒8.7 to ‒4.7); (‒0.2–3.9) 0.99 (0.98–1.00) 0.98 

RMSSD, ms 52.2 (22.7) 55.7 (21.6) ‒3.5 (‒5.7 to ‒1.4) ‒11.1; 3.9 (‒14.6 to ‒7.5); (0.4–7.5) 0.99 (0.96–0.99) 0.97 

LF, ms2 

433.6 (298.5) 479.6 (324.4) 

‒46.0 (‒76.7 to 

‒15.3) ‒155.3; 63.3 

(‒207.2 to ‒103.4); (11.4–

115.2) 0.98 (0.95–0.99) 0.97 

lnLF 5.8 (0.8) 5.9 (0.8) ‒0.1 (‒0.2–0.0) ‒0.5; 0.3 (‒0.7 to ‒0.3); (0.1–0.4) 0.97 (0.91–0.99) 0.96 

HF, ms2 
1529.3 

(1141.8) 1601.9 (1105.4) 

‒72.6 (‒137.5 to 

‒7.8) ‒303.6; 158.3 

(‒413.2 to ‒193.9); (48.7–

267.9) 0.99 (0.98–1.00) 0.99 

lnHF 6.9 (1.1) 7.0 (1.0) ‒0.1 (‒0.1–0.0) ‒0.3; 0.1 (‒0.4 to ‒0.2); (0.0–0.2) 1.00 (0.99–1.00) 0.99 

LF/HF 0.42 (0.28) 0.42 (0.25) 0.00 (‒0.03 ‒ 0.04) ‒0.12; 0.13 (‒0.18 ‒ ‒0.06); (0.07‒0.18) 0.97 (0.92‒0.99) 0.97 

Data for quantitative features with normal distribution were presented as mean and standard deviation (SD) 

Abbreviations: CI, confidence interval; LoA, limits of agreement; ICC, Intraclass Correlation Coefficient; CCC, concordance correlation 

coefficient; RR, time elapsed between two successive R waves of the QRS signal on the electrocardiogram; RRi, RR intervals; ms, milliseconds; 

ms2, milliseconds squared; HR, heart rate; bpm, beats per minute; SDNN, standard deviation of NN intervals; RMSSD, root mean square of 

successive RRi differences; LF, low frequency; HF, high frequency; ln, natural log transformed;



Table 2. Smallest worthwhile change (SWC) and number of patients for whom LoA exceeded 

the defined SWC 

 Mean 

RR, ms 

HR, 

bpm 

SDNN, 

ms 

RMSSD, 

ms 

LF, 

ms2 

lnLF HF, 

ms2 

lnHF LF/HF 

SWC0.2 11.4 2.3 3.6 4.7 61.7 0.16 236 0.2 0.06 

LoA 

>SWC0.2 

None None 4 4 4 1 2 2 2 

SWC0.6 34.3 6.8 10.8 14.1 185.0 0.48 708 0.7 0.18 

LoA >WC0.6 None None None None None 1 None None 1 

RR, time elapsed between two successive R waves of the QRS signal on the 

electrocardiogram; ms, milliseconds; ms2, milliseconds squared; HR, heart rate; bpm, beats 

per minute; SDNN, standard deviation of NN intervals; RMSSD, root mean square of 

successive RRi differences; LF, low frequency; HF, high frequency; ln, natural log 

transformed; SWC, smallest worthwhile change; LoA, limits of agreement 

 



 
Figure 1. The sample series of IP signal (top) with marked local minima and maxima 

enabling to calculate respiratory rate (bottom) and the course of relative TV (second from the 

bottom), along with the interpolated RR intervals (second from the top); the only example 

with nonstationary (decreasing) respiratory rate 

Abbreviations: IP, impedance pneumography; s, seconds; RR, time elapsed between two 

successive R waves of the QRS signal on the electrocardiogram; TV, tidal volume 



 
Figure 2. Bland-Altman plots for number of RRi, mean RR, HR and time-domain HRV 

calculated based on RRi obtained using ECG and Pneumonitor. Dashed blue line presents 

mean difference, dashed orange lines represent LoA. The blue and orange areas highlight the 

confidence intervals for the mean and LoA, respectively. The dashed green and purple lines 

shows the SWC0.2 and SWC0.6 

Abbreviations: RRi, RR intervals; ms, milliseconds; HR, heart rate; bpm, beats per minute; 

RMSSD, root mean square of successive RRi differences; SDNN, standard deviation of NN 

intervals; other  see Figure 1 

 



 
Figure 3. Bland-Altman plots for number of RRi, mean RR, HR and time-domain HRV 

calculated based on RRi obtained using ECG and Pneumonitor. Dashed blue line presents 

mean difference, dashed orange lines represent LoA. The blue and orange areas highlight the 

confidence intervals for the mean and LoA, respectively. The dashed green and purple lines 

shows the SWC0.2 and SWC0.6 

Abbreviations: LF, low frequency; HF, high frequency; ms2, milliseconds squared; ln, natural 

log transformed 

 

 


