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Detection within IoT Networks
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Abstract—Detecting malicious network traffic in real
time has become a crucial requirement at smart com-
munities for elderly care and medical facilities with the
prevalence of Internet-of-things (IoT) devices. Existing
machine learning based solutions for network traffic
malware detection often fail to scale with the exponen-
tial increase of IoT devices at the facility and to detect
malicious traffic with desirable low latency. In this
paper we seek to fill the gap by designing a scalable end-
to-end network traffic analyzing system that permits
real-time malware detection. By leveraging distributed
systems such as Apache Kafka and Apache Spark, the
system has demonstrated scalable performance as the
number of IoT devices grow. Using Intel’s oneAPI
software stack for both machine learning and deep
learning models, the model inference speed is boosted
by three-fold.

Index Terms—Malware Detection; Machine Learn-
ing; Internet of Things (IoT); Feature Engineering and
Analysis; Spark Streaming; OneDNN

I. Introduction
Since the dawn of computing, there have been chal-

lenges with various types of malware threats attacking the
computer machines and Internet of Thing (IoT) devices.
These challenges have gotten worse both vertically (i.e.
numbers and volumes) and horizontally(i.e. types and
functionality) due to the evolution of technologies [1].
Vertically, signs currently point out that malware attacks
on IoT devices are increasing. Two Zscaler studies show
that malware attacks on IoT devices connected to cor-
porate networks increased by 700% in 2022 during the
pandemic [2]. Horizontally, it is possible to create smart
and sophisticated malware because of the Internet, social
networks, smartphones, IoT devices, and so on.

The state-of-the-art research focuses on the application
of machine learning techniques for malware detection due
to its ability to keep pace with malware evolution. Machine
learning techniques have shown promising results from
the literature [3][4][5] on malware detection targeted on
various executable formats such as Windows Portable
Executable (PE) and Android DEX (APK) .

With the implementation of encryption on websites,
manipulated data can be very hard to track accurately.
According to Google, 97% of all websites are encrypted [6]
as of July 2020. The number of daily issued certificates
keeps increasing linearly and is currently sitting at 1.5

million [7]. With this knowledge, it is more important
than ever to prevent further attacks from occurring on
encrypted traffic.

Although this problem seems complex in nature, many
researches have advanced their methods for detection
of malicious network traffic in order to prevent further
attacks. Previous attempts to detect such traffic have
been successful, but oftentimes take too much time for
detection and are impractical for analyzing the large influx
of data which has been made readily available. Alongside
these complications, many researchers tend to use different
datasets when comparing their newly created models.
This confusion leads to different results when training
and testing models. In the past, it has been difficult for
researches to find appropriate, and complete datasets; This
is where the common ground of network traffic analysis
comes in.

Within this project we use the NetML and CICIDS2017
datasets which are publicly available and widely used by
the network detection community to compare the results
of their models. We also work toward improving previous
detection rates by implementing Intel’s DAAL and Open-
Vino to both Machine Learning and Deep Learning mod-
els. Our goals that we wish to accomplish are as follows.
1) We first implemented traditional Machine Learning and
Deep Learning Models in order to get baseline scores
2) We then seek to accelerate the traditional Machine
Learning and Deep Learning models with the use of Intel’s
DAAL and OpenVino. 3) Lastly, we conduct a thorough
evaluation of multiple variables in order to determine
improvement.

The organization of this paper is as follows. Section
§II talks about all the previous works that have been
accomplished by previous researchers. Section §III depicts
the overall design of OpenVino and DAAL. Section §IV
we talk about performance evaluation. Lastly, in Section
§V we conclude the paper.

II. Related Works
The existing Deep Learning approaches either consider

a limited number of attacks or use outdated datasets.
Moreover, most of the previous work is specific to a partic-
ular task and suffers from under-fitting because of limited
training samples. Table I presents a thorough literature



review of the state-of-art research works on malicious
traffic detection within IoT networks.

To fill in the research gap, Sahu et al. [8] present a
security framework for IoT attack detection using a hybrid
Deep Learning model with two stages. Specifically, a CNN
model first learns the features from the IoT network
traffic, then the feature representation generated from
previous step is used as the input of an LSTM model for
attacks detection. However, whenever the network is scaled
up by adding additional IoT devices, then an additional
CNN module should be accompanied with the connected
network switch.

In the previous work to develop an effective solution
to detect and identify the stage of malware attacks using
machine learning, Kaluphahana pointed out the two main
challenges. The first one is the limitation of a traditional
detection solution. The conventional solution depends on
one network premises; this cannot detect attacks that
originated at different network premises. Another problem
is there is the case that devices might still operate for
a long time, even after infection. To solve these prob-
lems, they proposed Adept, a security framework that
detects bots attack and classifies them into attack stages
across space and time. Firstly, Adept checks IoT traffic
locally, respecting the normal profiles and generate alerts
when the traffic does not match the profiles. Secondly,
the security manager extract patterns of attack stages.
Finally, Adept use alert-level and pattern-level information
to classify the type and stages of attacks into categor-
ical classification by using machine learning models, k-
nearest neighbor (k-NN), random forest (RF), and support
vector machine (SVM). In the machine learning section,
they tried three solutions, Baseline, adept-v1, and adept-
v2, and two sets of features, Alert Based Features and
Pattern-Based Features. Alert-based features come from
the alerts that are gathered at the security manager and
have “Source and destination IP addresses,””direction”,”
protocol,” “connection size,” and “connection count” in
both inward and outward directions. Pattern-based fea-
tures are gathered at the second level of Adept, and
their features are “IP and Port Orientations,” Average
Packet Size(inward and outward)”,” Support,”” Source-to-
Destination and Destination-to-Source Ratios”,” port per
IP”,” Unique Attributes in Pattern”, and “Unique Entities
in Wild Cards”. The first two solutions only use Alert
Based Features.

The baseline model executes classification prior to FIM,
a data mining technique that gets repeating patterns
across a given set, and the Adept-v1 model runs models
after FIM treatment. Compared to the first two solutions,
the Adept-v2 model uses both Alert-based features and
pattern-based features after FIM. This experiment shows
that the Baseline model is slightly superior to the Adept-
v1 model in all machine learning models. The author
points out this is because of the decrease in sample size due
to FIM. Moreover, the Adept-v2 model always shows the

TABLE I
Literature Review

[9] Researchers have focused on de-
veloping ways to protect IoT de-
vices by providing deep learning
capabilities, frameworks, evalu-
ation metrics, and big data tech-
nologies.

Their research covers lots of
categories, but there is some
lack of systemic literature re-
view(SLR). Researchers do not
set up questions they want to
answer at the end of papers, and
they need to emphasize using
proper datasets because some
datasets are old for applying
machine learning models. These
gaps occur because they focus
on using machine learning and
disregard ML in their papers.

[10] The research aims for privacy
and secure communication has
provided papers about IoT secu-
rity.

Researchers need to assess the
quality of each researched pa-
per and compare previous stud-
ies, but their primary interest
is protecting IoT systems from
attacks.

[11] The survey by using ML and
DL methods to improve secu-
rity systems in IoT devices have
covered confidentiality and in-
tegrity.

Their survey provides compre-
hensive conclusions. However,
it lacks technical and scientific
discoveries. In addition, the pos-
sibility b that IoT devices be-
come part of a malicious attack
and make an offensive attack
also needs to be covered.

[12] The research has presented
an analysis of NIDS by using
ML and DL, including a brief
dataset.

The systematic literature re-
view does not focus on IoT
systems, detecting large-scale
attacks, and classifying attack
types.

[13] The survey has provided spe-
cific details about IoT IDS, des-
tination strategy, and security
threats.

This research comes from a gen-
eral survey. Therefore, the infor-
mation about ML and DL solu-
tions for protecting the IoT en-
vironment from large-scale at-
tacks.

[14] The researcher’s scope of pri-
vacy protectionhas reached data
protection, malware detection,
and ML implementation chal-
lenges.

This research sticks to ML-
based studies, so DL-based so-
lutions are needed to be devel-
oped.

[15] The research has supplied a de-
tailed SLR review focusing on
authentication, access control,
and data protection.

This investigation lacks ma-
chine learning and deep learning
models.

[16] This research paper with focus-
ing on machine learning and au-
thentication is provided.

This investigation lacks ma-
chine learning and deep learning
models.

[17] Researchers have provided de-
tailed research about IoT sys-
tem protection, advantages, dis-
advantages, open issues, and fu-
ture trends.

This research does not cover the
detection of large-scale attacks,
and analysis should be done re-
lated to the main topic. The
main topic of this SLR is a
survey performed on signature-
based and anomaly-based IDS.

[18] The researchers have presented
a detailed study on security
and privacy in IoT systems and
also show different security chal-
lenges.

This research shows depth
details on data privacy and
challenges, but machine
learning and deep learning
methods should be reviewed in
the paper.

best score in all situations. In terms of machine learning
techniques, SVM is a little inferior to others. In addition to
those results, the experiment under the subnet-dependent
case always provides better results than in the subnet-
independent case.

Table II shows the best score of different machine
learning and deep learning model in classifying large-scale
offensive accesses on IoTs systems. The methods used
vary from study to study, with some studies using only



TABLE II
Model Accuracy in Surveys

model name model AC PR RE F1
1. ANN 99.74 95.99 100 97.95

SVM 99.86 91.98 100 95.82
2. LSTM 99.98 100 99.99

SVM 88.18 45.43 59.97

deep learning and others using only machine learning.
Also, results are sometimes stated in writing rather than
numerically because the researchers did not calculate clas-
sification accuracy.

In the survey in “HTTP Botnet Detection in IoT De-
vices using Network Traffic Analysis,” researchers studied
an algorithm for detecting IoT botnets in IoT devices.
They employed a Deep Learning model called Artifi-
cial Neural Network (ANN) and machine learning called
Support Vector Machine (SVM). In terms of accuracy
score, the SVM score is 99.86 and superior to the ANN
model(99.74).On the other hand, the ANN model scores
95.99 in precision ratio, and the score of the SVM model
is 91.98. Therefore ANN is a better solution than SVM.

In another survey titled “A Long Short-Term Memory
Enabled Framework for DDoS Detection”, a new detec-
tion way named Long-Short-Term Memory(“LSTM”) is
developed, and the feature of this model is to determine
whether an attack or a benign attack can be detected from
a relatively small amount of data. The conventional SVM
model using machine learning has an accuracy score of
88.18, but the recall and F1 scores are below 50. On the
other hand, the LSTM model using deep learning has an
accuracy score of 99.98, and both recall and F1 are close
to 100.

III. Design
In this section, we present the design of our project

by describing each step in our data pipeline including
an overview, data collection and generation, offline model
creation, and online model inference.

A. Overview to the Data Pipeline
The overall process can be seen in the following figure

1.
As displayed in figure 1, the data originates from IOT

devices on a local network. These IOT Devices send their
network traffic through a smart gateway that contains
the next steps in the pipeline. On the smart gateway the
network traffic is first sniffed by a program that then
generates PCAP files from the given network traffic. These
PCAP files are then sent to a Kafka producer, which then
sends the data to a Kafka topic. The Kafka producer is
important because it allows for scalability when adding
more IoT devices to a network. Spark streaming is then
used to ingest the data from the Kafka topic. Again,
Spark streaming is used for the goal of keeping the entire
pipeline scalable with as many IoT devices as possible.

Computers or
IOT Devices Packet Sniffer and

PCAP File Generator

Smart
Gateway

Kafka Producer

Spark Streaming

Offline Training 
or 

Online Inference

Retrain Model(s) or
Inference Analytics

Fig. 1. Overall Design Pipeline

Generated 
PCAP Files

Deep Learning Model

SparkML
Model

Feature 
Extraction

Intel DAAL 
Model
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Fig. 2. Model Training Process

From there there the data can be used for retraining the
ML or DL model(s) and/or using previously trained ML
or DL models to make a malicious or benign inference on
that network traffic.

B. Data Generation
The retraining process is shown in figure 2.
In order to train our different types of models we require

a starting dataset and a way to retrain the model on
new data to adapt to the new types of attacks. Whenever
PCAP files are generated from the packet sniffer, they
can be used later on to retrain the models with the
actual network traffic happening on the network. The
starting dataset we used to train the original models is the
IoT-23 Dataset. We tested model accuracies for machine
learning and deep learning models using different subsets
of features provided by the IoT-23 Dataset and decided to
use most of the features except for the host and recipient
IP address and ports. We decided to remove these since
they did not increase model accuracy, as they should not
correlate with a malicious or benign attack and would only
over fit out models. After the base models are trained
using the existing dataset they can be re-trained as desired
using the newly generated PCAP files. In the case of the
machine learning models, the desired features will have to
be extracted from the PCAP files before retraining along
with any other data preprocessing steps.



C. Offline Model Training
As time goes on, new malicious attacks are being found

and designed. What has been secure in the past must
adapt in order to remain secure today and into the future.
This is still true even in the case of machine learning. Our
predictive models must be trained on more current data
in order to maintain its security. Our design to support
this is to have a built in way to retrain our different
types of models with our own generated data. Data coming
though the pipeline is saved in a way that our models can
easily be retrained with later on. This means we would
not have to rely on any existing datasets to keep our
models up to date. We decided to test out five different
machine learning models and five deep learning models.
The machine learning model classifiers include random
forest, decision tree, logistic regression, linear SVC, and
Gaussian-NB. The deep learning models include artificial
neural networks (ANN), convolutional neural networks
(CNN), two dimensional CNN, long short term memory
(LSTM), and a combination of CNN and LSTM. Each
different model has its own strengths and reasons why
we decided to test it that will be detailed in the next
subsections.

D. Online Inference
In the overall pipeline after network traffic is converted

into PCAP files and eventually picked up by Spark stream-
ing, our previously offline trained model(s) can make an
inference on that data. As mentioned previously, we have
trained five types of machine learning models and five
types of deep learning models.

Based on the timestamp of the data when it enters the
Spark streaming step of the pipeline, all new data will be
evaluated by any one of the already trained models. The
machine learning models tend to have longer preprocessing
times since feature extraction is required, but the infer-
ence/prediction time is quick as the models are not that
complex. On the other hand, the deep learning models
tend to have less preprocessing time, but a much longer
inference time due to their complexity. Their complexity
also means that they tend to be more accurate on complex
data like ours.

Currently when an inference is made on network traffic,
that is the end of the pipeline, but the inferences could
then be used in any way desired.

E. Machine Learning and Feature Selection
Dataset features The IoT23 dataset has 1) timestamp;

2) unique identifier; 3) Originating endpoint’s IP ad-
dress; 4) Originating endpoint’s TCP/UDP port; 5) Re-
sponding endpoint’s IP address; 6)Responding endpoint’s
TCP/UDP port; 7) Transport layer protocol of connec-
tion; 8) service; 9) duration; 10) Originator payload bytes;
11) Responder payload bytes; 12) Connection state; 13)
local orig; 14) local resp; 15) missed bytes; 16) history;
17) Number of ORIG packets; 18) Number of ORIG IP

bytes; 19) Number of RESP packets; 20) Number of RESP
IP bytes; 21) tunnel parents; 22) label; 23) detailed-label.

In the research, we applied two feature selections to ma-
chine learning models: 1) the Full Feature Set; and 2)
the De-identified Feature Set. The first set includes
every feature except timestamp and unique identifier. The
De-identified feature set drops the originating endpoint’s
TCP/UDP IP address and port, and the responding end-
point’s TCP/UDP IP address and port. The reason for
removing them is that these information tends to mislead
the machine learning models so that the models are biased
in classifying the malicious traffic by identifying the IP
addresses and ports.

We trained five machine learning models. 1) Random-
Forest, 2) Decision-Trees, 3) Logistic-Regression, 4)
Linear-SVC, 5) Gaussian-NB.

F. Deep Learning Models
On top of the previously mentioned machine learning

models, we also trained five deep learning models. Those
models included artificial neural network (ANN), convo-
lutional neural network (CNN), long short-term memory
(LSTM), 1D convolutional Neural Network (1DCNN), and
lastly 2D convolutional Neural Network (2DCNN). The
models also have a similar data preparation and prepro-
cessing steps to the machine learning models, but provides
much better accuracy in general.

Looking into the hyperparameters of our deep learning
models, the activation function that we used for all of
the ANN and CNN models is ReLU. The only one that
is different is the LSTM model which uses tanh as the
activation function and sigmoid as the recurrent activation
function. For layers, the ANN only uses one layer, while
all of the other models are using 2 layers. Our other model
hyperparameters can be seen in the Table 1 below.

TABLE III
Deep Learning Hyper-Parameters

Parameter Value
learning rate 1e-3

decay rate 1e-5
dropout rate 0.5
dense units 128

n batch 100
n epoch 1

filters filters
kernel size 4

strides 1
CNN layers 2

clf reg 1e-5

IV. Evaluation

This section of the paper evaluates the importance
of our research. Specifically, we will firstly explain the
datasets used throughout this research. Then we will talk
about the specs used to train and test machine learning
and deep learning models.



A. Datasets
The dataset mainly used for the research is the Apose-

mat IoT-23 [19] dataset. The IoT-23 dataset has 20 mal-
ware captures executed in IoT devices and three captures
for benign IoT device traffic. Twenty malware files have the
name of the malware sample executed in each scenario.

B. System Specifications
Throughout this research our data was being collected

with a computer who’s specs can be seen in Table IV. We
used built in Python tools in order to collect our data, like
training time, inference time, accuracy, and CPU usage.

TABLE IV
Experiment Platform Specification

Item Specification
CPU Intel i7 7700k
GPU GTX 1080ti with 11Gb DDR5

Memory 32 Gb DDR4 @ 3600MHz
Storage 2Tb SSD
Software Intel DAAL v2020.1
Host OS Windows 10

C. Model Accuracy Comparison
We calculated the prediction accuracy from machine

learning and deep learning models. In the machine
learning inference section, we manipulate five machine
learning models(Random-forest, Decision-Trees, Logistic-
Regression, Linear-SVC, and Gaussian-NB) and two fea-
ture sets, the Full feature set, and the De-identified feature
set. Figure 3 shows the outcomes from machine learn-
ing models. In addition, Figure 4 shows the outcomes
from five deep learning models, Artificial Neural Network,
Convolutional Neural Network, Convolutional Neural Net-
work 2D, Long-Short-Term-Memory, and a combination
of Convolutional Neural Network and Long-Short-Term-
Memory.
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Fig. 3. Model Accuracy Comparison in ML

In the machine learning experiments, generally full fea-
ture set marked a higher score. The first two models,
random-forest and decision-trees, almost reached 100%.
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Fig. 4. Model Accuracy Comparison in DL

TABLE V
Inference Time for Machine Learning Models on Two

Different Feature Sets

De-identified feature set (s) Full feature set (s)
Random-Forest 33.1795034408569 34.1987118721008
Decision-Trees 10.403615951538 10.7832884788513

Logistic-Regression 10.3037991523742 10.7082350254058
SVC-Linear 10.2995085716247 10.6838743686676

Gaussian-NB 10.4795570373535 10.8659715652465

The score of the De-identified feature set are 75% on the
whole.

In the deep learning section, the first three models were
marked as almost 100%. LSTM and LSTM+CNN, on the
other hand, scored about 75%.

D. Inference Time Comparison

We measured the time of average time it takes for
inference per each line from CSV files. As same with before
experiment, we tested machine learning and deep learning.
Figure 5 Shows the results from machine learning models,
and Figure 6 Shows the results from deep learning models

This experiment shows that the random-forest model
takes longer than other models. The reason seems that
random-forest runs decision trees in parallel. The other
models make inference per line around 2.6ms. In addition,
the full feature set requires a little longer time to predict
than the De-identified feature set.

This experiment shows that all deep learning models
makes inference much faster than machine learning mod-
els. LSTM models take a little longer than other models,
but only 0.4 ms per line

TABLE VI
Inference Time for Deep Learning Models

Time per row (ms)
ANN 0.0563
CNN 0.1175

CNN2D 0.1015
LSTM 0.3778

CNN+LSTM 0.2258
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E. Scalability
Another key component of our research is scalability.

We measured the change of inference time depending on
the number of supporting devices. In the test, we added
the number of devices from one to nine. Figure 7 Shows
the outcome of the trial.
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Fig. 7. Time Comparison Depending on the Numbers Devices(ms)

The experiment shows the scalability of our model.
Generally, the inference time per line decreases as the
number of connected devices gradually increases. Random-

forest takes longer to predict than other models, same with
the previous experiment.

V. Conclusion

In this project we achieve our goals of real-time and
scalable malicious network traffic through the use of a
Kafka producer and Spark streaming. Our models were
trained using a publicly available dataset, IoT-23, which
contains millions of network flows of information regarding
malicious and benign network traffic. After performing
prepossessing on the data, we can make inferences on this
data using one of the many different models we have cre-
ated. This process could be automated on a smart gateway
to implement live-fed processed data into these models in
order to create live detection over a local network.

We have made the source code for this project open-
source for future research and is available to access through
GitHub: https://github.com/BlueJayADAL/NetSec.
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