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Isolated point theorems for uniform algebras
on smooth manifolds

by

Swarup N. Ghosh (Weatherford, OK)

Abstract. In 1957, Andrew Gleason conjectured that if A is a uniform algebra on
its maximal ideal space X and every point of X is a one-point Gleason part for A, then
Amust contain all continuous functions onX. Gleason’s conjecture was disproved by Brian
Cole in 1968. In this paper, we establish a strengthened form of Gleason’s conjecture for
uniform algebras generated by real-analytic functions on compact subsets of real-analytic
three-dimensional manifolds-with-boundary.

1. Introduction. LetX be a compact Hausdorff space and C(X) be the
algebra of all complex-valued continuous functions on X with the supremum
norm ‖f‖ = sup{|f(x)| : x ∈ X}. A uniform algebra A on X is a uniformly
closed subalgebra of C(X) that separates the points of X and contains the
constant functions on X. In 1957, Andrew Gleason [11] conjectured that if
A is a uniform algebra on its maximal ideal space X and every point of X is
a one-point Gleason part for A, then A = C(X). Gleason’s conjecture was
disproved by Brian Cole in 1968 [6] (or see [5, Appendix], [17, Section 19]).
Nevertheless, in this paper, we establish a strengthened form of Gleason’s
conjecture for uniform algebras generated by real-analytic functions on com-
pact subsets of real-analytic three-dimensional manifolds. We assume that
every point of X is isolated in the dual space norm on A∗. This condition is
weaker than the original hypothesis “every point of X is a one-point Gleason
part for A” in Gleason’s conjecture. More precisely, the statement of the
main result is as follows.

Theorem 1.1. LetM be a real-analytic three-dimensional manifold-with-
boundary. Assume that X is a compact subset of M such that the boundary
∂X of X relative to M is a two-dimensional submanifold of class C1. Let A
be a uniform algebra on X generated by a collection F of functions that are
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real-analytic on a neighborhood of X. If

(i) the maximal ideal space of A is X, and
(ii) every point of X is isolated in the dual space norm on A∗,

then A = C(X).

In the above theorem, by the boundary ∂X of X relative to M we mean
the union of the topological boundary ofX relative toM and the setX∩∂M .

The isolated point theorem stated above strengthens the peak point the-
orem [2, Theorem 1.1] proved by John Anderson and Alexander Izzo. In the
same setting, they showed that if the maximal ideal space of A is X and
every point of X is a peak point for A, then A = C(X).

We also establish another isolated point theorem different from the pre-
ceding one in nature.

Theorem 1.2. Let M be a compact real manifold-with-boundary of
classC2. Let A be a uniform algebra onM generated by functions of class C2.
If

(i) the maximal ideal space of A is M , and
(ii) every point of M is isolated in the dual space norm on A∗,

then the essential set for A has empty interior in M . Hence, in particular,
the uniform algebra A is not essential.

Note that Theorem 1.2 requires C2 smoothness only and applies to real
manifolds-with-boundary of all dimensions. In addition, the conclusion im-
plies that the functions in the uniform algebra A are arbitrary except on a
small subset of M .

In the next section, we discuss the necessary background. We then prove
preliminary results and important lemmas in Section 3. Finally, we prove
both the isolated point theorems in Section 4.

2. Background. Let A be a uniform algebra on X. A well-known nec-
essary (but not sufficient) condition for A = C(X) is that the maximal ideal
space MA of A is X (equivalently, the only nonzero multiplicative linear
functionals on A are the point evaluations at points of X). There are other
necessary conditions for A = C(X) involving peak points, point derivations,
Gleason parts, and isolated points (in the dual space norm on A∗). A point x
in X is called a peak point for A if there exists f in A such that f(x) = 1
and |f(y)| < 1 for all y in X \{x}. A (bounded) point derivation at a point φ
in MA is a (bounded) linear functional d : A → C that satisfies the Leibniz
rule: d(fg) = d(f)φ(g) +φ(f)d(g) for f, g in A. The Gleason parts for A are
the equivalence classes under the equivalence relation ∼ on MA defined by
φ ∼ ψ if and only if ‖φ − ψ‖A < 2 (see [5, Theorem 2.6.3]), where ‖ · ‖A
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is the dual space norm on A∗. By an isolated point for A, we will mean an
isolated point in the dual space norm on A∗.

Now, for an arbitrary point p inX, consider the following four statements:

(a) p is a peak point for A,
(b) there is no nonzero point derivation on A at p,
(c) p is a one-point Gleason part for A,
(d) p is an isolated point (in the dual space norm on A∗) for A.

We can show that (a)⇒(b)⇒(d) (using [5, Corollary 1.6.7] and [5, Theo-
rem 1.6.2] respectively) and (a)⇒(c)⇒(d) (the first implication follows eas-
ily, and the second one is obvious). The reverse implications in both the cases
are false in general (for counterexamples see [6], [15, Example 5.13], [9], and
[17, §18]). It easily follows that if A = C(X), then each of the statements
(b), (c), and (d) holds for all points p in X. In addition, if X is metrizable,
then A = C(X) implies that the statement (a) holds for all points p in X.
In 1957, Gleason [11] conjectured that if the maximal ideal space of A is X
and the statement (c) holds for all points p in X, then A = C(X). More
explicitly, the following conjecture was made.

Conjecture 2.1 (Gleason’s conjecture). If the maximal ideal space of A
is X and every point of X is a one-point Gleason part for A, then A = C(X).

Subsequently, the following two related conjectures were considered.

Conjecture 2.2 (Peak point conjecture). If the maximal ideal space
of A is X and every point of X is a peak point for A, then A = C(X).

Conjecture 2.3 (Point derivation conjecture). If themaximal ideal space
of A is X and there is no nonzero point derivation for A, then A = C(X).

In this paper, we also consider the following stronger conjecture.

Conjecture 2.4 (Isolated point conjecture). If the maximal ideal space
of A is X and every point of X is isolated for A, then A = C(X).

A counterexample produced by Cole disproved all four conjectures [6]
(or see [5, Appendix], [17, Section 19]). A few years later, a simpler coun-
terexample was given by Richard Basener [3] (or see [17, Example 19.8]).
Nevertheless, in 2016, the author [10] showed that the isolated point conjec-
ture, the strongest of all four conjectures, holds for two important classes of
uniform algebras, namely, uniform algebras generated by smooth functions
on compact smooth two-dimensional manifolds and uniform algebras gener-
ated by polynomials on compact subsets of real-analytic three-dimensional
submanifolds of complex Euclidean spaces.

Extending their previous work on the peak point conjecture, in 2009, An-
derson and Izzo established a peak point theorem for uniform algebras gen-
erated by real-analytic functions on compact subsets of real-analytic three-
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dimensional manifolds-with-boundary [2, Theorem 1.1]. In this paper, we will
establish the isolated point conjecture for the same class of uniform algebras.
We note that the main result (Theorem 1.1) contains the peak point theorem
[2, Theorem 1.1] as well as the isolated point theorem [10, Theorem 3.1].

In a recent paper [13], Izzo proved the following result.

Theorem 2.5 ([13, Theorem 1.1]). Let V be a real-analytic subvariety of
an open set Ω ⊂ Rn, and let X be a compact subset of V such that ∂X is a
real-analytic subvariety of V . Let A be a uniform algebra on X generated by
a collection F of functions real-analytic on X. If

(i) the maximal ideal space of A is X, and
(ii) the set X does not contain any analytic disc,

then A = C(X).

Note that in our main result the boundary ∂X is a manifold of class C1,
but it is not necessarily a real-analytic subvariety. Therefore, our main result
is of a different nature and cannot be obtained from the above-mentioned
theorem.

3. Preliminaries and lemmas. The proofs of our results will use ideas
from the work by Anderson and Izzo [2]. We will also use the following lemma
proved in [10].

Lemma 3.1 ([10, Lemma 2.4]). Let A be a uniform algebra on X and Y
be a closed subset of X.

(i) If a point in Y is isolated for A, then it is also isolated for A|Y , the
uniform closure of the algebra A|Y = {f |Y ∈ C(Y ) : f ∈ A}.

(ii) Let B̃ be a uniform algebra on Y containing A|Y and with maximal ideal
space Y . If a point in Y is isolated for A, then it is also isolated for B̃.

Let A be a uniform algebra on a compact space X. The essential set
for A, a notion introduced by Herbert Bear, is the unique minimal closed
subset E of X with the property that A contains every continuous function
on X that vanishes on E [4, §2] (or see [5, Theorem 2.8.1]). In other words,
E is the unique minimal closed subset of X such that A contains every
continuous function whose restriction to E lies in A|E . Bear proved that A|E
is uniformly closed (and hence forms a uniform algebra) [4, Theorem 2].
More importantly, he showed that the maximal ideal space of A|E is E if
and only if the maximal ideal space of A is X [4, Theorem 4]. The author
strengthened these results in the form of the following theorem.

Theorem 3.2 ([10, Theorem 2.5]). Suppose A is a uniform algebra on X
and L is a closed subset of X containing the essential set for A. Then A|L is
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uniformly closed in C(L). Moreover, the maximal ideal space of A|L is L if
and only if the maximal ideal space of A is X.

We will use the following result by Izzo [14] in order to reduce approxi-
mation on a compact set to approximation on a smaller subset.

Theorem 3.3 ([14, Theorem 1.3]). Let A be a uniform algebra on X.
Suppose that the maximal ideal space of A is X. Suppose also that E is a
closed subset of X such that X \ E is an m-dimensional manifold and such
that

(i) for each point p in X \ E, there are functions fj in A (j = 1, . . . ,m)
that are C1 on X \ E and satisfy df1 ∧ · · · ∧ dfm(p) 6= 0, and

(ii) the functions in A that are C1 on X \ E separate the points of X.

Then A = {g ∈ C(X) : g|E ∈ A|E}, i.e., the essential set for A is contained
in E.

For a uniform algebra A on a certain compact set K, the following result
of Anderson and Izzo provides a sufficient condition for A = C(K). The n-
dimensional Hausdorff measure is denoted byHn. For the notion of Hausdorff
measure in a metric space and related results, see [7].

Lemma 3.4 ([2, Lemma 2.1]). Let K be a compact metric space and A be a
uniform algebra on K with maximal ideal space K. Suppose K = X∪Y where
X is a compact set such that A|X = C(X) and Y is a set with H2(Y ) = 0.
Suppose also that A is generated by Lipschitz functions. Then A = C(K).

Let A be a uniform algebra on X with maximal ideal space MA and f be
a function in A. The Gelfand transform of f is the complex-valued function f̂
on MA defined by f̂(φ) = φ(f) for φ ∈MA. The collection Â = {f̂ : f ∈ A}
is a uniform algebra on MA (see [17, p. 37]). We let B(x, r) be the open ball
in MA with center x and radius r, and let S(x, r) be the boundary of B(x, r)
in MA.

The following lemma is a generalization of [1, Corollary 21.10].

Lemma 3.5. Let A be a uniform algebra on K such that the maximal
ideal space MA of A is metrizable with metric d. Assume that the uniform
algebra Â is generated by a collection of Lipschitz functions on MA. Then
for x ∈ L = MA \ K and r > 0, the two-dimensional Hausdorff measure
satisfies H2(L ∩ B(x, r)) > 0.

For a proof of the above lemma, we first define the following notion. Let
A be a uniform algebra on X and K be a closed subset of X. The A-convex
hull K̂ of K is defined as the set

K̂ = {φ ∈MA : |φ(f)| ≤ ‖f‖ for all f in A}.
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Moreover, K is A-convex if K̂ = K. The A-convex hull K̂ of K can be
viewed as the maximal ideal space of the uniform algebra A|K [8, Ch. II,
Theorem 6.1].

We also need the following generalization of [16, Theorem 1.6.2].

Lemma 3.6. Let X be a compact metric space and A be a uniform algebra
on X generated by a collection of Lipschitz functions. If S is a closed subset
of X with H1(S) = 0, then A|S = C(S) and S is A-convex.

Proof. Note that we only need to show A|S = C(S). Using the Stone–
Weierstrass theorem, it is then sufficient to show that the real-valued func-
tions in A|S separate the points of S. Fix two distinct points x and y in S.
Since A is generated by a collection of Lipschitz functions, there is a Lipschitz
function f ∈ A such that f(x) 6= f(y). Since H1(S) = 0 and f is a Lipschitz
function, the one-dimensional Hausdorff measure H1(f(S)) equals 0. Then
by [7, Corollary 2.10.12], f(S) is totally disconnected. Therefore, there exist
disjoint open subsets U and V of C such that f(x) ∈ U , f(y) ∈ V , and
f(S) ⊆ U ∪V . Define φ : U ∪V → R by φ(u) = 0 for u ∈ U and φ(v) = 1 for
v ∈ V . Clearly, φ is holomorphic on U ∪V . Note that f(S), being the image
of a compact set under a continuous map, is a compact subset of U ∪ V .
Then Runge’s theorem implies that there is a sequence {pn}∞n=1 of polyno-
mials which converges uniformly to φ on f(S). Hence {pn ◦ f}∞n=1 converges
uniformly to φ ◦ f on S. Note that pn ◦ f ∈ A for all n ∈ N since f ∈ A. It
then follows that φ ◦ f |S ∈ A|S. Finally, note that φ ◦ f |S is real-valued and
(φ ◦ f)(x) 6= (φ ◦ f)(y).

Proof of Lemma 3.5. Suppose, on the contrary, that there is a point
x0 ∈ L and a number r0 > 0 such that H2(L ∩ B(x0, r0)) = 0. Note
that g : MA → R defined by g(x) = d(x, x0) is a Lipschitz map with Lip-
schitz constant 1. We apply Eilenberg’s inequality [16, Theorem 3.3.6] to
obtain �∗

(0,∞)

H1(g−1(t) ∩ B(x0, r0) ∩ L) dt ≤ H2(B(x0, r0) ∩ L) = 0,

where the integral is the upper integral on (0,∞). Consequently, H1(g−1(t)∩
B(x0, r0) ∩ L) = 0 for almost every t in the interval (0, r0). Since g−1(t) ∩
B(x0, r0) = S(x0, t) for 0 < t < r0, we have H1(S(x0, t) ∩ L) = 0 for al-
most every t in the interval (0, r0). Also, note that x0 is not in K, a closed
subset of MA. Therefore, there exists s0 in (0, r0) such that K ∩ B(x0, s0)
is empty and H1(S(x0, s0) ∩ L) = 0. In particular, K ∩ S(x0, s0) is empty,
and hence S(x0, s0) ∩ L = S(x0, s0). Therefore, we get H1(S(x0, s0)) = 0.
Then Lemma 3.6 implies that the set S(x0, s0) is Â-convex. It now follows
from Rossi’s local maximum modulus principle [8, Ch. III, Theorem 8.2] that
B(x0, s0) ⊆ [(K∩B(x0, s0))∪S(x0, s0)]̂. Consequently, B(x0, s0) ⊆ S(x0, s0)
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sinceK∩B(x0, s0) is empty and S(x0, s0) is Â-convex. This is a contradiction
because x0 is in B(x0, s0), but not in S(x0, s0).

Let K be a subset of an m-dimensional manifold of class C1 and F be a
collection of C1 functions on (varying neighborhoods of) K. The exceptional
set KF of K relative to F is defined by

KF = {p ∈ K : df1 ∧ · · · ∧ dfm(p) = 0 for each m-tuple f1, . . . , fm in F}.
Lemma 3.7. Let M be a real m-dimensional manifold of class C2 and

K be a compact subset of M . Suppose A is a uniform algebra on K generated
by a collection of functions of class C2 on (varying neighborhoods of ) K
in M . Also assume that

(i) the maximal ideal space of A is K, and
(ii) every point of K is isolated for A.

Then the exceptional set KF of K relative to F = A ∩ C2(M) has empty
interior in M .

Let D denote the open unit disc in the complex plane. An analytic disc
is a continuous injective map Φ : D→ Cn which is holomorphic in D. By the
boundary of the analytic disc Φ, we will mean the map Φ|∂D, the restriction
of Φ to the unit circle ∂D. Often in the literature, the analytic disc and its
boundary are identified with their respective images in Cn. In order to prove
Lemma 3.7, we need the following result [13, Lemma 2.4] by Izzo concerning
the existence of analytic discs.

Lemma 3.8 ([13, Lemma 2.4]). Let M be a real m-dimensional manifold
of class C2 and K be a compact subset of M . Suppose A is a uniform alge-
bra on K generated by a collection F of functions of class C2 on (varying
neighborhoods of ) K in M . If the exceptional set KF has nonempty interior
int(KF ) in M , then the maximal ideal space of A contains an analytic disc
whose boundary is contained in int(KF).

Proof of Lemma 3.7. We claim thatK contains no analytic disc. Suppose,
on the contrary, that there is an analytic disc Φ : D → K. Then, for z in
D \ {0}, we obtain

‖z− 0‖A(D) ≥ sup{|f(Φ(z))− f(Φ(0))| : f ∈ A, ‖f‖ ≤ 1} = ‖Φ(z)−Φ(0)‖A.

Since Φ is injective, by condition (ii), there is δ > 0 with ‖Φ(z)−Φ(0)‖A ≥ δ
for all z ∈ D \ {0}. Therefore, ‖z − 0‖A(D) ≥ δ for all z ∈ D \ {0}. In
other words, 0 ∈ D is an isolated point (in the dual space norm) for A(D),
a contradiction. Hence our claim is true, i.e.,K does not contain any analytic
disc.

Next suppose, on the contrary, that KF has nonempty interior in M .
Then by Lemma 3.8 and condition (i), K contains an analytic disc whose
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boundary is contained in int(KF ). However, this contradicts the fact that
K does not contain any analytic disc. Consequently, KF has empty interior
in M .

Let M be an abstract manifold and U be an open subset of M . A closed
subset V of U is a real-analytic subvariety of U if for each point p in V
there exists a neighborhood W ⊆ U of p in M and a finite collection F of
real-valued functions that are real-analytic in W such that

V ∩W = {q ∈W : f(q) = 0 for all f in F}.
A point p in V is a regular point (of dimension d) of V if there is a neigh-
borhood O of p in M such that V ∩ O is a real-analytic submanifold (of
dimension d) of O. A point of V that is not a regular point is a singular
point of V . The set of all regular points of V is denoted by Vreg, whereas the
set of all singular points of V is denoted by Vsing. The dimension of V is the
largest integer d such that V has regular points of dimension d.

The following result concerns the Hausdorff measure of the singular set
of a real-analytic subvariety of Cn.

Lemma 3.9 ([7, Section 3.4.10]). Let V be an m-dimensional real-analytic
subvariety of an open subset U of Cn. Then Hm−1(Vsing ∩ C) is finite for
each compact subset C of U .

4. Isolated point theorems. We first prove Theorem 1.2.

Proof of Theorem 1.2. First taking K = M in Lemma 3.7, we deduce
that the exceptional set MF of M relative to F = A ∩ C2(M) has empty
interior inM . Then taking E =MF in Theorem 3.3 we see that the essential
set for A is contained in MF . Therefore, the essential set for A has empty
interior in M .

Finally, we present a proof of our main result.

Proof of Theorem 1.1. Let

E = {p ∈ X : df1 ∧ df2 ∧ df3(p) = 0 for all f1, f2, f3 ∈ F}
be the exceptional set of X relative to F . Also let X0 be the interior of X
relative to M . Define Ẽ = E ∩ X0 and K0 = ∂X ∪ Ẽ (= ∂X ∪ E). We
note that K0 is compact because ∂X and E are both closed subsets of the
compact set X. Then Theorem 3.3 implies that K0 contains the essential set
for A. Therefore, the maximal ideal space of A|K0 is K0 by condition (i) and
Theorem 3.2. Thus to show A = C(X), it suffices to prove A|K0 = C(K0).

It easily follows that Ẽ is a real-analytic subvariety of X0. Let Ẽc =
{p ∈ Ẽreg : df1 ∧ df2(p) = 0 (as a form on Ẽreg) for all f1, f2 ∈ F} and
set Z = ∂X ∪ Ẽsing ∪ Ẽc. Then Z is a compact subset of K0, and K0 \ Z
(= Ẽreg \ Ẽc) is a two-dimensional manifold. Applying Theorem 3.3, we see
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that Z contains the essential set for A|K0. Therefore, the maximal ideal
space of A|Z is Z by Theorem 3.2. Thus to prove A|K0 = C(K0), it suffices
to show that A|Z = C(Z).

In order to show A|Z = C(Z), we will apply Lemma 3.4 by taking for
X in the lemma the set ∂X and for Y the set Ẽsing ∪ Ẽc. First we verify
that H2(Ẽsing ∪ Ẽc) = 0. To prove this, we introduce the following metric
onM . Using the Whitney embedding theorem (see [12, Ch. 1, §8]) we embed
M into Rn for some natural number n and then consider the metric on M
inherited from Rn (with Euclidean metric). As a result, every coordinate
system on M is a lipeomorphism (i.e., bi-Lipschitz) on compact subsets.
Hence every real-analytic function on an open subset of M is Lipschitz on
compact subsets. Moreover, Hn(W ) = 0 for a compact subset W of M if
and only if Hn(φ(W ∩ U)) = 0 for each coordinate chart (U, φ).

Note that Ẽ is a real-analytic subvariety of X0. Then by Lemma 3.7, E
and hence Ẽ has empty interior in M . Therefore, the dimension of Ẽ is at
most two. Now to show that H2(Ẽsing) = 0, fix a coordinate chart (U, φ).
Then the set φ(Ẽ ∩ U) is a real-analytic subvariety of φ(U) with singular
set φ(Ẽsing ∩ U). Therefore, by Lemma 3.9, H1(φ(Ẽsing ∩ U) ∩ C) is finite
for every compact subset C of φ(U). Now covering U by countably many
compact sets, we obtain H2(φ(Ẽsing∩U)) = 0. Consequently, H2(Ẽsing) = 0.
Next, note that Ẽc is a real-analytic subvariety of Ẽreg. To show H2(Ẽc) = 0,
fix a point p in Ẽreg. Since Ẽreg is open in Ẽ and Ẽ is open in K0, clearly
Ẽreg is open in K0. Therefore, there is r > 0 such that B(p, r) ∩K0 ⊆ Ẽreg.
Denote B(p, r)∩K0 by Kp. Then Kp is a compact subset of Ẽreg. Note that
the set Kp, being an intersection of two A-convex sets, is A-convex. Also, by
Lemma 3.1(ii), every point of K0 is an isolated point for A|K0. Therefore,
Lemma 3.7 implies that Ẽc ∩Kp has empty interior in Ẽreg. Since the point
p in Ẽreg is arbitrary, Ẽc is a real-analytic subvariety of Ẽreg of dimension
at most one. Consequently, H2(Ẽc) = 0. Thus, H2(Ẽsing ∪ Ẽc) = 0.

Next, we verify that A|∂X = C(∂X). We will first show that the max-
imal ideal space of A|∂X is ∂X. Note that the A-convex hull ∂̂X of ∂X is
contained in Z as ∂X is a subset of an A-convex set Z. Therefore, ∂̂X \ ∂X
is contained in Ẽsing∪ Ẽc, whose two-dimensional Hausdorff measure is zero.
Then from Lemma 3.5 we see that ∂̂X \ ∂X is empty, i.e., ∂X is A-convex.
Hence the maximal ideal space of A|∂X is ∂X. Next, by Lemma 3.1(ii), every
point of ∂X is an isolated point for A|∂X. Then an application of the two-
dimensional isolated point theorem [10, Theorem 2.1] yields A|∂X = C(∂X).

Finally, applying Lemma 3.4 we obtain A|Z = C(Z) and hence the de-
sired conclusion A = C(X).
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