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Abstract: Water has drawn a lot of interest as a manufacturing lubricant since it is affordable, eco-
friendly, and effective. Due to their exceptional mechanical qualities, water solubility, and variety
of application scenarios, graphene oxide (GO)-based materials have the potential to increase the
lubricant performance of water. The idea of this research was to quantify the linear 3D radiative
stagnation-point flow induced by nanofluid through a vertical plate with a buoyancy or a mixed
convection effect. The opposing, as well as the assisting, flows were considered in the model.
The leading partial differential equations (PDEs) were transformed into dimensionless similarity
equations, which were then solved numerically via a bvp4c solver. The influences of various physical
constraints on the fluid flow and thermal properties of the nanofluid were investigated and are
discussed. Water-based graphene oxide nanoparticles were considered in this study. The numerical
outcomes indicated that multiple solutions were obtained in the case of the opposing flow (λ < 0).
The critical values increased as the nanoparticle volume fraction became stronger. Furthermore, as
the nanoparticles increased in strength, the friction factor increased and the heat transfer quickened.
The radiation factor escalated the heat transfer in both solutions. In addition, a temporal stability
analysis was also undertaken to verify the results, and it was observed that the branch of the first
outcome became physically reliable (stable) whilst the branch of the second outcome became unstable,
as time passed.

Keywords: graphene oxide nanoparticle; stability analysis; buoyancy flow; radiation effect

MSC: 76D05; 76D10

1. Introduction

The thermal properties of convectional heat transfers are critical in industrial and engi-
neering applications. Due to their low thermal conductivity, various traditional fluids, such
as oil, water, and kerosene, do not deliver heat effectively. Various forms of nanoparticles
can be embedded into traditional fluids to improve heat transport. The resulting solution is
known as nanofluid, and the presence of nanoparticles in the fluid improves the thermal
conductivity, as well as the heat transfer rate. Choi [1] introduced the word “nanofluid” for
the first time in 1995. Nanofluids are mixtures of liquid comprised of tiny sized particles
that are utilized for the enhancement of thermal conductivity. Ellahi et al. [2] explored the
role of magnetic and slip effects on non-Newtonian nanofluid flow across a porous coaxial
cylinder. The influence of a magnetic field on the free convective flow of a nanoparticle
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over a stretching porous sheet was inspected by Rosmila et al. [3]. They discovered that
the volume fraction of the nanoparticles and the thermal stratification effects increased the
regular heat transport. Sheikholeslami et al. [4] used Galerkin and least-squares methods
to investigate the magnetized flow via a semi-porous channel induced by nanofluid and
obtained an analytic solution. They found that the influence of the magnetic constraint on
the thickness of the velocity boundary layer was minimal. Javaherdeh and Ashorynejad [5]
investigated the force-convection magnetized flow induced by nanofluid through a filled,
partially porous channel and utilized the lattice Boltzmann method. They revealed that the
average Nusselt number increases as a result of increasing the volume fraction, and there
was also a slow enhancement due to magnetic influence. The influence of heat transfer on
the coflowing fluid flow in a nanofluid across a porous moving surface was investigated
by Noor et al. [6]. Wang and Su [7] conducted an experiment-type investigation on nano-
liquid flow scorching-energy transfer through an orthogonal tube with modified pressure
conditions. Sandeep and Malvandi [8] inspected the magnetic impact on the thin fluid
flow of water-based graphene oxide nanoparticles induced by non-Newtonian fluid. The
features of the heat transfer and fluid flow resulting from the use of water-based graphene
oxide were examined by Zuhra et al. [9]. Ghosh and Mukhopadhyay [10] investigated
the heat transfer characteristics for forced convective flow-expressing nanofluid on a mov-
ing plate utilizing a heat sink/source and porous medium. Xue et al. [11] investigated
water-based graphene oxide material and presented the experimental results. Recently,
Khan et al. [12] investigated the features of mixed convective magnetic flow and heat
transport of a nanofluid passed through an irregular shrinking/stretching heated plate and
provided double solutions.

Mixed convection flow is critical in several processes in engineering fields. The
combination of free and forced convective flows is involved in many transport mechanisms,
such as solar collectors, heat exchangers, electronics equipment, and nuclear reactors.
Mixed convective flows are vital when the buoyancy force owing to the difference in
temperature between the solid surface and the free stream becomes large, affecting the
thermal fields and the flow significantly. Ramachandran et al. [13] studied the 2D flow
near a stagnation point subject to mixed convection across a vertical surface, taking into
account the variations in the arbitrary surface heat flux, as well as the arbitrary wall
temperature. They indicated that a region of reverse flow formed in the region of opposing
flow, and double solutions were discovered in that regime flow for a specific range of the
mixed convection parameter. This work was extended by Devi et al. [14] to an example of
unsteady flows, where the instabilities in the flow and temperature were exacerbated by
the time-dependent velocity of the free stream. Bachok et al. [15] investigated the features
of stagnation-point flow and heat transfer through a flat vertical plate, incorporating
mixed convection and an anisotropic fluid immersed in porous media. They established
that anisotropy had the effect of expanding the possible choices for the modified mixed
convective parameters that could produce results. Bhattacharyya et al. [16] inspected
the influence of slip on buoyancy flow through a vertical surface. They observed that
the dimensionless temperature and velocity were overshot due to slip and the mixed
convection parameters. The impact of the convective condition on mixed convective flow
from a vertical cone saturated in a porous media was inspected by Rosali et al. [17]. They
explored these two dissimilar branches’ outcomes in a situation of buoyancy-opposing
flow. The effect of heat generation on the mixed convective flow of a non-Newtonian
nanofluid through a circular heated cylinder was scrutinized by Mahat et al. [18]. Khan and
Rasheed et al. [19] numerically inspected the impact of MHD on the mixed convective flow
and heat transfer of a Maxwellian nanofluid through an aligned plate moving horizontally.
Bouslimi et al. [20] inspected the magnetic flow induced by nanomaterials with mixed
convection under an irregularly extending heated surface.

Following the literature review, we can assert that the problem considered here is how
to augment heat transfer fluids using mixed-convection 3D flows induced by a nanofluid
through a vertical plate, which is a problem that has been not discussed before. In addition,
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the influence of radiation and the stagnation-point flow is also discussed. The goal was to
improve the quality of the thermal conductivity of regular fluid to achieve improved heat
transfer with portable density for the heat exchangers used in modern thermal processes.
Graphical results were obtained using numerical simulation undertaken by transform-
ing PDEs into ODEs using appropriate transformations. A stability analysis was also
undertaken to explore the stable solutions.

2. Mathematical Formulation

Consider a mixed convection boundary layer stagnation-point flow of a linear three-
dimensional nanofluid induced by a vertical plate located along the xy-plane, as depicted
in Figure 1. The background of the physical model can be bounded with the help of
Cartesian coordinates x, y, and z, and the flow enactment occupies the domain z ≥ 0.
Additionally, in this flow model, we considered that the density varies linearly along with
the temperature; hence, Rosseland’s linear thermal radiation qr was assimilated to analyze
the heat transfer behavior. In this examination of the coordinate system, the velocity at the
plate was assumed to be zero, while the velocity of the far field or free stream is signified
by the components ue = ax, ve = by, and we = −(a + b)z, where a and b are arbitrary
constants. Moreover, the nature of the stagnation point (SP) is determined by the signs
and relative magnitudes of a and b. If the normal component of the mainstream velocity
is oriented toward the wall surface of the plate—that is, if (a + b) > 0—we speak about a
point of attachment in this study. A point of separation is used in the opposite situation.
The stagnation point is called a nodal point if a and b have the same sign; otherwise, it
is called a saddle point. Furthermore, the variable temperature at the plate and the far-
field constant temperature are denoted Tw(x) and T∞, respectively. For the heated plate
(buoyancy-assisting flow), the temperature at the plate is greater than the requisite far-field
temperature—i.e., Tw(x) > T∞—while the case in which Tw(x) < T∞ represents the cooling
plate (buoyancy-opposing flow). For thermal enhancement, graphene oxide (GO) was
incorporated into the base fluid (water) to form the posited nanofluid.
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Figure 1. The configuration model for the nanofluid flow and embedded coordinate system.

Under these assumptions, the continuity, momentum, and energy equations of the
nanofluid can be written as (Devi and Devi [21]):

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)
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u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z
− a2x =

µn f

ρn f

∂2u
∂z2 +

g
ρn f

(ρβa)n f (T − T∞), (2)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z
− b2y =

µn f

ρn f

∂2v
∂z2 +

g
ρn f

(ρβa)n f (T − T∞), (3)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
kn f(

ρcp
)

n f

∂2T
∂z2 −

1(
ρcp
)

n f

∂qr

∂z
, (4)

subject to the boundary conditions (BCs):{
u = 0, v = 0, w = 0, T = Tw(x), at z = 0
u→ ue, v→ ve, w→ we, T → T∞, as z→ ∞.

(5)

Here, w, v, and u are the velocity components of the nanofluid along the relative z, y,
and x axes, T is the temperature of the nanofluid, and g is the acceleration due to gravity.

Additionally, the mathematical symbols used in the governing Equations (2)–(4) are the
absolute viscosity µn f , the thermal conductivity kn f , the density ρn f , the thermal expansion
coefficient (ρβa)n f , and the specific heat capacitance

(
ρcp
)

n f of the nanofluid, which are
given by:

µn f

µ f
=

1

(1− ϕGO)
2.5 , (6)

kn f

k f
=

(
kGO + 2k f

)
− 2ϕGO

(
k f − kGO

)
(

kGO + 2k f

)
+ ϕGO

(
k f − kGO

) , (7)

ρn f

ρ f
= ϕGO

(
ρGO
ρ f

)
+ (1− ϕGO), (8)

(ρβa)n f

(ρβa) f
= ϕGO

(
(ρβa)GO
(ρβa) f

)
+ (1− ϕGO), (9)

(
ρcp
)

n f(
ρcp
)

f
= ϕGO

((
ρcp
)

GO(
ρcp
)

f

)
+ (1− ϕGO). (10)

In the above equations (Equations (6)–(10)), the notation ϕGO is called the solid volume
fraction of the nanoparticles, whereas the particular value of ϕGO = 0 corresponds to the
base fluid (water). In addition, the symbols k f , kGO, µ f , µGO, ρ f , ρGO, βa f , and βaGO
signify the relative thermal conductivity, viscosity, density, and coefficient of the TE of
the normal-based fluid and the solid volume fraction of the nanoparticles, respectively.
Furthermore,

(
cp
)

f and
(
cp
)

GO are the heat capacity at the uniform or constant pressure
of the pure fluid and the solid nanomaterial volume fraction, respectively. The thermo-
physical experimental data of the normal-based fluid and the graphene oxide nanoparticles
are given in Table 1.

Table 1. The thermo-physical properties of the water/GO nanofluid [22].

Properties cp(J/kgK) ρ
(

kg/m3
)

βa×10−5(K−1) k (W/mk) Pr

Water 4179 997.1 21 0.613 6.2
GO 717 1800 2.8× 10−4 5000 -
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By making use of Rosseland’s approximation, the expression for the radiative heat
flux qr can be articulated in the following form [23–25]:

qr = −
4σ∗

3k∗
∂T4

∂z
, (11)

where T4 ≈ T4
∞ + 4T3

∞(T − T∞).
Using Equation (11) for the last term of Equation (4), we get:

1(
ρcp
)

n f

∂qr

∂z
=

−1(
ρcp
)

n f

16σ∗T3
∞

3k∗
∂2T
∂z2 . (12)

Then, writing the energy equation in a more simplified, closed form than putting
Equation (12) into Equation (4), we get:

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
1(

ρcp
)

n f

(
kn f +

16σ∗T3
∞

3k∗

)
∂2T
∂z2 . (13)

To simplify the inspection of the considered mathematical model, the following simi-
larity variables can be demarcated:

u = ue f ′(η), v = veg′(η), w = −√aυ f ( f + cg),
θ = T−T∞

Tw(x)−T∞
, η = z

√
a

υ f
, c = b/a, (14)

where Tw(x) = T∞ + T0x/l, and in which T0 and l are the reference temperature and the
characteristic length.

Now, using the similarity transformations from Equation (14) in the governing equa-
tions, Equation (1) is identically satisfied while Equations (2), (3), and (13) are changed to
the following similarity ODEs:

µn f /µ f

ρn f /ρ f
f ′ ′′ + ( f + cg) f ′′ − f ′2 + 1 +

λ

ρn f /ρ f

(ρβa)n f

(ρβa) f
θ = 0, (15)

µn f /µ f

ρn f /ρ f
g′ ′′ − cg′2 + ( f + cg)g′′ + c +

λ

ρn f /ρ f
Ac−1/2

(ρβa)n f

(ρβa) f
θ = 0, (16)

1
Pr
(
ρcp
)

n f /
(
ρcp
)

f

(
kn f /k f +

4
3

Rd

)
θ′′ + ( f + cg)θ′ − f ′θ = 0, (17)

subject to: {
f (0) = 0, g(0) = 0, f ′(0) = 0, g′(0) = 0, θ(0) = 1, at η = 0,
f ′(η)→ 1, g′(η)→ 1, θ(η)→ 0, as η → ∞.

(18)

The above-mentioned set of similarity equations (Equations (15)–(18)) comprise dis-
tinct dimensionless influential factors that are denoted A = Rex

1/2/Rey
1/2 (the Reynolds

ratio or material parameter), Rd = 4σ∗T3
∞/k∗k f (the radiation parameter), Pr = υ f /α f

(the Prandtl number), and λ = Grx/Re2
x = (βa) f gT0/a2l (the buoyancy or mixed convec-

tion parameter). Further, the mixed convection or buoyancy is the ratio of the Grashof
number (Grx =

(
g(βa) f (Tw − T∞)x3

)
/υ f

2) and the square of the Reynolds number

(Rex
2 =

(
(ax)x/υ f

)2
).
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The gradients, or the key engineering physical quantities of interest, are the skin
friction coefficients C f x (along the x-axis) and C f y (along the y-axis) and the rate of heat
transfer Nux, which are articulated as follows:

C f x =
µn f

∂u
∂z |z=0

ρ f ue2 , C f y =
µn f

∂v
∂z |z=0

ρ f ve2 ,

Nux = x
k f (Tw−T∞)

(
−kn f

∂T
∂z

∣∣∣
z=0

+ (qr)|z=0

)
.

(19)

With the help of the similarity variables from Equation (14), Equation (19) takes the
form of:

Rex
1/2C f x =

µn f
µ f

f ′′ (0), Rey
1/2C f y =

µn f
µ f

c−1/2g′′ (0),

Rex
−1/2Nux = −

( kn f
k f

+ 4
3 Rd

)
θ′(0).

(20)

where Rex = uex/υ f and Rey = vey/υ f designate the local Reynolds numbers.

3. Stability Analysis

The temporal stability analysis of the multiple (UB and LB) solutions was then deter-
mined as time progressed. In this case, we drew on the stability analyses from previous
work (Merkin [26]; Weidman et al. [27]; Khan et al. [28]). As a result, the following new
similarity variables were employed:

u = ue
∂ f
∂η (η, τ), v = ve

∂g
∂η (η, τ), w = −√aυ f ( f (η, τ) + cg(η, τ)),

θ = T(η,τ)−T∞
Tw(x)−T∞

, η = z
√

a
υ f

, c = b/a, τ = at.
(21)

By making use of the unsteady governing equations and the new transformations
(Equation (21)), we have:

µn f /µ f

ρn f /ρ f

∂3 f
∂η3 −

(
∂ f
∂η

)2
+ ( f + cg)

∂2 f
∂η2 + 1 +

λ

ρn f /ρ f

(ρβa)n f

(ρβa) f
θ − ∂2 f

∂η∂τ
= 0, (22)

µn f /µ f

ρn f /ρ f

∂3g
∂η3 − c

(
∂g
∂η

)2
+ ( f + cg)

∂2g
∂η2 + c +

λ

ρn f /ρ f
Ac−1/2

(ρβa)n f

(ρβa) f
θ − ∂2g

∂η∂τ
= 0, (23)

1
Pr
(
ρcp
)

n f /
(
ρcp
)

f

(
kn f /k f +

4
3

Rd

)
∂2θ

∂η2 + ( f + cg)
∂θ

∂η
− ∂ f

∂η
θ − ∂θ

∂τ
= 0, (24)

subject to: {
f (0, τ) = 0, g(0, τ) = 0, ∂ f

∂η (0, τ) = 0, ∂g
∂η (0, τ) = 0, θ(0, τ) = 1,

∂ f
∂η (η, τ)→ 1, ∂g

∂η (η, τ)→ 1, θ(η, τ)→ 0, as η → ∞.
(25)

Then, the following relations were considered (see Weidman et al. [27]; Khan et al. [28]):

θ(η, τ) = θ0(η) + e−ΓτS(η), g(η, τ) = g0(η) + e−ΓτG(η),
f (η, τ) = f0(η) + e−Γτ F(η),

(26)

where the steady solutions of f = f0(η), g = g0(η), and θ = θ0(η) can easily perturb
the PDE equations (Equations (2) to (4)). Moreover, the functions F(η), G(η), and S(η) in
Equation (26) are relatively small compared to f0(η), g0(η), and θ0(η). The sign (negative
or positive) of the eigenvalue Γ defines the stability of the outcomes. By putting τ = 0,
we have F(η) = F0(η), G(η) = G0(η), and S(η) = S0(η). Inserting Equation (26) into
Equations (22)–(24), the linearized eigenvalue problem is given as:
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µn f /µ f

ρn f /ρ f
F0
′ ′′ − 2F0

′ f0
′ + ( f0 + cg0)F0

′′ + (F0 + cG0) f0
′′ +

λ

ρn f /ρ f

(ρβa)n f

(ρβa) f
S0 + ΓF0

′ = 0, (27)

µn f /µ f
ρn f /ρ f

G0
′ ′′ − 2g0

′G0
′ + ( f0 + cg0)G0

′′ + (F0 + cG0)g0 ′′+

λ
ρn f /ρ f

Ac−1/2 (ρβa)n f
(ρβa) f

S0 + ΓG0
′ = 0,

(28)

1
Pr(ρcp)n f /(ρcp) f

(
kn f /k f +

4
3 Rd

)
S0
′′ + ( f0 + cg0)S0

′ + (F0 + cG0)θ0
′−

f0
′S0 − θ0F0

′ + S0Γ = 0,
(29)

with BCs as: {
F0(0) = 0, G0(0) = 0, F0

′(0) = 0, G0
′(0) = 0, S0(0) = 0,

F0
′(η)→ 0, G0

′(η)→ 0, S0(η)→ 0, as η → ∞.
(30)

The values of Γ in Equations (27)–(29) are obtained by fixing the values of F0
′′ (0), G0

′′ (0),
or S0

′(0). Finally, we set F0
′′ (0) = 1 and solve the system of Equations (27)–(30) to obtain

the eigenvalues Γ (see Harris et al. [29]).

4. Research Methodology and Validation

The mathematical model constructed to resolve a problem always needs some sort of
software applicable for the simulation of the problem. Different software packages have
different performances and characteristics. The problem considered here was primarily
constructed in the form of PDEs (Equations (2)–(5)). Then, these developed equations were
reduced to ordinary differential equations (Equations (15)–(17)) with border alignment
(Equation (18)) by utilizing the similarity variables (Equation (14)). The developed similarity
equations were coupled and highly nonlinear; therefore, the closed-form analytical solution
was rationally complex or impossible. For this reason, the problem was solved numerically
via bvp4c and dual outcomes for the distinct comprised control parameters were obtained.
Moreover, the code was a built-in one that is worked in MATLAB software. This scheme
was also established using a finite-difference technique that calculated the three-stage
Lobatto IIIA formula to yield C1—continuous outcomes. Detailed descriptions of this
procedure have been given in many previous studies (see Shampine et al. [30]). According
to this published research, the problem can be reduced to the requisite first-order ODEs
from higher-order ODEs via the insertion of the new mathematical variables. The working
procedure is demarcated as:

f = E1, f ′ = E2, f ′′ = E3, g = E4, g′ = E5, g′′ = E6, θ = E7, θ′ = E8 (31)

With the help of the aforesaid variables, the suggested similarity ODEs can be changed
to the following set of first-order similarity equations:

d
dη



E1
E2
E3
E4
E5
E6
E7
E8


=



E2
E3
ρn f /ρ f
µn f /µ f

(
E2

2 − 1− (E1 + cE4)E3 − λ
(ρβa)n f /(ρβa) f

ρn f /ρ f
E7

)
E5
E6
ρn f /ρ f
µn f /µ f

(
cE5

2 − c− (E1 + cE4)E6 − λAc−1/2 (ρβa)n f /(ρβa) f
ρn f /ρ f

E7

)
E8
(ρcp)n f /(ρcp) f Pr

(kn f /k f +(4/3)Rd)
(E2E7 − (E1 + cE4)E8)


(32)
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The above-mentioned set of equations can then be rewritten as a single boundary
value problem (IVP). Therefore, the following known and unknown ICs were considered:{

E1(0) = 0, E2(0) = 0, E3(0) = a1, E4(0) = 0, E5(0) = 0,
E6(0) = a2, E7(0) = 1, E8(0) = a3.

(33)

In addition, the bvp4c code simulations require different guesses for the working
solution process. The existing model of the problem developed two distinct branches
(upper branch (UB) and lower branch (LB)) for the solutions. Therefore, two distinct
guesses are essential for multiple solutions. The guess for the UBS was obvious, while for
the LBS the appropriate estimate was pretty hard to find. However, the problem ICs were
comprised of distinct arbitrary constants a1, a2, and a3, which were guessed in a feasible
way through the iteration of the simulations once the UBS and LBS satisfied the far-field
boundary conditions:

{E2(∞)→ 1, E5(∞)→ 1, E7(∞)→ 0 (34)

Additionally, the model conveys distinct influential parameters. The initial approxi-
mation at a most important mesh or step size is offered with the goal of achieving accuracy
and precision in the outcomes. Therefore, proper initial approximation and boundary layer
thicknesses, η = η∞, between 0.0 to 6.0 must be chosen for the values of the pertinent
parameters. Moreover, the numerical data for the UBS given in this examination were com-
pared to previous findings by Dinarvand et al. [31] and Bhattacharyya and Gupta [32] for
verification purposes. The computational outcomes for the shear stress in both directions
were computed for the pure normal fluid without the influence of the mixed convection
or buoyancy parameter and the nanoparticle volume fractions, and they are compared in
Tables 2 and 3. We noticed that the current and past findings were in fair agreement. In
addition, the error percentage was also calculated (see both the tables). As a consequence,
we verified that the technique used in this study, as well as the data and the graphs obtained,
were legitimate and acceptable.

Table 2. Comparison of Rex
1/2C f x in the x-axis coordinates with results from previously published

work for the pure normal fluid when ϕ = 0 and λ = 0. Furthermore, the error% was calculated from [31].

Dinarvand et al. [31] Bhattacharyya and Gupta [32] Present Results

c = 0.5 c = −0.5 c = 0.5 c = −0.5 c = 0.5 Error% c = −0.5 Error%
1.2681 1.2325 1.267911 1.231289 1.2681657 0.0063 1.2325853 0.0085

Table 3. Comparison of Rey
1/2C f y in the y-axis coordinates with results from previously published work

for the pure normal fluid when ϕ = 0 and λ = 0. Furthermore, the error% was calculated from [31].

Dinarvand et al. [31] Bhattacharyya and Gupta [32] Present Results

c = 0.5 c = −0.5 c = 0.5 c = −0.5 c = 0.5 Error% c = −0.5 Error%
0.49930 0.05576 0.499358 0.055751 0.4993267 0.0023 0.0557624 0.0002

5. Interpretation of the Results

Next, we investigated the influence of the various parameters on the velocity profiles
f ′(η) and g′(η), the drag forces in boththe x-axis and y-axis, and the rate of heat transport
for the UBS and the LBS, as shown in Figures 2–10. These graphs were mainly discussed
and calculated for the cases of the SSP (c = −0.05) and the NSP (c = 0.05). Buoyancy-
assisting flow (BAF, λ > 0) and buoyancy-opposing flow (BOF, λ < 0) were also considered
in this examination. The multiple solutions (UB and LB) were only developed for the
BOF situation, while we developed a single-branch solution for the BAF situation. For
the numerical simulations, the fixed default values of the suggested parameters were the
following: λ = −2.0, Rd = 2.0, ϕ = 0.025, A = 0.05, and Pr = 6.2. In addition, all the
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graphs show the outcomes of the UBS and LBS, and the UBS is signified by the hard or
solid lines and the LBS is indicated by the dashed lines. Furthermore, red, blue solid, and
dashed lines indicate the NSP and SSP, respectively.

The impact of the nanoparticle volume fractions ϕ on the field of the velocities f ′(η)
and g′(η) in the respective x- and y-axis coordinates for the UB and LB results are shown
in Figures 2 and 3, respectively. In both the graphs, the outcomes were calculated for the
SSP (c = −0.05) and the NSP (c = 0.05). The consequences indicated that the augmented
values of ϕ suggested an amplification in the field of the velocities f ′(η) and g′(η) in the
corresponding x- and y-axis coordinates for the UBS, while, for the LBS, the field was
decelerated. In addition, the gap between the curves of the UBS for both the NSP and SSP
was much smaller compared to the curves of the LBS. After observing the graphs in more
detail, the outcome magnitudes of the velocity profiles along both axes of direction, as well
as the momentum boundary layer thickness for the case of the NSP, were slightly higher
and looked better than the outcomes for the SSP when we increased the influences of the
nanoparticle volume fractions.
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Figures 4 and 5 demonstrate the influences of ϕ and the radiation parameter Rd on
the temperature distribution θ(η) in relation to the pseudo-similarity variable η for the
UBS and LBS, respectively. The outcomes in both the plots highlighted the fact that, for
the SSP, c = −0.05, and for the NSP, c = 0.05. From the graphs, it was observed that the
temperature distribution profile increased for both the NSP as well as the SSP when we
boosted the values of ϕ and Rd. Further, it was seen that the solution for the temperature
profiles behaved monotonically and increased for the UBS and LBS due to the significant
impact of ϕ and Rd. Physically, the nanoparticles and the radiation parameter showed
direct proportionality with the distributions of the temperature curves. The significant
roles of ϕ and Rd demonstrated well-known thermal conductivity behavior; therefore, the
thickness of the thermal boundary layer and the shapes of the temperature for the UBS
and LBS were enriched. In addition, the gap between the curves of the UBS was slightly
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better than for the LBS. Moreover, the temperature curves looked more advanced for the
SSP relative to the NSP.
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Figure 5. Temperature distribution profile θ(η) for varying Rd.

Figures 6–8 exemplify the influence of ϕ on the shear stress in the respective x-axis
and y-axis coordinate directions and the rate of heat transfer for the SSP and the NSP,
respectively. In both the plots, we constructed the outcomes for the UB and the LB. From
the outcomes, it can be seen that the drag force in both directions, along with the heat
transfer, escalated for the UBS owing to the larger values of ϕ, and the speed slowed down
in the LBS when ϕ was increased. In these graphs, the UB and LB results were generated
for a certain range of the buoyancy or mixed convection parameter (λ). The outcome was
unique for the case where λ = λC, no solution was possible for λ < λC, and a unique solution
was accomplished for the case where λ > λC. Further, it was detected from the plots that
multiple (UB and LB) outcomes were possible for ϕ = 0.025, 0.030, and 0.035 for −2.66120,
−2.78750, −2.92105, −2.62140, −2.74570, and −2.87770, respectively. The first three critical
values (−2.66120,−2.78750, and−2.92105) were found for the case of the NSP with varying
ϕ, while the other three values (−2.62140, −2.74570, and −2.87770) were presented for
the case of the SSP. Furthermore, this highlighted the fact that the critical point of the
boundary layer only appeared in the buoyancy-opposing flow. Moreover, the magnitude
of the bifurcation values became larger with the intensification of ϕ. This pattern suggested
that the SBL shrank with greater influences from the nanoparticle volume fraction.

The influences of Rd on the rate of heat transfer for both the distinct branches’ outcomes
are shown in Figure 9. Results are highlighted in the given graph for the case of the NSP as
well as for the case of the SSP. From the plot, it can be perceived that the heat transfer was
increased for the UBS due to the larger impact of Rd while the implementation of the same
parameter for the LBS showed an opposite trend. In the physical scenario, this happens
because the heat transfer increased with greater values of Rd via the additional heat flux
that is supplied, and this improves the thermal boundary layer, as well as the thermal
performance, in both the stagnation-point cases. In contrast, the behavior of the curves for
the LBS increased and decreased when we changed the values of Rd. In addition, the gap
with the UB was slightly better than the gap with the LB when we increased the parameter
Rd. With a larger Rd, the following bifurcation values were obtained: −2.78750, −2.61180,
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and −2.48908. The absolute values of the bifurcation values declined, which showed that
the boundary layer separation escalated.
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Figure 9. Heat transfer rate Rex
−1/2Nux for varying Rd.

Finally, Figure 10 elucidates the eigenvalues Γ versus λ for the case of the NSP when
c = 0.05, ϕ = 0.025, A = 0.05, Pr = 6.2, and Rd = 2.0. From the figure, it can be seen
that, for the positive outputs of Γ, the exponential decaying function e−Γτ → 0 as τ → ∞ .
Alternatively, for the negative outputs of Γ, the exponential decaying function e−Γτ → ∞
as τ → ∞ . It was discovered from this behavior, and also from the graph, that the UB
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solution was stable and trustworthy, while the LB solution was not physically reliable and
not trustworthy.
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6. Conclusions

The idea of this study was to explore the consequences of novel mixed-convection
linear thermal radiation and a three-dimensional water-based graphene oxide nanofluid
flow induced through a vertical plate with significant impacts on the stagnation point. With
the help of similarity transformations, the partial differential equations were converted into
ordinary differential equations and then calculated numerically using bvp4c. They were
then authenticated with the available numerical results and showed good agreement. The
key findings of the study can be summarized as follows:

• Upper and lower solution branches in the given research model existed for particular
domains of the mixed convection parameter, with impacts from several parameters.

• For higher values of ϕ, the dimensionless velocity profile in both directions increased
for the UBS and decreased for the LBS.

• With a larger consequential value for the radiation parameter and the nanoparticle
volume fraction ϕ, the temperature distribution profile was increased in both solu-
tion branches.

• The magnitude of the critical values increased with ϕ and shrank for the larger values
of Rd.

• The skin friction coefficients in both directions and the rate of heat transfer were
augmented with larger values of ϕ and Rd.

• The stability analysis revealed that the UB solution was stable and physically accept-
able while the LB solution was not physically stable.
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Nomenclature

A Reynolds ratio or material parameter
a, b Arbitrary constants
C f x Shear stress along the x direction
C f y Shear stress along the y direction
c Nodal/saddle indicative parameter
cp Specific heat at constant pressure (J/Kg·K)
f ′(η) Dimensionless velocity along the x direction
g Acceleration due to gravity (m/s2)
g′(η) Dimensionless velocity along the y direction
k Thermal conductivity (W/(m·K))
k∗ Mean absorption coefficient (1/m)
l Characteristic length (m)
Nux Local Nusselt number
Pr Prandtl number
qr Radiative heat flux
Rd Radiation parameter
Rex, Rey Local Reynolds numbers
T Temperature of the fluid (K)
T0 Reference temperature (K)
Tw(x) Variable surface temperature (K)
T∞ Constant ambient temperature (K)
t Time (s)
u, v, w Velocity components along the x, y, and z directions (m/s)
ue, ve, we Free-stream velocities along the x, y, and z directions (m/s)
x, y, z Cartesian coordinates (m)
Greek symbols
βa Thermal expansion coefficient
Γ Eigenvalue parameter
η Pseudo-similarity variable
θ(η) Dimensionless temperature
λ Buoyancy or mixed convection parameter
µ Absolute viscosity (N·s/m2)
υ f Kinematic viscosity (m2/s)
ρ Density (kg/m3)
σ∗ Stefan–Boltzmann constant (W/(m2·K4))
τ Dimensionless time variable
ϕ Solid volume fraction of nanoparticles
Acronyms
BAF Buoyancy-assisting flow
BCs Boundary conditions
BOF Buoyancy-opposing flow
bvp4c Boundary value problem of the fourth-order
GO Graphene oxide
ICs Initial conditions
LBS Lower branch solution
MHD Magneto-hydrodynamics
NSP Nodal stagnation point
ODEs Ordinary differential equations
PDEs Partial differential equations
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SP Stagnation point
SSP Saddle stagnation point
2D Two-dimensional
3D Three-dimensional
UBS Upper branch solution
Subscripts
f Base fluid
∞ Far-field condition
n f Hybrid nanofluid
GO Solid nanoparticles
w Wall boundary condition
Superscript
′ Derivative with respect to η
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