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Valid ​t​-Ratio Inference for IV†

By David S. Lee, Justin McCrary, Marcelo J. Moreira, and Jack Porter*

In the single-IV model, researchers commonly rely on ​t​-ratio-based 
inference, even though the literature has quantified its potentially 
severe large-sample distortions. Building on Stock and Yogo (2005), 
we introduce the ​tF​ critical value function, leading to a stan-
dard error adjustment that is a smooth function of the first-stage 
​F​-statistic. For one-quarter of specifications in 61 AER papers, cor-
rected standard errors are at least 49 and 136 percent larger than 
conventional 2SLS standard errors at the 5 percent and 1 percent 
significance levels, respectively. ​tF​ confidence intervals have shorter 
expected length than those of Anderson and Rubin (1949), whenever 
both are bounded. (JEL C13, C26)

Consider the commonly employed single-variable, just-identified instrumental 
variable (IV) model, with outcome ​Y​, regressor of interest ​X​, and instrument ​Z​:1

(1)	 ​Y  =  βX + u,  where​

	​ C​(u, Z)​  =  0,  C​(Z, X)​  ≠  0.​

Conducting hypothesis tests and constructing confidence sets for ​β​ with correct sig-
nificance and confidence levels has been pursued for several decades. In this set-
ting, the validity of the Anderson-Rubin test—henceforth, ​AR​—is well established 

1 It will be shown that all of our results apply to the single excluded instrument case more generally, allow-
ing for other covariates and variance estimators that accommodate departures from i.i.d. errors, such as 
heteroskedasticity-consistent, clustered, or time series approaches. Throughout, we use ​V​( ⋅ )​​ and ​C​( ⋅ ,  ⋅ )​​ to denote 
population variance and covariance, respectively.
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NBER (email: jmccrary@law.columbia.edu); Moreira: FGV EPGE (email: mjmoreira@fgv.br); Porter: University 
of Wisconsin (email: jrporter@ssc.wisc.edu). Isaiah Andrews was the coeditor for this article. We are grateful 
to Charlie Fefferman for his generous spirit and interest in our problem, and to Peter Ozsváth for connecting 
us with him. We thank Josh Angrist and Jim Stock for their comments and suggestions. We also thank Orley 
Ashenfelter, Marinho Bertanha, Stéphane Bonhomme, Janet Currie, Michal Kolesár, Alex Mas, José Montiel-Olea, 
Ulrich Mueller, Zhuan Pei, Mikkel Plagborg-Møller, Chris Sims, Eric Talley, Mark Watson, and participants of the 
joint Industrial Relations/Oskar Morgenstern Memorial Seminar at Princeton, the applied econometrics workshop 
at FGV, seminars at UC Davis and UQAM, the California Econometrics Conference, and the World Congress, 
for feedback on earlier iterations of this project. We are also grateful to Camilla Adams, Victoria Angelova, Cate 
Brock, Santiago Deambrosi, Colin Dunkley, Jared Grogan, Bailey Palmer, and Myera Rashid, and especially Sarah 
Frick and Katie Guyot for extraordinary research assistance. This study was financed in part by the Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. For supplementary material, 
including updates to the original online Appendix and a STATA package to compute ​tF​ critical values/standard error 
adjustments, please visit https://www.princeton.edu/~davidlee/wp/SupplementarytF.html.

† Go to https://doi.org/10.1257/aer.20211063 to visit the article page for additional materials and author  
disclosure statements.

https://doi.org/10.1257/aer.20211063
mailto:davidlee@princeton.edu
mailto:jmccrary@law.columbia.edu
mailto:mjmoreira@fgv.br
mailto:jrporter@ssc.wisc.edu
https://www.princeton.edu/~davidlee/wp/SupplementarytF.html
https://doi.org/10.1257/aer.20211063


3261LEE ET AL.: VALID T-RATIO INFERENCE FOR IVVOL. 112 NO. 10

(Anderson and Rubin 1949)2, and results expressing its advantages and optimality 
come in several flavors.3

Despite these findings, applied research, with rare exceptions, instead relies on 
​t​-ratio-based inference. Many studies have shown, numerically or theoretically, that 
the ​t​-ratio test for ​IV​ significantly over-rejects and associated confidence intervals 
under-cover in situations when instruments are not sufficiently strong.4 To deal with 
this problem, researchers have relied upon the first-stage ​F​-statistic as a pretest for 
instrument weakness. Staiger and Stock (1997) and Stock and Yogo (2005) provide 
a framework for precisely quantifying the distortions in—and therefore correcting—
inference, with the use of the first-stage ​F​-statistic. Importantly, although much of 
the econometric literature considers the general case of the over-identified model 
with multiple instruments, Stock and Yogo (2005) make clear that the distortions 
in inference also occur in the single instrumental variable, just-identified case—a 
common case for applied work, and the exclusive focus of the current paper.5

Unfortunately, the implementation and interpretation by practitioners of the 
approach and results of Staiger and Stock (1997) and Stock and Yogo (2005) has typ-
ically been imperfect or deficient. For example, pretesting using the rule-of-thumb ​
F​-statistic threshold of 10 is commonplace, rather than the actual values provided 
in Stock and Yogo (2005) tables. Or, practitioners erroneously refer to the interval 
​​β ˆ ​ ± 1.96 × ​  se​​(​β ˆ ​)​​ as a “95 percent confidence interval” (after pretesting using ​
F  >  10​ as a diagnostic), even though the Bonferroni bounds of Staiger and Stock 
(1997) make clear that using ​F  >  16.38​ from Stock and Yogo (2005) implies that 
such an interval is in fact an 85 percent confidence interval.6​​​​ ,​7

In the current paper, focusing on the single-instrument case, we meet practitioners 
“where they are” by introducing a new method of inference using only the first-stage ​
F​-statistic and the 2SLS ​t​-ratio. Rather than relying on a fixed pretesting threshold 
value, we show how to smoothly adjust ​t​-ratio inference based on the first-stage  
​F​-statistic. In its simplest form, this amounts to applying an adjustment factor to 
2SLS standard errors based on the first-stage ​F​ with the adjustment factors provided 

2 Staiger and Stock (1997) show that ​AR​-based inference delivers correct size/confidence with nonnormal 
and homoskedastic errors under arbitrarily weak instruments. Stock and Wright (2000), among others, show that 
​AR​-based inference is valid under more general error structures.

3 The test of Anderson and Rubin (1949) in the just-identified case has been shown to minimize type II error 
among various classes of alternative tests. These include classes of either unbiased tests (whose rejection prob-
abilities under all alternatives are larger than that under the null) or invariant tests (which remain the same after 
transforming the data linearly). This is shown for homoskedastic errors, by Moreira (2002, 2009) and Andrews, 
Moreira, and Stock (2006), and later generalized to cases for heteroskedastic, clustered, and/or autocorrelated 
errors, by Moreira and Moreira (2019).

4 See, for example, Nelson and Startz (1990); Bound, Jaeger, and Baker (1995); and Dufour (1997); and 
an earlier discussion by Rothenberg (1984). For a simple STATA program that demonstrates the inaccuracy of 
the standard approximation compared to the “weak-IV” asymptotic approximation, see https://www.princeton.
edu/~davidlee/wp/SupplementarytF.html.

5 This single-variable case includes applications such as randomized trials with imperfect compliance (esti-
mation of LATE, Imbens and Angrist 1994), fuzzy regression discontinuity designs (see discussion in Lee and 
Lemieux 2010), and fuzzy regression kink designs (see discussion in Card et al. 2015). 

6 We write ​​β ˆ ​​ for the IV estimator and ​​̂  se​​( ⋅ )​​ for the estimated standard error of an estimator.
7 In their formulation, Staiger and Stock (1997) point out that this inferential statement requires a precommitment 

to a confidence set that is the entire real line in the event that ​F  <  16.38​. Hall, Rudebusch, and Wilcox (1996) show 
that over-rejection can be even worse in the presence of pretesting for weak instruments. Andrews, Stock, and Sun 
(2019) also discuss in detail the practice of selectively dropping specifications when first-stage ​F​-statistics do not 
meet a particular threshold, and show that severe distortion can result.

https://www.princeton.edu/~davidlee/wp/SupplementarytF.html
https://www.princeton.edu/~davidlee/wp/SupplementarytF.html
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in tables below for 95 percent and 99 percent confidence levels. We refer to this 
procedure as the ​tF​ procedure and list some of its advantages here.

First, smooth adjustment yields usable finite confidence intervals for smaller 
values of the ​F​ statistic. In particular, for 95 percent confidence, finite adjustment 
factors are available for any value of ​F  >  3.84​. This puts the smooth adjustment 
approach on equal footing with ​AR​, which yields bounded 95 percent confidence 
intervals for ​F  >  3.84​. Second, the confidence levels specified with the ​tF​ adjust-
ment factors leave little room for practitioner misinterpretation. These confidence 
levels incorporate the effects of basing inference on the first-stage ​F​; again, this 
puts the confidence interval on equal footing with ​AR​, or other procedures that have 
zero distortion. Third, even though the ​tF​ critical value function tends to infinity as ​
F​ approaches 3.84 from above (e.g., for the 5 percent test), any alternative function 
that is uniformly below the ​tF​ critical value function in a neighborhood of 3.84 leads 
to over-rejection for some data generating process.

Fourth, our table of adjustment factors is “robust” to commonly considered error 
structures (e.g., heteroskedasticity or clustering). That is, no further adjustment is 
needed for these scenarios as long as the same type of robust variance estimator is 
used for the first-stage as for the IV estimate itself. Fifth, we compare the ​tF​ approach 
to ​AR​ based on expected confidence interval length. Given the well-established 
power properties of ​AR​, our results here are surprising: conditional on ​F  >  3.84​, 
the expected length of the ​AR​ interval is infinite, while that of the ​tF​ interval is finite. 
Sixth, the ​tF​ adjustment can be easily applied to reassess studies that have already 
been published, provided that the first-stage ​F​-statistic has been reported, and does 
not require access to the original data.

In order to gauge the likely magnitude of ​tF​ adjustments in applied research going 
forward, we use a sample of studies recently published in the American Economic 
Review (​AER​) that utilize a single-instrument specification. For at least one-quarter 
of the specifications where the first-stage ​F​-statistic is reported or can be computed 
from the published tables, applying the ​tF​ adjustment to the standard errors leads to 
an increase in confidence interval lengths of at least 49 and 136 percent for 5 percent 
and 1 percent significance levels, respectively. We observe that among the specifi-
cations for which ​F  >  10​ and ​​t​​ 2​  > ​ 1.96​​ 2​​ (for the null hypothesis that the slope 
coefficient is zero)—which without our adjustment would likely have been deemed 
“statistically significant”—the use of ​tF​ adjustment would cause about one-fourth of 
the specifications to be statistically insignificant at the 5 percent level. We conclude 
therefore that these adjustments are likely to have a substantive impact on inferences 
in applied research that employ ​t​-ratio inferences.

The paper is organized as follows. Section I uses recent papers published in the 
AER to characterize current inferential practices for the single-instrument IV model. 
In Section II, we first describe the ​tF​ procedure: the critical values, the main results 
on power, and its application to our sample of studies. Section III describes how the 
results stated in Section II are derived. Section IV concludes.

I.  Inference for IV: Current Practice

To motivate our emphasis on improving ​t​-ratio-based inference, this section doc-
uments facts about current practice for the single instrumental variable model, as 
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reflected by recent research published in the American Economic Review. We later 
use this sample of studies to gauge to what extent our proposed adjustments could 
make a difference in practice.

Our sample frame consists of all AER papers published between 2013 and 2019, 
excluding comments, replies, and AEA Papers and Proceedings, yielding 757 arti-
cles, of which 123 include instrumental variable regressions. Of these 123 studies, 
61 employ single instrumental variable (just-identified) regressions.8 Consistent 
with the conclusion of Andrews, Stock, and Sun (2019), this confirms that the 
just-identified case is an important and prevalent one, from an applied perspective.

From these papers, we transcribe the coefficients, standard errors, and other sta-
tistics associated with each ​IV​ regression specification. Each observation in our final 
dataset is a “specification,” where a single specification is defined as a unique com-
bination of (i) outcome, (ii) endogenous regressor, (iii) instrument, and (iv) com-
bination of covariates. The dataset contains 1,311 specifications from 61 studies; 
among those studies, the average number of specifications is 21.5, with a median 
of 9, and with twenty-fifth and seventy-fifth percentiles of 4 and 21, respectively. 
The purpose of our dataset is to fully characterize specifications that are reported in 
published studies.9

Each specification is placed into one of four categories, as shown in Table  1, 
according to the types of regressions for which coefficients and standard errors are 
reported: the coefficients and standard errors from (i) only the 2SLS, (ii) the 2SLS 
and first-stage regression, (iii) the 2SLS and the reduced-form regression of the out-
come on the instrument, and (iv) the 2SLS, the first-stage, and the reduced form. In 
addition, we identify whether or not, for each specification, the first-stage ​F​-statistic 
is explicitly reported (as indicated by the first two columns in Table 1).10

For each configuration, Table 1 reports the number of specifications, proportions 
(in parentheses), and weighted proportions (in brackets) where the weight for each 
specification is the inverse of the total number of specifications reported from its 
study. Henceforth, unless otherwise specified, when we refer to proportions, we 
refer to the weighted proportions since we wish to implicitly give each study equal 
weight in the summary statistics that we report.

Table  1 shows that the most common combination among the eight possible 
types is the reporting of 2SLS coefficients without explicitly reporting the first-stage 
​F​-statistic, representing about a quarter of the specifications. The second 
most-common practice is to report both the 2SLS and the first-stage coefficients 
without reporting the ​F​-statistic (about 20 percent), but it should be clear that the ​
F​-statistic can be derived from squaring the ratio of the first-stage coefficient to 
its associated estimated standard error. The least common reporting combination is 
2SLS and the reduced form, without reporting the first-stage ​F​ (2.4 percent).

8 Specifically, we include papers that exclusively employ just-identified specifications with one endogenous 
regressor and presented 2SLS results in the main text; i.e., we exclude a paper if it contains over-identified models, 
and we exclude papers if the only mention of a just-identified IV model is in the online Appendix.

9 See Andrews, Stock, and Sun (2019) for a more in-depth comparison of ​AR​ and ​t​-ratio-based inference.
10 We include in the second column ​F​-statistics that were actually reported by authors as the “Kleibergen-Paap” 

—henceforth, ​KP​—statistic from Kleibergen and Paap (2006), rather than as an ​F​-statistic. As noted in Andrews, 
Stock and Sun (2019), in the case of a single endogenous-regressor with single instrument, ​KP  =  F​. In our sample, 
about 39 percent (weighted) of the ​F​ statistics in the second column were reported as ​KP​ statistics.
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In our analysis of the data, in order to maximize the number of specifications for 
which we have a first-stage ​F​-statistic, we compute it from the reported first-stage 
coefficients and standard errors, but whenever this is not possible, we use the explic-
itly reported ​F​-statistic.11

Figure 1 displays the histogram of the ​F​-statistics in our sample on a logarithmic 
scale. The weighted twenty-fifth percentile, median, and seventy-fifth percentiles 
are 14.23, 45.84, and 225, respectively. The figure shows that most of the reported 
first-stage ​F​-statistics in these studies do pass commonly cited thresholds such as 
10.12 More detail on these specifications is provided in Table 2, which is a two-way 
frequency table for whether or not the square of the ​t​-ratio for the hypothesis that ​
β  =  0​ exceeds ​​1.96​​ 2​​, and whether or not the computed ​F​ statistic exceeds 10 (a 
commonly-used or cited threshold). Overall, the table indicates that for about 60 
percent of the specifications, the estimated 2SLS coefficient would be “statistically 
significant” under the practice of using a critical value of ​1.96​ and a first-stage 
​F​-statistic threshold of 10 as a basis of trusting the inference.

We recognize that the null hypothesis of ​β  =  0​ may not always be the hypoth-
esis of interest across all the studies. Furthermore, in our data collection, we do not 
make any judgments as to the extent to which any particular regression specifica-
tion is important for the conclusions of the article. Indeed, in some cases, the 2SLS 

11 We find that among studies in which both the reported and computed ​F​-statistic are available, about 63 per-
cent of the time the two numbers are within 5 percent of one another. For those specifications in which the reported ​​
F ˆ ​​ is the only ​F​-statistic available, there are some situations where it is not entirely clear whether the ​F​-statistic is 
the first-stage ​F​; it is possible that they are ​F​-statistics for testing other hypotheses.

12 Consistent with the pattern observed in Andrews, Stock, and Sun (2019), we observed in our sample that 
among those specifications where the ​F​ (or ​KP​) statistics were explicitly reported, ​KP​ statistics were somewhat 
smaller: the weighted median ​KP​ statistic was 14.23, and among all the reported statistics below 10, about 61 per-
cent were reported as ​KP​ statistics.

Table 1—Current Practice Implementing IV Estimation: Published Papers from the AER

First stage F-statistic

Combinations of regressions reported No Yes Total

Two-stage least squares  445 132 577
(0.339) (0.101) (0.44)
[0.251] [0.088] [0.339]

Two-stage least squares and first stage 247 212 459
(0.188) (0.162) (0.35)
[0.204] [0.154] [0.358]

Two-stage least squares and reduced form 13 7 20
(0.01) (0.005) (0.015)
[0.024] [0.035] [0.059]

Two-stage least squares, first stage, and reduced form 181 74 255
(0.138) (0.056) (0.195)
[0.15] [0.094] [0.244]

Total 886 425 1,311
(0.676) (0.324) (1)
[0.628] [0.372] [1]

Notes: Number of specifications: ​1,311.​ Drawn from 61 published papers. Each observation represents a unique 
combination of outcome, regressor, instrument, and covariates. Unweighted proportions are in parentheses, and 
weighted proportions are in brackets, where the weights are proportional to the inverse of the number of specifica-
tions in the associated paper.
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specification is used for a “placebo” analysis, where insignificant results are consis-
tent with the identification strategy of the paper. In that spirit, it is beyond the scope 
of our paper to determine whether or not any particular study’s overall conclusions 
are still supported despite any changes to the statistical inferences caused by using 
the corrections that we describe below. Instead, we focus more narrowly on gauging 
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Figure 1. Distribution of First-Stage ​F​-statistics

Notes: Number of specifications:​ 847​. Scale is logarithmic. All specifications use the derived ​F​-statistic or, when 
not possible, the reported ​F​-statistic. ​F​-statistics can be derived for specifications that report nonzero standard errors 
in the first-stage. Six specifications that report (rounded) first-stage standard errors of zero and do not report ​F​-sta-
tistics are excluded. Proportions are weighted; see notes to Table 1. Dashed lines correspond to the twenty-fifth 
(14.23), fiftieth (45.84), and seventy-fifth (225) percentiles of the distribution. The shaded region denotes the range 
between the 0.5th and 99.5th percentiles of a noncentral ​​χ​ 1​ 2​​ distribution with expected value of 142.6.

Table 2—First-Stage ​F​-statistics and ​​t​​ 2​​, Conventional Critical Value, Rule of 
Thumb Threshold of 10

​F  <  10​ ​F  ≥  10​ Total

​​t​​ 2​  ≥  1.962​ 64 408 472
(0.076) (0.482) (0.557)
[0.104] [0.595] [0.699]

​​t​​ 2​  <  1.962​ 41 334 375
(0.048) (0.394) (0.443)
[0.062] [0.238] [0.301]

Total 105 742 847
(0.124) (0.876) (1)
[0.167] [0.833] [1]

Notes: ​Number of specifications: 847​. Unweighted proportions are in parentheses, and weighted 
proportions are in brackets. See notes to Table 1. All specifications use the derived ​F​-statistic, 
and when not possible, the reported ​F​-statistic. ​F​-statistics can be derived for specifications 
that report nonzero standard errors in the first-stage; six specifications that report (rounded) 
first-stage standard errors of zero and do not report ​F​-statistics are excluded.
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to what extent the ​tF​ critical values are likely to impact the length of confidence 
intervals in research going forward, using a recent sample of published studies to 
guide and inform that estimate.

Most importantly, we observe from our sample that ​AR​ test statistics or ​AR​ con-
fidence regions are reported for less than 3 percent of the specifications, despite the 
fact that the econometric literature has noted that ​AR​ inference is valid and robust to 
weak instruments and has a number of other attractive properties; see the discussion, 
for example, in Andrews, Stock, and Sun (2019) and Keane and Neal (2021). It is this 
stark difference between theoretical considerations and practice that motivates our 
focus. We surmise that practitioners may elect to use ​t​-ratio inference, not because they 
believe it has superior properties compared to ​AR​-based inference, but rather because it 
is presumed that any inferential approximation errors associated with the conventional ​
t​-ratio are minimal or acceptable. Or practitioners may presume that the inference 
has the intended significance or confidence level, as long as the observed first-stage 
​F​-statistic is sufficiently large—even though Stock and Yogo (2005) explicitly point 
out that using 1.96 critical values can lead to over-rejection (or under-coverage) 
even with the use of their critical values for the ​F​-statistic.

This known and quantified distortion is eliminated by tF inference, which takes as 
given the common practice of computing the 2SLS and standard errors, and provides 
critical values that result in the intended significance or confidence levels.

An additional and separate motivation for exploring alternatives to ​AR​ is that, if 
our sample is any indication, there are likely hundreds of other published studies 
that use the single-instrument ​IV​ model, most of which do not use ​AR​-based infer-
ence. In many cases, it may be prohibitively costly to obtain the original data to 
assess how inferences might change when using ​AR​. The adjustment we introduce 
below allows one to adjust the reported 2SLS standard error solely on the basis of 
the already-reported (or implicitly computed) first-stage ​F​-statistic.

II.  Valid ​t​-Based Inference: Theoretical Results and Empirical Implications

This section  states our main theoretical findings, emphasizing the motivation 
for the ​tF​ procedure, and how to use the critical value tables in practice. We defer 
the derivations of our results to Section III, and details of the proofs to the online 
Appendix.

We begin by briefly reviewing the inferential problem with the ​t​-ratio for ​IV​, as 
already established in the econometric literature. This motivates ​tF​ as a solution to 
that problem. We then present the ​tF​ critical values for the 5 percent and 1 percent 
levels.13 Since the use of the ​tF​ critical values allows one to achieve intended sig-
nificance and confidence levels, we then present some results on how the power of 
the ​tF​ procedure compares to that of ​AR​. Finally, we describe how the application of 
the ​tF​ adjustments impacts the statistical inferences in our sample of AER studies.

13 We focus on the specific cases of obtaining valid tests at the 5 percent and 1 percent significance levels and the 
corresponding 95 percent and 99 percent confidence intervals, because these standards of evidence are commonly 
used in applied research. However, it will be clear in Section III that our formulas can be adapted to analyze other 
levels of significance or confidence levels.
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A. The ​tF​ Procedure: Notation and Motivation

We begin with the notation for the structural and first-stage equations including 
additional covariates:

	​ Y  =  Xβ + Wγ + u,​

	​ X  =  Zπ + Wξ + v,​

where ​W​ denotes the additional covariates which can include a constant corre-
sponding to an intercept term. Without loss of generality, we assume orthogonality 
between ​W​ and each of ​Y, X, Z​.14

The key statistics are given by

	​ ​t ̂ ​  ≡ ​  ​β ˆ ​ − ​β​0​​ _ 
​√ 
_

 ​​V ˆ ​​N​​​(​β ˆ ​)​ ​
 ​  and ​ f ̂ ​  ≡ ​   ​π ˆ ​ _ 

​√ 
_

 ​​V ˆ ​​N​​​(​π ˆ ​)​ ​
 ​, ​ F ˆ ​  = ​​ f ̂ ​​​ 

 2
​,​

where ​​β ˆ ​​ is the instrumental variable estimator. ​​​V ˆ ​​N​​​(​β ˆ ​)​​ represents the estimated vari-
ance of ​​β ˆ ​​, which can be a consistent robust variance estimator to deal with depar-
tures from i.i.d. errors, including one- or two-way clustering (e.g., see Cameron, 
Gelbach, and Miller 2011). ​​t ̂ ​​ is the usual ​t​-ratio, where we first consider the distri-
bution of this statistic when the null hypothesis is true, but later on, when discussing 
power in greater detail, we make the distinction between the true value ​β​ and the 
(possibly false) hypothesized value ​​β​0​​​. ​​f ̂ ​​ is the ​t​-ratio (for the null hypothesis that ​
π  =  0​) for the first-stage coefficient, and its square is equal to the ​F​-statistic, which 
we denote ​​F ˆ ​​.

The traditional argument for ​t​-ratio inference is as follows. Under the null hypoth-
esis ​​​t ̂ ​​​ 2​ ​  d   ⟶ ​ ​ t​​ 2​​. That is, the argument is that in large samples, a good approximation 
of the statistic ​​t ̂ ​​ is the random variable ​t​, a standard normal, with its square there-
fore being a chi-square with one degree of freedom. This approximation underlies 
the use of the standard normal critical values ​±1.96​ for testing hypotheses at the 
5 percent level. More generally, the critical values ​±​√ _ ​q​1−α​​ ​​ are used for tests at 
the ​α​ level of significance, where ​​q​1−α​​​ is the ​​(1 − α)​​th quantile of the chi-squared 
distribution with one degree of freedom.

What has been established and understood in the theoretical literature for quite 
some time—but perhaps not fully internalized by practitioners more broadly—is that 
(i) the use of a standard normal to describe the distribution of the random variable ​
t​ can lead to systematically distorted inference even with very large samples, and 
(ii) the magnitude of the distortion can be precisely quantified. More specifically, it 
has been understood in the econometric literature that even when samples are large, ​
t​ has a known nonnormal distribution, which in some cases might be “close” to the 
standard normal, but in other cases, the deviation from normality can be significant.

14 All of our results allow for covariates, since one can redefine ​Y​, ​X​, and ​Z​ as the residual from regressing each 
of those variables on ​W​. Using these residuals after partialing out the covariates delivers the exact same point esti-
mates, and standard errors, as if 2SLS was employed including the covariates.
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Specifically, Stock and Yogo (2005) derive a formula for using Wald test statis-
tics based on 2SLS (and other ​k​-class estimators). In the just-identified case with 
one endogenous regressor, their results show that ​​t​​ 2​​ under the null can be seen as 
a function of two jointly normal random variables. With some rearrangement of 
terms, the two normal variables can be seen as ​f​ and ​​t​AR​​​, where ​​f ̂ ​  ​ d   ⟶ ​  f​ and ​f​ has 
mean ​​f​0​​  ≡ ​   π _ 

​√ 
_

 ​ 1 _ N ​ AV​(​π ˆ ​)​ ​
 ​​ and unit variance, where ​AV​(​π ˆ ​)​​ is the asymptotic variance of ​​

π ˆ ​​ and ​​t​AR​​​ is a standard normal with ​AR  = ​ t​ AR​ 2  ​​. The correlation ​ρ​ of ​f​ and ​​t​AR​​​ is  
the correlation of ​Zu​ and ​Zv​.15

Their ​​t​​ 2​​ formula allows one to precisely quantify the degree of distortions in 
inference from using the rule ​​t​​ 2​  > ​ q​1−α​​​ to reject the null hypothesis. Based on this 
formula, panel A of Figure 2 provides a visualization of this relationship: it graphs 
rejection probabilities—the probability that ​​t​​ 2​  > ​ 1.96​​ 2​​ under the null hypothesis—
for different values of ​E​[F]​​ and ​ρ​, where ​E​[F]​  = ​ f​  0​   2​ + 1​.16 The figure illustrates 
that with low values of ​ρ​ (e.g., 0 or 0.5)—a lower degree of “endogeneity”—the 
​t​-ratio rejects at a probability below the nominal 0.05 rate. On the other hand, for 
​ρ  =  0.8​, for example, the rejection rate can be as large as 0.13, when the instru-
ment is close to irrelevant. In the extreme, with a maximal value of ​ρ​ equal to 1, 
the rejection probability tends to 1 as instruments become arbitrarily weak. The 
true significance level (size) of any test is by definition the maximum rejection 
probability across all possible values of the nuisance parameters: here, ​ρ​ and ​E​[F]​​.  
Thus, the test based on ​​t​​ 2​  > ​ q​1−α​​​ clearly has incorrect size, as widely understood 
in the econometric literature. Indeed Stock and Yogo (2005) explicitly provide 
the quantity represented by the red circle in Figure 2 panel A: when ​ρ  =  1​ and 
​E​[F]​  =  6.88​, the rejection probability is ​0.10​. It represents the minimum value of ​
E​[F]​​ one needs to assume in order for the ​±1.96​ critical values will lead to signifi-
cance level of ​0.10​.

Even though one does not know the values of ​ρ​ or ​E​[F]​​, Staiger and Stock (1997) 
and Stock and Yogo (2005) propose to use the observed first-stage ​​F ˆ ​​. Reexpressing 
the ​​t​​ 2​​ formula in Stock and Yogo (2005) in terms of ​f​ and ​​t​AR​​​, as mentioned above, 
we can determine pairs of critical values ​​c​​ ∗​​ and ​​F​​ ∗​​, such that

	​ Pr​[​t​​ 2​  > ​ c​​ ∗​, F  > ​ F​​ ∗​]​  ≤  α​

for a prespecified significance level ​α​. This amounts to a “step function” critical 
value function: if ​F  < ​ F​​ ∗​​, set ​​c​​ ∗​  =  ∞​ (accept the null); otherwise, use the value ​​
c​​ ∗​​ as the critical value for ​​t​​ 2​​.17 Put equivalently, this implies a confidence interval 

15 When the data are homoskedastic, ​ρ​ simplifies to the correlation between ​u​ and ​v​. Stock and Yogo (2005) use 
a homoskedastic model. 

16 As we explain in detail in Section III, rejection probabilities displayed in panel A of Figure 2 can be com-
puted directly from integral expressions, and are accurate up to the precision of numerical integration. To provide 
assurance that our formulas and numerical integration give correct answers, we additionally performed Monte Carlo 
simulations, and we plot examples of those results as diamonds in Figure 2. Those results match quite closely with 
our theoretical calculations.

17 This approach is in the same spirit as the Bonferroni confidence regions discussed in Staiger and Stock (1997, 
Section 4B). Using their approach, captured by their Equation (4.2), one can use ​​F​​ ∗​  =  16.38​ (as reported in Stock 
and Yogo 2005) and ​​c​​ ∗​  =  ​1.96​​ 2​​ to obtain intervals with 85 percent confidence, while remaining agnostic about the 
true strength of the first stage.
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procedure that sets the confidence interval to the entire real line if ​F  < ​ F​​ ∗​​, and 
otherwise uses ​±​√ 

_
 ​c​​ ∗​ ​ × (standard error)​ for the confidence interval.

Utilizing the same analytical expressions in Stock and Yogo (2005), this paper 
introduces the ​tF​ critical value function ​​c​α​​​(F)​​, such that

	​ Pr​[​t​​ 2​  > ​ c​α​​​(F)​]​  ≤  α​

for a prespecified significance level ​α​, where ​​c​α​​​(F)​​ is a smooth function of ​F​, instead 
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Figure 2. Rejection Probabilities for ​​t​​ 2​​ and ​tF​

Notes: The ​x​-axis scale is ​ln​(E​[F]​)​​. The red dot in panel A corresponds to the quantity reported in Stock and Yogo 
(2005). A black diamond represents the rejection probability from 250,000 Monte Carlo simulations, each with a 
sample size of 1,000.
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of a step function.18 As we will show below, inference based on ​tF​ has significant 
power advantages over inference based on a test that uses constant thresholds ​​c​​ ∗​, ​F​​ ∗​​; 
furthermore, ​tF​ confidence intervals will have shorter expected length compared to 
that of ​AR​ when both are bounded intervals.

B. The ​tF​ Procedure: Critical Values and Valid Inference

Table  3A reports numbers that reflect the shape of the function ​​c​0.05​​​(F)​​. 
Specifically, corresponding to each value of the first-stage ​F​-statistic (the first line 
of numbers in each row), is the corresponding critical value ​​√ 

_
 ​c​0.05​​​(F)​ ​​ for ​|t|​ (the 

second line of numbers in each row). ​​√ 
_

 ​c​0.05​​​(F)​ ​​ tends to infinity as ​F​ tends to ​​1.96​​ 2​​ 
from above, and it is strictly decreasing in ​F​ until reaching a minimum, the constant 
value of ​1.96​, when ​F​ reaches around 104.7.

The third line of numbers in each row normalizes the critical values by 1.96, 
and therefore represent a standard error adjustment factor. Adjusted standard errors 
can be constructed using the table as follows: (i) estimate the usual 2SLS (e.g., 
robust, clustered, etc.) standard error, (ii) multiply the standard error by the adjust-
ment factor (third line of numbers in each row) in the table corresponding to the 
observed first-stage ​​F ˆ ​​ statistic. This adjusted standard error should be called a 
“0.05  ​tF​  standard error,” and can be used for constructing the ​t​-ratio for testing 
a particular hypothesis, or for constructing ​95​ percent confidence intervals using 
​​β ˆ ​ ± 1.96 × ​(“0.05  tF  standard error”)​​. Since the table contains selected values 
from an underlying convex function, to compute intermediate values, a conservative 
approach would be to linearly interpolate between the selected values. As an exam-
ple of this interpolation, if the first-stage ​​F ˆ ​​ is 10, one would multiply the estimated 
standard error by ​1.727 + ​  10.253 − 10 _  

10.253 − 9.835
 ​ × ​(1.767 − 1.727)​  =  1.751​ to obtain the 

“0.05 ​tF​ standard error.”19

It is important to note that these “adjusted standard errors” are valid only for 0.05 
significance or 0.95 confidence levels. Different adjustments are needed for different 
significance/confidence levels. We report the analogous critical values and adjust-
ment factors for corresponding selected values of ​F​, for significance (confidence) lev-
els of 0.01 (0.99), another commonly-used standard in applied research, in Table 3B.

The table shows that the ​​ 
​√ 
_

 ​c​0.01​​​(F)​ ​ _ 
2.576

  ​​ function has a similar pattern, but with three 
important differences. First, the adjustment factor now has a vertical asymptote at 
​F  = ​ q​0.99​​  = ​ 2.576​​ 2​​. Second, ​​c​0.01​​​(F)​​ declines until ​F  =  252.34​, at which point 

the adjustment factor is 1.059. Finally, we note that ​​ 
​√ 
_

 ​c​0.01​​​(F)​ ​ _ 
2.576

  ​​ is uniformly strictly 

above ​​ 
​√ 
_

 ​c​0.05​​​(F)​ ​ _ 1.96  ​​. This implies that from a reporting convenience standpoint, one 
could choose to report only the “0.01 ​tF​ standard errors” by using the adjust-
ments in Table 3B and the intervals ​​β ˆ ​ ± 2.576 × ​(“0.01  tF  standard error”)​​ and ​​
β ˆ ​ ± 1.96 × ​(“0.01  tF  standard error”)​​ would be assured of confidence levels at 

18 Similar in spirit to the Bonferroni approach discussed in Staiger and Stock (1997, Section IVB), the proba-
bility considered is an unconditional one. See Chioda and Jansson (2005) for an analysis of inference conditional 
on the observed ​F​-statistic.

19 We have also posted STATA code at https://www.princeton.edu/~davidlee/wp/SupplementarytF.html to allow 
more precise computation of the adjustment factor for any given value of ​​F ˆ ​​.

https://www.princeton.edu/~davidlee/wp/SupplementarytF.html
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both the ninety-ninth and ninety-fifth percent levels. The cost for this reporting con-
venience is that the latter interval would be unnecessarily conservative.

We verify that the ​tF​ adjustment achieves the intended significance level of 5 per-
cent in panel B of Figure 2, which is analogous to panel A, plotting rejection proba-
bilities for the ​tF​ procedure for the same values of ​ρ​ and ​​f​0​​​. The curves are accurate 
up to the precision of our numerical integration. To provide some additional assur-
ance that our formulas and numerical computations are correct, as in panel A, the 
diamonds represent Monte Carlo simulation rejection rates, which line up with the 
curves, as expected from the theory.

C. The ​tF​ Procedure: Power Comparisons to ​AR​ and Step Rules

In this subsection, we state our results on power, deferring derivations, proofs, 
and further discussion to Section III and the online Appendix. Since the ​tF​ and ​AR​ 
tests (as well as rules like ​​t​​ 2​  > ​ c​​ ∗​, F  > ​ F​​ ∗​​ with appropriately chosen ​​c​​ ∗​​ and ​​F​​ ∗​​)  
can deliver inferences at the same intended significance/confidence levels under 
the same asymptotic approximation, it is natural then to investigate the relative 
power of these test procedures. For the purposes of this power comparison, we set 

Table 3A

Panel A. Selected values of ​tF​ critical values, ​​√ 
_

 ​c​0.05​​​(F)​ ​​, and ​tF​ standard error adjustments, ​​√ 
_

 ​c​0.05​​​(F)​ ​/1.96​

F 4.000 4.008 4.015 4.023 4.031 4.040 4.049 4.059 4.068 4.079

​​√ 
_

 ​c​0.05​​​(F)​ ​​ 18.656 18.236 17.826 17.425 17.033 16.649 16.275 15.909 15.551 15.201

​​√ 
_

 ​c​0.05​​​(F)​ ​/1.96​ 9.519 9.305 9.095 8.891 8.691 8.495 8.304 8.117 7.934 7.756

4.090 4.101 4.113 4.125 4.138 4.151 4.166 4.180 4.196 4.212
14.859 14.524 14.197 13.878 13.566 13.260 12.962 12.670 12.385 12.107

7.581 7.411 7.244 7.081 6.922 6.766 6.614 6.465 6.319 6.177

4.229 4.247 4.265 4.285 4.305 4.326 4.349 4.372 4.396 4.422
11.834 11.568 11.308 11.053 10.804 10.561 10.324 10.091 9.864 9.642

6.038 5.902 5.770 5.640 5.513 5.389 5.268 5.149 5.033 4.920

4.449 4.477 4.507 4.538 4.570 4.604 4.640 4.678 4.717 4.759
9.425 9.213 9.006 8.803 8.605 8.412 8.222 8.037 7.856 7.680
4.809 4.701 4.595 4.492 4.391 4.292 4.195 4.101 4.009 3.919

4.803 4.849 4.897 4.948 5.002 5.059 5.119 5.182 5.248 5.319
7.507 7.338 7.173 7.011 6.854 6.699 6.549 6.401 6.257 6.117
3.830 3.744 3.660 3.578 3.497 3.418 3.341 3.266 3.193 3.121

5.393 5.472 5.556 5.644 5.738 5.838 5.944 6.056 6.176 6.304
5.979 5.844 5.713 5.584 5.459 5.336 5.216 5.098 4.984 4.872
3.051 2.982 2.915 2.849 2.785 2.723 2.661 2.602 2.543 2.486

6.440 6.585 6.741 6.907 7.085 7.276 7.482 7.702 7.940 8.196
4.762 4.655 4.550 4.448 4.348 4.250 4.154 4.061 3.969 3.880
2.430 2.375 2.322 2.270 2.218 2.169 2.120 2.072 2.025 1.980

8.473 8.773 9.098 9.451 9.835 10.253 10.711 11.214 11.766 12.374
3.793 3.707 3.624 3.542 3.463 3.385 3.309 3.234 3.161 3.090
1.935 1.892 1.849 1.808 1.767 1.727 1.688 1.650 1.613 1.577

13.048 13.796 14.631 15.566 16.618 17.810 19.167 20.721 22.516 24.605
3.021 2.953 2.886 2.821 2.758 2.696 2.635 2.576 2.518 2.461
1.542 1.507 1.473 1.440 1.407 1.376 1.345 1.315 1.285 1.256

27.058 29.967 33.457 37.699 42.930 49.495 57.902 68.930 83.823 104.67
2.406 2.352 2.299 2.247 2.197 2.147 2.099 2.052 2.006 1.96
1.228 1.200 1.173 1.147 1.121 1.096 1.071 1.047 1.024 1.00

Notes: The top number in each of the ten rows is the first-stage F-statistic, the middle number is the corresponding 
critical value, ​​√ 

_
 ​c​0.05​​​(F)​ ​​, and the bottom number in each row is the corresponding value of ​​√ 

_
 ​c​0.05​​​(F)​ ​/1.96​, where 

we write 1.96 as a shorthand for ​​Φ​​ −1​​(0.975)​​. Numerical values in each pair are rounded up (e.g., 4.0051 rounds 
up to 4.006).
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​​c​​ ∗​  = ​ 1.96​​ 2​​ and use the minimum ​​F​​ ∗​​ (104.7) needed to ensure a test with signifi-
cance level 0.05. We summarize the results below. Note that in our comparisons, we 
focus only on procedures that allow the researcher to be completely agnostic about 
the nuisance parameters.20

We produce standard power curves by generalizing the analytical expressions for 
the probability of rejection to depend on an additional parameter: a normalized devi-
ation ​β − ​β​0​​​, where ​β​ is the true parameter, while ​​β​0​​​ is the hypothesized value.21 
We then compute the rejection probabilities with respect to this quantity for differ-
ent scenarios according to the combination of nuisance parameters, ​ρ​ and ​​f​0​​​. Any 
combination of ​ρ​ and ​​f​0​​​ could be investigated: we illustrate these traditional power 
curves for the nine combinations given by the three values of ​ρ  =  0, 0.5, 1​ and the 
three values of ​​f​0​​  =  1, 3, 9​.22

20 For example, the approach of Kocherlakota (2020) requires the researcher to assume a lower bound for ​​f​0​​​ for 
inference and thus is not among the approaches we consider.

21 Specifically, the normalized ​β − ​β​0​​​ is the unnormalized ​β − ​β​0​​​ divided by ​​ 
​√ 
_

 E​[​Z​​ 2​​u​​ 2​]​ ​ _ 
​√ 
_

 E​[​Z​​ 2​ ​v​​ 2​]​ ​
 ​​.

22 To provide additional assurance in our theoretical derivations and implementation of numerical integration 
was carried out correctly, we overlay (as the diamonds in each graph) the results from Monte Carlo simulations, 
where we generate the underlying data according to each scenario and selected values of ​β − ​β​0​​​, and compute the 

Table 3B

Panel B. Selected values of ​tF​ critical values, ​​√ 
_

 ​c​0.01​​​(F)​ ​​, and ​tF​ standard error adjustments, ​​√ 
_

 ​c​0.01​​​(F)​ ​/2.576​

F 6.670 6.673 6.676 6.679 6.682 6.685 6.689 6.693 6.697 6.701

​​√ 
_

 ​c​0.01​​​(F)​ ​​ 91.097 87.924 84.862 81.907 79.054 76.301 73.644 71.079 68.604 66.214

​​√ 
_

 ​c​0.01​​​(F)​ ​/2.576​ 35.366 34.135 32.946 31.798 30.691 29.622 28.591 27.595 26.634 25.706

6.706 6.711 6.717 6.723 6.729 6.736 6.743 6.751 6.759 6.768
63.908 61.683 59.535 57.461 55.460 53.529 51.664 49.865 48.129 46.453
24.811 23.947 23.113 22.308 21.531 20.781 20.058 19.359 18.685 18.034

6.778 6.788 6.799 6.811 6.824 6.837 6.852 6.867 6.884 6.901
44.835 43.273 41.766 40.312 38.908 37.553 36.245 34.983 33.765 32.589
17.406 16.800 16.215 15.650 15.105 14.579 14.072 13.581 13.109 12.652

6.920 6.941 6.963 6.986 7.011 7.038 7.066 7.097 7.129 7.164
31.454 30.358 29.301 28.281 27.296 26.345 25.428 24.542 23.687 22.863
12.211 11.786 11.376 10.980 10.597 10.228 9.872 9.528 9.196 8.876

7.202 7.242 7.285 7.331 7.380 7.432 7.489 7.549 7.614 7.683
22.066 21.298 20.556 19.840 19.149 18.482 17.839 17.218 16.618 16.039

8.567 8.269 7.981 7.703 7.435 7.176 6.926 6.685 6.452 6.227

7.757 7.836 7.922 8.013 8.111 8.216 8.329 8.451 8.581 8.721
15.481 14.942 14.421 13.919 13.434 12.966 12.515 12.079 11.658 11.252

6.010 5.801 5.599 5.404 5.216 5.034 4.859 4.690 4.526 4.369

8.872 9.035 9.210 9.399 9.603 9.824 10.062 10.320 10.600 10.904
10.860 10.482 10.117 9.765 9.425 9.097 8.780 8.474 8.179 7.894

4.217 4.070 3.928 3.791 3.659 3.532 3.409 3.290 3.176 3.065

11.235 11.595 11.988 12.418 12.889 13.407 13.979 14.610 15.312 16.094
7.619 7.354 7.098 6.851 6.612 6.382 6.160 5.945 5.738 5.538
2.958 2.855 2.756 2.660 2.567 2.478 2.392 2.308 2.228 2.150

16.969 17.953 19.067 20.333 21.783 23.455 25.399 27.680 30.383 33.624
5.345 5.159 4.980 4.806 4.639 4.477 4.321 4.171 4.026 3.885
2.076 2.003 1.934 1.866 1.801 1.739 1.678 1.620 1.563 1.509

37.560 42.416 48.511 56.324 66.592 80.502 100.069 128.950 174.370 252.342
3.750 3.620 3.494 3.372 3.254 3.141 3.032 2.926 2.824 2.726
1.456 1.406 1.357 1.309 1.264 1.220 1.177 1.136 1.097 1.059

Notes: The top number in each of the ten rows is the first-stage ​F​-statistic, the middle number is the correspond-
ing critical value, ​​√ 

_
 ​c​0.01​​​(F)​ ​​, and the bottom number in each row is the corresponding value of ​​√ 

_
 ​c​0.01​​​(F)​ ​/2.576​,  

where we write 2.576 as a shorthand for ​​Φ​​ −1​​(0.995)​​. Numerical values in each pair are rounded up (e.g., 6.6712 
rounds up to 6.672).
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Figure 3 plots the power curve under the scenario ​ρ  =  0.5,  ​f​0​​  =  3​ (which cor-
responds to ​E​[F]​  =  10​). It shows that ​tF​ and ​AR​ have roughly similar power, but 
neither uniformly dominates the other.23 In particular, when the alternative value 
of ​β​ is sufficiently larger than ​​β​0​​​, then ​tF​ becomes slightly more powerful, while 
the opposite is true when ​β​ is smaller than ​​β​0​​​. An example of what this means for 
practitioners is that if the null is ​​β​0​​  =  0​, and ​ρ  >  0​ (which would imply that the ​
OLS​ estimated is upward biased when errors are homoskedastic), then the probabil-
ity of rejecting that null will be slightly higher for ​tF​ than for ​AR​ if the true effect 
is sufficiently positive.24 Both ​tF​ and ​AR​ have a substantial power advantage over 
the step rule ​​c​​ ∗​  = ​ 1.96​​ 2​, ​F​​ ∗​  =  104.7​. This latter observation should not be sur-
prising since, in the scenario that ​E​[F]​  =  10​, the probability that ​F​ would exceed ​​
F​​ ∗​  =  104.7​ is extremely low.

Online Appendix Figure A2 includes power curves for the other eight scenarios 
for ​ρ, ​f​0​​​. The pattern of results mirror those described above, with the additional 
observations that (i) the power curves for ​AR​ are consistently higher for ​ρ  =  0​, and 
(ii) the differences between ​tF​ and ​AR​ (for any ​ρ​) are negligible with ​​f​0​​  =  9​, but 
(iii) the dependence of the relative power between ​tF​ and ​AR​ on the sign of ​β − ​β​0​​​ 
remains apparent with high endogeneity (​ρ  =  1​). The threshold rule continues to 
have low power in the nine scenarios we consider, which is not surprising since, 
even with ​E​[F]​  = ​ 9​​ 2​ + 1  =  82​, the probability that ​F​ exceeds ​104.7​ continues to 
be relatively low. As ​​f​0​​​ increases so that the instrument is much stronger, the power 
curves for the step rule, ​tF​, and ​AR​ all become closer to one another.

fraction of the time, over 250,000 Monte Carlo draws of sample sizes of 1,000 each, that each of the tests reject the 
null hypothesis. All of the results line up well with the theoretical values as computed from our analytical expres-
sions for rejection probabilities.

23 Note that while ​AR​ has known power optimality among unbiased tests, ​tF​ is not unbiased. The degree of bias 
can be seen in the power graphs.

24 Note that the power curves are symmetric with respect to ​ρ​; that is, when ​ρ  =  −0.5​ then the power curve 
looks identical except the x-axis would be labeled ​​β​0​​ − β​.
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Given that neither ​AR​ nor ​tF​ uniformly dominates the other across all values of ​
β − ​β​0​​​ for fixed values of the nuisance parameters, we turn to a different and intu-
itive summary measure of power: the expected length of the confidence intervals 
for ​AR​ and ​tF​ conditional on ​F  > ​ q​1−α​​​. The reason why we focus on the condition ​
F  > ​ q​1−α​​​ is that it is a necessary and sufficient condition for both the ​tF​ and ​AR​ 
confidence sets to be bounded intervals; when ​F  < ​ q​1−α​​​, both the ​AR​ and ​tF​ con-
fidence sets are unbounded (i.e., have infinite length). The nonzero probability that ​
F  < ​ q​1−α​​​ implies that the ​tF​ and ​AR​ confidence sets will have infinite uncondi-
tional expected length. Conditional on the event ​F  > ​ 1.96​​ 2​​, it is immediately clear 
that the step rule of ​​c​​ ∗​  = ​ 1.96​​ 2​, ​F​​ ∗​  =  104.7​ will also have infinite expectation 
since ​104.7  > ​ 1.96​​ 2​​.25

For any realization of the data, the ​tF​ and ​AR​ confidence sets behave simi-
larly in the following sense: either both are bounded intervals (this happens when 
​F  > ​ q​1−α​​​) or both are unbounded (this happens when ​F  ≤ ​ q​1−α​​​). Thus, to com-
pare expected lengths, we compare only the realizations of data that yield bounded 
intervals for both methods. That is, we compute expected conditional lengths con-
ditional on ​F  > ​ q​1−α​​​. Surprisingly, our theoretical investigation reveals that the 
conditional expected length of the ​AR​ confidence interval is infinite. We show, by 
contrast, the conditional expected length for the ​tF​ interval is finite. We show below 
that this is true uniformly across all possible values of the nuisance parameters. 
This has a very straightforward implication for practitioners. Conditional on the 
event that they produce bounded intervals (which occurs with identical probabili-
ties), the expected length of the ​tF​ confidence interval will always be shorter than 
the expected length of ​AR​ confidence intervals.

These findings are more fully described in Section  III and proven in online 
Appendices C.2 and C.3. Here, we provide a simple visual of this result via a Monte 
Carlo exercise, shown in Figure 4.26 Using the same data generating process from 
Figure 3, we run repeated Monte Carlo simulations of sample size 1,000 each. For 
each draw, we keep only those draws such that ​​F ˆ ​  > ​ 1.96​​ 2​​, and when this occurs 
we compute the length of the ​AR​ and the ​tF​ confidence interval. For each speci-
fied number of Monte Carlo draws, we compute this conditional average using all 
accumulated draws up to that point. We do this four times, using an independent set 
of draws each time. The figure exhibits the patterns that one would expect to see 
if the conditional expected length were infinite for ​AR​ and finite for ​tF​ intervals: 
even after 500,000 draws, the conditional averages for ​AR​ do not appear to be con-
verging. Furthermore, there are occasional sharp discontinuities, which is expected 
from a distribution of lengths with thick tails that are associated with the infinite 
conditional mean.27 Meanwhile, the ​tF​ conditional averages for the four replications 
are essentially on top of one another and converge relatively quickly to the condi-
tional mean of approximately 3.55.

25 Indeed, Gleser and Hwang (1987) and Dufour (1997) show that in models which allow for non- (or nearly 
non-) identification, such as the IV model, any inference procedure with correct coverage must have infinite uncon-
ditional expected length.

26 We use the Monte Carlo design from the discussion on single-variable ​IV​ in Angrist and Pischke (2009a), and 
discussed in Angrist and Pischke (2009b).

27 Recall that the strong law of large numbers states that the sample average converges to the expected value 
with probability one if it is finite. Furthermore, an application of the second Borel-Cantelli lemma also shows that 
the sample average does not converge with probability one if the population expectation is not finite.
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D. The ​tF​ Procedure: Impact on Applications

We now turn to gauging how the ​tF​ adjustments to the standard errors would 
impact practice, using our sample of recent AER papers as a guide. We take the 
computed or reported ​F​-statistics from the specifications in Figure 1, and assign 

the corresponding adjustment factor ​​ 
​√ 
_

 ​c​α​​​(F)​ ​ _ ​√ _ ​q​1−α​​ ​ ​​. Figure 5A is the (weighted) histogram 
for the reciprocal of the 0.05 ​tF​ adjustment factor, which represents the degree to 
which the reported standard errors are understated.28 It shows significant mass at 
values close to 1 (no understatement); the median reciprocal is 0.902 (understated 
by about 10 percent) while the twenty-fifth percentile reciprocal is 0.672 (under-
stated by about 33 percent). The weighted mean value is 0.801, implying that the 
typical study is understated by about 20 percent.

Turning to the question of the magnitude of the implied inflation factors, our 
sample of studies suggests that for one-quarter of specifications, the ​tF​ adjustment 
would increase confidence intervals, at a minimum, by a factor of ​1/0.672  ≈  1.49​,  
i.e., ​tF​ confidence intervals would be at least about 50 percent wider. To under-
stand this magnitude, it is helpful to recall that conventional 99 percent confidence 
intervals are about 57 percent longer than 90 percent confidence intervals. Another 
basis of comparison comes from our examination of a small subset of the studies 
for which we could obtain the microdata. For those studies that used clustered stan-
dard errors, we computed nonclustered standard errors and found that the clustered 

28 We focus on the reciprocal because the adjustment factor itself has some very large numbers. For any given 
study, we know that its true average will be infinite because there will always be some positive probability that ​
F  <  ​q​1−α​​​.
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standard errors were about 25 percent larger. We conclude from these comparisons 
that, in practice, ignoring the ​tF​ adjustment would be an error roughly equivalent 
to using a 90 percent confidence interval while calling it a 99 percent confidence 
interval, or substantially more severe than using nonclustered standard errors when 
clustered standard errors are appropriate.

Figure 5B repeats the exercise for the 0.01 ​tF​ adjustments and finds more signif-
icant degrees of adjustment: in one-quarter of the specifications, the ​tF​ adjustment 
would be expected to increase confidence intervals by at least a factor of 2.36, and 
the median adjustment factor would be 1.38.

Finally, to gauge how assessments of statistical significance are likely to be 
impacted by the use of the ​tF​ critical value function, Figure 6 plots all of the specifi-

cations from Table 2 in ​​t​​ 2​​, ​F​ space (using the one-to-one transformations ​​  ​t​​ 2​/​1.96​​ 2​ _ 
1 + ​t​​ 2​/​1.96​​ 2​

 ​​ 

and ​​  F/10
 _ 

1 + F/10
 ​​ for the vertical and horizontal scales to allow visualization of the full  

range of those statistics). It also plots the ​tF​ critical value functions for the 5 percent 
(black) and 1 percent (gray) levels of significance.29 The size of each circle is pro-
portional to the share of total specifications from the same study. The black dots rep-
resent the specifications that have a relatively low ​F​-statistic (<10) or that have ​​t​​ 2​​ 

29 For this exercise, we further restricted the sample of specifications to those where the reported sample size 
for the first-stage was identical to the reported sample size for the 2SLS estimate. We have observed that it is quite 
common for researchers to report first-stage regressions and F statistics on samples that do not match (typically they 
are larger) the samples used for the 2SLS regression. The graph and the numbers reported below are quite similar 
if we do not make this additional restriction.
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notes to Table 1. Dashed lines correspond to the (weighted) twenty-fifth (0.672), fiftieth (0.902), and seventy-fifth 
(1.00) percentiles of the distribution.
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less than ​​1.96​​ 2​​. Arguably, under current practice, researchers would have generally 
viewed the black circles as statistically insignificant estimates by virtue of either the 
observed ​t​-ratio or the ​F​-statistic.30 While most of these black circles would remain 
insignificant using the ​tF​ adjustment, at the 5 percent level, some, by being above 
the ​tF​ critical value function would become significant.

The remaining specifications (blue, purple, and red circles), under current norms, 
would most likely have been viewed as statistically significant. Of these, 24 percent 
(the blue circles) are in fact statistically insignificant at the 5 percent level, when 
the ​tF​ critical values are applied; the remaining 76 percent (purple and red circles) 
remain significant at the 5 percent level.

The proportional impact of the adjustments is larger for a higher standard for 
statistical significance, the 1 percent level. That is, among the specifications such 
that ​​​t ̂ ​​​ 2​  > ​ 2.73​​ 2​, ​F ˆ ​  >  10​—which arguably would have commonly been interpreted 
as statistically significant at the 1 percent level—about 34 percent of them are statis-
tically insignificant after applying the ​tF​ critical value function.

Although it is beyond the scope of our paper to suggest whether any of the overall 
conclusions of the studies in our sample would be altered in light of these adjust-
ments, we do conclude that the ​tF​ adjustments could be expected to make a non-
trivial difference in inferences made in applied research—in some cases not making 
much of a difference at all, but in other cases making a large difference.

30 We use the threshold 10 here not because it is a special threshold with respect to the theory regarding size 
distortions. Instead, we use it because 10 appears to be the most commonly referenced threshold in applied work.
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Finally, we note that if the only hypothesis of interest is the null that the coeffi-
cient of interest is equal to zero, then one can simply conduct a test of whether the 
reduced form coefficient (in the regression of ​Y​ on ​Z​) is zero. Indeed, this is equiv-
alent to the ​AR​ test. On the other hand, if there is an interest in computing confi-
dence intervals, then one requires information contained in the first-stage regression 
(which is used by both ​AR​ and ​tF​).

E. A Priori Restrictions on ​ρ​

The conventional frequentist approach to statistical inference requires, by defi-
nition, that for a test at the 5 percent level of significance, the maximum rejection 
probability under the null hypothesis over all possible values of nuisance parameters 
is 0.05. We follow this conventional approach and ensure that the ​tF​ procedure is 
valid for any possible value of ​E​[F]​​ and ​ρ​.31 While the particular values ​|ρ|  =  1​ are 
useful in derivations to provide a worst case, valid inference applies to all values of ​
ρ​ between −1 and 1. Thus, for the just-identified IV model, being agnostic about 
​E​[F]​​ and ​ρ​ is a requirement for practitioners who wish to rely solely on the textbook ​
IV​ assumptions that ​C​(Z, u)​  =  0​ and ​C​(Z, X)​  ≠  0​.

31 Our setting allows for heteroskedastic, clustered, and/or autocorrelated errors. Nevertheless, the parameter ​ρ​ 
simplifies to the usual endogeneity coefficient ​Corr​(Y − Xβ, X − πZ)​​ which practitioners have in mind if errors are 
(conditionally on ​Z​) independent and homoskedastic.
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that are significant at the 1 percent level using ​​c​0.01​​​(F)​​.



3279LEE ET AL.: VALID T-RATIO INFERENCE FOR IVVOL. 112 NO. 10

Adding restrictions beyond the textbook IV assumptions, for example, with 
a priori information on the parameter ​ρ​, is possible. As referenced in Subsection 
IIIA, one could ask, “What additional assumption about ​ρ​ could be imposed on the 
data generating process to allow the ​±1.96​ critical values to deliver a valid 5 percent 
test?”

Both Lee et al. (2020) and Angrist and Kolesár (2021) calculate that using 1.96 
critical values delivers a valid 5 percent test as long as one additionally assumes that ​
ρ​ is less than 0.565 in absolute value.32 A researcher’s choice between adopting the 
conventional frequentist approach (i.e., adjusting the standard errors via ​tF​, or via ​
AR​ inference) or a priori assuming that ​​|ρ|​  ≤  0.565​ (i.e., leaving the 2SLS standard 
errors unadjusted) ultimately does not follow from any econometric result; instead it 
rests entirely on how comfortable one is with those additional a priori assumptions.

The plausibility of any restriction on ​ρ​ depends on the specific context. Angrist 
and Kolesár (2021) provide three examples in which they argue for making the ​​
|ρ|​  <  0.565​ assumption. Using bounds on ​​|ρ|​​ larger than 0.565 is also possible, 
which changes the interpretation: as Angrist and Kolesár (2021) point out, the ​±1.96​ 
critical values, and assuming that ​​|ρ|​  ≤  0.76​ corresponds to a 10 percent level of 
significance.33 In online Appendix A.8.1, we provide the necessary inflation factors 
to the ​±1.96​ critical values to achieve 5 percent and 1 percent levels of significance 
for bounds like 0.76 and other ​​|ρ|​​ bounds between 0.565 and 1.

A separate and open empirical question is what magnitudes of ​ρ​ one might expect 
to see in practice. It is of course impossible to make definitive quantitative statements 
about the true magnitude of ​ρ​ or ​β​, since they are both unknown parameters; also a 
full meta-analysis is beyond the scope of this paper. Nevertheless, as discussed in 
online Appendix A.8.3, it is possible to use data to obtain a valid confidence set on ​ρ​. 
The data from our sample of AER studies show that (i) the confidence intervals for ​ρ​ 
include a broad range of values, with 24 percent of the specifications including val-
ues as large as 0.9 in absolute value, and that (ii) in 18 percent of the specifications, 
the data would have rejected the hypothesis that ​​|ρ|​  ≤  0.565​. Online Appendix 
A.8.2 also points out that assuming ​​|ρ|​  ≤  0.565​ is equivalent to placing bounds on ​
β​.34 For this same sample, about 30 percent of the time, assuming ​|ρ|  <  0.565​ is 
tantamount to assuming a priori that ​β​ is not equal to zero.

Whether or not one explores specific restrictions on ​ρ​, it seems both costless—
and not overly cautious—to report the ​tF​ standard error or confidence intervals 
(or ​AR​ confidence sets) as a standard inference benchmark. Such a benchmark 
is aligned with relying solely on the traditional ​IV​ assumptions, and also allows 
one to assess the gains in precision that come from imposing an assumption like ​
|ρ|  ≤  0.565​.

32 Note that the necessary bound on ​|ρ|​ depends on the desired significance/confidence level. For example, if 
1/99 percent significance/confidence is intended using the nominal 2.576 critical value for the ​t​-ratio, then the 
necessary bound on ​|ρ|​ is 0.435, as reported in Lee et al. (2020).

33 A 5 percent rejection rate with a precisely quantified over-rejection distortion of 5 percent means, by defini-
tion, a 10 percent test.

34 As noted by Van de Sijpe and Windmeijer (2021) this follows from the definitions of the reduced form and 
structural covariance matrices. See their equation (7) and the discussion in their Section 4.
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III.  Derivation of Theoretical Results

This section  explains how we derive all of the theoretical results discussed in 
Section II. Subsection IIIA introduces the notation and shows how to analytically 
compute the rejection probabilities for rules that use the ​t​-ratio, whether it be for rules 
like ​​t​​ 2​  > ​ q​1−α​​​, or ​​t​​ 2​  > ​ c​​ ∗​, F  > ​ F​​ ∗​​, or ​​t​​ 2​  > ​ c​α​​​(F)​​. We do this for the case when 
the null hypothesis is true (for analyzing size control) and for when the alternative 
is true (for analyzing power). Subsection IIIB defines the ​tF​ critical value function, 
formally states some of its properties, and describes relevant proofs. Subsection 
IIIC formally states the results on the conditional expected length of the ​AR​ and ​tF​ 
confidence sets and describes relevant proofs. The details of all of the proofs of the 
results of this Section can be found in the online Appendix.

A. Notation and Preliminaries: Rejection Probabilities 
for ​t​-Ratio-Based Rules

We begin by introducing some additional notation. Define

	​ ​​t ̂ ​​AR​​​(​β​0​​)​  ≡ ​ 
​π ˆ ​​(​β ˆ ​ − ​β​0​​)​  ___________  

​se ˆ ​​(​π ˆ ​​(​β ˆ ​ − ​β​0​​)​)​
 ​  = ​ 

​π ˆ ​​(​β ˆ ​ − ​β​0​​)​   ___________________________    
​√ 

_________________________
    ​​V ˆ ​​N​​​(​̂  πβ​)​ − 2​β​0​​​​C ˆ ​​N​​​(​̂  πβ​, ​π ˆ ​)​ + ​β​ 0​ 2​​​V ˆ ​​N​​​(​π ˆ ​)​ ​
 ​,​

	​ ​​u ˆ ​​0​​  = ​ (Y − X​β​0​​)​ − Z​π ˆ ​​(​β ˆ ​ − ​β​0​​)​,​

	​ ​ρ ˆ ​​(​β​0​​)​  ≡ ​ 
​C ˆ ​​(Z​​u ˆ ​​0​​, Z​v ˆ ​)​

  ____________  
​√ 
_

 ​V ˆ ​​(Z​​u ˆ ​​0​​)​ ​​√ 
_

 ​V ˆ ​​(Z​v ˆ ​)​ ​
 ​,​

where ​​β​0​​​ is a hypothesized value for ​β​ and ​​​t ̂ ​​AR​​​(​β​0​​)​​ is a “​t​-ratio form” of the statis-
tic of Anderson and Rubin (1949), so that ​​​t ̂ ​​ AR​ 2  ​​(​β​0​​)​  =  AR​; see, for example, Feir, 
Lemieux, Marmer (2016), Lee, McCrary, Moreira, and Porter (2020), and Van de 
Sijpe and Windmeijer (2021). ​​​V ˆ ​​N​​​(​̂  πβ​)​, ​​C ˆ ​​N​​​(​̂  πβ​, ​π ˆ ​)​,​ and ​​​V ˆ ​​N​​​(​π ˆ ​)​​ are elements of the 
estimator for the variance-covariance matrix of the reduced form and first-stage esti-
mators ​​̂  πβ​​ and ​​π ˆ ​​, respectively. ​​​u ˆ ​​0​​​ is the “​AR​ residual,” i.e., the residual from regress-
ing ​Y − X​β​0​​​ on ​Z​. Turning to the notation for ​​ρ ˆ ​​(​β​0​​)​​, note first that as we explain 
further in online Appendix A.1, ​​V ˆ ​​( ⋅ )​​ and ​​C ˆ ​​( ⋅ )​​ (i.e., without a subscript of ​N​) denote 
estimators of the middle or “meat” part of “sandwich”-type variance estimators. 
This allows our approach to flexibly accommodate various error structures and their 
corresponding heteroskedastic and autocorrelation consistent (HAC) variance esti-
mators (including one- or two-way clustering). As examples of this notation, if we 
consider the homoskedastic case, ​​ρ ˆ ​​(​β​0​​)​​ is just the empirical correlation between the ​
AR​ residual and the first-stage residual; in the heteroskedastic case, it is the same but 
after multiplying both residuals by the instrument.

A key equation in our analysis is

	​ ​​t ̂ ​​​ 2​  = ​ 
​​t ̂ ​​ AR​ 2  ​​(​β​0​​)​  ___________________   

1 − 2​ρ ˆ ​​(​β​0​​)​ ​ 
​​t ̂ ​​AR​​​(​β​0​​)​ ____ 

​f ̂ ​
 ​  + ​ ​​t ̂ ​​ AR​ 2  ​​(​β​0​​)​ _____ 

​​f ̂ ​​​ 
 2
​
 ​

 ​,​
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which is a numerical equivalence that can be shown using the definitions above and 
with some rearrangement of terms, as shown in online Appendix A.4.

From these definitions and the above relationship, it is shown that under the 
weak-IV asymptotics of Staiger and Stock (1997), we obtain

(2)	 ​​​t ̂ ​​​ 2​ ​  d   ⟶ ​ ​ t​​ 2​  = ​ t​​ 2​​(​t​AR​​​(​β​0​​)​, f, ρ​(​β​0​​)​)​  ≡ ​ 
​t​ AR​ 2  ​​(​β​0​​)​  __________________   

1 − 2ρ​(​β​0​​)​ ​ 
​t​AR​​​(​β​0​​)​ _ f  ​ + ​ ​t​ AR​ 2  ​​(​β​0​​)​ _ 

​f​​   2​
 ​

 ​,​

where

(3)​​(​​t​AR​​​(​β​0​​)​​ 
f
  ​)​  ∼  N ​

⎛

 ⎜ 
⎝
​

⎛
 ⎜ 

⎝
​
​f​0​​ ​ 

Δ​(​β​0​​)​  ___________________   
​√ 

________________
   1 + 2ρΔ​(​β​0​​)​ + ​Δ​​ 2​​(​β​0​​)​ ​
 ​
​  

​f​0​​
 ​

⎞
 ⎟ 

⎠
​, ​(​  1​  ρ​(​β​0​​)​​  ρ​(​β​0​​)​​  1

  ​)​

⎞

 ⎟ 
⎠
​,​

	​ Δ​(​β​0​​)​  = ​ 
​√ 
_

 V​(Zv)​ ​
 _ 

​√ 
_

 V​(Zu)​ ​
 ​ ​(β − ​β​0​​)​,  and  ρ​(​β​0​​)​  = ​ 

ρ + Δ​(​β​0​​)​  ___________________   
​√ 

________________
   1 + 2ρΔ​(​β​0​​)​ + ​Δ​​ 2​​(​β​0​​)​ ​
 ​,​

where ​ρ  =  C​(Zu, Zv)​/​√ 
_

  V​(Zu)​V​(Zv)​ ​​ is the population correlation between ​Zu​ and ​
Zv​.35 Thus, the squared ​t​-ratio will converge in distribution to a random variable ​​t​​ 2​​, 
which is itself a function of the random variables ​​t​AR​​​(​β​0​​)​​ and ​f​, which are themselves 
jointly bivariate normal with unit variances and correlation ​ρ​(​β​0​​)​​. Note that when 
the null hypothesis is true, ​β  = ​ β​0​​​ implies that ​Δ​(​β​0​​)​  =  0​ and ​ρ​(​β​0​​)​  =  ρ​.

These relationships hold true for error structures that depart from i.i.d., but when 
we consider the specific case of homoskedasticity, the formula in (2) can be shown 
to yield equation (2.22) in Stock and Yogo (2005).

Remark: The econometric literature has long established the existence of distor-
tions in inference that occur when using the ​t​-ratio for ​IV​. Equation (2) is yet another 
way to see the same result. Specifically, the conventional asymptotic approximation 
implicitly treats ​​t​​ 2​​ as a chi-squared with one degree of freedom—which is the distri-
bution of the numerator in (2) and therefore, essentially, ignores the denominator in 
(2) by treating ​f​ as infinite. But, as Figure 1 illustrates, in our sample of studies, half 
of the time ​​F ˆ ​  = ​​ f ̂ ​​​    2​​ is less than 46.

We use the expressions above to compute rejection probabilities for different test 
procedures that reject the null hypothesis when ​​t​​ 2​  >  k​(F)​​, where ​k​(F)​​ is a general 
critical value function that could depend on ​F​:

	​ Conventional t-ratio test: k​(F)​  = ​ q​1−α​​,​

	​ Single F threshold test: k​(F)​  = ​​ {​​​​c​​ 
∗​,​  if F  > ​ F​​ ∗​;​  

∞,
​ 

if F  ≤ ​ F​​ ∗​;
​​​

	​ tF critical value function: k​(F)​  = ​ c​α​​​(F)​.​

35 In the display, to simplify the presentation, we present notation for ​Δ​(​β​0​​)​​ for the heteroskedastic case rather 
than the most general HAC case. Details of these derivations extended to the general HAC case are contained in 
the online Appendix.
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In all cases, the rejection probability can be expressed as

(4)  ​​Pr​Δ​(​β​0​​)​,ρ, ​f​0​​​​​[​t​​ 2​ > k​(F)​]​ = ∫∫1​[​t​​ 2​​(x, y, ρ​(​β​0​​)​)​  >  k​(​y​​ 2​)​]​​

	​ × φ​
(

x − ​f​0​​ ​ 
Δ​(​β​0​​)​  ___________________   

​√ 
________________

   1 + 2ρΔ​(​β​0​​)​ + ​Δ​​ 2​​(​β​0​​)​ ​
 ​, y − ​f​0​​; ρ​(​β​0​​)​)

​dxdy,​

where ​1​[ ⋅ ]​​ is the indicator variable, and ​φ​( ⋅ ,  ⋅ ; r)​​ is the bivariate normal density 
with means zero, unit variances, and correlation ​r​.

This expression allows us to compute rejection probabilities up to the accuracy 
of numerical integration. We use these computations to (i) illustrate the magni-
tude of inferential distortions caused by the usual ​t​-ratio procedure (Figure 2 panel 
A), (ii) verify that the ​tF​ critical value function controls the significance level, as 
intended (Figure 2 panel B), and (iii) construct power functions (Figure 3 and online 
Appendix Figure A2).36

Remark: In addition, expression (4) also allows us to answer the following ques-
tions: (i) What restrictions on the nuisance parameter space ​​f​0​​, ρ​ could one impose 
so that the usual ​t​-ratio procedure has the intended significance level?37 (ii) For 
single threshold rules, what minimal threshold for ​​F​​ ∗​​ could one use if ​​c​​ ∗​​ is set to 
the nominal value ​​q​1−α​​​? and (iii) How do these answers change for different signif-
icance levels? Online Appendix A.7 (and a previous version of our paper, Lee et al. 
2020) provides answers to these questions.

B. Construction of the ​tF​ Critical Value Function

Our objective is to obtain a critical value function ​​c​α​​​(F)​​ that smoothly adjusts 
according to the first-stage ​F​-statistic and that also controls size, i.e., it has the prop-
erty that

	​​ Pr​Δ​(​β​0​​)​=0,ρ, ​f​0​​​​​[​t​​ 2​  > ​ c​α​​​(F)​]​  ≤  α​

for all ​ρ​ and ​​f​0​​  ≠  0​. Deferring details to online Appendix B, we now outline the 
construction of such a function ​​c​α​​​(F)​​, which—as is apparent from Tables 3A and 
3B—consists of an initial strictly decreasing segment ranging from ​​q​1−α​​​ to some 
point, followed by a flat function beyond that point. This plateau structure is moti-
vated by practical considerations, since researchers may desire a constant critical 
value function as long as the ​F​-statistic is large enough.

The first step of our construction—the decreasing segment of the critical value 
function—stems from the conjecture of Stock and Yogo (2005) that for small, 
fixed values of ​​f​0​​​ (when instruments are “weak”), the “worst case” null rejection 

36 Note that it is straightforward to use the mean shift in ​​t​AR​​​(​β​0​​)​​ from expression (3) to compute the power 
function for ​AR​.

37 Kocherlakota (2020) develops a method that incorporates nuisance parameter information in a ​t​-ratio test.
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probability occurs when ​ρ  =  ±1​.38 This leads to obtaining a function ​​c​α​​​(F)​​ such 
that the null rejection probability under ​ρ  =  ±1​ is exactly equal to ​α​,

(5)	 ​​Pr​Δ​(​β​0​​)​=0,​|ρ|​=1, ​f​0​​​​​[​t​​ 2​  > ​ c​α​​​(F)​]​  =  α,​

for some set of small values of ​​f​0​​​. To simplify exposition, we focus on the case 
where ​ρ  =  1​ and ​​f​0​​​ positive.39

The following fact is central to our construction of the ​tF​ critical value function: 
when ​ρ  =  1​, ​​t​AR​​​ is a linear function of ​f​, and therefore equation (2) reduces to

	​ ​t​​ 2​  = ​ 
​f   ​​ 2​​​( f − ​f​0​​)​​​ 2​ _ 

​f   ​ 0​ 2​
 ​ ,​

which is a quartic function in ​f​, uniquely indexed by the single parameter ​​f​0​​​. This 
quartic function has the shape of a “W”, with one trough located at ​f  =  0​, the other 
trough at ​f  = ​ f​0​​​, and an interior peak at ​f  = ​ f​0​​/2​. Furthermore, the magnitude of 
the location and height of the interior peak of the “W” function is monotonically 
increasing in ​| ​f​0​​|​. Three examples of this “W”-shaped quartic function are illustrated 
in Figure 7, which plots ​​t​​ 2​​ as a function of ​f​ as the blue, red, and gray curves, corre-
sponding to three values of ​​f​0​​​, labeled ​​f​ 0​  ′​​, ​​f​ 0​  ′′​​, and ​​f​ 0​  ′′′​​.40

The case of ​ρ  =  1​ greatly simplifies the expression of the null rejection prob-
ability for any critical value function (as in equation (4)). The expression now 
involves a single random variable, ​f​, which is normally distributed with mean ​​f​0​​​ and 
unit variance. That is, we can now characterize the null rejection probability by the 
probability that ​f​ takes on a value for which the quartic ​​t​​ 2​​ curve is above the critical 
value function. For any continuous and decreasing (in ​​f​​   2​​) critical value function 
(that eventually plateaus), there exists an interval of values of ​​f​0​​​ for which the "W" 
curve and the critical value function intersect only twice. The acceptance probabil-
ity is then simply ​Φ​( ​f ̄ ​​( ​f​0​​)​ − ​f​0​​)​ − Φ​( ​ f 

¯
 ​ ​( ​f​0​​)​ − ​f​0​​)​​, where the intersections between 

the two curves are denoted by ​​f ̄ ​​( ​f​0​​)​​ and ​​ f 
¯
 ​ ​( ​f​0​​)​​. For example, for the blue curve in 

Figure 7 (corresponding to ​​f​0​​  = ​ f​ 0​  ′​​) the acceptance probability is equal to the prob-
ability that ​f​ lies in the interval given by ​​[ ​ f ¯

 ​ ​( ​f​ 0​  ′​)​,  ​f ̄ ​​( ​f​ 0​  ′​)​]​​.41

We use this simple form of the acceptance region to define a decreasing 
function ​​​c ̃ ​​α​​​( ⋅ )​​, which will be coincident with the eventual critical value func-
tion. Specifically, we seek a decreasing function (in ​​f  ​​  2​​) that intersects each 
of the “W” functions (indexed by ​​f​0​​​) at two points, ​​f ̄ ​​( ​f​0​​)​​ and ​​ f 

¯
 ​ ​(​ f​0​​)​​,where 

38 In online Appendix B, we substantiate this conjecture.
39 However, all the discussion below for ​ρ  =  1​ and ​​f​0​​​ positive applies symmetrically for ​ρ  =  −1​ and/or 

​​f​0​​​ negative.
40 The figure uses the transformation ​​  ​(​t​​ 2​/​1.96​​ 2​)​ _  

1 + ​(​t​​ 2​/​1.96​​ 2​)​ ​​ for the vertical axis to aid visualization of the curves.
41 Figure 7 also shows that, for large values of ​​f​0​​​, the rejection region is not necessarily an interval, such as for 

the gray curve (represented by ​​f​0​​  =  ​f​ 0​  ′′′​​).
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​Φ​( ​f ̄ ​​( ​f​0​​)​ − ​f​0​​)​ − Φ​( ​ f 
¯
 ​ ​( ​f​0​​)​ − ​f​0​​)​  =  1 − α​. This definition can be expressed more 

formally as the function ​​​c ̃ ​​α​​​( ⋅ )​​ satisfying the following system of equations:

(6)	 ​​ 
​f ̄ ​​​( ​f​0​​)​​​ 2​​​( ​f   ​​( ​f​0​​)​ − ​f​0​​)​​​ 2​  _____________ 

​f  ​ 0​ 2​
 ​  − ​​c ̃ ​​α​​​( ​f ̄ ​​​( ​f​0​​)​​​ 2​)​  =  0,​

	​ Φ​( ​f ̄ ​​( ​f​0​​)​ − ​f​0​​)​ − Φ​( ​ f 
¯
 ​ ​( ​f​0​​)​ − ​f​0​​)​  =  1 − α,​

	​ ​ 
​ f 
¯
 ​ ​​( ​f​0​​)​​​ 2​​​( ​ f ¯ ​ ​( ​f​0​​)​ − ​f​0​​)​​​ 2​  _____________ 

​f  ​ 0​ 2​
 ​  − ​​c ̃ ​​α​​​( ​ f ¯

 ​ ​​( ​f​0​​)​​​ 2​)​  =  0,​

for a set of small values of ​​f​0​​​.
Whether or not there exists any continuous and decreasing function ​​​c ̃ ​​α​​​( ​f​​   2​)​​ sat-

isfying this system of equations is not obvious and is technically challenging to 
prove. We defer those details to online Appendix B. Here, we apply the results in the 
Appendix to illustrate how we construct the desired critical value function.

We are able to obtain a “local” solution to (6) as the critical value function 
increases without bound, which occurs as ​​​f  ​​   2​ ​ ↓​​ ​ q​1−α​​​​. In particular, from Lemma 9(i) 
in online Appendix B, as ​​​f  ​​   2​  ​↓​​  ​q​1−α​​​​, the function ​​​c ̃ ​​α​​​(​ f  ​​  2​)​​ behaves as

(7)	 ​​​c ̃ ​​α​​​( ​f  ​​  2​)​  = ​   ​q​ 1−α​ 3  ​ _ 
​f  ​​  2​ − ​q​1−α​​

 ​ − ​(3​q​1−α​​ − ​ ​q​ 1−α​ 2  ​ _ 
2
  ​ + ​ ​q​ 1−α​ 3  ​ _ 

6
  ​)​ + O​(​√ 

_
 ​f  ​​  2​ − ​q​1−α​​ ​)​.​

This equation is derived from applying a theorem from Fefferman (2021).42

42 See also, Baldomá et al. (2007) and Baldomá, Fontich, and Martín (2020).
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With equation (7) in hand, constructing the decreasing part of the ​tF​ critical value 
function is straightforward. We provide a graphical explanation of the procedure in 
Figure 7, focusing on the leading case of ​α  =  0.05​.43 We start with a set of points ​​
(​ f 

¯
 ​, ​​c ̃ ​​0.05​​​(​ ​ f ¯

 ​​​   2​)​)​​, defined over the small interval ​​ f 
¯
 ​  ∈ ​ [−1.96 − ϵ, −1.96)​​ for ​ϵ  >  0​. 

This interval is motivated by the theoretical result in equation (7), and specifically 
is based on that equation’s leading terms. For each point over that interval, the third 
equation in (6) can be used to solve for ​​f​0​​​, allowing ​​ f 

¯
 ​​ to be relabeled ​​ f 

¯
 ​ ​( ​f​0​​)​​. Then, 

the second equation in (6) can be used to solve for ​​f ̄ ​​( ​f​0​​)​​. Finally, the first equation 
in (6) can be used to solve for ​​​c ̃ ​​0.05​​​( ​f ̄ ​​​( ​f​0​​)​​​ 2​)​​. This mapping produces a segment of 
the function defined on an interval that is longer than ​​[−1.96 − ϵ, −1.96)​​. Due to 
symmetry of the function ​​​c ̃ ​​0.05​​​(​ f  ​​  2​)​​ in ​f​, one can use this extended version of the 
function, ​​​c ̃ ​​0.05​​​( ​f  ​​  2​)​​, as a new starting segment and repeat the process.44 Figure  7 
illustrates one iteration of this mapping starting with the shorter critical value func-
tion segment given by the segment ​A ​A​​ ∗​​ on the left and the corresponding extended 
segment given by the segment ​A ​A​​ ∗∗​​ on the right. These segments terminate at the 
blue “W” function and show how the blue endpoint on the left (​​A​​ ∗​​) maps to the blue 
endpoint on the right (​​A​​ ∗∗​​).

This process can be iterated to produce incremental extensions to the curve 
​​​c ̃ ​​0.05​​​( ⋅ )​​, as long as the associated “W” curves intersect the extended curves only 
twice. It traces out a decreasing segment until the curve terminates at a very spe-
cific endpoint—where the “W” curve, whose “right arm” passes through the end-
point, possesses an interior “hump” that is tangent to the critical value function, as 
depicted in Figure 7 by the red curve, corresponding to ​​f​0​​  = ​ f​ 0​  ′′​​. Therefore, the set 
of values ​| ​f​0​​|  ≤ ​ f​ 0​  ′′​​ are precisely the “set of small values” of ​​f​0​​​ (referenced above) 
for which Equation (5) and the system of equations (6) hold. In principle, one could 
alternatively attempt to extend the decreasing segment further (as illustrated by the 
extended dashed line in the figure), so that the rejection probability continued to be 
equal to ​0.05​ for ​​f​0​​  > ​ f​ 0​  ′′​​. It is clear, however, that for such values (e.g., ​​f​0​​  = ​ f​ 0​  ′′′​​ in 
the figure) the associated “W” curve (e.g., the gray curve) will intersect the critical 
value function more than two times, and therefore the system (6), which presumed 
two intersection points, could not be used. We do not attempt this extension for tech-
nical reasons explained in greater detail in online Appendix B.1.

The second, and more straightforward, step in constructing the ​tF​ critical value 
function is to determine where, along function ​​​c ̃ ​​α​​​( ​f  ​​  2​)​​, the critical value function 
plateaus. There are many candidates: for example, one could use the piece-wise 
function that passes through ​ABC​ in the figure, where the segment passing through ​
BC​ could potentially start on any point on the (thick or thin) solid black line. Among 
all the plateaus that control size, the choice of a lower plateau will lead to a more 
powerful test; therefore, we define the ​tF​ critical value function ​​c​α​​​(F)​​ to be the one 
with the lowest possible plateau that controls rejection probabilities to be less than 
or equal to ​α​, for all values of ​ρ​ and ​​f​0​​​. In practice, we use numerical integration 

43 The W functions in Figure 7 do not depend on ​α​, but the critical value curves do. The approach we outline 
here for ​α  =  0.05​ can be applied more generally for other values of ​α​. In online Appendix B, we give details 
regarding other values of ​α​ and discuss some differences that may arise.

44 With some abuse of notation, we will use ​​​c ̃ ​​α​​​( ⋅ )​​ to refer to both the original function that exists according to 
Lemma 9 as well as every extension of that function as described above.
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of the expression in (4) to compute these rejection probabilities, as illustrated in 
Figure 2, for a grid of values for ​​f​0​​​ and ​ρ​ to verify size control.45 For ​α  =  0.05​, our 
numerical analysis indicates that size is controlled to be 0.05 when the critical value 
function, represented by the function that passes through ​A​B ′ ​​C ′ ​​ in Figure  7, has 
the plateau level set to equal the chi-square critical value ​​1.96​​ 2​​. For ​α  =  0.01​, the 
construction of the decreasing segment of the critical value ends before the function 
falls below the chi-square critical value of ​​2.58​​ 2​​. For that case, the plateau is set to 
the smallest possible value of that construction process, ​​2.73​​ 2​​. Online Appendix B.3 
provides a step-by-step algorithm for obtaining the entire ​tF​ critical value function 
as outlined above.

The construction of the critical value function implies the existence of an entire 
class of critical value functions that also control size, with decreasing segments that 
are all coincident, with the only difference being where the plateau begins; the ​tF​ 
critical value function, by definition, has the lowest plateau. A natural question to 
ask is whether, for a given plateau, there might exist alternative critical value func-
tions that also control size, with a similar structure, but distinct from the decreasing 
segment that we have constructed. In online Appendix B, we specify a set of prop-
erties that critical value functions could possess, and show that the class of critical 
value functions described above is the only class that satisfies those properties.

C. Conditional Expected Length: ​AR​ and ​tF​ Confidence Sets

This subsection describes how we obtain our results on the conditional expected 
length of ​AR​ and ​tF​ intervals. Our motivation to examine expected length stemmed 
from the traditional power curve analysis in Subsection IIC, which showed that 
neither ​AR​ nor ​tF​ seemed to dominate across all values of ​Δ​(​β​0​​)​​ or differing com-
binations of ​ρ​ and ​​f​0​​​. A natural summary measure of power is that of expected 
length of the confidence set, which has the equivalent interpretation, due to Pratt 
(1961), as the average type II error, where the averaging occurs across all possible 
false hypotheses ​​β​0​​​, where each value of ​​β​0​​​ in the parameter space is given equal 
weight. Power curves are conceived as rejection rates while keeping ​​β​0​​​ fixed while 

varying ​β​, but our curves, since they are functions of ​Δ​(​β​0​​)​  = ​ 
​√ 
_

 V​(Zv)​ ​ _ 
​√ 
_

 V​(Zu)​ ​
 ​ ​(β − ​β​0​​)​​,  

could equivalently be viewed as graphing power fixing ​β​, while varying ​​β​0​​​. So the 
expected length of the confidence set is equivalent to averaging 1 minus power, 
averaging across ​Δ​(​β​0​​)​​.

Examining unconditional expected length, however, will not be informative since 
we know, from Dufour (1997), that inverting both the ​AR​ and ​tF​ tests, by virtue 
of delivering correct confidence levels, will have infinite unconditional expected 
length. Thus, we turn to examining the expected length of confidence sets condi-
tional on ​F  > ​ q​1−α​​​. The event ​F  > ​ q​1−α​​​ is important because it is the necessary 
and sufficient condition for both the ​AR​ and ​tF​ confidence sets to be bounded inter-
vals; they have unbounded confidence sets with identical probabilities. This allows 

45 Specifically, we use two grids. The first grid consists of values of ​ρ​ that range from ​0​ to ​1​ in increments of 
0.01, and values of ​​f​0​​​ that range from ​0​ to ​80​ in increments of 0.25. The second grid is one that focuses on the ​ρ​ 
values of ​0.995​, ​0.996​, ​0.997​, ​0.998​, and ​0.999​ and ​​f​0​​​ values that range from ​0​ to ​80​ at increments of ​0.01​.
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us to interpret the conditional expected length as the average type II error—averaged 
across all false hypotheses ​​β​0​​​—conditional on the confidence set being an interval. 
Furthermore, conditional expected length is likely to be of interest to practitioners 
who may wonder if they should expect ​AR​ or ​tF​ intervals to be shorter.

Given the ambiguity in the power comparison results, it was surprising to find 
that an expected length comparison yields a stark contrast and clearly dominant 
method: ​tF​ intervals are shorter in expectation. Indeed, we reach a somewhat stron-
ger result. The conditional expected length for the ​AR​ confidence interval is infinite, 
while the conditional expected length of the ​tF​ interval is finite.

More formally, what we establish is the following. In any finite sample, there 
are three confidence interval lengths that are relevant to this result, namely ​​​L ˆ ​​IV​​​ (the 
length of the conventional ​t​-ratio-based confidence interval), ​​​L ˆ ​​AR​​​, and ​​​L ˆ ​​tF​​​, (the 
lengths of the ​AR​ and ​tF​ intervals, respectively) and each of these converge in distri-
bution to random variables ​​L​IV​​​, ​​L​AR​​​, and ​​L​tF​​​, respectively. Appendices C.2 and C.3 
show that for all ​ρ, ​f​0​​  ≠  0,​

	​ E​[​L​AR​​ | F  > ​ q​1−α​​]​  =  ∞  and  E​[​L​tF​​ | F  > ​ q​1−α​​]​  <  ∞.​

We next provide some intuition for this result. We show in online Appendix C.1 
that conditional on ​F  > ​ q​1−α​​​, we can write ​​L​AR​​​ and ​​L​tF​​​ as inflated versions of  
​​L​IV​​​, i.e.,

(8)	 ​​L​AR​​  = ​ 
​√ 

_
 F ​​√ 

_____________
  F − ​q​1−α​​​(1 − ​​ρ ̃ ​​​ 2​)​ ​
   ___________________  

F − ​q​1−α​​
 ​ ​ L​IV​​​,

	​ and  ​L​tF​​  = ​ √ 

_

 ​ 
​c​α​​​(F)​
 _ ​q​1−α​​ ​ ​ ​L​IV​​,​

where ​​​ρ ̃ ​​​ 2​  = ​ 
​​(−​t​AR​​​(β)​ + ρf)​​​ 2​  _______________  

​( ​f​​   2​ − 2ρ​t​AR​​​(β)​ f + ​t​ AR​ 2  ​​(β)​)​
 ​​.

It turns out that the ​​L​AR​​​ inflation factor explodes as ​F​ approaches ​​q​1−α​​​ from above, 
and even accounting for the other parts of the inflation factor, the denominator 
(​F − ​q​1−α​​​) leads to an infinite conditional expected length. As for ​​L​tF​​​, the inflation 
factor does not grow as quickly as ​F​ approaches ​​q​1−α​​​ from above, and in particular 
grows slowly enough that conditional expected length is finite. The key to this result 
is our finding in online Appendix B.2 that

	​ ​ lim​ 
F​↓​​​q​1−α​​

​​​c​α​​​(F)​​(F − ​q​1−α​​)​  = ​ q​ 1−α​ 3  ​.​

This result allows us to show integrability of ​​√ 
_

 ​c​α​​​(F)​ ​​ because it shows that

	​ ​√ 
_

 ​c​α​​​(F)​ ​  = ​ √ 

_____________

  ​ 
​c​α​​​(F)​​(F − ​q​1−α​​)​  ____________  

F − ​q​1−α​​
 ​ ​   ≤ ​   M _  

​√ 
_

 F − ​q​1−α​​ ​
 ​​

for some bound ​M​, and in a neighborhood of ​​q​1−α​​​, ​1/​√ 
_

 F − ​q​1−α​​ ​​ is integrable. 
Online Appendix C provides the full proof.
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In summary, these results show that the expected length of the ​tF​ confidence set 
is (infinitely) shorter than that of the ​AR​ confidence set when ​F  > ​ q​1−α​​​. At the 
same time, when ​F  < ​ q​1−α​​​, the ​tF​ confidence set always consists of the entire 
line. By contrast, when ​F  < ​ q​1−α​​​, the ​AR​ confidence set is either the entire real 
line or, possibly, a set that consists of all values outside a finite interval (see discus-
sion in Andrews, Stock, and Sun 2019; Dufour and Taamouti 2005; and Mikusheva 
2010).46 Thus, a trade-off in length is expected: ​tF​ does better when ​F  > ​ q​1−α​​​, but ​
AR​ does better when ​F  < ​ q​1−α​​​. Note that the statement that ​tF​ does not dominate ​
AR​ in terms of expected length depends crucially on the presumption that research-
ers are prepared to properly report, in the event that ​F  < ​ q​1−α​​​, a nonconvex and 
unbounded confidence set.47 If, for example, in practice researchers effectively 
ignore the nonconvexity and simply use the whole real line as the confidence set, 
then the confidence sets for ​tF​ and ​AR​ would coincide when ​F  < ​ q​1−α​​​. In other 
words, the unconditional expected difference in lengths between a “convexified” ​AR​ 
confidence set and the ​tF​ interval would always favor ​tF​.

IV.  Conclusion and Extensions

Since the work of Dufour (1997), it has been known in the econometrics com-
munity that the conventional ​t​-ratio delivers incorrect size; the work of Staiger and 
Stock (1997) and Stock and Yogo (2005) provided the framework and approach for 
quantifying—and fixing—these distortions to inference.

Yet practitioners, while using the ​±1.96​ critical values that are more commonly 
associated with a 5 percent test or 95 percent confidence interval, seem not to have 
been using those results to qualify their inferences (e.g., they typically do not explic-
itly state that they are assuming ​E​[F]​  >  6.88​, recognizing the test as a 10 percent 
significance test), nor have they been precise about the consequences of incorporat-
ing the first-stage ​F​ statistic into the inferences about ​β​, even though the literature 
has provided such a method (e.g., they have not explicitly described the rule, “reject 
if and only if ​​t​​ 2​  > ​ 1.96​​ 2​, F  >  16.38​,” as a test at the 15 percent level of signif-
icance). Applied work also rarely uses the ​AR​ statistic, which has been known to 
deliver valid inference.

This paper develops a “continuous” version of the critical value functions that 
result from the application of Staiger and Stock (1997) to the values in Stock and 
Yogo (2005). This smooth adjustment approach reduces the scope for mis-application 
or misinterpretation since the interpretation is straightforward: after adjustment of 
the standard errors, hypothesis tests and interval estimates have their intended sig-
nificance or confidence levels, irrespective of the true values of the nuisance param-
eters—just like ​AR​.

In our comparison between the two alternatives, ​AR​ and ​tF​, both of which have 
correct size, we discover a somewhat surprising fact about the ​AR​ confidence set. 
Conditional on the confidence set being a bounded interval, it has infinite expected 

46 When ​F  =  ​q​1−α​​​, the ​tF​ confidence set is the entire real line, whereas the ​AR​ confidence set can be the entire 
real line, a left- or right-bounded interval, or the empty set.

47 We are unaware of an example when such a nonconvex confidence set is reported other than Cruz and Moreira 
(2005).



3289LEE ET AL.: VALID T-RATIO INFERENCE FOR IVVOL. 112 NO. 10

length, due to the thick upper tail of the probability distribution of lengths. By con-
trast, the ​tF​ confidence set has finite expected length, whenever it is a bounded 
interval. Therefore, in addition to the ​tF​ adjustment allowing a way to reassess 
the inferences of past studies, there is a practical reason for considering its use for 
applied work, as an alternative to ​AR​ going forward.

There are some issues that we believe are worthy of deeper investigation. The 
scope of our study was limited to the common case of the single instrument IV 
model, but it would be natural to expect the same kinds of issues to be at play with 
the over-identified model, given the critical value tables of Stock and Yogo (2005), 
which are appropriate for over-identified models as well. In ongoing work, we are 
exploring the extent to which the ​tF​ approach can be applied to over-identified 
models.
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