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Abstract 

For a connected graph G, let c: V (G) →ℤk (k ≥ 2) be a vertex coloring of G. The color 

sum σ(v) of a vertex v of G is defined as the sum in ℤk of the colors of the vertices in N 

(v) that is (v) = ∑ c(u)u∈N(v)  (mod k). The coloring c is called a modular k-coloring of G 

if 𝜎(x) ≠ 𝜎(y) in ℤk for all pairs of adjacent vertices x, y ∈ G. The modular chromatic 

number or simply the mc-number of G is the minimum k for which G has a modular k-

coloring. A switching graph is an ordinary graph with switches. For many problems, 

switching graphs are a remarkable straight forward and natural model, but they have 

hardly been studied. A vertex switching Gv of a graph G is obtained by taking a vertex V 

of G, removing the entire edges incident with V and adding edges joining V to every 

vertex which are not adjacent to V in G. In this paper we determine the modular chromatic 

number of Wheel graph, Friendship graph and Gear graph after switching on certain 

vertices. Here, we first define switching of graphs. Next, we investigating several 

problems on finding the mc(G) after switching of graphs and provide their 

characterization in terms of complexity. 
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1. Introduction 

We are encouraged by the modular colorings and the modular chromatic number of 

different graphs, where the chromatic number is defined as the color sum of all the 

neighboring vertices in 𝕫k. At this point of view, to the curiosity for minimizing the 

modular chromatic number, determined to switching in certain vertices in some graphs. 

For a vertex v of a graph G, let N (v) denote the neighborhood of v (the set of adjacent 

vertices to vertex v). For a graph G without isolated vertices, let c: V (G) → 𝕫k (k ≥ 2) be 

a vertex coloring of G where adjacent vertices may be colored the same. The color sum  

𝜎(v) of a vertex v of G is  defined as the sum in  𝕫k  of the colors of the vertices in  N(v) 

,that is 𝜎(v) =∑ 𝑐(𝑢)𝑢𝜖𝑁(𝑣) [1, 2, 3]. The coloring c is called a modular sum k-coloring or 

simply a modular k-coloring of G, if 𝜎(x) ≠ 𝜎(y) in 𝕫k for all pairs x, y of adjacent vertices 

of G. A coloring c is called modular coloring if c is a modular k-coloring for some integar 

k ≥ 2.The modular chromatic number mc(G) is the minimum k for which G has a modular 

k- coloring.This concept was introduced by Okamoto, Salehi and Zhang [4, 5, 6, 8]. 

In order to distinguish the vertices of a connected graph and to differntiate the adjacent 

vertices of a graph with the minimum number of colors, the concept of modular coloring  

was put forward by Okamoto, Salehi and Zhang [6]. 

 

A graph H is the switching of a graph G with respect to the vertex v of G if V (G) = V 

(H) and E(H) = (E(G)\{ uv : u ∈ NG(v) }) ∪ { uv : u ∈N’G(v) }[7,9]. The switching of G 

with respect to v is denoted Gs (v). The operation of creating Gs (v) is called switching 

on v in G. In other words, switching on a vertex v of a graph has the effect of removing 

all edges incident with the vertex v and joining the vertex v to all vertices to which it was 

formerly non-adjacent. Here, we first define switching of graphs. Next, we investigating 

several problems on finding the mc (G) after switching of graphs and provide their 

characterization in terms of complexity. In this paper we find the modular chromatic 

number of wheel graph, friendship graph and gear graph after switching on certain 

vertices at different levels. 

 

2. Modular coloring of wheel graph after switching 

The switching of a vertex in a wheel having n vertices is denoted by Ws (n). 

In Wheel switching is not possible in W (3) since it is a complete graph. Switching in a 

wheel is obtained in two ways. They are  

1)The switching at the vertex u ∈ ℓ0. 

2)The switching at the vertex vi ∈ ℓ1.be the vertices  

Let u ∈ ℓ0 be the central vertex and v1, v2, …, vn ∈ ℓ1be the vertices which are adjacent 

to u ∈ ℓ0. The switching at u ∈ ℓ0 makes the graph W(n) is a cycle having n vertices with 

a central vertex u ∈ ℓ0. 
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Theorem 2.1   

The modular coloring of a graph obtained after the switching of a vertex vi ∈ ℓ1 is Ws (n) 

= 3 for n = 4k, 4k+1, [4k+2; k > 1]; Ws (6) = 4; Ws (n) = 4 for n = 4k+3, k ≥ 1. 

Proof: 

For a wheel W (n), let the vertex u ∈ ℓ0  ,vi ∈ ℓ1 for I = 1, 2, …., n be the vertices. 

Case (i) mc [Ws (4)] = 3. 

 

Let v1, v2, v3, v4 ∈ ℓ1be the vertices at level ℓ=1.Switching is taken forv1 ∈ ℓ1. 

Consider the modular coloring c(v):v[Ws(4)]→ 𝕫3 defined by 

c(v)={
0 for v1 ∈ ℓ1, u ∈ ℓ0

1                 otherwise
 

then 𝜎(v)={
0 𝑓𝑜𝑟 𝑢 ∈ ℓ0

2 𝑓𝑜𝑟 𝑣3 ∈ ℓ1

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices in Ws(4). 

∴ mc [ws (4)]=3. Hence the proof. 

 

Case (ii) mc [Ws (5)] = 3. 

Let v1, v2, v3, v4, v5∈ ℓ1be the vertices at level ℓ=1.Switching is taken for v1 ∈ ℓ1. 

Consider the modular coloring c (v):v[Ws(5)]→ 𝕫3 defined byc(v)={
1 for v3 ∈ ℓ1

2 for v4 ∈ ℓ1

0   otherwise

 

then σ(v) ={
0 for u ∈ ℓ0, v1 ∈ ℓ1

1          for v2,v4 ∈ ℓ1

2               otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀x,y of adjacent vertices in Ws(5). 

∴ mc [ws (5)]=3.Hence the proof. 

 

Case (iii)mc[Ws(6)] = 4.Let v1,v2,v3,v4,v5,v6∈ ℓ1be the vertices at level ℓ=1.Switching is 

taken for v1 ∈ ℓ1Consider the modular coloring c(v):v[Ws(6)]→ 𝕫3 defined by c(v) = 

{
1 for v3 ∈ ℓ1

2 for v4 ∈ ℓ1

0   otherwise

 

 

Then σ (v) = {

3 for u ∈ ℓ0, v1 ∈ ℓ1

1         for v2,v4 ∈ ℓ1

2       for v3,,v5 ∈ ℓ1

0     otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀  x,y of adjacent vertices in 

Ws(6). 

∴ mc [ws (6)] = 3. Hence the proof. 

 

Case (iv) mc [Ws (4k+3)] = 4. 

Let u∈ ℓ0 be the central vertex. Let v1,v2,…vi-1,vi,vi+1,….,v4k+3∈ ℓ1be the vertices at level 

ℓ =1.Switching is taken for vi ∈ ℓ1 . After switching vi is adjacent to the vertices 

vi+2,vi+3,…v4k+3,v1,v2,…,vi-2 respectively and not adjacent to the vertices vi-1 and vi+1. The 

4k vertices which are adjacent to vi is renamed as R1, R2, …., R4k. 
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Subcase (i) mc [Ws (4k+3)] = 4 for k = 1 + 4j, j = 0, 1, 2, …. [Eg: Ws (7), Ws (23), Ws 

(39), …. 

 

Consider the modular coloring c(v):v[Ws(4k+3)]→ 𝕫4 defined by  

c(v)={

2                                          if R4k ∈ ℓ1

1 if R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                           elsewhere

 

 

then    σ(v)={

3                                           for u ∈ ℓ0, vi ∈ ℓ1

2                                         for vi−1,R4k−1 ∈ ℓ1

1 for vi+1,,R2j ∈ ℓ1, for j = 1,2, … (2k − 1) 

0                                                 otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+3). ∴ mc[ws(4k+3)]=4 for k=1+4j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
Figure1. Switching with modular coloring in Ws(7) 

 

 

Subcase(ii) mc[Ws(4k+3)]=4 for k=2+4j ,j=0,1,2,….[Ws(11),Ws(27), Ws(43),…] 

Consider the modular coloring c(v):v[Ws(4k+3)]→ 𝕫4 defined by  

c(v)={

2                                                       if R4k ∈ ℓ1

1 if u ∈ ℓ0, R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                      elsewhere

 

then    σ(v)={

0                                                     for u ∈ ℓ0, vi ∈ ℓ1

3                                                           for R4k−1 ∈ ℓ1

2 for vi+1,,𝑣𝑖−1, 𝑅2𝑗 ∈ ℓ1, for j = 1,2, … (2k − 1) 

1                                                          otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y 

of adjacent vertices in Ws(4k+3). ∴ mc[ws(4k+3)]=4 for k=2+4j ,j=0,1,2,…. Hence the 

proof.  

Eg: 
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Figure 2. Switching with modular coloring in Ws(11) 

 

Subcase(iii) mc[Ws(4k+3)]=4 for k=3+4j ,j=0,1,2,….[Eg: Ws(15), Ws(31),Ws(47),…] 

 

Consider the modular coloring c(v):v[Ws(4k+3)]→ 𝕫4 defined by   

c(v)={

2                           if u ∈ ℓ0, R4k ∈ ℓ1

1 if  R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                           elsewhere

 

then    σ(v)={

0                                        for 𝑣𝑖−1 , R4k−1 ∈ ℓ1

1                                       for    u ∈ ℓ0,   𝑣𝑖 ∈ ℓ1

3 for vi+1,,𝑅2𝑗 ∈ ℓ1, for j = 1,2, … (2k − 1) 

2                                                otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+3). ∴ mc[ws(4k+3)]=4 for k=3+4j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
Figure 3. Switching with modular coloring in Ws(15) 

 

Subcase(iv) mc[Ws(4k+3)]=4 for k=4+4j ,j=0,1,2,….[Ws(19),Ws(35),Ws(51),…] 
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Consider the modular coloring c(v):v[Ws(4k+3)]→ 𝕫4 defined by  

c(v)={

3                                             if u ∈ ℓ0

1 if  R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

2                                        if  R4k ∈ ℓ1

0                                           elsewhere

 

 

then    σ(v)={

1                                        for vi−1 , R4k−1 ∈ ℓ1

2                                       for    u ∈ ℓ0,   vi ∈ ℓ1

0 for vi+1,,R2j ∈ ℓ1, for j = 1,2, … (2k − 1) 

3                                                otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+3). ∴ mc[ws(4k+3)]=4 for k=4+4j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
 

Figure 4. Switching with modular coloring in Ws(19) 

 

Case(v)mc[Ws(4k)] = mc[Ws(4k+1)] = mc[Ws(4k+2)]=3. 

 

Subcase(i) mc[Ws(4k)] = 3 for k=2+3j,j=0,1,2….[Ws(8),Ws(20),Ws(32),…] 

 

   After switching vi is adjacent to the vertices vi+2,vi+3,…v4k,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. Let the 4k-3 vertices which are adjacent to vi is 

renamed as R1,R2,…..,R4k-3 respectively. Consider the modular coloring c(v):v[Ws(4k)]→

𝕫3 defined by  c(v)={
1 if  R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                           elsewhere
 

 

then    σ(v)={

2                                                  for    u ∈ ℓ0,   vi ∈ ℓ1

1 for vi+1,,vi−1, R2j ∈ ℓ1, for j = 1,2, … . ,2(k − 1)

0                                                           otherwise

 

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices in Ws(4k).  ∴ mc[ws(4k)]=3 for k=2+3j 

,j=0,1,2,….Hence the proof. 

Eg: 
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Figure 5. Switching with modular coloring in Ws(8) 

 

Subcase(ii) mc[Ws(4k)] = 3 for k=3+3j,j=0,1,2….[Ws(12),Ws(24),Ws(36),..] 

 

After switching vi is adjacent to the vertices vi+2,vi+3,…v4k,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. 

Let the 4k-3 vertices which are adjacent to vi is renamed as R1, R2, ….., R4k-3 respectively. 

Consider the modular coloring c(v):v[Ws(4k)]→ 𝕫3 defined by 

c(v)={
1 if u ∈ ℓ0, R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                         elsewhere
 

then    σ(v)={
0                                for    u ∈ ℓ0,   vi ∈ ℓ1

1 R1+2j ∈ ℓ1, for j = 0,1,2, … . , (k + 1) 

2                                         otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k). ∴ mc[ws(4k)]=3 for k=3+3j ,j=0,1,2,….Hence the proof. 

Eg:  

 
Figure 6. Switching with modular coloring in Ws(12) 

 

Subcase(iii) mc[Ws(4k)] = 3 for k=4+3j,j=0,1,2….[Ws(16),Ws(28),Ws(40),…] 

After switching vi is adjacent to the vertices vi+2,vi+3,…v4k,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. 

Let the 4k-3 vertices which are adjacent to vi is renamed as R1, R2, ….., R4k-3 respectively. 
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Consider the modular coloring c(v):v[Ws(4k)]→ 𝕫3 defined by 

c(v)={

2                                                 if u ∈ ℓ0

1 forR1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                elsewhere

 

 

then    σ(v)={
1                               for    u ∈ ℓ0,   vi ∈ ℓ1

2 R1+2j ∈ ℓ1, for j = 0,1,2, … . ,2(k − 1) 

0                                          otherwise

 

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices in Ws(4k). 

∴ mc[ws(4k)]=3 for k=4+3j ,j=0,1,2,…. 

Hence the proof. 

Eg: 

 
Figure7. Switching with modular coloring in Ws(16) 

 

Subcase(iv) mc[Ws(4k+1)] = 3 for k=2+3j,j=0,1,2….[Ws(9),Ws(21),Ws(33),…] 

 

After switching vi is adjacent to the vertices vi+2,vi+3,…v4k+1,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. 

Let the 4k-2 vertices which are adjacent to vi is renamed as R1, R2… R4k-2 respectively. 

Consider the modular coloring c(v): v[Ws(4k+1)]→ 𝕫3 defined by c(v) = 

{
1 forR1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                elsewhere
 

 

Then    σ(v) = {
2                                            for    u ∈ ℓ0,   vi ∈ ℓ1

1 for vi+1 , R2j ∈ ℓ1, for j = 1,2, … . , (2k − 1) 

0                                                        otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x, y 

of adjacent vertices in Ws (4k+1). ∴ mc [ws (4k+1)] = 3 for k = 2+3j, j = 0, 1, 2, …. 

Hence the proof. 
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Eg: 

 
Figure 8. Switching with modular coloring in Ws(9) 

 

Subcase (v) mc[Ws (4k+1)] = 3 for k = 3+3j, j = 0, 1, 2…. [Ws (13), Ws (25), Ws (37), 

…] 

 

After switching vi is adjacent to the vertices vi+2, vi+3, …v4k+1, v1, v2,…,vi-2 respectively 

and not adjacent to the vertices vi-1 and vi+1. 

Let the 4k-2 vertices which are adjacent to vi is renamed as R1, R2, ….., R4k-2 respectively. 

Consider the modular coloring c(v):v[Ws(4k+1)]→ 𝕫3 defined by 

c(v)={
1 for u ∈ ℓ0 ; R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                             elsewhere
 

 

Then    σ(v) = {
0                                           for    u ∈ ℓ0,   vi ∈ ℓ1

2 for vi+1 , R2j ∈ ℓ1, for j = 1,2, … . , (2k − 1) 

1                                                    otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y 

of adjacent vertices in Ws(4k+1).  ∴ mc[ws(4k+1)] = 3 for k = 3+3j, j = 0, 1, 2, …. 

Hence the proof. 

Eg: 

 
Figure 9. Switching with modular coloring in Ws(13) 

 

Subcase (vi) mc [Ws(4k+1)] = 3 for k = 4+3j, j = 0, 1, 2…. [Ws (17), Ws (29), Ws (41), 

…] 
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After switching vi is adjacent to the vertices vi+2,vi+3,…v4k+1,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. Let the 4k-2 vertices which are adjacent to vi is 

renamed as R1, R2, ….., R4k-2 respectively. 

Consider the modular coloring c(v):v[Ws(4k+1)]→ 𝕫3 defined by 

c(v)={

2                                              for u ∈ ℓ0

1 for R1+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                elsewhere

 

then    σ(v)={
1                                           for    u ∈ ℓ0,   vi ∈ ℓ1

0 for 𝑣𝑖+1 , R2j ∈ ℓ1, for j = 1,2, … . , (2k − 1) 

2                                                    otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+1).  ∴ mc[ws(4k+1)]=3 for k=4+3j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
Figure 10. Switching with modular coloring in Ws(17) 

 

Subcase(vii) mc[Ws(4k+2)] = 3 for k=2+3j,j=0,1,2….[Ws(10),Ws(22),Ws(34),…] 

 

After switching vi is adjacent to the vertices vi+2, vi+3, …v4k+2, v1, v2, …, vi-2 respectively 

and not adjacent to the vertices vi-1 and vi+1. 

Let the 4k-2 vertices which are adjacent to vi is renamed as R1, R2, ….., R4k-1 respectively. 

Consider the modular coloring c(v):v[Ws(4k+2)]→ 𝕫3 defined by 

c(v)={
1 for R2+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                elsewhere
 

 

then    σ(v)={
2                                        for    u ∈ ℓ0,   vi ∈ ℓ1

1 for R1+2j ∈ ℓ1, for j = 0,1,2, … . , (2k − 1) 

0                                                    otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+2). ∴ mc [ws (4k+2)] = 3 for k = 2+3j, j = 0, 1, 2, …. Hence 

the proof. 

 

83



Modular Coloring and Switching In Some Planar Graphs 
 

Eg: 

 
Figure 11. Switching with modular coloring in Ws(10) 

 

Subcase(viii) mc[Ws(4k+2)] = 3 for k=3+3j,j=0,1,2….[Ws(14),Ws(26),Ws(38),…] 

 

After switching vi is adjacent to the vertices vi+2,vi+3,…v4k+2,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. Let the 4k-2 vertices which are adjacent to vi is 

renamed as R1,R2,…..,R4k-1 respectively.  

Consider the modular coloring c(v):v[Ws(4k+2)]→ 𝕫3 defined by 

c(v)={
1 for u ∈ ℓ0 , R2+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                           elsewhere
 

 

then    σ(v)={
0                                        for    u ∈ ℓ0,   vi ∈ ℓ1

2 for R1+2j ∈ ℓ1, for j = 0,1,2, … . , (2k − 1) 

1                                                    otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+2). ∴ mc[ws(4k+2)]=3 for k=3+3j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
Figure 12. Switching with modular coloring in Ws(14) 

 

Subcase(ix)mc [Ws(4k+2)] = 3 for k=4+3j,j=0,1,2….[Ws(18),Ws(30),Ws(42),…] 
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After switching vi is adjacent to the vertices vi+2,vi+3,…v4k+2,v1,v2,…,vi-2 respectively and 

not adjacent to the vertices vi-1 and vi+1. Let the 4k-2 vertices which are adjacent to vi is 

renamed as R1,R2,…..,R4k-1 respectively. 

Consider the modular coloring c(v):v[Ws(4k+2)]→ 𝕫3 defined by 

c(v)={

2                                                for u ∈ ℓ0

1 𝑓𝑜𝑟 R2+4j ∈ ℓ1, j = 0,1,2 … (k − 1)

0                                                 elsewhere

 

then    σ(v)={
1                                        for    u ∈ ℓ0,   vi ∈ ℓ1

0 for R1+2j ∈ ℓ1, for j = 0,1,2, … . , (2k − 1) 

2                                                    otherwise

Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Ws(4k+2).  ∴ mc[ws(4k+2)]=3 for k=4+3j ,j=0,1,2,….Hence the 

proof. 

Eg: 

 
Figure 13. Switching with modular coloring in Ws(18) 

 

3. Modular colorings after switching on Friendship 

graph 

    Let u∈ ℓ0  be the center v1, v2, v3, …. v2n be the vertices in ℓ1   where each of 2 

consecutive vertices forms an edge for the respective cycles  since a friendship graph is 

constructed by joining n copies of the cycle C3 with a common vertex. The vertices in 

ℓ1is taken in the clockwise direction. Modular coloring after switching  of a friendship 

graph  with n vertices  is denoted by mc[FSs(n)].Here switching can be taken only for vi∈
ℓ1 for any i=1,2,… 2n.We cannot form a switching with u ∈ ℓ0 since it is adjacent to all 

vertices of ℓ1. 

Theorem 3.1. 

The modular coloring of a friendship graph after switching a vertex in ℓ1  then 

(i)mc[FSs(2)]=3. (ii) mc[FSs(n)]=4;n≥ 3. 

Proof: 

Case (i) mc[FSs(2)] = 3. 
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Switching is taken for v1∈ ℓ1.Therefore v1 is adjacent to v3 and v4 after switching in 

FSs(2). 

Consider a modular coloring c(v):v[FSs(2)] → 𝕫3 defined by C(v)= {
2   for u ∈ ℓ0

1   for    v4 ∈ ℓ1

0   elsewhere

 

then    σ(v)={
1  for  u ∈ ℓ0, v1 ∈ ℓ1

2         for v4, v2 ∈ ℓ1

0       otherwise

    Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀x,y of adjacent vertices in 

FSs(2)  

∴mc[FSs(2)]=3.  Hence the proof. 

Case(ii) mc[FSs(n)]=4;n≥3. 

Subcase (i) mc[FSs(n)]=4;n≥3 for n is odd. 

Switching is taken for v1∈ ℓ1.Therefore v1 is adjacent to v3 ,v4 ,….v2n after switching in 

FSs(n). 

Consider a modular coloring c(v):v[FSs(n)] → 𝕫4 defined by  

C(v)= {
3                                  for u ∈ ℓ0

2   for    v2j ∈ ℓ1 ; j = 1,2, … , n

0                                elsewhere

 

then    σ(v)={

2                         for  u ∈ ℓ0

3   v2j ∈ ℓ1; 𝑗 = 1,2, … . , 𝑛

0                        for v1 ∈ ℓ1

1               otherwise

     Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices 

in FSs(n)  ∴ mc[FSs(n]=4 for  n≥3 for n is odd. Hence the proof. 

Eg: 

 
 

Figure 14. Switching with modular coloring in FSs(5) 
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Subcase (ii).mc[FSs(n)]=4;n≥3 for n is even. 

Switching is taken for v1∈ ℓ1.Therefore v1 is adjacent to v3 ,v4 ,….v2n after switching in 

FSs(n). 

Consider a modular coloring c(v):v[FSs(n)] → 𝕫4 defined by  

C(v)= {
3                                  for u ∈ ℓ0

2   for    v2j ∈ ℓ1 ; j = 1,2, … , n

0                                elsewhere

 

then    σ(v)={

0                         for  u ∈ ℓ0

3   v2j ∈ ℓ1; 𝑗 = 1,2, … . , 𝑛

2                        for v1 ∈ ℓ1

1               otherwise

   Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices 

in FSs(n)  ∴ mc[FSs(n]=4 for  n≥3 for n is even. Hence the proof. 

Eg:  

 
 

Figure 15. Switching with modular coloring in FSs(4) 

 

4.Modular colorings after switching on Gear graph. 

Let u ∈ ℓ0 be the center of a gear graph.Let  v1,v3,v5,….v2n-1 be the vertices in ℓ1are 

adjacent to  u ∈ ℓ0  and v2,v4,v6,….v2n  be the vertices in ℓ1 .The switching in G(n)is 

denoted by Gs(n).Switching in gear graph is obtained in two ways. 

That is (i)switching of the vertex u ∈ ℓ0  and (ii)switching of a vertex    vi ∈ ℓ1; 𝑖 =
1,2, … . ,2𝑛. 

(i)By switching of the vertex u ∈ ℓ0 in a gear graph G(n) result in another gear graph 

G’(n) in which vertices in ℓ1which are not adjacent with u ∈ ℓ0 in G(n) become adjacent 

with G’(n).Therefore Gs(n)=G(n)=G’(n).Hence mc[Gs(n)]=mc[G(n)]=mc[G’(n)]. 

(ii) switching of a vertex    vi ∈ ℓ1; 𝑖 = 1,2, … . ,2𝑛 .Here specifying the vertex vi ∈ ℓ1 

which are adjacent with u ∈ ℓ0 is taken for switching.In general take vi as v1. 
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Theorem 4.1 

 

The modular coloring of the graph obtained after the switching of a vertex in Gear graph 

in ℓ1 (which are adjacent with u ∈ ℓ0).ie (i) mc[Gs(2)]=2.(ii) mc[Gs(n)]=3;n>2. 

Proof.  

 

Case (i) mc[Gs(2)]=2. 

 

Switching is taken for v1∈ ℓ1in G (2).Therefore v1 is adjacent to v3 after switching in Gs 

(n). 

Consider a modular coloring c (v):v[Gs(2)] → 𝕫2 defined by C(v)= {
1  for    v3 ∈ ℓ1

0      elsewhere
 

Then    σ(v)={
0                v3 ∈ ℓ1

1  otherwise
   Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of adjacent vertices in Gs(2)  

∴mc [Gs(2]=2. Hence the proof. 

 

Case (ii) mc[Gs(n)]=3 for n>2. 

 

Switching is taken for v1∈ ℓ1 in G(n).Therefore v1 is adjacent to v3 ,v4,….v2n-1 after 

switching in Gs(n) and not adjacent to the remaining vertices in Gs(n). 

Consider a modular coloring c(v):v[Gs(n)] → 𝕫3 defined by 

 C(v)= {
1  for   u ∈ ℓ0;  v1 ∈ ℓ1

0                    elsewhere
 

 

then    σ(v)={

2  for  v3+2j ∈ ℓ1 ; 𝑗 = 0,1,2, … . (𝑛 − 2).

1  for  v4+2j ∈ ℓ1 ; 𝑗 = 0,1,2, … . (𝑛 − 3)

0                                       otherwise

    Here 𝜎(𝑥) ≠ 𝜎(𝑦) ∀ x,y of 

adjacent vertices in Gs(n) ∴ mc[Gs(n)]=3 for n>2. Hence the proof. 

Eg: 

 
Figure 16. Switching with modular coloring in Gs(6). 
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5. Conclusions 

In a Wheel Graph the modular coloring of a graph obtained after the switching of a vertex 

vi ∈ ℓ1 is Ws(n)=3 for n=4k,4k+1,[4k+2;k>1]; Ws(6)=4; Ws(n)=4 for n=4k+3,k≥1.The 

labeling is quite similar to one other and differs according to the change in number of 

vertices. Also in a Friendship Graph the modular coloring after switching a vertex in ℓ1 

then (i)mc[FSs(2)]=3. (ii) mc[FSs(n)]=4;n≥ 3. Similarly in Gear Graph the modular 

coloring  obtained after the switching of a vertex in ℓ1 (which are adjacent with u ∈ ℓ0).ie 

(i) mc[Gs(2)]=2.(ii) mc[Gs(n)]=3;n>2. Altogether It is explicitly clear that after switching 

in different levels of the graphs, the modular chromatic number varies in between two to 

four. We cannot expect a higher level of modular chromatic number after switching in 

vertices at different levels. Studying this problem and related problems in the context of 

switching graphs may help in answering the long open question whether all of these 

problems have a polynomial algorithm. We conclude this paper by listing a number of 

switching graph problems of which we do not know the complexity 
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