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Abstract 

Let 𝐽(𝐺) = (𝑉, 𝐸) be a jump graph. Let 𝐷 be a nominal prevailing (dominating) set in a 

jump graph 𝐽(𝐺). If 𝑉 − 𝐷 contains a prevailing set 𝐷′of 𝐽(𝐺), then 𝐷′ is called an 

inverse prevailing set with respect to D. The nominal cardinality of an inverse 

prevailing set of a jump graph 𝐽(𝐺) is called inverse domination number of 𝐽(𝐺). In this 

paper, we computed some interconnections betwixt inverse domination number of jump 

graph for some graphs. 
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1. Introduction 

In 1963, Kelly [3] initiated the study of a triplet (X,𝜏1,𝜏2), where X is a non-empty set 

and 𝜏1,𝜏2are the two topologies on X. The notion of (1,2)𝛼-open set [4] in a 

bitopological space was introduced by Lellis Thivagar in 1991. Raja Rajeswari [6] 

defined and studied the concepts of ultra-kernel in bitopological spaces. In 2017, 

(1,2)𝑆𝑝-open set [2] in bitopological spaces was introduced by Hardi Ali Shareef et.al. 

In this paper, a new class of sets in bitopological spaces called (1,2)𝑆𝑝-kernel is 

introduced and some of its properties are derived.  

 
 

2. Preliminaries 

Definition 2.1. [5] A subset A of a bitopological space X is called a 

(i) (1, 2) semi-open if A⊆ 𝜏1𝜏2Cl (𝜏1Int (A)). 

(ii) (1, 2) pre-open if A⊆ 𝜏1Int (𝜏1𝜏2Cl (A)). 

(iii) (1, 2) regular-open if A = 𝜏1Int (𝜏1𝜏2Cl (A)). 

The collection of all (1, 2) semi-open, (1, 2) pre-open and (1, 2) regular-open sets are  

denoted by (1, 2) SO(X), (1, 2) PO(X) and (1, 2) RO(X) respectively. 

 

Definition 2.2 [5] A subset A of a bitopological space X is called a  

(i) (1, 2) α-closed if 𝜏1Cl(𝜏1𝜏2Int(𝜏1Cl(A))) ⊆ A. 
(ii) (1, 2) semi-closed if  𝜏1𝜏2Int(𝜏1Cl(A)) ⊆ A. 
(iii) (1, 2) pre-closed if 𝜏1Cl(𝜏1𝜏2Int(A)) ⊆ A. 
(iv) (1, 2) regular-closed if A = 𝜏1Cl(𝜏1𝜏2Int(A)). 

The set of all (1, 2) α-closed, (1, 2) semi-closed, (1, 2) pre-closed and (1, 2) regular-

closed sets are denoted as (1, 2) αCL (X), (1, 2) SCL (X), (1, 2) PCL (X) and (1, 2) RCL 

(X) respectively. Also, for any subset A of X, the (1, 2) α-closure, (1, 2) semi-closure, (1, 

2) pre-closure and (1, 2) regular-closure of A is denoted as (1, 2) αCl (A), (1, 2) SCl (A), 

(1, 2) PCl (A) and (1, 2) RCl (A) respectively. 

Definition 2.3. [2] A (1, 2) semi-open set A of a bitopological space X is called (1, 2) 

𝑆𝑝-open set if for each 𝑥 ∈ A, there exists a (1, 2) pre-closed set F such that 𝑥 ∈ F ⊆ A. 

 

Remark 2.4. If A and B are (1, 2) 𝛼-open sets of X, then A ∪B is also a (1, 2) 𝛼-open 

set. 

 

Definition 2.5. A subset A of a bitopological space X is said to be (1, 2) 𝑆𝑝-locally 

closed (briefly (1, 2) 𝑆𝑝LC) if A = C ∩ D, where C is a (1, 2) 𝑆𝑝-open set and D is a (1, 

2) 𝑆𝑝-closed set in X. The family of (1, 2) 𝑆𝑝-locally-closed sets is denoted by (1, 2) 

𝑆𝑝LC(X). 
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Inverse Domination Parameters of Jump  

3. (1, 2)𝐒𝐏-Kernel in Bitopological Spaces 

Definition 3.1. Let A be a non-empty subset of a bitopological spaces X. Then (1, 2) 𝑆𝑝-

kernel of A is denoted by (1, 2) 𝑆𝑝-Ker ({A}) and it is defined as (1, 2) 𝑆𝑝-Ker ({A})                                           

= ∩ {G ∈(1, 2) 𝑆𝑝O(X)/ A ⊆ G}. 

 

Definition 3.2. Let 𝑥 ∈ X. Then the (1, 2)𝑆𝑝-kernel of 𝑥 is defined by (1, 2)𝑆𝑝-Ker 

({𝑥})                  = ∩ {G ∈(1, 2)  𝑆𝑝O(X) / 𝑥 ∈ G}. 

 

Definition 3.3. A subset N of a bitopological space X is said to be (1, 2) 𝑆𝑝-neigborhood    

((1, 2) 𝑆𝑝-nbhd) of a point x ∈ X, if there exists a (1, 2) 𝑆𝑝-open set U such that x ∈U 

N. 
 

Lemma 3.4. Let X be a bitopological space. Then for any non-empty subset A of X,   (1, 

2)𝑆𝑝-Ker ({A}) = {x ∈ X / (1, 2) 𝑆𝑝-Cl ({x}) ∩ A  }. 

Proof: Let x ∈ (1, 2)𝑆𝑝-Ker ({A}) and (1, 2)𝑆𝑝-Cl ({x)} ∩ A.  Then A  [X – (1, 2) 

𝑆𝑝-Cl ({x})] and [X – (1, 2) 𝑆𝑝-Cl ({x})] is a (1, 2) 𝑆𝑝-open set containing Abut not x, 

which is a contradiction.  Hence (1, 2) 𝑆𝑝-Cl ({x}) ∩ A  . 

Also, let x ∉ (1, 2) 𝑆𝑝-Ker ({A}) and (1, 2) 𝑆𝑝-Cl ({x}) ∩ A  .  Then there exists a (1, 

2) 𝑆𝑝-open set D containing A but not 𝑥 and there exists an element y ∈(1, 2)𝑆𝑝-Cl ({x}) 

∩ A.  Hence we get a (1, 2)𝑆𝑝-nbhd of y, say D with x ∉D, which is a contradiction.                        

Hence x ∈ (1, 2) 𝑆𝑝-Ker (A). 

 

Definition 3.5. In a bitopological space X, a subset A of X is said to be weakly (1, 2) 𝑆𝑝-

separated from a subset B of X if there exists a (1, 2) 𝑆𝑝-open set G of X such that A  G 

and G ∩ B =  or A ∩ (1, 2)𝑆𝑝-Cl (B) =.  It is shown in the following example. 

 

Example 3.6. Let X = {a, b, c, d}. 1 = {, X, {a, c}, {a, c, d}}. 𝜏2= {, X}. 12Cl = {X, , 
{b, d}, {b}}. (1, 2) SO (X) = {, X, {a, c}, {a, b, c}, {a, c, d}}. (1, 2) PCL (X) = {X, , {b, c, 
d}, {a, b, d}, {c, d}, {b, d}, {b, c}, {a, d}, {a, b}, {d}, {c}, {b}, {a}}. (1, 2) S𝑝O (X) = {, X, 

{a, c}, {a, b, c}, {a, c, d}}. (1, 2) S𝑝CL (X) = {X, , {b, d}, {d},{b}}. Let A = {b}, B = {d} 

and G = {a, b, c} ∈ (1,2)𝑆𝑝O(X).  Here A G and G ∩ B =  or A ∩ (1,2)𝑆𝑝-Cl(B) = . 

Hence a subset A of X is weakly (1, 2) 𝑆𝑝-separated from a subset B of X. 

 

Theorem 3.7. Suppose X is a (1, 2) 𝑆𝑝-space and A, B ∈ (1, 2) 𝑆𝑝LC (X).  If A and B are          

weakly (1, 2) 𝑆𝑝-separated, then A ∪B ∈ (1, 2) 𝑆𝑝LC (X).   

Proof: Assume A, B ∈ (1, 2) 𝑆𝑝LC (X) and let A = G ∩ (1, 2) 𝑆𝑝-Cl(A) and B = E ∩ (1, 2) 

𝑆𝑝-Cl (B), where G and E are (1, 2) 𝑆𝑝-open sets of X.  Put U = G ∩ [X – (1, 2) 𝑆𝑝-Cl (B)] 

and V = E ∩ [X – (1, 2) 𝑆𝑝-Cl (A)].  Then  U ∩ (1, 2)𝑆𝑝-Cl(A) = G ∩ [X – (1, 2) 𝑆𝑝-Cl 

(B)] ∩ (1, 2) 𝑆𝑝-Cl(A)      = [G ∩ X – (1, 2) 𝑆𝑝-Cl (A)] ∩ [X – (1, 2)𝑆𝑝-Cl (B)] = A ∩ [X – 

(1, 2) 𝑆𝑝-Cl (B)] = A. 

Similarly, V ∩ (1, 2) 𝑆𝑝-Cl (B) = [E ∩ (X – (1, 2) 𝑆𝑝-Cl({A}))] ∩ (1, 2) 𝑆𝑝-Cl{A})                        
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= [E ∩ [X – (1, 2) 𝑆𝑝-Cl ({B})] ∩ [(X – (1, 2)𝑆𝑝-Cl ({A})] = B ∩ [(X – (1, 2) 𝑆𝑝-Cl 

({A})] = B and hence U ∩ (1, 2) 𝑆𝑝Cl (B) = V ∩ (1, 2)𝑆𝑝-Cl (A) = . Moreover U and V 

are (1, 2) 𝑆𝑝-open in X. By Remark 2.4, (U Ս V) is also (1, 2) 𝑆𝑝-open. Then (U Ս V) ∩ 

(1, 2)Sp-Cl(A Ս B) = [U ∩ (1,2)𝑆𝑝-Cl(A)] Ս [U ∩ (1,2)𝑆𝑝-Cl(B)] Ս [V ∩ (1,2)𝑆𝑝-Cl(A)] 

Ս [V ∩ (1,2)𝑆𝑝-Cl(B)]           = A Ս B.  Hence A Ս B is (1,2)𝑆𝑝-locally closed set. 

 

Lemma 3.8. In view of Lemma 3.4 and Definition 3.5, we have for 𝑥, y in X of a 

bitopological space, 

(i) (1, 2) 𝑆𝑝-Cl ({x}) = {y: y is not weakly (1, 2) 𝑆𝑝-separated from x}. 

(ii) (1, 2) 𝑆𝑝-Ker ({x}) = {y: x is not weakly (1, 2) 𝑆𝑝-separated from y}. 

 

Definition 3.9. For any point 𝑥 of a bitopological space X, 
(i) The derived set of 𝑥 is denoted by (1, 2) 𝑆𝑝-d ({x}) and is defined to be the set              

(1, 2) 𝑆𝑝-d ({x}) = (1, 2) 𝑆𝑝-Cl ({x}) – {x} = {y: y  x and y is not weakly (1, 2) 𝑆𝑝-

separated from x}. 

(ii) the shell of a point 𝑥 of X is denoted by (1,2)𝑆𝑝-shl({x}) and is defined  to be the set 

(1, 2) 𝑆𝑝-shl ({x}) = (1, 2) 𝑆𝑝-Ker({x}) – {x} = {y : y  x and x is not weakly         (1, 2) 

𝑆𝑝-separated from x}. 

 

Definition 3.10: Let X be a bitopological space.  Then we define 

(i) (1, 2) 𝑆𝑝-N-D = {x: x ∈X and (1, 2)𝑆𝑝-d ({x}) =}. 

(ii) (1, 2) 𝑆𝑝-N-Shl = {x: x ∈ X and (1, 2)𝑆𝑝-shl ({x}) =}. 

(iii)(1, 2) 𝑆𝑝-〈x〉 = (1, 2) 𝑆𝑝-Cl({x}) ∩ (1, 2)𝑆𝑝-Ker ({x}). 

 

Theorem 3.11. Let x, y∈X.  Then the following conditions hold good: 

(i) y ∈(1,2)𝑆𝑝-Ker({x}) if and only if x ∈(1,2)𝑆𝑝-Cl({y}). 

(ii) y ∈(1,2)𝑆𝑝-shl({x}) if and only if x ∈(1,2)𝑆𝑝-d({y}). 

(iii)y∈(1,2)𝑆𝑝-Cl({x}) implies (1,2)𝑆𝑝-Cl({y}) (1,2)𝑆𝑝-Cl({x}). 

(iv) y∈(1,2)𝑆𝑝-Ker({x}) implies (1,2)𝑆𝑝-Ker({y}) (1,2)𝑆𝑝-Ker({x}). 

Proof: The proof of (i) and (ii) are obvious from the Lemma 3.8. 

(iii) Let z ∈(1,2)𝑆𝑝-Cl({y}).  Then z is not weakly (1, 2)𝑆𝑝-separated from y which 

implies there exists a (1, 2)𝑆𝑝-open set G containing 𝑥 such that G ∩ {y}.  Hence yG 

and by assumption G ∩ {x} .  Hence z is not weakly (1, 2)𝑆𝑝-separated from 𝑥 which 

implies z ∈ (1, 2)𝑆𝑝-Cl ({x}).  Therefore (1, 2)𝑆𝑝-Cl ({y}) (1, 2)𝑆𝑝-Cl ({x}). 

(iv) Let z ∈ (1, 2)𝑆𝑝-Ker ({y}).  Then y is not weakly (1, 2)𝑆𝑝-separated from z which 

implies y ∈ (1, 2)𝑆𝑝-Cl ({z}). Hence (1, 2)𝑆𝑝-Cl ({y}) (1, 2)𝑆𝑝-Cl ({z}). By 

assumption y ∈ (1, 2) 𝑆𝑝-Ker ({x}) that implies x ∈ (1, 2) 𝑆𝑝-Cl ({y}). Then (1, 2)𝑆𝑝-Cl 

({x})  (1, 2) 𝑆𝑝-Cl ({y}).  Ultimately, (1, 2) 𝑆𝑝-Cl ({x})  (1, 2)𝑆𝑝-Cl ({z}) which 

implies x ∈ (1, 2) 𝑆𝑝-Cl ({z}), that is z∈(1, 2) 𝑆𝑝-Ker ({x}).  Therefore (1, 2)𝑆𝑝-Ker 

({y})   (1, 2)𝑆𝑝-Ker ({x}). 

 

Theorem 3.12. Let 𝑥, y be in X.  Then 
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(i) for every x ∈X, (1,2)𝑆𝑝-shl({x}) is a degenerate set if and only if for all x , y ∈X,         

x y, (1,2)𝑆𝑝-d({x}) ∩ (1,2)𝑆𝑝-d({y}) = . 

(ii) for every x ∈X, (1,2)𝑆𝑝-d({x}) is a degenerate set if and only if for every                     

x , y ∈X, x y, (1,2)𝑆𝑝-shl({x}) ∩ (1,2)𝑆𝑝-shl({y}) = . 

Proof. (i) Let (1,2)𝑆𝑝-d({x}) ∩ (1,2)𝑆𝑝-d({y}) .  Then there exists a z∈X such that                   

z∈(1,2)𝑆𝑝-d({x}) and that z∈(1,2)𝑆𝑝-d({y}).  Then z y 𝑥 and z ∈(1,2)𝑆𝑝-Cl({x}) and           

z ∈ (1,2)𝑆𝑝-Cl({y}).  That is 𝑥, y ∈(1,2)𝑆𝑝-Ker({z}).  Hence (1,2)𝑆𝑝-Ker({z}) implies     

(1,2)𝑆𝑝-shl({z}) is not a degenerate set, which is a contradiction.  Hence (1,2)𝑆𝑝-d({x})   

∩ (1,2)𝑆𝑝-d({y}) = . 

Also, let x, y∈(1,2)𝑆𝑝-shl({z}) is not a degenerate set. Then x yz and                        x, 

y∈(1,2)𝑆𝑝-Ker({z}). Then z is an element of both (1,2)𝑆𝑝-Cl({x}) and (1,2)𝑆𝑝-Cl({y})     

which implies (1,2)𝑆𝑝-Cl({x}) ∩ (1,2)𝑆𝑝-Cl({y})  which is a contradiction.                       

Hence (1,2)𝑆𝑝-shl({z}) is a degenerate set.   

The proof of (ii) is similar that of (i). 

 

Theorem 3.13. If y∈(1,2)𝑆𝑝-x, then (1,2)𝑆𝑝-x = (1,2)𝑆𝑝-y, 

Proof. If y∈(1,2)𝑆𝑝-x, then y∈(1,2)𝑆𝑝-Cl({𝑥}) and y∈(1,2)𝑆𝑝-Ker({x}) and                          

by Theorem 3.10, (1,2)𝑆𝑝-Cl({y}) (1,2)𝑆𝑝-Cl({x}) and (1,2)𝑆𝑝-Ker({y}) (1,2)𝑆𝑝-

Ker({x}).  which implies  (1,2)𝑆𝑝-Cl({y}) ∩ (1,2)𝑆𝑝-Ker({y}) (1,2)𝑆𝑝-Cl({x}) ∩ 

(1,2)𝑆𝑝-Ker({x}).  Thus (1,2)𝑆𝑝-y (1,2)𝑆𝑝-x.  Now, y∈(1,2)𝑆𝑝Cl({x}) implies x 

∈(1,2)𝑆𝑝-Ker({y}) and y∈(1,2)𝑆𝑝-Ker({x}) which implies x ∈(1,2)𝑆𝑝-Cl({y}).  Which 

implies (1,2)𝑆𝑝Cl({x})   ∩ (1,2)𝑆𝑝-Ker({x}) (1,2)𝑆𝑝-Ker({y}) ∩ (1,2)𝑆𝑝-Cl({y}).  

Thus (1,2)𝑆𝑝-x(1,2)𝑆𝑝-y.  Hence (1,2)𝑆𝑝-x = (1,2)𝑆𝑝-y. 

 

Theorem 3.14. For all x ,y∈X, either (1,2)𝑆𝑝-x∩ (1,2)𝑆𝑝-y =  or (1,2)𝑆𝑝-x = 

(1,2)𝑆𝑝-y. 

Proof. Let (1,2)𝑆𝑝-x∩ (1,2)𝑆𝑝-y, then there exists z ∈X such that z∈(1,2)𝑆𝑝-x 

and        z∈(1,2)𝑆𝑝-y.  By theorem 3.13, (1,2)𝑆𝑝-z = (1,2)𝑆𝑝-x = (1,2)𝑆𝑝-y.  Hence 

(1,2)𝑆𝑝-x        = (1,2)𝑆𝑝-y. 

 

Theorem 3.15. For any two points x, y in X, the following statements are equivalent. 

(i) (1,2)𝑆𝑝-Ker({x}) (1,2)𝑆𝑝-Ker({y}). 

(ii) (1,2)𝑆𝑝-Cl({x}) (1,2)𝑆𝑝-Cl({y}) 

Proof. (i)  (ii) Let us assume that (1,2)𝑆𝑝-Ker({x}) (1,2)𝑆𝑝-Ker({y}).  Then there 

exists a point z ∈(1,2)𝑆𝑝-Ker({x}) but z ∉(1,2)𝑆𝑝-Ker({y}).  As z ∈(1,2)𝑆𝑝-Ker({x}),   x 

∈(1,2)𝑆𝑝-Cl({z}) and (1,2)𝑆𝑝-Cl({x}) (1,2)𝑆𝑝-Cl({z}).  Also since z ∉(1,2)𝑆𝑝-

Ker({y}).  By Lemma 3.4,(1,2)𝑆𝑝-Cl({z}) ∩ {y} =  which implies (1,2)𝑆𝑝-Cl({x}) ∩ 

{y} =  and y is weakly (1,2)𝑆𝑝-separated from x, that is y ∉(1,2)𝑆𝑝-Cl({x}).  Hence 

(1,2)𝑆𝑝-Cl({y})  (1, 2) 𝑆𝑝-Cl({x}). 

(ii)  (i) Suppose (1, 2) 𝑆𝑝-Cl({x}) (1,2)𝑆𝑝-Cl({y}). Then there exists a point                               
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z ∈ (1, 2)𝑆𝑝-Cl ({x}) but z ∉(1, 2)𝑆𝑝-Cl({y}). Also a (1, 2)𝑆𝑝-open set containing z and 

x but not y implies y ∉(1,2)𝑆𝑝-Ker({x}).    Hence (1,2)𝑆𝑝-Ker({y}) (1,2)𝑆𝑝-Ker({x}). 

 

 

4. Conclusions 

In this paper, the new characterization of (1,2)𝑆𝑝-kernel was introduced and some of its 

properties are discussed. Later on Research be reached out with certain applications. 
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