M. Annapoopathi¹ N. Meena² #### **Abstract** Let G = (V, E) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if $|N_s[e] \cap S| = 1$ for all $e \in E(G)$ ($|N_w[e] \cap S| = 1$ for all $e \in E(G)$) where $N_s(e) = \{f \mid f \in E(G), f \text{ is adjacent to } e \text{ & deg } f \geq \text{deg } e\}$ ($N_w(e) = \{f \mid f \in E(G), f \text{ is adjacent to } e \text{ & deg } f \leq \text{deg } e\}$) and $N_s[e] = N_s(e) \cup \{e\}$ ($N_w[e] = N_w(e) \cup \{e\}$). The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called a strong efficient edge domination number of G and is denoted by $\gamma'_{se}(G)$ ($\gamma'_{we}(G)$). When a vertex is removed or an edge is added to the graph, the strong efficient edge domination number may or may not be changed. In this paper the change or unchanged of the strong efficient edge domination number of some standard graphs are determined, when a vertex is removed or an edge is added. **Keywords:** Domination, edge domination, strong edge domination, efficient edge domination, strong efficient edge domination. AMS subject classification: 05C69³ - ¹ Reg.No:17231072092002, Research Scholar, Department of Mathematics, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India) and Assistant Professor, National Engineering College, Kovilpatti - 628503, Tamil Nadu, India. Email: annapoopathi.nec@gmail.com ² Assistant Professor, P.G. & Research Department of Mathematics, the M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India). Email: meena@mdthinducollege.org ³ Received on July 10, 2022. Accepted on October 15, 2022. Published on January 30, 2023. doi: 10.23755/rm.v45i0.1024. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement. # 1. Introduction It is meant by the graph that it is a finite, undirected graph without loops and multiple edges. The concept of domination in graphs was introduced by Ore. Two volumes on domination have been published by T. W. Haynes, S. T. Hedetniemi and P. J. Slater [4, 5]. Let G be a graph with vertex set V and edge set E. A subset D of V (G) is called a strong dominating set of G if every vertex in V-D is strongly dominated by at least one vertex in D. Similarly, a set D is a subset of V (G) is called a weak dominating set of G if every vertex in V- D is weakly dominated by at least one vertex in D. The strong (weak) domination number $\gamma_s(G)$ ($\gamma_w(G)$) respectively of G is the minimum cardinality of a strong (weak) dominating set of G. A subset D of V (G) is called an efficient dominating set of G if for every vertex $u \in V$ (G), $|N[u] \cap D| = 1$ [1, 2]. Edge dominating sets were also studied by Mitchell and Hedetniemi [6, 7]. A subset F of edges in a graph G = (V, E) is called an edge dominating set of G if every edge in E-F is adjacent to at least one edge in F. The edge domination number $\gamma'(G)$ of a graph G is the smallest cardinality among all minimum edge dominating sets of G. The degree of an edge uv is defined to be deg u + deg v - 2. An edge uv is called an isolated edge if deg uv = 0. A subset F of E is called an efficient edge dominating set if every edge in E is either in F or dominated by exactly one edge in F. The cardinality of minimum efficient edge dominating set is called the edge domination number of G. Motivated by these definitions; strong efficient edge domination in graphs is defined as follows. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if $|N_s[e] \cap S| =$ 1 for all $e \in E(G)$ [$|N_w[e] \cap S| = 1$ for all $e \in E(G)$] where $N_s(e) = \{f/f \in E(G)\}$ $E(G) \& deg f \ge deg e$ ($N_w(e) = \{f/f \in E(G) \& deg f \le deg e\}$) and $N_s[e] =$ $N_s(e) \cup \{e\}$ $(N_w[e] = N_w(e) \cup \{e\})$. The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called as a strong efficient edge domination number of G (weak efficient edge domination number of G) and also denoted by $\gamma'_{se}(G)$ ($\gamma'_{we}(G)$). **Definition 1.1.** Let G = (V, E) be a simple graph. Let $E(G) = \{e_1, e_2, e_3, e_4, \dots, e_n\}$. An edge e_i is said to be the full degree edge if and only if deg $e_i = n-1$. **Observation 1.2.** $\gamma'_{se}(G) = 1$ if and only if G has a full degree edge. **Observation 1.3.** $$\gamma'_{se}(K_{1,n}) = 1$$, $n \ge 1$ and $\gamma'_{se}(D_{r,s}) = 1$, $r, s \ge 1$ **Theorem 1.4.** For any path $$P_m$$, ${\gamma'}_{se}(P_m) = \begin{cases} n, & \text{if } m = 3n+1, n \ge 1 \\ n+1, & \text{if } m = 3n, n \ge 2 \\ n+1, & \text{if } m = 3n+2, n \ge 1 \end{cases}$ **Theorem 1.5.** $\gamma_{s_{\ell}}(C_{3n}) = n, \forall n \in \mathbb{N}$ **Theorem 1.6.** Let W_m be a wheel graph. Then W_m has a strong efficient edge dominating set if and only if m = 3n, $n \ge 2$ and $\gamma'_{se}(W_{3n}) = n$, $n \ge 2$. # 2. Main Results **Definition 2.1.** $$(E_{se}^{'})^{0}(G) = \{e \in E(G)/(\gamma_{se}^{'})(G+e) = (\gamma_{se}^{'})(G)\}$$ $(E_{se}^{'})^{+}(G) = \{e \in E(G)/(\gamma_{se}^{'})(G+e) > (\gamma_{se}^{'})(G)\}$ $(E_{se}^{'})^{-}(G) = \{e \in E(G)/(\gamma_{se}^{'})(G+e) < (\gamma_{se}^{'})(G)\}$ **Example 2.2.** Consider the following graph Since e_5 is the full degree edge of G, $\gamma_{se}(G)=1$. $\{e_3, e_6\}$ is the unique strong efficient edge dominating set of $G-e_5$. Therefore $(\gamma_{se})(G-e_5)=2>(\gamma_{se})(G)$ and e_5 is the full degree edge of $G-e_3$ and $\gamma_{se}(G-e_3)=1=\gamma_{se}(G)$. Hence $\gamma_{se}(G)=(\gamma_{se})(G-e_3)$. **Definition 2.3.** $$(V_{se})^{0}(G) = \{v \in V(G) / \gamma_{se}(G - v) = \gamma_{se}(G)\}$$ $(V_{se})^{+}(G) = \{v \in V(G) / \gamma_{se}(G - v) > \gamma_{se}(G)\}$ $(V_{se})^{+}(G) = \{v \in V(G) / \gamma_{se}(G - v) < \gamma_{se}(G)\}$ **Example 2.4.** Consider the following graph S= {e₄, e₇} is the strong efficient edge dominating set of G and $\gamma'_{se}(G)$ =2. $\gamma'_{se}(G-v_i) = \gamma'_{se}(G)$, i=1,3 and $\gamma'_{se}(G-v_i) < \gamma'_{se}(G)$, $i\neq 1,3$ **Theorem 2.5.** Let $G = P_{3n}, n \ge 1$. Then $(V_{se})^+(G) = \phi$ **Proof: Case (1):** Let $G = P_{3n}$, $n \ge 1$. Let v be the end vertex of G. Then $G - v = P_{3n-1}$. $\gamma_{se}(P_{3n-1}) = \gamma_{se}(P_{3(n-1)+2}) = n - 1 + 1 = n$ and $\gamma_{se}(G) = n + 1$. Therefore $\gamma_{se}(G - v) < \gamma_{se}(G)$. Hence $v_i \notin (V_{se})^+(G)$. Case (2): Let $v = v_{3k}$, $1 \le k \le n-1$. Thus $G - v = P_{3k-1} \cup P_{3n-3k}$ and $\gamma_{se}(P_{3k-1}) = k$, $\gamma_{se}(P_{3n-3k}) = \gamma_{se}(P_{3(n-k)}) = n-k+1$. Therefore $\gamma_{se}(G-v) = \gamma_{se}(P_{3k-1}) + \gamma_{se}(P_{3n-3k}) = k+n-k+1 = n+1 = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. Case (3): Let $v = v_{3k+1}, 1 \le k \le n-1$. Thus $G - v = P_{3k} \cup P_{3n-3k-1}$ and $\gamma_{se}(P_{3k}) = k+1$, $\gamma_{se}(P_{3n-3k-1}) = \gamma_{se}(P_{3(n-k-1)+2}) = n-k$. Therefore $\gamma_{se}(G-v) = \gamma_{se}(P_{3k}) + \gamma_{se}(P_{3n-3k-1}) = k+1+n-k = n+1 = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. Case (4): Let $v = v_{3k+2}, 1 \le k \le n-2$. Thus $G - v = P_{3k+1} \cup P_{3n-3k-2}$ and $\gamma_{se}(P_{3k+1}) = k$, $\gamma_{se}(P_{3n-3k-2}) = \gamma_{se}(P_{3(n-k-1)+1}) = n-k-1$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(P_{3k+1}) + \gamma_{se}(P_{3n-3k-2})$ $= k + n - k - 1 = n - 1 < \gamma_{se}(G)$. Hence $v \in (V_{se})^{-}(G)$. Case (5): when $v = v_2$ or v_{3n-1} . Thus $G-v = P_{3n-2} \cup P_1$ having no strong efficient dominating set. From the above given the cases it is identified that, $(V_{se})^+(G) = \phi$ **Theorem 2.6.** Let $G = P_{3n+1}, n \ge 1$. Then $(V_{se})^{-}(G) = \phi$ **Proof:** Case (1): Let $G = P_{3n+1}$, $n \ge 1$. Let v be the end vertex of G. Then $G - v = P_{3n}$. $\gamma'_{se}(G-v) = n+1$ but $\gamma'_{se}(G) = n$. Therefore $\gamma'_{se}(G-v) > \gamma'_{se}(G)$. Hence $v \in (V'_{se})^+(G)$ **Case** (2): Let $v = v_{3k}$, $1 \le k \le n-1$. Thus $G - v = P_{3k} - 1 \cup P_{3n+1-3k}$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(P_{3k-1}) + \gamma_{se}(P_{3n+1-3k}) = \gamma_{se}(P_{3(k-1)+2}) + \gamma_{se}(P_{3(n-k)+1}) = k + n - k = n = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. **Case** (3): Let $v = v_{3k+1}, 1 \le k \le n-1$. Thus $G - v = P_{3k} \cup P_{3n-3k}$. Therefore $\gamma'_{se}(G - v) = \gamma'_{se}(P_{3k}) + \gamma'_{se}(P_{3(n-k)}) = k+1+n-k+1 = n+2 > n = \gamma'_{se}(G)$. Hence $v \in (V'_{se})^+(G)$. Case (4): Let $v = v_{3k+2}$, $1 \le k \le n-2$. Thus $G - v = P_{3k+1} \cup P_{3n-3k-1} = P_{3k+1} \cup P_{3(n-k-1)+2}$ and, Therefore $\gamma_{se}(G - v) = \gamma_{se}(P_{3k+1}) + \gamma_{se}(P_{3(n-k-1)+2}) = k + n - k - 1 + 1 = n = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. **Case** (5): when $v = v_2$ or v_{3n} . $G-v = P_{3n-1} \cup P_1$ which has no strong efficient dominating set. From the above all the cases, $(V_{se})^-(G) = \phi$ **Theorem 2.7.** Let $G = P_{3n+2}, n \ge 1$. Then $(V_{se})^{-}(G) = \phi$ **Proof:** Case (1): Let $G = P_{3n+2}$, $n \ge 1$. Let v be the end vertex of G. Then $G - v = P_{3n+1}$. $\gamma_{se}(G-v) = \gamma_{se}(P_{3n+1}) = n$ but $\gamma_{se}(G) = n+1$. Therefore $\gamma_{se}(G-v) < \gamma_{se}(G)$. Hence $v \notin (V_{se})^-(G)$ Case (2): Let $v = v_{3k}$, $1 \le k \le n-1$. Thus $G - v = P_{3k} -1 \cup P_{3n+2-3k}$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(P_{3k-1}) + \gamma_{se}(P_{3n+2-3k}) = \gamma_{se}(P_{3(k-1)+2}) + \gamma_{se}(P_{3(n-k)+2}) = k + n - k + 1 = n + 1 = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. Case (3): Let $v = v_{3k+1}, 1 \le k \le n-1$. Thus $G - v = P_{3k} \cup P_{3n-3k+1}$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(P_{3k}) + \gamma_{se}(P_{3(n-k)+1}) = k+1+n-k = n+1 = \gamma_{se}(G)$. Hence $v \in (V_{se})^0(G)$. Case (4): Let $v = v_{3k+2}$, $1 \le k \le n-2$. Thus $G - v = P_{3k+2} \cup P_{3n-3k-1} = P_{3k+2} \cup P_{3(n-k-1)+2}$ and, Therefore $\gamma'_{se}(G - v) = \gamma'_{se}(P_{3k+2}) + \gamma'_{se}(P_{3(n-k-1)+2}) = k+2+n-k-1 = n+1$ $= \gamma'_{se}(G)$. Hence $v \in (V'_{se})^0(G)$. **Case (5):** when $v = v_2$ or v_{3n+1} . $G - v = P_{3n-2} \cup P_1$ which has no strong efficient dominating set. From the above all the cases, $(V_{se}^{'})^{-}(G) = \phi$ **Theorem 2.8.** Let $G = C_{3n}$, $n \ge 1$. Then $(V_{\infty})^0(G) = V(G)$. #### **Proof:** Let $G = C_{3n}, n \ge 1$. Let $v \in V(G)$. Then $\gamma_{se}(G) = n$, $G - v = P_{3n-1}$ and $\gamma_{se}(P_{3n-1}) = \gamma_{se}(P_{3(n-1)+2}) = n$ Therefore $\gamma_{se}(G - v) = \gamma_{se}(G)$. Hence $(V_{se})^0(G) = V(G)$. **Theorem 2.9.** Let $G = K_{1,n}, n \ge 2$. Then $(V_{se})^0(G) = V(G)$. ### **Proof:** Let $G = K_{1,n}, n \ge 2$. Let $v \in V(G)$. Then $\gamma'_{se}(G) = 1$, $G - v = K_{1, n-1}$ and $\gamma'_{se}(K_{1,n-1}) = 1$. Therefore $\gamma'_{se}(G - v) = \gamma'_{se}(G)$. Hence $(V'_{se})^{0}(G) = V(G)$. **Theorem 2.10.** Let $G = D_{r,s}$, $r, s \ge 1$. Then $|(V_{se})^{0}(G)| = r + s - 2$. #### **Proof:** Let $G = D_{r,s}, r, s \ge 1$. Let V $G = \{u, v, u_i, v_j / 1 \le i \le r, 1 \le j \le s\}$, $E(G) = \{uv, uu_i, vv_j / 1 \le i \le r, 1 \le j \le s\}$. Let $v = u_i$ or v_j . Then $\gamma_{se}(G) = 1$, $G - v = D_{r-1, s} = D_r$, s=1 and $\gamma_{se}(D_{r-1,s}) = \gamma_{se}(D_{r,s-1}) = 1$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(G)$. Hence $(V_{se})^0(G) = V(G) - \{u, v\}$. Therefore $|(V_{se})^0(G)| = r + s - 2$ **Theorem 2.11.** Let $G = W_{3n}$, $n \ge 2$. Then $v \in (V_{se})^0(G)$ if $v \in (K_1)$ and $v \in (V_{se})^-(G)$ if $v \in V(C_{3n-1})$ # M. Annapoopathi and N. Meena #### **Proof:** Let $$G = W_{3n}, n \ge 2$$. Let $V(G) = \{v, v_i / 1 \le i \le 3n\}$, $E(G) = \{vv_i, v_i / 1 \le i \le 3n, 1 \le i \le 3n, 1 \le i \le 3n - 1\}$ **Case (1):** G – v = C_{3n}. Therefore $\gamma_{se}(G-v) = \gamma_{se}(C_{3n}) = n$. Hence $v \in (V_{se})^{0}(G)$. **Case** (2): Let $v = v_i$, $1 \le i \le 3n$. $G - v = F_{3n-1}$. Therefore $\gamma_{se}(G - v) = \gamma_{se}(F_{3n-1}) = \gamma_{se}(F_{3(n-1)+2}) = n$. but $\gamma_{se}(G) = 2n$. Hence $\gamma_{se}(G - v) < \gamma_{se}(G)$. Therefore $v \in (V_{se})^-(G)$ #### Theorem 2.12. Let $G = P_{3n}$, $n \ge 2$. Let e = uv be any edge incident with any vertex of G and G' = G + e. Then $\gamma'_{se}(G + e) = \gamma'_{se}(G) - 1$ if e is incident with u_1 or u_{3i} , $1 \le i \le 3n - 2$ and $\gamma'_{se}(G + e)$ has no strong efficient edge dominating set if e is incident with u_2 , u_{3n-1} , u_{3i+2} , $1 \le i \le 3n - 2$ #### **Proof:** Let $G = P_{3n}$, $n \ge 2$. $V(G) = \{u_i / 1 \le i \le 3n\}$, $E(G) = \{e_i = u_i u_{i+1} / 1 \le i \le 3n - 1\}$. Let $e = u_i u_i + 1 \le i \le 3n - 1$. Let $e = u_i u_i + 1 \le i \le 3n - 1$. **Case 1:** Let e be an end edge of G'. Then G' = P_{3n+1} . Therefore $\gamma_{se}(G') = \gamma_{se}(P_{3n+1}) = n$ but $\gamma_{se}(G) = n+1$. Therefore $\gamma_{se}(G+e) < \gamma_{se}(G)$. Hence $e \in (E_{se})^{-}(G)$. Case 2: Let the edge e be incident with the vertex u_2 . Let S be a strong efficient edge dominating set of G'. Suppose $n \ge 2$. Among all the edges, the edge e_2 have maximum degree. It must belong to S. It strongly efficiently dominates e, e_3 , e_1 . Also the edges e_5 , e_8 , e_{11} , ..., e_{3n-4} belong to S. If the edge e_{3n-2} belongs to S, then $|N_S[e_{3n-3}] \cap S| = |\{e_{3n-4}, e_{3n-2}\}| = 2 > 1$, a contradiction. Hence G' has no strong efficient edge dominating set. The proof is similar if the edge e is added at the vertex u_{3n-1} . Case 3: Let the edge e be incident with the vertex u_3 . e_2 and e_3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e_2 or e_3 . Then $S_1 = \{e_1, e_3, e_6, \ldots, e_{3n-3}, e_{3n-1}\}$, $S_2 = \{e_2, e_4, e_7, \ldots, e_{3n-2}\}$ are the strong efficient edge dominating sets of G'. Therefore $|S_1|=n+1$, $|S_2|=n$. Hence $\gamma_{se}(G')=n < \gamma_{se}(G)$. Therefore $e \in (E_{se})^-(G)$. The proof is similar if the edge e is incident with the vertex u_{3i} , $2 \le i \le n-1$ Case 4: Let the edge e be incident with the vertex u₄. Then $S = \{e_2, e_4, e_7, \dots e_{3n-2}\}$ is the unique strong efficient edge dominating set of G' and $\gamma'_{se}(G') = n$. Therefore $\gamma'_{se}(G+e) < \gamma'_{se}(G)$. Hence $e \in (E'_{se})^-(G)$. The proof is similar if the edge e is incident with the vertex u_{3i+1} , $2 \le i \le n-1$ Case 5: Let the edge e be incident with the vertex u_5 . Let S be a strong efficient edge dominating set of G'. The edge e_4 & e_5 are the only maximum degree edges. If the edge e_4 belongs to S then no edge in S to strongly efficiently dominate e_2 . If the edge e_5 belongs to S then e_2 , e_8 , e_{11} ,, e_{3n-4} belongs to S and there is no edge in S to strongly efficiently dominate e_{3n-2} . Hence strong efficient edge dominating set does not exists. Proof is similar if the edge e is incident with the vertex u_{3i+2} , $2 \le i \le n-2$. From all the above cases, $$(E_{se})^0(G) = \phi$$ Remark: Let $$n = 1$$, $G' = K_{1,3}$. $\gamma'_{se}(G') = 1 = \gamma'_{se}(G)$. Therefore $e \in (E'_{se})^0(G)$ # Theorem 2.13. Let $G = P_{3n+1}$, $n \ge 1$. Let e = uv be any edge incident with any vertex of G and G' = G+e. Then $\gamma_{se}(G+e) = \gamma_{se}(G)$ if e is incident with u_2 or u_{3i} , $1 \le i \le n-1$, u_{3j+2} , $1 \le j \le n-2$ and $\gamma_{se}(G+e) = \gamma_{se}(G)+1$ if e is incident with u_1 , u_{3n} , u_{3j+1} , $1 \le i \le n-1$. #### **Proof:** Let G = P_{3n+1} , $n \ge 1$. V(G) = $\{u_i / 1 \le i \le 3n + 1\}$, $E(G) = \{e_i = u_i u_{i+1} / 1 \le i \le 3n\}$. Let e = uv be the any edge incident with any vertex of G and G' = G+e. **Case 1:** Let e be an end edge of G'. Then G' = P_{3n+2} . Therefore $\gamma_{se}(G') = \gamma_{se}(P_{3n+2}) = n+1$ but $\gamma_{se}(G) = n$. Therefore $\gamma_{se}(G+e) > \gamma_{se}(G)$. Hence $e \in (E_{se})^-(G)$. Therefore $\gamma_{se}(G+e) = \gamma_{se}(G) + 1$ Case 2: Let the edge e be incident with the vertex u_2 . Suppose $n \ge 1$. $S = \{e_2, e_5, e_8, ...$ $e_{3n-1}\}$ is the unique strong efficient edge dominating sets of G' and |S| = n. Therefore $\gamma_{se}(G') = \gamma_{se}(G) = n$ Hence $e \in (E_{se})^0(G)$. The proof is similar if the edge e is incident with the vertex u_{3n} . Case 3: Let the edge e be incident with the vertex u_3 . e_2 and e_3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e_2 or e_3 If e_2 belongs to S then $S = \{e_2, e_5, e_8, \ldots, e_{3n-3}, e_{3n-1}\}$ is the unique strong efficient edge dominating sets of G'and |S| = n. Hence $\gamma_{se}(G') = n = \gamma_{se}(G)$. Therefore $(E_{se})^+(G) = \phi$. If the edge e_3 belongs to S then there is no edge in S to strongly efficiently dominate e_3 . The proof is similar if the edge e_3 is incident with the vertex u_{3i} , $2 \le i \le n-1$. Case 4: Let the edge e be incident with the vertex u4. Then $S_1 = \{e_1, e_3, e_5, \dots e_{3n-1}\}$, $S_2 = \{e_2, e_4, e_7, \dots e_{3n-2}, e_{3n}\}$ are the strong efficient edge dominating sets of G' and $|S_1| = |S_2| = n+1$. Therefore $\gamma'_{se}(G') = n+1$ but $\gamma'_{se}(G) = n$. Therefore $\gamma'_{se}(G+e) > \gamma'_{se}(G)$. Hence $e \in (E'_{se})^+(G)$. The proof is similar if the edge e is incident with the vertex u_{3i+1} , $2 \le i \le n-1$ Case 5: Let the edge e be incident with the vertex u₅. Let S be a strong efficient edge dominating set of G'. The edge e₄ & e₅ are the only maximum degree edges. If the edge e₄ belongs to S then no edge in S to strongly efficiently dominate e₂. If the edge e₅ belongs to S then e₂, e₈, e₁₁,, e_{3n-4} belongs to S and there is no edge in S to strongly efficiently dominate e_{3n-2}. Hence strong efficient edge dominating set does not exists. # M. Annapoopathi and N. Meena Proof is similar if the edge e is incident with the vertex u_{3i+2} , $2 \le i \le n-2$. From all the above cases, $(E_{se})^0(G) = \phi$ #### Theorem 2.14. Let $G = P_{3n+2}$ $n \ge 1$. Let e = uv be any edge incident with any vertex of G and G' = G+e. Then $\gamma_{se}(G+e) = \gamma_{se}(G)$ if e is incident with all $u_i/1 \le i \le 3n+2$ except u_1 , u_{3n} and $\gamma_{se}(G+e) = \gamma_{se}(G)+1$ if e is incident with u_1 , u_{3n} . ## **Proof:** Let G = P_{3n+2} , $n \ge 1$. V(G) = $\{u_i / 1 \le i \le 3n + 2\}$, $E(G) = \{e_i = u_i u_{i+1} / 1 \le i \le 3n + 1\}$. Let e = uv be the any edge incident with any vertex of G and G' = G+e. **Case 1:** Let e be an end edge of G'. Then G' = $P_{3n+3}=P_{3(n+1)}$. Therefore $\gamma_{se}(G')=\gamma_{se}(P_{3(n+1)})=n+2$ but $\gamma_{se}(G)=n+1$. Therefore $\gamma_{se}(G+e)>\gamma_{se}(G)$. Hence $e\in (E_{se})^+(G)$. Therefore $\gamma_{se}(G+e)=\gamma_{se}(G)+1$ Case 2: Let the edge e be incident with the vertex u_2 . Suppose $n \ge 1$. $S = \{e_2, e_5, e_8, ...$ $e_{3n-1}, e_{3n+1}\}$ is the unique strong efficient edge dominating sets of G' and |S| = n+1. Therefore $\gamma_{se}(G') = \gamma_{se}(G) = n+1$. Hence $e \in (E_{se})^0(G)$. The proof is similar if the edge e is incident with the vertex u_{3n} . Case 3: Let the edge e be incident with the vertex u_3 . e_2 and e_3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e_2 or e_3 . If e_2 belongs to S then $S = \{e_2, e_5, e_8, \ldots, e_{3n-3}, e_{3n-1}, e_{3n+1}\}$ is the unique strong efficient edge dominating set of G' and |S| = n+1. Hence $\gamma'_{se}(G') = n+1 = \gamma'_{se}(G)$. Therefore $e \in (E'_{se})^0(G)$. If e_3 belongs to S then $S = \{e_1, e_3, e_6, \ldots, e_{3n}\}$ is the unique strong efficient edge dominating set of G' and |S| = n+1. Hence $\gamma'_{se}(G') = n+1 = \gamma'_{se}(G)$. Therefore $e \in (E'_{se})^0(G)$. The proof is similar if the edge e is incident with the vertex u_{3i} , $2 \le i \le n-1$. Case 4: Let the edge e be incident with the vertex u₄. The edge e₃ & e₄ are the only maximum degree edges. Hence any strong efficient edge dominating set S contains either e₃ or e₄. If the edge e₃ belongs to S then $S = \{e_1, e_3, e_6, ..., e_{3n}\}$ is the unique strong efficient edge dominating set of G' and |S| = n+1. Hence $\gamma_{se}(G') = n+1 = \gamma_{se}(G)$. Therefore $e \in (E_{se})^0(G)$. If the edge e_4 belongs to S then there is no edge in S to strongly efficiently dominate e_{3n} . Hence strong efficient edge dominating set does not exist. The proof is similar if the edge e is incident with the vertex u_{3i+1} , $2 \le i \le n-1$ **Case5:** Let the edge e be incident with the vertex u_5 . The edge e_4 & e_5 are the only maximum degree edges. Hence any strong efficient edge dominating set S contains either e_4 or e_5 . If the edge e_4 belongs to S then there is no edge in S to strongly efficiently dominate e_2 . If the edge e_5 belongs to S then $\{e_2, e_5, e_8, \ldots, e_{3n-3}, e_{3n-1}, e_{3n+1}\}$ is the unique strong efficient edge dominating set of G' and |S| = n+1. Hence $\gamma'_{se}(G') = n + 1 = \gamma'_{se}(G)$. Therefore $e \in (E'_{se})^0(G)$. Proof is similar if the edge e is incident with the vertex u_{3i+2} , $2 \le i \le n-2$ #### Theorem 2.15. Let $G = C_{3n}$, $n \ge 1$. Let e = uv be any edge incident with any vertex of G and G' = G + e. Then $\gamma_{sv}(G) = \gamma_{sv}(G + e)$. **Proof:** Let $G = C_{3n}$, $n \ge 1$. Let e = uv be the new edge. $V(G') = \{u_i, u/1 \le i \le 3n\}$, $E(G') = \{e_i = u_i u_{i+1} / 1 \le i \le 3n - 1, e_{3n} = u_{3n} u_1, e = u_i v\}$ and G' = G + e. Let the edge e be incident with the vertex u_1 . e_1 and e_{3n} are the maximum degree edges and they are adjacent. Any strong efficient dominating set contains e_1 or e_{3n} . Then $S_1 = \{e_1, e_4, e_7, ..., e_{3n-2}\}$, $S_2 = \{e_3, e_6, e_9, ..., e_{3n-3}, e_{3n}\}$ are the strong efficient edge dominating sets of G' and $|S_1| = |S_2| = n$, $n \ge 1$. $\gamma_{se}(G') = n$, $n \ge 1$. No other strong efficient edge dominating set exists without e_1 and e_{3n} . Therefore $\gamma_{se}(G) = \gamma_{se}(G + e) = n$, $n \ge 1$. The proof is similar if the edge e is with any u_i , $2 \le i \le 3n$ #### Theorem 2.16. Let $G = K_{1, n}$, $n \ge 1$. Let e be any edge incident with any vertex of G and G' = G+e. Then $\gamma_{\omega}(G) = \gamma_{\omega}(G+e)$. **Proof:** Let $G = K_{1, n}$, $n \ge 1$. Let $V(G) = \{u_i, u/1 \le i \le n\}$, $E(G) = \{uu_i/1 \le i \le n\}$. $V(G') = \{u_i, u, v/1 \le i \le n\}$. Case 1: Let e be the new edge incident with u. Then G' = $K_{1, n+1}$. Therefore $\gamma_{se}(G') = \gamma_{se}(G) = 1$ Case2: Let $u_i v$ be the new edge incident with u_i . Then $\{uu_i\}$ is the unique strong efficient edge dominating set of G' and $\gamma_{se}(G') = 1$. Therefore $\gamma_{se}(G) = \gamma_{se}(G+e) = 1$. ## Theorem 2.17. Let $G = D_{r, s}$, $r, s \ge 1$. Let e = xy be any edge incident with any vertex of G and G' = G+e. Then $$\gamma_{se}(G') = \begin{cases} \gamma_{se}(G), & \text{if } e = wu \text{ or } wv \\ \gamma_{se}(G) + 1, & \text{if } e = u_i w \text{ or } v_j w \end{cases}$$. **Proof:** G = D_r, s, $r, s \ge 1$. Let e = xy be the new edge. V(G) = $\{u_i, v_j, u, v/1 \le i \le r, 1 \le j \le s\}$, V(G') = $\{u_i, v_j, u, v, x, y/1 \le i \le r, 1 \le j \le s\}$, $E(G') = \{e_i = uu_i, f = uv, f_i = vv_j, e = xy/1 \le i \le r, 1 \le j \le s\}$. Then G' = G+e. **Case 1:** If the edge e is incident with either the vertex u or the vertex v. Then $G' = D_{r+1}$, s or $G' = D_{r, s+1}$ and $\gamma_{se}(G') = \gamma_{se}(G) = 1$ # M. Annapoopathi and N. Meena Case 2: Let the edge e be incident with the vertex u_i , $1 \le i \le r$ or v_j , $1 \le j \le s$. Then S = $\{uv, u_iw\}$ or S = $\{uv, v_jw\}$ is the strong efficient edge dominating set of G' and |S|=2. $\gamma_{se}(G')=2$. $\gamma_{se}(G)=\gamma_{se}(G+e)=2$. # 3. Conclusions In this paper, the change or unchanged of the strong efficient edge domination number of some standard graphs are determined, when a vertex is removed or an edge is added. # References - [1] D.W. Bange, A. E. Barkauskas, L. H. Host, and P. J. Slater. Generalized domination and efficient domination in graphs. Discrete Math., 159:1 11, 1996. - [2] D.W. Bange, A. E. Barkauskas, and P. J. Slater. Efficient dominating sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications of Discrete Mathematics, pages 189 199. SIAM, Philadelphia, PA, 1988. - [3] Dominngos M. Cardoso, J. Orestes Cerdefra Charles Delorme, Pedro C.Silva, Efficient edge domination in regular graphs, Discrete Applied Mathematics 156, 3060 3065(2008) - [4] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater (Eds), Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York 1998. - [5] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998. - [6] C. L. Lu, M-T. Ko, C. Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl. Math. 119227-250(2002) - [7] S. L. Mitchell and S. T. Hedetniemi, edge domination in trees. Congr. Number.19489-509 (1977) - [8] E. Sampath Kumar and L. Pushpalatha, Strong weak domination and domination balance in a graph, Discrete Math., 161:235 242, 1996. - [9] C. Yen and R.C. T. Lee., The weighted perfect domination problem and its variants, Discrete Applied Mathematics, 66, p147-160, 1996.