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Abstract In this paper, Long Short-Term Memory (LSTM) was proposed to predict the energy

consumption of an institutional building. A novel energy usage prediction method was demon-

strated for daily day-ahead energy consumption by using forecasted weather data. It used weather

forecasting data from a local meteorological organization, the Malaysian Meteorological Depart-

ment (MET). The predictive model was trained by considering the dependencies between energy

usage and weather data. The performance of the model was compared with Support Vector Regres-

sion (SVR) and Gaussian Process Regression (GPR). The experimental results with a dataset

obtained from a building in Multimedia University, Malacca Campus from January 2018 to July

2021 outperformed the SVR and GPR. The proposed model achieved the best RMSE scores

(561.692–592.319) when compared to SVR (3135.590–3472.765) and GPR (1243.307–1334.919).

Through experimentation and research, the dropout method reduced overfitting significantly. Fur-

thermore, feature analysis was done with SHapley Additive exPlanation to identify the most impor-

tant weather variables. The results showed that temperature, wind speed, rainfall duration and the

amount had a positive effect on the model. Thus, the proposed approach could aid in the implemen-

tation of energy policies because accurate predictions of energy consumption could serve as system

fault detection and diagnosis for buildings.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

International Energy Agency (IEA) reported that global
electricity demand will increase up to 3 % annually due to
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Table 1 Analysis of external variables affecting the perfor-

mance of the predictive models.

Ref. External

variables used

Findings

[14] � Principal

building

activity

� Square

footage

� Number of

floors

� Heating

degree days

� Cooling

degree days

The square footage of a building was an

important factor in affecting the

performance of the model followed by

the climate-related features (i.e., heating

degree days and cooling degree days).

[15] � Outdoor

temperature

� Dew point

� Relative

humidity

� Barometric

pressure

� Precipitation

� Wind speed

� Solar

radiation

� Number of

occupants

� Time of day

� Workday

type

� Day type

Different buildings had its variable

importance pattern shown for each

predictive model. One of the buildings

showed that energy usage depended on

the occupancy variables (i.e., weekday,

time of day and number of occupants)

while the other building showed both

occupancy data and environmental

variables (i.e., dew point and pressure)

highly impact the prediction

performance of the model.

[30] � Ambient

temperature

� Solar flux

� Humidity

� Hour of the

day

� Day of the

week

� Day of the

year

The prediction of the electric load in

buildings showed that environmental

variables such as ambient temperature

and solar radiation highly impacted the

results of the prediction while others

such as wind velocity and humidity

barely affected the outcome. The day and

time variables and occupancy variable

were significant in developing a good

predictive model.
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continued economic growth in 2022 [1]. Carbon dioxide emis-
sions increased from 1990 to 2020, and then declined by 5.8 %
due to Covid-19 restrictions [2]. Despite the decrease in green-

house gases emission in 2020, the concentration of carbon
dioxide reached the highest average annual concentration.
World Meteorological Organization (WMO) concluded that

the global mean temperature of 2021 was 1.09 �C higher com-
pared to the era 1850 to 1900 [3].

Building energy consumption accounts for a significant

portion of Malaysia’s total energy consumption. Residential
and commercial buildings accounted for 13 % of total energy
consumption in 2020, according to Malaysia’s energy con-
sumption trend [4]. Buildings consumed 54 % of the total elec-

tricity usage in Malaysia [5], which in turn was expected to rise
4.3 % annually on average from 2004 to 2030 [4]. The huge
increase in energy demand was due to the growing population

and economic development, which is also true globally. Hence
there was motivation to improve the utilization of energy.
Research showed the inefficiency of Malaysian office buildings

and that optimizations could be done to reduce energy usage
[6]. Furthermore, according to an energy benchmark con-
ducted on higher education buildings in Australia, only 7 %

of buildings were energy efficient [7]. Universities as a group
are ideal for energy studies, as Malaysia has more than 100
institutions which consist of 20 public universities and private
universities that contribute to energy consumption [8]. Fur-

thermore, institutional buildings could be easily optimized by
computer modelling [9]. Therefore, a predictive model was cre-
ated and reported here to help foresee the energy consumption

of Multimedia University Malacca.
The data-driven model created the most predictive models

[20]. Which required complex and comprehensive information

regarding buildings in creating a physical model [10]. Physical
models are relatively complicated, yet they fail to accurately
anticipate energy demand in buildings [43]. Data-driven mod-

els such as Artificial Neural Networks (ANNs) and SVR were
preferred, due to their advantage in being able to exclude the
complexity of structures, which was influenced by a variety
of factors such as thicknesses of walls and types of building

materials in developing a predictive model [11]. In Greece,
the Multilayer Perceptron Model (MLP) is being used to pre-
dict long-term energy usage [12]. A feed-forward neural net-

work was developed to forecast diurnal energy consumption
for buildings had shown great prediction accuracy [13]. In
Hong Kong, the decision tree model and neural network are

preferred in predicting electricity energy consumption [16].
Environmental variables such as temperature could greatly

affect the accuracy of the prediction model [14]. Table 1
showed the analysis of external variables that affected the per-

formance of the predictive models. Analysis showed environ-
mental variables could be useful indicators in creating a
good predictive model [15]. In a study, 9 parameters including

environmental variables were used in predicting solar irradi-
ance prediction [19]. In another study, 11 external parameters
were used in hourly energy prediction for two educational

buildings with accurate results [15]. Therefore, weather data
including temperature, wind velocity, humidity and air pres-
sure were obtained from the Malaysian Meteorological

Department (MET) in creating a predictive model here. The
LSTM is used to predict the energy consumption of the insti-
tutional building due to its ability to solve long-term and
short-term dependencies among the data [36]. LSTM was used
in short-term residential load forecasting that showed good
prediction despite the high volatility and uncertainty of the
data [17]. Genetic Algorithm (GA) was used to optimise the
LSTM model for electric load forecasting using French

metropolitan electricity data [18]. It showed that LSTM was
able to show good prediction accuracy from meteorological
observation in rainfall-runoff modelling [32].

The model created was used to predict the daily day-ahead
for energy consumption for the institutional building. It was
noted that forecast and prediction were defined as the estima-

tion of the future magnitude of a variable [20]. These predic-
tions can be benchmarked and used for system fault
detection. Optimisations could be done by building retrofit

to increase the efficiency of energy usage [21]. To achieve
COP260s objective to reduce global warming by reducing
greenhouse gases emission [22]. Furthermore, the amount of
electricity consumption in Malaysia was correlated with its



Table 2 Advantages and disadvantages of several energy

prediction techniques.

Model Advantage Disadvantage

Physical

model

Great understanding of

the building properties

and exception of

historical data as input.

High computation, is

more complex and

requires a detailed

description of the

building.

Statistical

model

Less computational time

and less complexity in the

model.

Requires a huge amount

of historical data to

create an accurate model.

Hybrid

model

Requires less historical

data and retains physical

interpretation of the

building.

Requires less historical

data compared to the

statistical method, and

medium computation

time.
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Gross Domestic Product (GDP) which was a common metric
to assess economic growth [5]. Therefore, the proposed work
could be helpful in implementing energy policies as accurate

energy predictions may have a significant impact on capital
expenditure [12].

2. Literature review

The concept of energy prediction is to identify and predict the
improvements that can be made to optimize energy usage in a

building. There are many energy prediction techniques such as
the physical method, statistical method and hybrid method
[10], each having advantages and disadvantages.

A review of energy prediction techniques used in building
energy performance forecasting has been presented
[10,20,23]. Physical methods or white-box models such as the

nodal method, zonal method and CFD method require
detailed information and description of the building as the
inputs. As a result, the energy prediction techniques become
complex and take high computational time. However, these

techniques do not require historical data of the buildings as
it predicts the data of the building through simulation of the
building properties. There is multiple software available for

each method. There are EnergyPlus and TRNSYS for the
nodal approach. The COMSOL and ANSYS are for CFD
method, while SimSPARK is using the zonal approach. Wurtz

et al. [24] predicted accurately the temperature field of a room
using the zonal method. The study in [25] created a model of
the building in EnergyPlus to analyze the energy performance
of the building by changing the properties of the materials of

the building.
The statistical method or black-box model is currently the

most used in predicting building energy consumption. The

method is comprised of GA, ANN, SVR, Auto-Regressive
Integrated Moving Average (ARIMA), Multiple Linear
Regression (MLR), GPR, Gradient Boosting and Principal

Component Analysis [23]. González and Zamarreño [26] used
feedback ANN for electric load forecasting. Ekonomou [12]
created a predictive model using MLP for long-term energy

consumption prediction in Greece. Deb et. al [13] showed that
feedforward ANN can forecast the next day’s diurnal cooling
energy load with great accuracy for institutional buildings. The
computational burden and complexity of physical methods

cause the statistical method to be preferred. In [23], the devel-
oped ANN was able to significantly reduce the computational
effort and time. As the statistical method requires historical

data of the building, the technique in [21] used other institu-
tional buildings to improve predictions made.

The hybrid method or grey-box model is the combination

of physical and statistical techniques to produce a better
model. In [27], a simplified tool for the thermal evaluation of
a building in the Mediterranean coupled with GA was used
to optimize the building parameter for optimum thermal

evaluation. The ANN was used in the analysis for neural
identification architecture to improve the HVAC system with
a single-zone thermal system model [28]. In [29], DOE-2

physical software was coupled with GA by optimising values
of architecture structure related to the envelope to increase
energy efficiency for residential buildings. Table 2 summarises

the features of the models.
For the present research, a data-driven model which is a
deep-learning model, called LSTM, will be used as the predic-

tive model. Deep learning falls under the sub-category of
machine learning and can store more information, and thus
more data can be incorporated to make more accurate predic-

tions [31]. The disadvantage of deep learning architectures is
that they require a huge quantity of parameters, and are com-
plex to train [20]. Examples of deep learning models include

deep neural networks (DNN), recurrent neural networks
(RNN) and autoencoders (AE). Table 3 shows some previous
studies that contribute significantly to providing a platform for
future studies, suggestions to improve certain aspects and their

comparisons. Some studies reported on several iterations
instead of batch size and number of epochs.

External variables such as temperature, wind velocity, pres-

sure, humidity and dew point can be important factors in
increasing prediction accuracy [15]. However, not all environ-
mental variables are significant and some can be omitted, such

as wind velocity or humidity [30]. In [25], a building’s energy
consumption is influenced by the insulation materials used.
In [14], it was shown temperature was an important compo-
nent and an indicator of energy used in either heating or cool-

ing a building. These are important aspects that should be
identified and analyzed in building retrofit and in energy con-
sumption forecasting. By predicting building energy consump-

tion accurately, a better energy benchmark and better energy
efficiency can be obtained [34].

3. Energy prediction techniques

3.1. Proposed prediction algorithm, Long Short-Term Memory
(LSTM)

LSTM is similar to RNN but with some distinguishing fea-

tures. RNN architecture may consist of nodes, layers, and con-
nections such as Feedforward Neural Networks (FNNs) [35].
An RNN can establish self-loop connections from one node

to another through time step intervals [36].
Fig. 1 describes the structure of an LSTM unit. Instead of a

simple RNN unit, LSTM consist of memory blocks with three



Table 3 Comparison of the proposed algorithm with related existing deep learning models.

Ref. Model type Number of epochs Number of hidden neurons Batch size Is dropout used? Dropout value

[17] LSTM 150 20 No

[18] LSTM 150 100 125 No

[19] LSTM 50 30 50 No

[31] LSTM 50 20 1 Yes 0.1

[32] CNN-LSTM 100 No

[33] DE-LSTM 3000 50 500 No

[41] LSTM 40 Yes 0.5

Fig. 1 Structure of Long Short-term Memory (LSTM).
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gates: input gate it, output gate ot and forget gate ft. The gates

are important in avoiding the vanishing gradient problem as
there will be a significant number of environmental variables
[33]. Accurate predictive modelling as LSTM factors in the

dependency between variables on the relevant timestamp
[38]. In Reference [37], a detailed description of the LSTM
model is given.

it ¼ r Wixt þUiht�1 þ bið Þ ð1Þ

ft ¼ r Wfxt þUfht�1 þ bf
� � ð2Þ

ot ¼ r Woxt þUoht�1 þ boð Þ ð3Þ

C
�
t ¼ tanhðWcxt þUcht�1 þ bcÞ ð4Þ

Ct ¼ ftbCt�1 þ itbC
�
t ð5Þ

ht ¼ otbtanhðCtÞ ð6Þ
In the equations above, it, ft and ot are the three gates,

input, output and forget gates, respectively at the time, t Wi

and Wf: The Wo denotes the weight matrices from the input,

forget and output gates to the input, respectively. The bi, bf
and bo are the bias of input, forget and output gate, respec-
tively. The Ui, Uf and Uo denote the weight matrices from

the input, forget and output gates to the hidden, respectively.

r is a logistic sigmoid function and b denotes the element-

wise multiplication of two vectors. xt is a vector that is located
in the input layer of the LSTM. ht is an output vector of the

hidden layer and is located in the LSTM unit at the time, t.

Ct denotes the current cell state and C
�
t denotes the new candi-

date value for the next cell state. ht�1 denotes the previous state

and is determined by the forget gate, ft, by how much is passed
to the next state. Ct�1 denotes the update of the old cell state to
the new cell state, Ct.

3.2. Dropout for proposed prediction algorithm

Deep neural network with many parameters can cause overfit-
ting, especially when the datasets are small [42]. Big improve-

ments in model performance can be observed when dropout is
applied to the model since dropout encourages each hidden
unit to identify useful features without relying on other hidden

units to do its correction [44]. A brief description of dropout is
when a neural network model is updating its hidden layer
where the dropout is applied, it arbitrarily does not update

neurons in the layer. Fig. 2. shows a neural network
model when dropout is applied and dropped. The neurons



Fig. 2 (a) Standard neural network with a hidden layer; (b) Neural network with a hidden layer and dropout applied.
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highlighted in black are dropped by the model when dropout is

applied.

3.3. Importance of features

By using external environmental variables such as tempera-
ture, dew point, wind velocity, pressure and occupancy, we
can increase the effectiveness of the model. A study in [14]

showed increased accuracy when external variables are trained
in the model. Another study [15] showed the significance of
each external variable in creating a good prediction. The sig-
nificance of a variable can be evaluated by comparing it with

the prediction accuracy of other variables.
Each variable will be dropped and the model will be

trained. The model’s performance will be evaluated with and

without the variable to determine the variable’s significance.
The model will be simulated 20 times to give a fair experiment
among features. Feature analysis is important to understand

the relation between the input and output. The significance
of each variable can lead to the understanding and selection
of highly influential variables in the model. Feature analysis
is important to understand and correlate the highly influential

variables that influence the changes in the trend of energy con-
sumption of buildings.

3.4. Evaluation metrics

The performance of the prediction is determined by commonly
used prediction accuracy evaluation which is the Mean Abso-

lute Error (MAE) and the Root Mean Square Error (RMSE),
defined below:

MAE ¼ 1

N

XN
i¼1

ypredicted � yactual
� ��� �� ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yactual � ypredicted
� �2

vuut ð8Þ

Here, N is the sample size or the size of training sets, ypredicted
and yactual are the predicted and actual values, respectively.

The MAE is a conventional statistical error indicator that
represents the performance of the model by computing the
average of absolute errors between the predicted and actual

values. The RMSE is a sample standard deviation of the pre-
dicted and the actual values. RMSE amplifies and contrasts
the error severely due to its mathematical structure. Smaller

values of MAE and RMSE indicate good predictive modelling.

4. Experimental configuration

4.1. Data

There are 8 variables used as input data and a variable will be
obtained as output data. The input data are environmental
variables (i.e., pressure (hPa), temperature (�C), relative
humidity (%), wind velocity (m/s), rainfall duration (min),

rainfall amount (mm)), and type of (occupancy related) data.
Table 4 summarizes the input parameters and their ranges.
As strings are hard to be analyzed by the deep learning model,

weekday is set to 0 while weekend and holiday are set to 1.
Meanwhile, the type of lockdown is set such that 0 is set when
no movement control order (MCO) or total lockdown is

applied, 1 when movement control order (MCO) or total lock-
down is issued, and 2 for recovery movement control order
(RMCO). Information on the model with total sets and the
period of datasets taken are shown in Table 5.

The environmental variables are obtained from the Malay-
sian Meteorological Department (MET). The latitude and lon-
gitude of the weather station are 2� 160 N and 102� 150 E,
respectively. The displacement between the weather station
and the institutional building is 3.47 km.

The output data is the usage peak of the electricity usage

used by the appliances, or heating, ventilation and air condi-
tioning (HVAC) system. Initially, the data for electricity usage
were obtained monthly from Tenaga Nasional Berhad (TNB).

The data is then extracted and divided into daily data depend-
ing on the number of days in the month. The value for each
daily data is changed approximately depending on the type
of day. According to research [39], energy consumption during

weekends and holidays is lower by 15 %. Fig. 3. depict the
daily energy usage of our institutional building from 2018 to
2021. Instead of the classic four seasons in the western country,

Malaysia has no seasonal changes in climate. Therefore, the
temperature of Malaysia ranges from 22 �C to 33 �C including
an average of sunshine between 7 and 12 h a day.



Table 4 Weather variables and values range at the MET Melaka Weather Station.

Variable Abbreviation Type Measurement Range of values

Pressure Press Continuous hPa 1006 – 1014

Environmental temperature Temp Continuous Deg. C 22 – 31

Relative humidity Hum Continuous % 58 – 94

Wind velocity Wind Continuous m/s 0.5 – 5.3

Rainfall duration RainDur Continuous Minutes 0 – 60

Rainfall amount RainAm Continuous mm �14 – 4

Type of day Day Categorical Weekday, weekend and holiday 0 for weekday and 1 for weekend and holiday

Type of lockdown Lock Categorical No MCO, MCO and RMCO 0 for no MCO, 1 for MCO and 2 for RMCO

Table 5 Summary of algorithms and total datasets used.

Algorithm Data Period Total

datasets

Long Short-term

Memory (LSTM)

Daily

data

01/01/2018 to

31/7/2021

1308

Regression Tree (RT) Daily

data

01/01/2018 to

31/7/2021

1308

Support Vector

Regression (SVR)

Daily

data

01/01/2018 to

31/7/2021

1308

70 M. Faiq et al.
4.2. Experimental procedure

Fig. 4 shows the experimental approach in which three predic-
tion models, LSTM, SVR, and GPR, were developed and
deployed for the institutional building to compare their perfor-

mance. Each input variable will be tested to understand the
relation between the variable and the accuracy of the model.

There were several series of steps taken to train the three

predictive models. Initially, the training and validating data-
sets were divided into two parts. 85 % of the total datasets
are used to train the model and 15 % to validate the model.

Thus, the training and testing datasets are composed of energy
Fig. 3 Daily usage peak of the main building of Multime
usage and environmental variables, respectively. The perfor-
mance of the model was compared by using statistical tools

stated in the evaluation metrics.
The predictive model architectures are described as follows:

� The SVR model is created and implemented using the Scikit
toolbox, using Gaussian or Radial Basis Function (RBF)
kernel. Among other kernel functions such as linear func-
tion, Sigmoid function, and polynomial function, the

RBF is best to represent complex dependencies between
input and output variables [40]. An SVR model is composed
of penalty parameter C and the radius e. A grid search of

hyperparameters with 5-fold cross-validations is done to
improve the parameters. The optimized parameters are
C = 5 and e = 1.

� The GPR model is created and implemented using the Sci-
kit toolbox. Using common kernel models Radial-basis
Function (RBF), Matern 3/2 (Ma3), Matern 5/2 (Ma5)
and rational quadratic are assessed and compared. 20-fold

cross-validations are done on kernel simulations to find
the best performance evaluation. The Radial-basis Func-
tion (RBF) performs the best based on MAE and RMSE

findings.
� The LSTM model is created and implemented using the
deep learning tool in Keras. The LSTM parameters are

provided in Table 6. The LSTM model is trained with
dia University Malacca from 01/01/2018 to 31/08/2021.



Fig. 4 Experimental procedure in the study.
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7 features consisting of environmental variables and an
external variable. An output layer is provided for the out-
put variable, energy usage. Hyperparameters are optimised

by tuning and interpreting the results of the number of
epochs, the batch size and the number of hidden neurons.
The optimised hyperparameters for the model is 2500
epochs, 100 hidden neurons and 70 batch size.

The data are normalized to [0,1] using the normalization
technique from the pre-processing library from Scikit and from

Section I in A, 0.5 dropouts are used. The models are simu-
lated 20 times to have a fair comparison between the models.
Table 6 shows the summary of the performance evaluation

of MAE and RMSE of SVR, GPR, and LSTM.

5. Results and analysis

5.1. Performance evaluation

We can observe from Table 7 that LSTM has the best perfor-
mance compared to others. The RMSEs of the predicted
energy usage value using SVR, GPR and LSTM models are
Table 6 Predicting energy consumption using LSTM archi-

tecture based on Keras.

model = Sequential()

model.add(LSTM(100, input_shape = (1,15))

model.add(Dropout(0.5))

model.add(Dense(1))

model.compile(loss=’mean_squared_error’,optimize=’adam’,

metrics = [‘accuracy’])

history = model.fit(train_X, train_Y, epochs = 2500,

batch_size = 70, validation_data=(test_X,test_Y))
3270.836 (kWh), 1310.105 (kWh), and 572.545 (kWh). The
RMSE is relatively large due to a big drop in energy consump-

tion during Movement Control Order (MCO) started on 18
March 2020 to 3 May 2020 and again on 11 January 2021 to
31 May 2021. Furthermore, energy consumption is still rela-

tively low during the recovery movement control order
(RMCO) due to the absence of students on campus and the
restriction on the number of people in the office due to govern-

ment policies. These results in huge prediction errors for SVR
and GPR. The LSTM model can predict accurately even with
a huge change in value. We can observe that the LSTM model

has relatively lower MAE and RMSE compared to SVR and
GPR for 20 simulations in Fig. 5 and Fig. 6.

We can observe from Table 8 the performance of the pro-
posed algorithm with other predictive models. The proposed

algorithm has the best MAE, 165.20, and the second-highest
RMSE, 572.55, among the predictive models. However, each
predictive model is created with different input variables and

hyperparameters and thus, the comparison may be inaccurate.
With respect to our data, the lockdown period was found to be
incredibly significant as input to the proposed algorithm. In

addition, the proposed algorithm takes advantage of rainfall
duration and rainfall amount to further increase the prediction
accuracy. The predictive model in [18] used weather variables
(i.e, temperature, humidity, and wind speed) and schedule-

related variables (i.e, weekday and month) as input variables.
Table 7 Summary of performance evaluation on the models.

Model MAE (kWh) RMSE (kWh)

LSTM 165.203 572.545

SVR 2851.339 3270.836

GPR 999.880 1310.105



Fig. 5 MAE of 20 simulations using SVR, GPR and LSTM.

Fig. 6 RMSE of 20 simulations using SVR, GPR and LSTM.

Table 8 Comparison of the proposed algorithm with related

existing deep learning models.

Algorithm MAE RMSE

Proposed 165.203 572.545

LSTM-RNN [18] 263.14 353.38

CNN-LSTM [32] 692.14 1134.18

72 M. Faiq et al.
The deep learning model in [32] used energy usage only as the
input variable.

Fig. 7 shows an example of daily day-ahead energy con-
sumption for the institutional building using LSTM for

August 1, 2021, to August 7, 2021. August 1, 2021, and August
7, 2021, are weekends, and hence observation of a drop in
energy consumption. The forecast done by the LSTM model

is fairly accurate as the historical data has a huge drop due
to the Covid-19 pandemic.

5.2. Features importance analysis

Feature analysis is done by removing a weather variable for
every 20 simulations. Table 9 shows the summary of the per-

formance evaluation for each simulation run. There are 6 input
parameters used to train the LSTM model. We can observe the
lowest in RMSE, 568.868 (kWh) and 568.941 (kWh) when
average pressure and humidity are not used as input parame-
ters for the model. High RMSE, 586.694 (kWh) and 577.557

(kWh) are obtained when average temperature and rainfall
amount are not used to train the predictive model. Without
average temperature and average rainfall amount, the MAE

is the highest at 212.792 (kWh) and 181.361 (kWh) respec-
tively. The lowest MAE, 163.780 (kWh) and 146.238 (kWh)
when average pressure and humidity are not included in the

simulation of the model. In summary, the amount of temper-
ature and rainfall are important parameters to be included in
training the model. Research in [45] indicates rainfall may
decrease energy consumption for cooling in hot climates espe-

cially wind-driven rain (WDR).
By using the SHapley Additive exPlanation (SHAP), we are

able to evaluate the significance of input variables within the

model. The focus of analysis is to figure out the most influen-
tial features of the LSTM model. Fig. 8 and Fig. 9 show the
SHAP summary plot that arranges the features-based level

of dependencies to the value of energy usage. Specifically,
the type of lockdown has the greatest influence on the perfor-
mance of the model followed by the type of day whether week-

day, weekend, or holiday. This is due to movement restrictions
order as a result of government policy in reducing the case of
COVID-19. The author in [47] stated COVID-19 lockdown
had reduced energy demand in the industrial sector while an

increase in energy consumption at the household level. Fur-
thermore, the observation is likely due to a decrease of 15 %



Fig. 7 Prediction of energy consumption from 1/8/2021 to 7/8/2021.

Table 9 Summary of performance evaluation for environ-

mental variables analysis.

Parameter MAE (kWh) RMSE (kWh)

Without average pressure 163.780 568.868

Without average temperature 212.792 586.694

Without average humidity 146.238 568.941

Without average wind speed 181.206 575.423

Without average rainfall duration 166.868 573.403

Without average rainfall amount 181.361 577.557
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to 20 % in energy consumption on weekends and holidays.

The building is mainly open on weekdays, Monday to Friday,
from 9:00 a.m. to 5:00p.m. During the holiday and weekdays,
the building is closed, and thus, the occupancy is low to none.

A variable can have a positive and negative impact on the

model which leads to an increase or decrease in SHAP values.
Subsequently, the humidity in a day may have a significant
impact on the changes in the energy consumption of the build-

ing. Although humidity has a significantly lower SHAP value
and it has a negative impact on energy usage based on SHAP
analysis, research in [46] shows lower thermal comfort and

higher temperature at high humidity. Temperature, wind
speed, rainfall amount and rainfall duration are important
Fig. 8 Feature analysis usi
variables in increasing the performance of the model shown

in Fig. 9. High outdoor temperature affects the thermal com-
fort of people in a building and thus increases energy con-
sumption in controlling indoor temperature [48].

Furthermore, the neutral thermal comfort for people in
Malaysia is 25.6 �C for mechanical cooling (CL) mode where
HVAC was turned on for cooling purposes and 26.8 �C for
free-running (FR) mode, where HVAC was turned off [49].

Wind speed may reduce the energy consumption of the build-
ing due to its influence in increasing the ventilation rate around
the building or causing wind-speed rain [45]. Temperature is

lower during the rainy season and thus offer better thermal
comfort condition [50].

6. Conclusion

The LSTM model is developed to forecast the energy con-
sumption of an institutional building. The model uses the pre-

vious year’s energy data and forecasted weather as the input
parameter to forecast the next day. The energy consumption
data will be changed depending on whether the next day is a

weekday, a weekend or a holiday or the type of lockdown is
no MCO, MCO or RMCO. In comparison to SVR and
GPR, the LSTM model is able to forecast better. LSTM has
better MAE and RMSE than other algorithms. Even though

there is a huge change in energy consumption in 2020 and
onwards due to the pandemic, LSTM achieves more accurate
ng SHAP summary plot.



Fig. 9 Feature analysis using SHAP bar graph summary plot.
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results. From the feature analysis, we can conclude that tem-
perature and rainfall amount are important parameters in

training the predictive model based on the MAE and RMSE
findings. Using SHAP tools, we understood that type of lock-
down (i.e., no MCO, MCO or RMCO) and type of day (i.e.,

weekday, weekend or holiday) are the most influential param-
eters in either increasing or decreasing the accuracy of the
model. However, the precision of the day-ahead weather fore-

casting parameters is crucial to the prediction accuracy. How-
ever, LSTM requires huge historical data to predict accurately.
In addition, LSTM requires external variables such as environ-
mental variables (i.e, temperature, and wind speed), and

schedule-related variables to further improve the accuracy of
the predictive model. Future work could be able to improve
the accuracy of the model and add more features to the model

such as the occupancy of data (i.e., number of occupants).
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