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ABSTRACT In this review, we present the current evi-
dence and future perspectives on the use of circulating
tumour DNA (ctDNA) in the diagnosis, management and
understanding the prognosis of patients with intrahepatic
cholangiocarcinoma (iCCA) undergoing surgery. Liquid
biopsies or ctDNA maybe utilized to: (1) determine the
molecular profile of the tumour and therefore guide the
selection of molecular targeted therapy in the neoadjuvant
setting, (2) form a surveillance tool for the detection of
minimal residual disease or cancer recurrence after surgery,
and (3) diagnose and screen for early iCCA detection in
high-risk populations. The potential for ctDNA can be
tumour-informed or -uninformed depending on the goals of
its use. Future studies will require ctDNA extraction
technique validations, with standardizations of both the
platforms and the timing of ctDNA collections.
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The incidence of intrahepatic cholangiocarcinoma
(ACCA) is rising worldwide, and the 5-year overall survival
(OS) remains as low as 10% for all stages of the disease.'”
Late diagnosis of iCCA is one of the main contributing
factors to the poor OS. Patients are often asymptomatic at
diagnosis and traditional tumour markers, like carbohy-
drate antigen 19-9 (CA19-9), greatly lack specificity in the
screening of high-risk populations.® Consequently, only
20% of people with newly diagnosed iCCA have localized
disease that is amenable for curative-intent surgery.” For
those who undergo surgery, however, the probability of
experiencing an iCCA recurrence is as high as 70%,
underscoring the need to identify high-risk groups for
potentially utilizing more aggressive or personalized
adjuvant treatments.”’”

In search of new effective diagnostic tools and therapies
for this lethal disease, many studies have documented the
common genetic alterations found in iCCAs.'”!" IDH1
mutations (15-20%) and FGFR2 fusions (10-20%) are the
most prevalent alterations considered “actionable” with
Food and Drug Administration (FDA) approved targeted
therapies.lz’13 For example, the IDH1 inhibitor, ivosidenib,
has shown to improve progression-free survival (PES)
based on the ClarIDHy trial, but is mainly a cytostatic
agent with a response rate of 2%.'* In contrast, FGFR
inhibitors (FGFRi), such as pemigatinib and futibatinib,
have reported response rates of up to 42% in patients with
advanced disease harbouring FGFR2 fusions.'? Three
FGFR inhibitors, pemigatinib, infigratinib and futibatinib,
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have received FDA approval, and pemigatinib has also
gained European Medicines Agency (EMA) approval.
Notably, targeted approaches in iCCA currently appear to
be confined to small duct iCCAs."

FGFR?2 fusions have also been noted to be enriched in
patients who benefit from liver transplant for iCCA.''8
This would suggest that downstaging or a neoadjuvant
approach may be possible in this cohort in order to help
improve surgical outcomes and disease-free survival
(DFS). However, several challenges exist in incorporating
the molecular targeted therapy into the current iCCA sur-
gical treatment sequence. Before surgery, sufficient tumour
tissue needs to be obtained through biopsy to test for gene
alterations, including the aforementioned. However, biopsy
of iCCA is frequently not feasible due to its anatomical
location.'®*° One potential solution to overcome these
challenges may be to utilize cell-free DNA (cfDNA)
genotyping technology, which provides real-time and non-
invasive methods for measuring tumour genetics through
blood tests or sampling of bile.”' >

After surgery, there are currently no good surveillance
methods besides radiological imaging to detect iCCA
recurrences, which delays the recurrence diagnosis.>* For
example, up to 63% of patients with early iCCA recur-
rences were reported to not have received the appropriate
adjuvant therapies in time due to aggressive disease pro-
gression.” Tt is currently unknown whether intensification
of adjuvant treatment may improve outcomes in iCCA, and
the results of the ACTICCA-1 phase III trial of adjuvant
cisplatin/gemcitabine are awaited.”® In addition, FGFR2
inhibitors are now in trial in a first line metastatic setting,
which could change the treatment paradigm in advanced
disease (NCT03656536 and NCTO3773302).27 Conceiv-
ably, like the DYNAMIC trial in colorectal cancer (CRC),
the detection of molecular or minimal residual disease
(MRD) may pave a more personalized approach for those
undergoing surgical resection.”®

In this article, we review recent and relevant evidence
concerning the potential uses of cell-free, circulating
tumour DNA as a diagnostic, prognostic, and therapy-
guiding tool for people with iCCA undergoing surgery.

CIRCULATING TUMOUR DNA

Liquid biopsies are revolutionizing the field of oncology
and consist of tumour-derived fragments including circu-
lating tumour cells, circulating tumour DNA (ctDNA) and
tumour-derived extracellular vesicles.>> Most commonly,
ctDNA is being evaluated as a potential non-invasive
biomarker in oncology.””*® CtDNA consists of DNA
fragments from the tumour released into the blood from the
tumour cells undergoing apoptosis or programmed cell

death.?? In contradistinction, cfDNA incorporates DNA
fragments of the normal cells circulating in the blood.*?
The percentage of cfDNA attributed to ctDNA can vary but
may be as low as 0.01%, and is usually identified by
tumour-specific mutations or epigenetic signatures.”> Har-
vesting ctDNA holds promise as a non-invasive “liquid
biopsy” because the tumour DNA fragments are hypothe-
sized to carry the same genetic information as their primary
tumour, which they shed from.?? In fact, ctDNA technol-
ogy has been entering clinics through the United States
FDA’s approval of ctDNA use for selecting targeted
molecular therapies. The first ctDNA assay approved was
the cobas (registered trademark) EGFR Mutation Test v2
using real-time PCR to identify mutations within the EGFR
gene.’! Subsequently the Guardant360 CDx assay was
approved as a companion diagnostic to identify EGFR
mutations that predict benefits from osimertinib in the
setting of non-small-cell lung cancers.’® Since then, the
FDA has approved Foundations Medicine’s Founda-
tionOne Liquid CDx and both platforms have expanding
indications to cover a number of actionable alterations.

In the context of detecting MRD, ctDNA analyses have
been increasingly divided into tumour-informed and
tumour-uninformed (or tumour-agnostic) assays.’> While
the tumour-informed platform requires a tumour tissue
biopsy to customize a panel of genes to sequence for an
individual patient’s plasma ctDNA analysis, tumour-unin-
formed approaches (plasma only) do not require a tissue
biopsy, which results in a faster turnaround time for MRD
ctDNA analysis and potentially quicker delivery of adju-
vant therapies.’* With the rapidly evolving next-generation
sequencing (NGS) technologies, assays are now being
developed to accurately assess a large set of gene panels
from harvested ctDNA.*> For the plasma only assays, the
combination of genomic and epigenomic signatures may
increase sensitivities for MRD detection comparable to that
of tumour-informed assays.36 However, there is limited
evidence for the utility of ctDNA in the setting of operable
iCCAs, as iCCA has often been categorized with other
pancreatic or liver cancer types.'*?’

Mutational Profiles of CCA

Cholangiocarcinomas (CCAs) are often classified by
their anatomical subtypes: intrahepatic (iCCAs), perihilar
(pCCAs) and distal cholangiocarcinomas (dCCAs).38 It can
be difficult to differentiate CCAs from other liver cancers
or metastases based on the radiology imaging or
histopathology.® In fact, recent studies suggest that tumour
genetics may be better at classifying CCAs, and even
reclassifying those often labelled as cancers of unknown
primary.* Distinct genotypes have been documented in
iCCA with a high prevalence of IDH1/2 (10-15%) and
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BAP1 mutations (~ 13%) together with FGFR2 fusions
(15-20%)."'*'32° Additional fusions documented include
NTRK, ALK/ROS1 and NRG1, all of which are considered
actionable with therapeutic options.””**** Notably, these
alterations tend to occur in small duct iCCA whereas large
duct iCCA can often resemble extrahepatic CCA geno-
typically, with enrichment of TP53, KRAS, RNF43,
PIK3CA and SMAD4 mutations.®2%3% Furthermore, within
iCCAs, those tumours harbouring IDHI mutations or
FGFR2 fusions tend to have fewer co-occurring mutations
in the mitogen-activated protein kinase (MAPK)
pathway.**

IDH1 mutations and FGFR2 fusions are rarely identified
in pCCA or dCCA.* Additional actionable mutations
found in iCCA include the BRAF mutations (~5%).*¢
Approximately 2-3% of iCCAs will harbour the class I
BRAFY*°F mutation for which dabrafenib and trametinib
have gained approval.*’” The ROAR trial in biliary tract
cancers (BTC) demonstrated response rates of 51% in
advanced BTC.*” HER2 amplification is less common in
iCCAs compared with CCAs occurring extrahepatically,
and can be expected in 3-5% of cases.'**” Several HER2
directed therapies are now available with zanidatamab, a
bispecific antibody demonstrating objective response rates
(ORR) of 47% in a phase 1 trial of advanced BTC
(NCTO02892123). How these matched approaches will
translate to earlier stage disease remains unknown. Aside
from single driver alterations, whole genomic sequencing
and integrative omic approaches to CCA have further
identified varying clusters that also associate with hetero-
geneous tumour immune microenvironments.****4?
Delineating the common and exclusive genetic mutations
of CCA subtypes could facilitate the correct diagnosis and
classification of their genetic subtypes.?’

ctDNA and the Detection of Actionable Alterations

The potential of ctDNA to serve as a surrogate for
conventional tumour biopsy is attractive; however, it is
reliant on high concordance between the ctDNA and
tumour tissue.'” The available evidence in the field of
iCCA is promising (Table 1). Ettrich et al. reported 13
cases of isolated iCCA undergoing palliative chemotherapy
and showed a 92% match between the mutations of the
primary tumour and the ctDNA across 15 cancer genes
(IDH1 included, but not FGFR2 fusions).37 Lamarca et al.
studied six metastatic iCCA patients and showed that those
with an identified IDH1 mutation, FGFR2 mutation or
FGFR?2 fusion in pre-treatment ctDNA had a 100% match
with the mutations of their respective tumours.” This was
further supported by Csoma et al., who successfully
detected the same FGFR2 point mutation together with
IDH1/2, KRAS, and TP53 mutations in both the ctDNA

and iCCA tissue specimens in metastatic settings.”' In a
comparative genomic analysis of 1632 advanced iCCAs
(1048 primary tumour biopsies vs 364 liquid biopsies)
reported by Israel et al., actionable alterations were found
in 35% of the liquid biopsy cohort (4% FGFR2 rear-
rangements including fusion and 9% IDH1); however, the
IDHI and FGFR2 alterations were detected at a lower
frequency in a liquid biopsy compared with a primary
tumour biopsy.”? Furthermore, a study by Mody et al.
analyzing 85 ctDNAs for advanced iCCA reported about
10% IDH1 and 7% FGFR2 fusion rates, which is lower
than the detection rate published in other studies.’” It is
critical to note that these two studies had no matched
tumour comparison to validate the reported detection rate
from ctDNA. Importantly, Berchuck et al. recently reported
the largest series to date addressing concordance between
tumour and ctDNA, analyzing 1671 patients.”* Tar-
getable alterations were detected in 44% of patients with
concordance notably high for IDHI and BRAFY®%F
mutations together with HER2 amplification.’® Disap-
pointingly, however, the Guradant360 platform used in this
study showed a low sensitivity in detecting FGFR2 fusions
from ctDNA. This was not due to low sensitivity in ctDNA
detection but rather the ability to detect FGFR2 fusion
partners, highlighting the challenges in fusion detection
from ctDNA and the need for platforms to be optimized for
certain disease subtypes. This will be critical if the field
were to consider a liquid biopsy to detect actionable
alteration in early stage iCCA (Fig. 1).

The aforementioned studies have only included samples
from metastatic iCCAs. The question remains whether
levels of preoperative ctDNA will be detectable with
appropriate limits of detection for actionable alterations if
considering targeted neoadjuvant approaches. Wintachai
et al. compared the mutations between preoperative ctDNA
and the resected tumours; however, this study was limited
by its unclear breakdown of intra- vs extra-hepatic
cholangiocarcinoma in the analysis.”> When ten subjects
with CCA underwent preoperative ctDNA molecular pro-
filing, a 56% match was observed between detected
somatic mutations and primary tumours compared with
ctDNA.>® This match rate was lower than in other studies
conducted in metastatic iCCA settings.” It was also
unclear what stages these cancers were in before resection
(i.e., stage I-II vs. ITI-IV).>® To fill in the knowledge gap,
well-designed prospective studies will be needed to
investigate whether ctDNA may serve as a surrogate for the
iCCA tumour biopsy in a localized disease setting.”®
Variable tumour shedding may be a challenge in early
stage disease, and if attempting to analyze ctDNA for
therapeutics platforms, the technology will need to be
optimized not only for the detection of mutations but also
for potential partners like fusions.
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FIG. 1 Potential ctDNA usage
in the perioperative setting
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Minimal Residual Disease—Tumour-Informed and
-Uninformed Approaches

Monitoring response

After curative-intent surgery of CCAs, the assessment of
MRD may help in determining prognosis and in pursuing
personalized adjuvant approaches. One example of this
application is the Signatera™ MRD technology, which
generates 16 tumour-specific clonal somatic variants
unique to the individual’s primary tumour, and uses this
“tumour signature” to target the presence of ctDNA in the
plasma.’” If at least two mutations are detected it can be
considered a positive result. This assay has been shown to
detect ctDNA levels as low as 0.01% with high sensitivity.
Although this field is rapidly evolving, few studies have
been published on CCA. Kasi et al. have presented their
work using the Signatera assay from 62 patients (151
samples) with CCA.® Of these, 26.2% were documented to
have positive MRD and, notably, ctDNA detection was
associated with stage.’® Tumour burden may be the lowest
at this clinical stage as the tumour has been completely
removed and potentially cured, and further studies will be
needed to validate the assay use for MRD in iCCA.**

Currently, postoperative therapy capecitabine remains
the standard adjuvant treatment option for patients with
iCCA.> However, it should be noted that in the setting of
perihilar and extrahepatic CCAs, with at least one lymph
node metastasis after complete macroscopic resection,
adjuvant cisplatin/gemcitabine did not improve OS com-
pared with capecitabine alone in a multicenter phase 2
randomized controlled trial (STAMP).60 As adjuvant
treatment strategies evolve, it may be important to deter-
mine who is at high risk of recurrence through detection of
residual disease after surgery. Studies from other cancer
fields such as melanoma, colorectal, lung and pancreatic
cancers have highlighted the prognostic role of ctDNA

Detection of molecular/minimal
residual disease for

prognosis/personalized adjuvant
approaches

Bile cfDNA or other liquid biopsies may serve
as screening tools in high risk populations

level measured in the immediate postoperative period in
predicting cancer recurrence after surgery.®’® In fact,
tumour-informed ctDNA was able to detect pancreatic
cancer recurrences earlier than conventional radiologic
diagnosis (3.1 vs. 9.6 months, p 0.0004).°> The
DYNAMIC study is another example, evaluating stage II
CRC patients in a randomized controlled trial to make
decisions on adjuvant treatment based on ctDNA vs stan-
dard clinicopathological features after surgery.”® This trial
utilized a tumour-informed approach measuring ctDNA at
4 and 7 weeks postoperatively, and demonstrated that the
ctDNA guided adjuvant therapy decision reduced adjuvant
chemotherapy use without compromising recurrence-free
survival (RFS).”®

In the context of hepatocellular carcinoma (HCC), serial
ctDNA was demonstrated to predict early recurrence after
resection.® In this study, 41 patients with resectable HCC
underwent serial ctDNA measurements before and after
surgery, and the detection of postoperative ctDNA was
associated with RFS (p = 0.03). After adjusting for HCC
cancer stages, even baseline or preoperative ctDNA was
associated with a higher risk of early recurrence after
surgery.®® A similar conclusion was arrived at in another
study that analyzed 46 patients with HCC who underwent
hepatectomy or liver transplant, in which detection of
preoperative ctDNA was significantly associated with a
higher incidence of postoperative recurrence and extra-
hepatic metastasis.®’ Another study finding was reported in
the setting of CRC liver metastasis in which
detectable postoperative or post-adjuvant chemotherapy
ctDNA was associated with shorter RFS.®* The role of
ctDNA in predicting cancer recurrence is especially rele-
vant for iCCA, as most postoperative iCCA recurrences
occur relatively early, about 25% within 6 months and 50%
within 2 years after surgery.7’8’68 Earlier detection of iCCA
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recurrence may lead to a better chance of receiving repeat
resection or other liver-directed therapies that may improve
survival.®® There are limitations to MRD, and patients
require counselling on the potential for false negatives and
false positives. The former may be overcome with serial
monitoring of ctDNA, which could also allow for the
outgrowth of subclones that may have been below thresh-
old levels for detection.?” In the context of plasma-only or
tumour-uninformed ctDNA analyses, clonal haematopoi-
esis of indeterminate potential (CHIP) can account for false
positives.*

TREATMENT—MONITORING OF SYSTEMIC
TREATMENT RESPONSE

When administering systemic or locoregional therapies
for cancers, ctDNA may provide information on prognosis
and an opportunity for real-time monitoring of tumour
dynamics and evolution.”* For patients who are receiving
platinum-based chemotherapy for metastatic biliary tract
cancers (80.6% were iCCAs), the pre-treatment dominant
clone allele frequency (detected gene with the highest
variant allele frequency) detected in ctDNA was associated
with worse OS (median 10.8 vs. 18.8 months, p = 0.03) and
PFS.”" Interestingly, in this study there was no difference
in the treatment response rate between high or low domi-
nant clone allele frequency groups, implying that it is a
measure of prognosis but not treatment response.”’ There
are, however, other examples of ctDNA associating with
treatment response. Winter et al. measured ctDNA at
multiple time points for four patients receiving selective
internal radiation therapy (SIRT) for metastatic iCCA (post
palliative chemotherapy, Table 2).”' Throughout these
serial ctDNA measurements, a reduction in the burden of
copy number variants (CNV) was observed corresponding
to treatment response.’' Similar findings were observed in
breast cancer, CRC, and CRC liver metastasis studies using
serial ctDNA  measures to monitor treatment
response.’>**"? The application of ctDNA has also been
extended to detecting methylation markers in HCC, high-
lighting how epigenetics may come into play in measuring
treatment response through ctDNA.”?

In the setting of neoadjuvant systemic therapy, one
rectal cancer study showed a correlation between ctDNA
detection rate and treatment response from neoadjuvant
chemotherapy.”*”> A similar observation was reported in
the setting of pancreatic cancer, in which administration of
neoadjuvant chemotherapy resulted in a drop in ctDNA
detection rate.”® Such findings are relevant for the treat-
ment of iCCA as the use of neoadjuvant chemotherapy is
increasing (though not yet representing standard of care)
because of potential advantages compared with using

adjuvant chemotherapy alone.”” As an example, neoadju-
vant chemotherapy can have a “downstaging” effect on
unresectable iCCA tumours by shrinking the disease and
making them resectable.”®”® It is also theorized that
neoadjuvant chemotherapy treats micro-metastatic sys-
temic cancer, potentially resulting in improved OS after
iCCA resections.**®* As neoadjuvant chemotherapy is
slowly integrating into the iCCA treatment sequence,
ctDNA could play a critical role in assessing treatment
response in such a preoperative setting. Moreover, targeted
treatments such as pemigatinib may be used in the setting
of locally advanced iCCAs, and a trial is underway
(NCT05565794).%

Treatment—Identification of Resistance Mechanisms

Molecular profiling of the cancer during treatment
allows us to detect new genomic alterations that arise either
from acquired resistance or clonal evolution.** Clonal
dynamics describe different genetic subclones that develop
within a tumour and get passed down the evolving tumour
cells.”” These clonal variants carry unique signatures of the
individual’s original tumour. Acquired resistance may arise
by a clonal outgrowth of resistant subclones to a certain
treatment.”> CtDNA has the advantage of capturing infor-
mation on these various subclones and perhaps clarify
multiple resistance mechanisms at once.”? This is espe-
cially relevant in iCCA disease as both the IDH1 (10-15%)
and FGFR2 (15-20%) alterations, which are almost
exclusively seen in iCCAs, have targeted treatments (i.e.,
pemigatinib, infigratinib and futibatinib for FGFR2; and
ivosidenib for IDHI1) that can be monitored for resis-
tance.'>® For instance, Varghese et al. studied eight
patients with locally advanced or metastatic iCCA who
were on pan-FGFR treatment for confirmed FGFR2 alter-
ations (Table 3).% This study showed up to 31 acquired
FGFR2 mutations detected through ctDNA during the
treatment period and captured drug resistance mecha-
nisms.%> Furthermore, Goyal et al. conducted two studies
investigating the mechanism of acquired resistance from
FGFR inhibitor therapies using serial ctDNA measure-
ments in metastatic iCCA patients.***” In the context of
IDH1 treatments, Cleary et al. identified secondary IDH1
mutations and acquired IDH2 mutations as resistance
mechanisms when patients were treated with ivosidenib.®®
In general, the resistance profiles differed across subjects
and within the serial measurements in each subject under
the same kind of targeted treatment. A few more actionable
gene mutations (i.e., ERBB2) are under investigation to
delineate resistance mechanisms to their respective
molecular targeted therapies.® Standardizing serial ctDNA
measurements in molecular targeted treatment trial proto-
cols may help with earlier detection of acquired resistance,
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Table 3 (continued)

Platforms used

Outcomes

Intervention/
comparison

Population ctDNA genes
analyzed

Periop

Journal

Type

First/senior
author

Year

setting?

Targeted sequencing of
ctDNA: panel of 70

9/32 (28%) had FGFR2
fusions detected

FGFR inhibitor
BGJ398, pre-

FGFR2 fusion

3 metastatic iCCA

Cancer discovery No

P

Goyal/Zhu

2017%

genes from Guardant

Health
Tumour tissue: targeted

treatment and post

Post-progression sequencing

progression cfDNA

of the FGFR2 gene

demonstrated de novo
point mutations that

sequencing via the
FoundationOne

platform

conferred resistance to

BGJ298

CCA cholangiocarcinoma, ctDNA circulating tumor DNA, iCCA intrahepatic cholangiocarcinoma, mCCA metastatic cholangiocarcinoma, NGS next-generation sequencing, periop perioperative. Type

Study type, P

prospective, C = case report, R = retrospective

which would help guide how and when to start alternative
treatments.

Furthermore, Lapin et al. studied people with metastatic
iCCAs undergoing IDH1 or IDH?2 inhibitor treatments for
known IDH1 or IDH2 mutations (Table 3).°° In this study,
the treatment group with lower variant allele frequency in
ctDNA experienced a longer time to treatment failure than
those with higher variant allele frequency in ctDNA (3.6
vs. 1.5 months; P = 0.008). And through serial ctDNA
measurements during disease progression, emerging alter-
ations with oncogenic properties were detected in ctDNA.
The most common ones were ARIDIA and TP53 muta-
tions.”” Both ARIDIA and TP53 mutations were from the
cancer clones and not from the original cancer.’® Similarly,
Varghese et al. studied eight patients with metastatic
iCCAs who were on pan-FGFR treatment for confirmed
FGFR2 alterations, and reported up to 13 independent
FGFR2 mutations detected per patient.® Such a polyclonal
mechanism or evolution implies that a single site biopsy
may not suffice to capture the complete picture of cancer
clonal dynamics. As different clones of cancer simultane-
ously shed their ctDNAs into the blood, ctDNA has the
unique advantage of providing a cross-sectional snapshot
of multiple clone genetics evolving at different stages.*

Diagnosis and Screening—Early Intrahepatic
Cholangiocarcinoma Detection Before Surgery,
and Screening High-Risk Populations

Wintachai et al. studied the diagnostic accuracy of
preoperative cfDNA levels using 62 resected CCA sam-
ples, of which 31 were iCCAs (Table 2).”> Compared with
their healthy controls, patients with CCA had up to 24-fold
higher mean cfDNA levels.” Plasma c¢fDNA level showed
89% sensitivity and 97% specificity in diagnosing a
heterogeneous group of patients with CCA (including a
mix of intra- and extrahepatic CCA), outperforming con-
ventional tumour markers such as the carcinoembryonic
antigen (CEA) and carbohydrate antigen 19-9 (CA19-9).>
Furthermore, this study showed how a higher cfDNA level
was correlated with a higher TNM staging (American Joint
Committee on Cancer 7th edition).>>"

Screening for iCCA is controversial, primarily as iden-
tifying high-risk groups has been a challenge. One
candidate cohort would be those with underlying primary
sclerosing cholangitis (PSC), where CCA is the most
common cause of death if transplantation has not occur-
red.”” In the PSC population, the cumulative incidence of
CCA is 20-25% at 20 years.”® CCA tends to occur in those
with dominant strictures in the perihilar region; however,
many cases of PSC-associated CCA present within a
6-month period of PSC diagnosis, precluding effective
screening.”® Nevertheless, given the evolving role of
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transplantation in CCA, particularly in PSC patients, early
identification of malignancy provides an opportunity.””™’
Unfortunately, in the presence of PSC, CA19-9 is poorly
sensitive to detecting malignancy.”® CtDNA in this regard
may provide an opportunity, in conjunction with imaging
and pathology, to increase the diagnostic yield of the
underlying malignancy. However, challenges exist, given
that ctDNA might be more difficult to detect in the earlier
stage iCCA settings due to smaller cancer cell volume or
burden.* For instance, in a study by Csoma et al., a pos-
itive correlation between tumour volume (in the setting of
metastatic biliary tract cancers including 15 iCCAs) and
cfDNA harvest yield (r = 0.93, p < 0.0001) was noted.
Similarly, Wintachai et al. reported merely a 50% match
between the gene mutations of the ctDNA and primary
tumour in the stage I-II iCCA group, which was lower than
the match reported from the more advanced stage III-IV
iCCA group.” Notably, PSC-CCA rarely occurs in small
ducts, and the genomic profiles from a limited series reveal
a high prevalence of TP53 and KRAS mutations.”” How-
ever, what is appealing is the potential utility of bile
cfDNA.'” In a study reported by Arechederra et al. eval-
uating strictures, bile cfDNA at the time of first Endoscopic
retrograde cholangiopancreatography (ERCP) was pro-
cessed using the Oncomine pan-cancer cell-free assay.'®
In patients with a stricture initially identified as benign or
indeterminate, the sensitivity of the cfDNA assay was
100% in identifying malignancy.'” Additional innovative
technologies seek to use methylation markers from blood
to provide early detection assays and predict cancer origin.
One example is the Circulating Cell-free Genome Atlas
(CCGA) study (NCT02889978), which developed and
validated a multi-cancer early detection (MCED) test using
whole genome bisulfite sequencing.'®’ The sensitivity of
this test was high (93.5%) in the 46 bile duct cancers
included.'®" In the future, these tests may complement
evolving screening strategies.

SUMMARY AND FUTURE DIRECTION

In this review, we summarized some of the evidence for
the potential application of ctDNA in the perioperative
setting for a target-rich cancer like iCCA. Circulating
tumour DNA in the perioperative setting may become a
biomarker for guiding neoadjuvant treatment decisions,
postoperative follow-up intensity and selection of patients
with detected MRD who might benefit from personalized
adjuvant therapy approaches.”>*'To overcome current
limitations, further ctDNA sequencing assay validations
and standardization of ctDNA collection time relative to
the time of surgery are required. Furthermore, given that
not all genetic mutations discovered from ctDNA will be

“actionable” or have targeted treatments available,?” some
genetic mutations detected might be irrelevant to the
oncogenesis process, and an understanding of tumour-in-
formed and -uninformed platforms is required. Finally, not
all patients with early iCCA will have enough ctDNA to be
harvested for meaningful genetic analysis; however, it is
expected that newer NGS-based assays and technology will
be able to detect lower levels of ctDNA, potentially
enabling screening and diagnostic tools for early iCCA
detection.’>*>** The integrative approach of cell-free
methylation or epigenomic signatures, together with
mutational analysis, is likely to move the needle with
regard to MRD and early detection.

CONCLUSION

Components of liquid biopsies including ctDNA may be
utilized to: (1) determine the molecular profile of the
tumour to integrate targeted molecular therapies into the
surgical treatment sequence, (2) form a surveillance tool
for the detection of MRD or cancer recurrence after sur-
gery, and (3) diagnose and screen for early iCCA detection
in high-risk populations. In the future, ctDNA could
become the standard biomarker in iCCA care for guiding
neoadjuvant treatment decisions, for postoperative follow-
up intensity, and for the selection of people who show signs
of residual disease after surgery and who could benefit
from adjuvant therapies. Future prospective clinical trials
studying neoadjuvant or adjuvant systemic therapies for
iCCA should incorporate serial ctDNA measurements in
their protocols to fully elucidate its potential.
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