New Characterization Of (1, 2)S_P-Kernel in Bitopological Spaces

S. Dhanalakshmi¹ M. Maheswari² N. Durga Devi³

Abstract

Let J(G) = (V, E) be a jump graph. Let D be a nominal prevailing (dominating) set in a jump graph J(G). If V - D contains a prevailing set D' of J(G), then D' is called an inverse prevailing set with respect to D. The nominal cardinality of an inverse prevailing set of a jump graph J(G) is called inverse domination number of J(G). In this paper, we computed some interconnections betwixt inverse domination number of jump graph for some graphs.

Keywords:(1,2)semi-open, (1,2)pre-open, (1,2)pre-closed, (1,2) S_p -open sets, (1,2) S_p -closed sets, (1,2) S_p -kernel sets, (1,2) S_p -derived sets, (1,2) S_p -shell sets.

2010 AMS subject classification:54A10, 54A20⁴

¹Research Scholar & Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University) Tirunelveli, Tamilnadu, India.

²Research Scholar & Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University) Tirunelveli, Tamilnadu, India.

³Assistant Professor Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University) Tirunelveli, Tamilnadu, India.

⁴Received on July 25, 2022. Accepted on October 15, 2022. Published on January 30, 2023. doi: 10.23755/rm. v45i0.991. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY license agreement.

1. Introduction

In 1963, Kelly [3] initiated the study of a triplet (X,τ_1,τ_2) , where X is a non-empty set and τ_1,τ_2 are the two topologies on X. The notion of $(1,2)\alpha$ -open set [4] in a bitopological space was introduced by Lellis Thivagar in 1991. Raja Rajeswari [6] defined and studied the concepts of ultra-kernel in bitopological spaces. In 2017, $(1,2)S_p$ -open set [2] in bitopological spaces was introduced by Hardi Ali Shareef et.al. In this paper, a new class of sets in bitopological spaces called $(1,2)S_p$ -kernel is introduced and some of its properties are derived.

2. Preliminaries

Definition 2.1. [5] A subset A of a bitopological space X is called a

(i) (1, 2) semi-open if $A \subseteq \tau_1 \tau_2 Cl (\tau_1 Int (A))$.

(ii) (1, 2) pre-open if $A \subseteq \tau_1$ Int ($\tau_1 \tau_2$ Cl (A)).

(iii) (1, 2) regular-open if $A = \tau_1 Int (\tau_1 \tau_2 Cl (A))$.

The collection of all (1, 2) semi-open, (1, 2) pre-open and (1, 2) regular-open sets are denoted by (1, 2) SO(X), (1, 2) PO(X) and (1, 2) RO(X) respectively.

Definition 2.2 [5] A subset A of a bitopological space X is called a

(i) (1, 2) α -closed if $\tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(\tau_1 \text{Cl}(A))) \subseteq A$.

(ii) (1, 2) semi-closed if $\tau_1 \tau_2 \text{Int}(\tau_1 \text{Cl}(A)) \subseteq A$.

(iii) (1, 2) pre-closed if $\tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(A)) \subseteq A$.

(iv) (1, 2) regular-closed if $A = \tau_1 Cl(\tau_1 \tau_2 Int(A))$.

The set of all $(1, 2) \alpha$ -closed, (1, 2) semi-closed, (1, 2) pre-closed and (1, 2) regularclosed sets are denoted as $(1, 2) \alpha$ CL (X), (1, 2) SCL (X), (1, 2) PCL (X) and (1, 2) RCL (X) respectively. Also, for any subset A of X, the $(1, 2) \alpha$ -closure, (1, 2) semi-closure, (1, 2) pre-closure and (1, 2) regular-closure of A is denoted as $(1, 2) \alpha$ Cl (A), (1, 2) SCl (A), (1, 2) PCl (A) and (1, 2) RCl (A) respectively.

Definition 2.3. [2] A (1, 2) semi-open set A of a bitopological space X is called (1, 2) S_p -open set if for each $x \in A$, there exists a (1, 2) pre-closed set F such that $x \in F \subseteq A$.

Remark 2.4. If A and B are $(1, 2) \alpha$ -open sets of X, then A UB is also a $(1, 2) \alpha$ -open set.

Definition 2.5. A subset A of a bitopological space X is said to be (1, 2) S_p -locally closed (briefly (1, 2) S_p LC) if A = C \cap D, where C is a (1, 2) S_p -open set and D is a (1, 2) S_p -closed set in X. The family of (1, 2) S_p -locally-closed sets is denoted by (1, 2) S_p LC(X).

3. (1, 2)S_P-Kernel in Bitopological Spaces

Definition 3.1. Let A be a non-empty subset of a bitopological spaces X. Then (1, 2) S_p -kernel of A is denoted by (1, 2) S_p -Ker ({A}) and it is defined as (1, 2) S_p -Ker ({A}) = $\cap \{G \in (1, 2) S_p O(X) / A \subseteq G\}$.

Definition 3.2. Let $x \in X$. Then the $(1, 2)S_p$ -kernel of x is defined by $(1, 2)S_p$ -Ker $(\{x\}) = \cap \{G \in (1, 2) S_p O(X) / x \in G\}.$

Definition 3.3. A subset N of a bitopological space X is said to be (1, 2) S_p -neigborhood ((1, 2) S_p -nbhd) of a point $x \in X$, if there exists a (1, 2) S_p -open set U such that $x \in U$ $\subseteq \mathbb{N}$.

Lemma 3.4. Let X be a bitopological space. Then for any non-empty subset A of X, (1, $2)S_p$ -Ker ({A}) = { $x \in X / (1, 2) S_p$ -Cl ({x}) $\cap A \neq \phi$ }.

Proof: Let $x \in (1, 2)S_p$ -Ker ({A}) and $(1, 2)S_p$ -Cl ({x}) $\cap A \neq \phi$. Then $A \subseteq [X - (1, 2) S_p$ -Cl ({x})] and $[X - (1, 2) S_p$ -Cl ({x})] is a (1, 2) S_p -open set containing Abut not x, which is a contradiction. Hence $(1, 2) S_p$ -Cl ({x}) $\cap A \neq \phi$.

Also, let $x \notin (1, 2) S_p$ -Ker ({A}) and (1, 2) S_p -Cl ({x}) $\cap A \neq \phi$. Then there exists a (1, 2) S_p -open set D containing A but not x and there exists an element $y \in (1, 2)S_p$ -Cl ({x}) $\cap A$. Hence we get a (1, 2) S_p -nbhd of y, say D with $x \notin D$, which is a contradiction. Hence $x \in (1, 2) S_p$ -Ker (A).

Definition 3.5. In a bitopological space X, a subset A of X is said to be weakly (1, 2) S_p -separated from a subset B of X if there exists a (1, 2) S_p -open set G of X such that $A \subseteq G$ and $G \cap B = \phi$ or $A \cap (1, 2)S_p$ -Cl (B) = ϕ . It is shown in the following example.

Example 3.6. Let $X = \{a, b, c, d\}$. $\tau_1 = \{\phi, X, \{a, c\}, \{a, c, d\}\}$. $\tau_2 = \{\phi, X\}$. $\tau_1 \tau_2 Cl = \{X, \phi, \{b, d\}, \{b\}\}$. (1, 2) SO (X) = $\{\phi, X, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. (1, 2) PCL (X) = $\{X, \phi, \{b, c\}, \{a, b, d\}, \{c, d\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}\}$. (1, 2) S_pO (X) = $\{\phi, X, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. (1, 2) S_pO (X) = $\{\phi, X, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. (1, 2) S_pCL (X) = $\{X, \phi, \{b, d\}, \{d\}, \{b\}\}$. Let A = $\{b\}, B = \{d\}$ and G = $\{a, b, c\} \in (1,2)S_pO(X)$. Here A \subseteq G and G \cap B = ϕ or A $\cap (1,2)S_p$ -Cl(B) = ϕ . Hence a subset A of X is weakly (1, 2) S_p-separated from a subset B of X.

Theorem 3.7. Suppose X is a (1, 2) S_p -space and A, B \in (1, 2) S_p LC (X). If A and B are weakly (1, 2) S_p -separated, then A \cup B \in (1, 2) S_p LC (X).

Proof: Assume A, B ∈ (1, 2) S_pLC (X) and let A = G ∩ (1, 2) S_p -Cl(A) and B = E ∩ (1, 2) S_p -Cl (B), where G and E are (1, 2) S_p -open sets of X. Put U = G ∩ [X − (1, 2) S_p -Cl (B)] and V = E ∩ [X − (1, 2) S_p -Cl (A)]. Then U ∩ (1, 2) S_p -Cl(A) = G ∩ [X − (1, 2) S_p -Cl (B)] ∩ (1, 2) S_p -Cl(A) = [G ∩ X − (1, 2) S_p -Cl (A)] ∩ [X − (1, 2) S_p -Cl (B)] = A ∩ [X − (1, 2) S_p -Cl (B)] = A.

Similarly, $V \cap (1, 2) S_p$ -Cl (B) = [E $\cap (X - (1, 2) S_p$ -Cl({A}))] $\cap (1, 2) S_p$ -Cl{A})

S. Dhanalakshmi, M. Maheswari and N. Durga Devi

 $= [E \cap [X - (1, 2) S_p-Cl (\{B\})] \cap [(X - (1, 2)S_p-Cl (\{A\})] = B \cap [(X - (1, 2) S_p-Cl (\{A\})] = B and hence U \cap (1, 2) S_pCl (B) = V \cap (1, 2)S_p-Cl (A) = \phi. Moreover U and V are (1, 2) S_p-open in X. By Remark 2.4, (U U V) is also (1, 2) S_p-open. Then (U U V) \cap (1, 2)S_p-Cl(A U B) = [U \cap (1, 2)S_p-Cl(A)] U [U \cap (1, 2)S_p-Cl(B)] U [V \cap (1, 2)S_p-Cl(A)] U [V \cap (1, 2)S_p-Cl(A)] U [V \cap (1, 2)S_p-Cl(B)] = A U B. Hence A U B is (1, 2)S_p-locally closed set.$

Lemma 3.8. In view of Lemma 3.4 and Definition 3.5, we have for x, y in X of a bitopological space,

(i) (1, 2) S_p -Cl ({x}) = {y: y is not weakly (1, 2) S_p -separated from x}.

(ii) (1, 2) S_p -Ker ({x}) = {y: x is not weakly (1, 2) S_p -separated from y}.

Definition 3.9. For any point *x* of a bitopological space X,

(i) The derived set of x is denoted by (1, 2) S_p -d ({x}) and is defined to be the set (1, 2) S_p -d ({x}) = (1, 2) S_p -Cl ({x}) - {x} = {y: $y \neq x$ and y is not weakly (1, 2) S_p -separated from x}.

(ii) the shell of a point x of X is denoted by $(1,2)S_p$ -shl({x}) and is defined to be the set (1, 2) S_p -shl({x}) = (1, 2) S_p -Ker({x}) - {x} = {y : y \neq x and x is not weakly (1, 2) S_p -separated from x}.

Definition 3.10: Let X be a bitopological space. Then we define (i) (1, 2) S_p -N-D = {x: $x \in X$ and $(1, 2)S_p$ -d ({x}) = ϕ }. (ii) (1, 2) S_p -N-Shl = {x: $x \in X$ and $(1, 2)S_p$ -shl ({x}) = ϕ }. (iii)(1, 2) S_p -(x) = (1, 2) S_p -Cl({x}) \cap (1, 2) S_p -Ker ({x}).

Theorem 3.11. Let *x*, $y \in X$. Then the following conditions hold good:

(i) $y \in (1,2)S_p$ -Ker({x}) if and only if $x \in (1,2)S_p$ -Cl({y}).

(ii) $y \in (1,2)S_p$ -shl({x}) if and only if $x \in (1,2)S_p$ -d({y}).

(iii) $y \in (1,2)S_p$ -Cl({x}) implies (1,2) S_p -Cl({y}) $\subseteq (1,2)S_p$ -Cl({x}).

(iv) $y \in (1,2)S_p$ -Ker({x}) implies $(1,2)S_p$ -Ker({y}) $\subseteq (1,2)S_p$ -Ker({x}).

Proof: The proof of (i) and (ii) are obvious from the Lemma 3.8.

(iii) Let $z \in (1,2)S_p$ -Cl({y}). Then z is not weakly $(1, 2)S_p$ -separated from y which implies there exists a $(1, 2)S_p$ -open set G containing x such that $G \cap \{y\} \neq \phi$. Hence $y \in G$ and by assumption $G \cap \{x\} \neq \phi$. Hence z is not weakly $(1, 2)S_p$ -separated from x which implies $z \in (1, 2)S_p$ -Cl ({x}). Therefore $(1, 2)S_p$ -Cl ({y}) $\subseteq (1, 2)S_p$ -Cl ({x}).

(iv) Let $z \in (1, 2)S_p$ -Ker ({y}). Then y is not weakly $(1, 2)S_p$ -separated from z which implies $y \in (1, 2)S_p$ -Cl ({z}). Hence $(1, 2)S_p$ -Cl ({y}) $\subseteq (1, 2)S_p$ -Cl ({z}). By assumption $y \in (1, 2) S_p$ -Ker ({x}) that implies $x \in (1, 2) S_p$ -Cl ({y}). Then $(1, 2)S_p$ -Cl ({x}) $\subseteq (1, 2) S_p$ -Cl ({y}). Ultimately, $(1, 2) S_p$ -Cl ({x}) $\subseteq (1, 2)S_p$ -Cl ({z}) which implies $x \in (1, 2) S_p$ -Cl ({z}), that is $z \in (1, 2) S_p$ -Ker ({x}). Therefore $(1, 2)S_p$ -Ker ({y}) $\subseteq (1, 2)S_p$ -Ker ({x}).

Theorem 3.12. Let x, y be in X. Then

(i) for every $x \in X$, $(1,2)S_p$ -shl($\{x\}$) is a degenerate set if and only if for all x, $y \in X$, $x \neq y$, $(1,2)S_p$ -d($\{x\}$) \cap $(1,2)S_p$ -d($\{y\}$) = ϕ .

(ii) for every $x \in X$, $(1,2)S_p$ -d({x}) is a degenerate set if and only if for every $x, y \in X, x \neq y, (1,2)S_p$ -shl({x}) $\cap (1,2)S_p$ -shl({y}) = ϕ .

Proof. (i) Let $(1,2)S_p$ -d($\{x\}$) \cap $(1,2)S_p$ -d($\{y\}$) $\neq \phi$. Then there exists a z \in X such that $z\in(1,2)S_p$ -d($\{x\}$) and that $z\in(1,2)S_p$ -d($\{y\}$). Then $z \neq y \neq x$ and $z \in(1,2)S_p$ -Cl($\{x\}$) and $z \in (1,2)S_p$ -Cl($\{y\}$). That is $x, y \in(1,2)S_p$ -Ker($\{z\}$). Hence $(1,2)S_p$ -Ker($\{z\}$) implies $(1,2)S_p$ -shl($\{z\}$) is not a degenerate set, which is a contradiction. Hence $(1,2)S_p$ -d($\{x\}$) $\cap (1,2)S_p$ -d($\{y\}$) = ϕ .

Also, let $x, y \in (1,2)S_p$ -shl({z}) is not a degenerate set. Then $x \neq y \neq z$ and $x, y \in (1,2)S_p$ -Ker({z}). Then z is an element of both $(1,2)S_p$ -Cl({x}) and $(1,2)S_p$ -Cl({y}) which implies $(1,2)S_p$ -Cl({x}) $\cap (1,2)S_p$ -Cl({y}) $\neq \phi$ which is a contradiction. Hence $(1,2)S_p$ -shl({z}) is a degenerate set.

The proof of (ii) is similar that of (i).

Theorem 3.13. If $y \in (1,2)S_p - \langle x \rangle$, then $(1,2)S_p - \langle x \rangle = (1,2)S_p - \langle y \rangle$,

Proof. If $y \in (1,2)S_p - \langle x \rangle$, then $y \in (1,2)S_p - \operatorname{Cl}(\{x\})$ and $y \in (1,2)S_p - \operatorname{Ker}(\{x\})$ and by Theorem 3.10, $(1,2)S_p - \operatorname{Cl}(\{y\}) \subseteq (1,2)S_p - \operatorname{Cl}(\{x\})$ and $(1,2)S_p - \operatorname{Ker}(\{y\}) \subseteq (1,2)S_p - \operatorname{Ker}(\{x\})$. which implies $(1,2)S_p - \operatorname{Cl}(\{y\}) \cap (1,2)S_p - \operatorname{Ker}(\{y\}) \subseteq (1,2)S_p - \operatorname{Cl}(\{x\}) \cap (1,2)S_p - \operatorname{Ker}(\{x\})$. Thus $(1,2)S_p - \langle y \rangle \subseteq (1,2)S_p - \langle x \rangle$. Now, $y \in (1,2)S_p - \operatorname{Cl}(\{x\})$ implies $x \in (1,2)S_p - \operatorname{Ker}(\{y\})$ and $y \in (1,2)S_p - \operatorname{Ker}(\{x\})$ which implies $x \in (1,2)S_p - \operatorname{Cl}(\{y\})$. Which implies $(1,2)S_p - \operatorname{Cl}(\{x\}) \cap (1,2)S_p - \operatorname{Ker}(\{x\}) \subseteq (1,2)S_p - \operatorname{Ker}(\{y\}) \cap (1,2)S_p - \operatorname{Cl}(\{y\})$. Thus $(1,2)S_p - \langle x \rangle \subseteq (1,2)S_p - \langle y \rangle$. Hence $(1,2)S_p - \langle x \rangle = (1,2)S_p - \langle y \rangle$.

Theorem 3.14. For all $x, y \in X$, either $(1,2)S_p - \langle x \rangle \cap (1,2)S_p - \langle y \rangle = \phi$ or $(1,2)S_p - \langle x \rangle = (1,2)S_p - \langle y \rangle$.

Proof. Let $(1,2)S_p - \langle x \rangle \cap (1,2)S_p - \langle y \rangle \neq \phi$, then there exists $z \in X$ such that $z \in (1,2)S_p - \langle x \rangle$ and $z \in (1,2)S_p - \langle y \rangle$. By theorem 3.13, $(1,2)S_p - \langle z \rangle = (1,2)S_p - \langle x \rangle = (1,2)S_p - \langle y \rangle$. Hence $(1,2)S_p - \langle x \rangle = (1,2)S_p - \langle y \rangle$.

Theorem 3.15. For any two points *x*, *y* in X, the following statements are equivalent. (i) $(1,2)S_p$ -Ker({*x*}) \neq (1,2) S_p -Ker({*y*}).

(ii) $(1,2)S_p$ -Cl({x}) $\neq (1,2)S_p$ -Cl({y})

Proof. (i) \Rightarrow (ii) Let us assume that $(1,2)S_p$ -Ker({x}) $\neq (1,2)S_p$ -Ker({y}). Then there exists a point $z \in (1,2)S_p$ -Ker({x}) but $z \notin (1,2)S_p$ -Ker({y}). As $z \in (1,2)S_p$ -Ker({x}), $x \in (1,2)S_p$ -Cl({z}) and $(1,2)S_p$ -Cl({x}) $\subseteq (1,2)S_p$ -Cl({z}). Also since $z \notin (1,2)S_p$ -Ker({y}). Ker({y}). By Lemma 3.4, $(1,2)S_p$ -Cl({z}) \cap {y} = ϕ which implies $(1,2)S_p$ -Cl({x}) \cap {y} = ϕ and y is weakly $(1,2)S_p$ -separated from x, that is $y \notin (1,2)S_p$ -Cl({x}). Hence $(1,2)S_p$ -Cl({y}) $\neq (1,2)S_p$ -Cl({x}).

(ii) \Rightarrow (i) Suppose (1, 2) S_p -Cl({x}) \neq (1,2) S_p -Cl({y}). Then there exists a point

S. Dhanalakshmi, M. Maheswari and N. Durga Devi

 $z \in (1, 2)S_p$ -Cl ({x}) but $z \notin (1, 2)S_p$ -Cl({y}). Also a $(1, 2)S_p$ -open set containing z and x but not y implies $y \notin (1,2)S_p$ -Ker({x}). Hence $(1,2)S_p$ -Ker({y}) $\neq (1,2)S_p$ -Ker({x}).

4. Conclusions

In this paper, the new characterization of $(1,2)S_p$ -kernel was introduced and some of its properties are discussed. Later on Research be reached out with certain applications.

References

[1] Dhanalakshmi. S and Durga Devi. N: "Some Generalization of $(1, 2)S_P$ -locally closed sets in bitopological spaces", J. Math. Comput. Sci. 11(2021), No. 5, 5931-5936.

[2] Hardi Ali Shareef, Durga Devi Natarajan, Raja Rajeswari Ramajeyam and Thangavelu Periannan: "(1, 2) S_P-open sets in Bitopological spaces", Journal of Zankoy Sulaimani (2017) 19-2(Part A), 195-201.

[3] Kelly. J.C: "Bitopological spaces", Proc. Londan. Math. Soc. 1963; 13: 71-89.

[4] Lellis Thivagar. M: "Generalization of pairwise α -continuous function", Pure and Applied Mathematics and Sciences, Vol XXXIII, No. 1-2, 1991, 55-63.

[5] Lellis Thivagar. M, Meera Devi. B and Navalagi. G: "(1,2) Externally disconnectedness Via Bitopological open sets", International Journal of General Topology, Vol.4, Nos 1-2, January – December 2011, 915.

[6] Raja Rajeswari. R: "Bitopological concepts of some separation properties", Ph.D., Thesis, Madurai Kamaraj University, Madurai, India, 2009.