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Abstract 

 

 

 

The present thesis analyzes data from two of the sensors of the Mars Science 
Laboratory’s REMS instrument, which has been active on Mars since August 2012: the 
Pressure Sensor and the Temperature Sensors. The information contained in the data 
from these sensors is very valuable and revealing for a better understanding of the 
meteorological agents that take place daily on Mars. It is necessary to know in depth the 
operation of both sensors and the data processing flow followed to transform the digital 
data received from Mars into tangible information. The main goal of this thesis is to use 
signal processing methods that help us to extract useful information contained in the 
sensors’ data not visible at first sight. It is desired to extract information related to 
specific environmental processes on Mars, thus contributing to a better understanding 
of our neighboring planet. With all this acquired knowledge, an exhaustive research of 
signal processing methods has been made to find the best methods that fit our data and 
help us to find the information related to the environmental processes.  
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Chapter 1: Motivation 

Mars is probably one of the most studied planets in the solar system due to the 
similarities it may have had in the past with our planet Earth [1]. The search for 
biomarkers, the study of the climate and atmosphere, the study of the planet geology 
and the research for human exploration are the main pillars of study respecting our 
neighboring planet [2].  

 

In many ways the climate of Mars resembles that of the Earth, particularly in its daily 
cycle and yearly sequence of seasons. These affinities result from the many coincidences 
in the celestial motions of the two planets: the Martian day, or sol, is 24 h 40 m long, a 
little bit longer than the terrestrial day. Mars completes an orbit around the Sun in 
approximately 2 terrestrial years. However, due to the eccentricity of the Martian orbit, 
Mars receives only about half as much sunlight as the Earth. This is the reason why the 
Martian surface is colder and experiences greater seasonal temperature changes and 
more pronounced variations throughout the day, with differences around 70 degrees or 
more between day and night. 

 

The thickness and the composition of the Martian atmosphere bears no resemblance 
with its terrestrial counterpart [3]. It is mainly composed of 95 % carbon dioxide and 
Nitrogen, and Argon represents the remaining 5 %. Oxygen and water represent less 
than 0.2 % of the Martian atmosphere. Moreover, it is extremely tenuous, unlike the 
Earth atmosphere, with an average surface pressure of 6.1 mbar (600 Pa), whereas the 
mean surface pressure on Earth is 1013 mbar (100 KPa). The pressure on the Martian 
surface varies little with altitude, from the top of the highest mountains, where it drops 
to around 4 mbar (400 Pa), to lower areas, where it reaches 10 mbar (1000 Pa). In the 
case of the Earth, it can vary from 34 KPa to 100 KPa. This is certainly more than enough 
for liquid water to be stable provided, of course, that the temperature gets temporarily 
above 0 ⁰C, which indeed occurs in regions not too far from the Equator during Summer 
afternoons. However, until today, and in spite of all the efforts invested in the task, the 
proof of the existence of liquid water in present-day Mars remains elusive, although 
there is circumstantial evidence which points its presence confined to a shallow layer 
below the surface [4][5]. 

 

Because of all this, the Mars atmosphere has attracted a huge interest in the scientific 
community and has been studied for centuries. The air dynamics characterization, the 
thermal structure, the distributions of dust, water, water clouds and carbon dioxide in 
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the lower atmosphere are some of the main atmospheric characteristics traditionally 
studied. 

 

Dust storms are probably one of the Martian atmospheric events that has attracted 
most attention since they were observed, for the first time, by Earth telescopes in the 
late nineteenth century [6], [7]. They affect the global atmospheric circulation of the 
planet [8], and also the transport of carbon dioxide, water and dust. 
 

To be able to study the Red Planet, a great effort has been made, since the 1960s, in 
order to send orbiters [2] and land missions [9] to our neighbor planet. Consequently, 
information of incalculable value has already reached our hands. With this huge amount 
of data, the scientific community studies in depth the different research areas 
mentioned above. More specifically, the Curiosity Mission, landed at the crater Gale in 
August 2012, is equipped with a meteorological station, the Rover Environmental 
Monitoring Station (REMS), which continues monitoring a multiplicity of physical 
magnitudes from the planet, such as wind direction, wind speed, humidity, pressure, 
ground temperature, ambient temperature and ultraviolet radiation [10]. Thanks to all 
of these physic magnitudes, the scientific community has been able to analyze in more 
detail the Martian atmosphere, specifically in the crater Gale. 

 

Because of all this, this thesis aims to contribute in a small way to expanding the current 
knowledge of the climate and atmosphere of Mars. By using several signal processing 
methods, this work presents the analysis of data from two sensors, the Pressure and Air 
Temperature Sensors, to detect environmental processes in Mars.  

 

According to these aims, this document is organized in 6 chapters, namely: 

Chapter 1 reviews the state-of-the-art of the mission, the Air Temperature and Pressure 
Sensors, and the data collected by these sensors, Chapter 2 explains the different signal 
processing methodologies used to process and analyze this kind of data, Chapter 3 
explains how these methods have been applied to the Pressure Sensor, Chapter 4 
explains how the method have been applied to the Air Temperature Sensor, Chapter 5 
details the main conclusions of the thesis and finally, Chapter 6 states possible future 
research lines enabled by the findings and developments of this work.  
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Chapter 2: Introduction. State-of-the-
art 

After the first introductory chapter, which emphasizes the reasons that led us to carry 
out this thesis, this second chapter aims to put the reader in context. For this reason, 
this second chapter is devoted to explain, in detail, the Mars Science Laboratory (MSL) 
mission, along with its meteorological station and the associated data sent from Mars. 

 

2.1. Mars Science Laboratory mission 

The history of Mars observations began thousands of years ago. First telescopic 
observations of Mars were made by Galileo Galilei in 1610 [11].  Our immense interest 
in the study of this planet has grown in the last century may be due to the discovery of 
the similarities between its atmosphere and the terrestrial one. After the identification 
of certain characteristics of the Red Planet that could generate or have generated life, 
the human being has intensified his research in our neighboring planet. This is the 
reason why, from the decade of 1960, numerous space missions have been trying to 
reach the Red Planet in order to collect information and study its atmosphere and soil, 
and reveal whether there were past or present signs of life [12][13]. The Mars Rover 
Curiosity [14] (part of the Mars Science Laboratory) is one of the missions that is 
currently on the Martian surface. It was launched from Cape Canaveral on 26 November 
2011 and landed on 6 August 2012, on Aeolis Palus, inside Gale crater on Mars. The 
mission goals include a serious inquiry on the Martian geology and climate. The rover is 
still operational and as of September 29, 2022, Curiosity has been active on Mars for 
3619 sols (10 years, 65 days since its landing). Since then, the rover has been sending 
very valuable information about the planet, specifically related to its landing location 
and immediate surroundings, at the Gale crater. 

 

Curiosity contains multiple sensors and cameras, as shown in Figure 1. Among these, the 
Curiosity rover is equipped with a meteorological station, the Rover Environmental 
Monitoring Station, better known as REMS [10][15], provided by the Spanish Ministry of 
Education and Science. Moreover, the rover contains, among multiples cameras, the 
MastCam camera, that belongs to NASA/Jet Propulsion Laboratory (JPL). We mention 
this camera in particular, because the opacity values, and images taken by this camera 
will be used to contrast the results obtained in this research. 
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Figure 1: Artistic view of Curiosity, where instruments are identified by name, including sensors, antennas and 

cameras for different purposes. (Credit: NASA/JPL-Caltech) 

 

2.2. The Rover Environmental Monitoring Station  

REMS, located in the Mars Science Laboratory, has as its main goal to explore factors 
directly related to the Mars habitability [16][17][18]. This instrument is a meteorological 
package designed to provide measurements of air and ground temperature, pressure, 
wind speed and direction, humidity and ultraviolet radiation. All these sensors are 
located around three elements: two booms attached perpendicularly to the rover's mast 
(that house the Air and Ground Temperature Sensors, the Wind and the Humidity 
Sensors), the Ultraviolet Sensor (UVS) assembly located on the rover top deck, and the 
Instrument Control Unit (ICU) inside the rover body. Each boom contains an Application 
Specific Integrated Circuit (ASIC), whose function is to control and manage the sensors 
of each boom. Their electrical interconnection is shown, in a block diagram, in Figure 4. 

 

Then, we explain more in detail the different sensors that make up REMS station [10]: 

 

1. The Ground Temperature Sensor (GTS): It records the infrared (IR) brightness 
temperature of the Martian surface by using three thermopiles. The sensor is mounted 
on Boom 1, positioned in the NASA/MSL Rover mast at 1.6 m height, and it is directly 
connected to the Sensor Front-End electronics. To avoid local temperature effects, the 
GTS focuses on a large ellipsoidal ground surface area of around 100 m2, measuring its 
average temperature. The sensor includes an active self-calibration system to 
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compensate for its potential degradation during the mission associated with dust 
collection on the sensor window.  
 

2. The Air Temperature Sensor (ATS): It comprises two sensors [16], each one mounted on 
a different boom. Each sensor assembly consists of a small FR4 rod that has been 
manufactured to have low thermal conductivity and that contains 3 thermistors placed 
along the rod. The readings of all the thermistors, after being processed, determine the 
ambient temperature. 
 

3. The Wind Sensor (WS): It comprises two sensors, each one mounted on a different 
boom. They measure the horizontal and vertical wind speed as well as the wind 
direction. They are based on hot film anemometry and each boom is equipped with 
three recording points. The wind data from both booms is processed to determine the 
estimated wind speed and direction.  
 

4. The Pressure Sensor (PS): The sensor, located in the rover body, is composed of a Vaisala 
Barocap and an associated Vaisala Thermocap, both provided by the Finnish 
Meteorological Institute (FMI). The sensor measures the atmospheric pressure in the 
range of 0-1400 Pa. 
 

5. The Humidity Sensor (HS): The sensor, located in Boom 2, is also provided by the FMI. It 
is composed of a Vaisala Humicap relative humidity sensor head and an associated 
Vaisala Thermocap. The Humidity Sensor measures the relative humidity in the 0 – 100 
% range, within the temperature range of 203 K – 323 K. 
 

6. The Ultraviolet Sensor (UVS): The sensor, located on the rover deck, is composed of six 
broadband photodiodes with different spectral support and a thermistor which 
monitors the temperature of the UVS. Each broadband photodiode shall provide a raw 
evaluation of the incident UV flux within its range of responsivity that can be directly 
compared with their equivalent measurements on Earth or on the top of the Martian 
atmosphere.  
 

7. The Instrument Control Unit (ICU): This unit provides the interface with the rover in 
terms of data exchange, power and telemetry, receives digital data from the boom 
sensors, powers the sensor front-end electronics, and processes data from the HS, UVS 
and PS. WS, ATS and GTS instruments communicate with the ICU through the ASIC. See 
Figure 4 for clarification. 
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Figure 2 and Figure 3 show different perspectives of the rover and the location of the 
REMS sensors. 

 

 
Figure 2: Ultraviolet Sensor and Close-up view of both booms. (Credit: NASA/JPL) 

 

 
Figure 3: Artistic views of Curiosity. Positions of the REMS Booms and the Ultraviolet Sensor are shown. (Credit: 

Nasa/JPL-Caltech) 
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As mentioned before, Figure 4 shows a general scheme of the sensor electrical 
interconnections. ATS 1 and ATS 2 represent the Air Temperature Sensors, WS 1 and WS 
2 represent the Wind Sensors, GTS represents the Ground Temperature Sensor, HS 
represents the Humidity Sensor, PS represents the Pressure Sensor and UV, the 
Ultraviolet Sensor. 

 

 

Figure 4: REMS scheme of the sensor electrical interconnections. 

 

In the sequel, the objective sensors of this thesis, ATS and PS, are described in detail. 
 

2.2.1 Pressure Sensor 

The Pressure Sensor was designed and integrated by the Finnish Meteorological 
Institute (FMI). For this reason, it is not possible to describe this sensor with the same 
detail as the Temperature Sensor, since part of its operation, its measurement scheme 
and its mechanics are confidential. 
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Figure 5: Left: Pressure Sensor; Right: Pressure Sensor scheme. (Credit: FMI) 

 

 
Figure 6: REMS Sensors in MSL. (Credit: NASA/JPL-Caltech/ Malin Space Science Systems) 

 

The Pressure Sensor provides information about the atmospheric pressure around the 
MSL Rover. Figure 5 shows a scheme of the sensor and a real image of the sensor, and 
Figure 6 shows the location of the PS in the rover body, accommodated inside the ICU 
box. The PS uses a small tube, see Figure 4, to interface with the Martian atmosphere 
through a High Efficiency Particle Arrester (HEPA) filter, and it is covered with a dust 
protection cap. 
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The PS makes use of two transducers placed on a single multi-layer PCB. The transducers 
of the Pressure Sensor can be used in turn, thus providing some redundancy and 
improved reliability. Each transducer has 2 Vaisala Barocap Pressure Sensor heads and 
2 Thermocap Temperature Sensors. The Barocap sensor heads are of different types: 1 
is of high-stability, and 3 are of high-resolution type. Each Barocap sensor head is a 
single-crystal silicon micromachined device, therefore its intrinsic stability is extremely 
good. The measurement is based on capacitor plates (electrodes) moved by pressure, 
whose action changes the capacitance of the sensor head.  

 

The Pressure Sensor measures the atmospheric pressure between 1 a 1150 Pa. The 
sensor has an accuracy of 2 Pa and a resolution of 0,2 Pa. 

 

The sensor has been calibrated for a Martian pressure range of 4–12 hPa and its 
operational temperature is limited from −45 ⁰C to +55 ⁰C. The resolution of the sensor, 
in the case of the high-resolution sensor heads, is measured to be 0.2 Pa, while the 
response time of the overall pressure measurement system is approximately 1 second. 
The stability of the high-stability sensor head during the surface operations phase is 
estimated to be less than 1 Pa/year. The root-mean-square (RMS) of the absolute 
accuracy of the high-stability sensor head was estimated to be 3.5 Pa after the first few 
weeks after landing. 

 

2.2.2. Air Temperature Sensor 

REMS is equipped with two Air Temperature Sensors, called ATS 1 and ATS 2. Each REMS 
ATS [19][20] consists of a 35 mm long thin fin manufactured with an FR4 multilayer 
structure. To measure the temperature, thermistors of type Pt1000 Class A, with 1.2 mm 
x 1.6 mm size, are attached to the rod. The ATS 1, mounted on the so-called Boom 1, 
see in Figure 7, is equipped with 2 Pt1000 sensors, glued to the tip and to an 
intermediate position of the corresponding small FR4 rod, respectively. The Ground 
Temperature Sensor is placed at the base of the ATS 1, which, among other functions, 
provides the temperature at the base of the FR4 rod at Boom 1. The ATS 2, placed on 
the so-called Boom 2, has 3 Pt1000 sensors, which are glued to the tip, to an 
intermediate position and to the base of a similar FR4 rod, respectively. Both booms are 
depicted in Figure 8 and Figure 9. Each boom contains an Application-Specific Integrated 
Circuit (ASIC), whose function is to control and manage its different sensors, including 
the ATS. Figure 4 shows how they are both linked to their respective ASIC. Each ATS 
works at a sampling frequency of 1 sample per second, can measure temperatures 
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within the interval 150-300 K, offers an absolute accuracy of at least 5 K and a resolution 
of 0.1 K. 

 

Both booms point to directions separated 120 degrees, as we can see in Figure 2 and 
Figure 8, and they are placed perpendicularly on the rover main mast. They operate at 
1.6 m above the Martian surface, in the lower part of the boom structure. 

 

Each boom provides an ambient temperature measurement by using their Pt1000 
readings (together with the GTS readings for the temperature at the base of the ATS 1), 
which are the inputs for a model, called the m-model, which is detailed in Annex 2. Said 
model is based on the theory of the heat exchange from an infinite fin, as described in 
the Mueller experiment [21].  

 

 
Figure 7: ATS 1 model. 

 

 
Figure 8: Arrangement of the sensor on the rover mast. (Credit: CAB-CSIC-

INTA) 

 

 

Figure 9: Detailed depiction of the ATS instrument for each boom. (Credit: CAB-CSIC-INTA) 
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2.3. REMS data management 

This subsection is devoted to explaining how the data collected by REMS is initially 
processed, because this knowledge will be the primary source for the processing 
methods used in this thesis. Before we detail how these data are processed, we explain 
next the so-called Planetary Data System (PDS), which is the public database where the 
different mission data are stored. 

 

The Planetary Data System (PDS) is a database that contains data from all NASA 
missions, organized in different processing levels, as we will explain below. All data used 
for this thesis can be found there. In particular, instead of resorting to raw 
measurements, we have used reduced data from the REMS ATS and PS measurements. 

 

In the following, we explain the different processing levels of the data presented in the 
PDS. 

 

Processing starts with the generation of the REMS Experimental Data Record (EDRs). The 
REMS EDR data products are generated by the Multimission Image Processing 
Laboratory (MIPL) at JPL, under the Operations Product Generation Subsystem (OPGS), 
using the telemetry processing software called MSLEdrGen, another product from JPL, 
which converts the binary data received as telemetry to ASCII, and which generates a 
separate table for each of the data types reflected in Table 1. The EDRs are then 
retrieved at Centro de Astrobiología (INTA-CSIC) by using a data file exchange interface. 
The EDR data products receive a first automatic processing using previously stored 
calibration data. The result of this is the Thermal and Electrical Reduced Data Record 
(TELRDR), which contains electrical and thermal magnitudes. In parallel, using ancillary 
data provided by JPL (such as rover location, or sun position) the Ancillary Data Records 
(ADRs) are generated. The EDRs, TELRDRs, ADRs, and calibration data are processed 
together to obtain the Environmental Magnitudes RDR (ENVRDR). 

 

In the conversion process from EDRs to TELRDR, the specific procedure employed to 
calculate the electrical magnitudes from raw data, also named as counts, varies from 
sensor to sensor. These counts are the result of a digitization from an Analog/Digital 
Converter, so the reverse process, digital-to-analog, is done using data obtained during 
the calibration of the instrument. These data are included in the CALIB directory within 
the PDS. 
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As mentioned before, both ATS are handled through an ASIC and are affected by its 
temperature and power conditions. The ASICs status and their effects are included in 
the processing, in addition to the digital-to-analog conversion. ASIC information is also 
included in the first processing level, the EDRs. 

 

The ENVRDRs products include environmental magnitudes with minimal corrections 
(mainly based on the degradation of the sensors), calculated by an algorithm that has 
been specifically designed for each sensor. Finally, by applying models developed by the 
REMS team, and by refining them with the use of confidence levels, the Models RDR 
(MODRDR) are created. 

 

By using a custom software program named Quick Response System (QRS), the REMS 
team will generate RDR data products from the EDR data products provided by MIPL. 

 

Figure 10 summarizes the REMS processing mentioned and their sequence. They are 
going to be further explained next. 

 

 
Figure 10: Processing levels of the REMS data. 
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2.3.1. EDR product 

This dataset from REMS contains the raw unprocessed data stored in the REMS internal 
memory, as received from telemetry. It consists of a collection of tables that include the 
different sensors readings, as well as engineering data and instrument configuration 
parameters. 

The information included in this dataset needs to be combined using calibration and 
other ancillary information to get the estimated physical magnitudes, in the next level. 
The required ancillary information can be found in the RDR archive volumes. 

 

Each REMS EDR has a detached PDS label associated with the REMS data file. The file-
naming scheme for the REMS EDR data products is detailed in Figure 11 and it is 
explained below. 

 

 
Figure 11: File name scheme of the EDR data products. (Credit: CAB-CSIC-INTA) 

o instr: (the first two characters) It corresponds to the Instrument ID. It denotes 
the source MSL science or engineering instrument that acquired the data. The 
valid values for the Instrument ID’s are: ‘RM’ – REMS. 

o config: (one character) Valid values are: ‘E’- Environmental. 
o spec: (one character) Special Processing flag, applicable to RDRs on a case-by-

case basis. 
o sclk: (9 alphanumeric characters) Spacecraft Clock Start Count, in units of 

seconds. It is generally expected to be the time the data was acquired. 
o prod: (3 character) Product type identifier. This field identifies the type of REMS 

EDR, and has the following rule-of-thumb: 
 REMS Science and Engineering EDRs (ASCII represented): ‘ESE’ 
 Any other type of REMS EDR (binary represented): ‘EDR’ 

o sol: (4 alphanumeric characters) Sol or Mars Solar Day. 
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o site: (3 alphanumeric characters) Site location count, from the Rover Motion 
Counter (RMC). 

o drive: (4 alphanumeric characters) Drive, position-within-site, location count, 
from the RMC.  

o Seq-id: (7 alphanumeric characters) - Request ID. For REMS, this field indicates 
the specific type of REMS EDR. The valid values are specified in Table 1, while any 
leftover spaces will be padded with ‘_’ (underscore). An all-underscores value 
(‘_______’) indicates that an EDR was created from REMS data outside the 
expected range. For our study, we will only use the Sensor Acquisition files, ACQ. 

 

Table 1: List of REMS EDR type file, also known as raw data, with their corresponding file name. 

Information containing the file Name of the file 
ASCII represented EDRs 
Sensor Acquisition ACQ____ 
Engineering ENG____ 
Humidity Sensor Regeneration Acquisition    HSREG__ 
Humidity Sensor Defrost Acquisition HSDEF__ 
Ground Temperature Sensor Calibration GTSCAL_ 
Reset RESET__ 
Sleep SLEEP__ 
Event Entry EVENT__ 
Ground Temperature Sensor Gain 
Management 

GTSGAIN 

Error ERROR__ 
System parameters SP_____ 
Binary represented EDR 
DoBist DBT____ 
DownloadErrInfo DEI____ 
DumpEeprom DEE____ 
DumpFlash DFL____ 
DumpRam DRM____ 
SystemByte GET____ 
UtilTest UTT____ 
Parms PRM____ 

 

o who: (1 alphanumeric character) It identifies the institution that generated the 
product. Valid values ‘M’ – MIPL (at JPL). 
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o ver: (1 alphanumeric character) Version identifier. The version number 
increments by one whenever an otherwise-identical filename would be 
produced. 

o ext: (2 to 3 alphanumeric characters) Product type extension. Valid values for 
nominal operations data products: 

‘TAB’: Science and Engineering EDRs (ASCII represented). 

‘DAT’: Non-Science and Engineering EDRs (binary represented). 

‘LBL’: Labels from TAB files (PDS format). 

Measurements information from each sensor is kept in the Sensor Acquisition file (ACQ), 
see Table 1. The rest of the files contain mainly configuration and error information 
about the different sensors. Data sampling is taken at 1Hz maximum, for a baseline 
operation of 5 minutes every hour. Additional measurements can be taken on an on-
demand basis beyond those hourly observations. These additional measurements can 
also be triggered automatically if event mode is active, in which case the REMS computer 
will decide whether to continue operating after the 5 minutes session by comparing the 
measurements taken and the expected trend. The objective is to capture any ongoing 
transitory atmospheric event. 

 

Each file contains one sol of activity time and data is time ordered, with a timestamp 
reflecting the beginning of each data acquisition. 

2.3.2. RDR product 

Each REMS RDR has a detached PDS label associated with the REMS data file. The file-
naming scheme for the REMS RDR data products is detailed in Figure 11  and it is 
explained below: 

o instr: (the first two characters) It corresponds to the Instrument ID. It denotes 
the source MSL science or engineering instrument that acquired the data. The 
valid values for the Instrument ID’s are: ‘RM’ – REMS. 

o config: (one character) Valid values are: ‘E’- Environmental. 
o spec: (one character) Special Processing flag, applicable to RDRs on a case-by-

case basis. 
o sclk: (9 alphanumeric characters) Spacecraft Clock Start Count, in units of 

seconds. It shows the time the data was acquired.  
o prod: (3 characters) Product type identifier: 

 Beginning with ‘E’ - Type of EDR, which is the first order product with no 
processing applied. 

 Beginning with ‘R’ – Type of RDR, except for ADRs. 
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 Valid values for the RDR case are listed below: 
 

TELRDR -> ‘RTL’ 
ENVRDR-> ‘RNV’ 
MODRDR-> ‘RMD’ 
ADR -> ‘ADR’ 

 

o sol: (4 alphanumeric characters) Sol or Mars Solar Day. 
o site: (3 alphanumeric characters) Site location count, from the Rover Motion 

Counter (RMC).  
o drive: (4 alphanumeric characters) Drive (position-within-Site) location count, 

from the RMC.  
o Seq-id: (7 alphanumeric characters) Request ID. For RDRs it consists of 

underscores ‘_______’. 
o who: (1 alphanumeric character) It identifies the institution that generated the 

product. Valid values: ‘P’ – Principal Investigator (REMS). 
o ver: (1 alphanumeric character) Version identifier. The version number 

increments by one whenever an otherwise-identical filename would be 
produced. 

o ext: (2 to 3 alphanumeric characters) Product type extension. Valid values for 
nominal operations data products: 
 ‘TAB’: Science and Engineering EDRs (ASCII represented). 
 ‘LBL’: Labels from TAB files (PDS format). 

 

Next, the different RDR provided are explained in detail. An effort has been made to 
integrate results from all sensors in each RDR, in order to facilitate data analysis. However, 
the complexity of data processing is not the same for all sensors, so there are a greater 
number of transformations between RDR types for some sensors as compared to others. 

 

2.3.2.1. TELRDR file 

The TELRDR file is the result of the first processing step. It contains data where counts 
recorded by the instrument have been converted to thermal and electrical values using 
calibration information. Temperatures for PT1000 sensors are given instead of 
resistances since the conversion between them is straightforward and temperatures are 
more helpful. 
 
Each TELRDR product is an ASCII table containing all sensors data, accompanied by a 
detached PDS label. Each row contains an acquisition session, while the columns contain 
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the sensor values. This makes it easy to load the data products to a spreadsheet or a 
database. Columns with related information are placed together, in the following order:  
REMS clock (synced with the Spacecraft Clock (SCLK) with a maximum deviation of 30 s), 
Local Mean Solar Time (LMST) and Local True Solar Time (LTST), Wind Sensor, Ground 
Temperature Sensor, Air Temperature Sensor, Ultraviolet Sensor, Humidity Sensor and 
Pressure Sensor. For more information about time reference, see Annex 5. Columns are 
delimited by commas and are of fixed length. Rows are time ordered and are separated 
by a carriage return/line feed. Each table contains a sol of measurements. Data may be 
set to UNK if their value is not known and it will never be (i.e., in case of saturation, or 
whenever a specific sensor is switched off during acquisition). They may also be set to 
NULL if their value is not known at the moment of the release of the dataset, but it is 
expected to be known in a future release. 
 

2.3.2.2. ENVRDR file 

The ENVRDR files are the second processing step. At this level, data has been converted 
from electrical to environmental magnitudes provided by each engineering sensor (e.g., 
data for each air temperature PT1000 sensor instead of a unique air temperature, or 
data for each ground temperature sensor thermophile instead of a unique ground 
temperature). Minimal corrections exist for some sensors to compensate their 
degradation due to exposure to Martian conditions. 
 
Each REMS ENVRDR product in the dataset is an ASCII table containing all sensors data. 
Each row contains an acquisition session, and the columns contain the sensor's values. 
 
Columns with related information are placed together, in the following order: time 
references (REMS clock, LMST and LTST), Wind Sensor, Ground Temperature Sensor, Air 
Temperature Sensor, Ultraviolet Sensor, Humidity Sensor and Pressure Sensor. 
 
At this level, the Ground Temperature Sensor measurements are corrected by using in-
flight calibration data (found in the TELRDR), and the Ultraviolet Sensor responsivity is 
corrected depending on the Solar Zenith Angle and the estimation of the dust over the 
photodiodes. 
 
Moreover, a confidence level label for each sensor is included. This label indicates the 
quality of the data by codifying a string of zeroes and ones.  '1' means ‘good condition’ 
or a '0' means ‘bad condition’. The higher the number of ones, the more reliable the 
measured magnitude is. The character 'X' may be present in some cases for factors 
whose value is not known at the moment of the data generation.  
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In addition to confidence level labels, some sensors include, in another column, an 
estimation of the uncertainty in the data provided. 
 
Columns are delimited by commas and are of fixed length. Rows are time ordered and 
are separated by a carriage return/line feed. Each table contains a sol of measurements. 
 
Data may be set to UNK if their value is not known and it will never be (such as 
saturation, or a specific sensor switched off during acquisition). They may also be set to 
NULL if their value is not known at the moment of the release of the dataset, but it is 
expected to be known in a future release. If data from a sensor is set to UNK or NULL, 
its associated confidence level code will also be set to UNK or NULL. 
 

2.3.2.3. MODRDR file 

Each REMS MODRDR product in the dataset is an ASCII table containing all sensors data. 
Each row contains an acquisition session, and the columns contain the different 
parameters measured by each sensor. 
 
Columns with related information are placed together, in the following order: time 
references (REMS clock, LMST and LTST), Wind Sensor, Ground Temperature Sensor, Air 
Temperature Sensor, Ultraviolet Sensor, Humidity Sensor and Pressure Sensor. 
 
As previously described for other processing levels, REMS clock is synced with the 
spacecraft clock (SCLK) with a maximum deviation of 30 s. 
 
As explained in the previous level, a confidence level label for each sensor is also 
included. The same method is used, as previously described, to apply and understand 
these labels. 
 
In addition to the confidence level label, some sensors include an estimation of the 
uncertainty, in a new column. 
 
On this level, correction algorithms, specific to each sensor, are applied to present more 
reliable data.  
 
As in the ENVRDR product, columns are delimited by commas and are of fixed length. 
Rows are time ordered and are separated by a carriage return/line feed. Each table 
contains a sol of measurements. Data may be set to UNK if their value is not known and 
it will never be (in case of saturation, or when a specific sensor is switched off during 
acquisition). They may also be set to NULL if their value is not known at the moment of 



 

19 

the release of the dataset, but it is expected to be known in a future release. If data from 
a sensor is set to UNK or NULL, its associated confidence level code will also be set to 
UNK or NULL. 
 

2.3.2.4. ADR file 

The ADR contains ancillary data needed in the processing of some sensors’ data, and it 
is obtained from sources external to the REMS instrument. For example, we can have 
geometry information or estimations of the signal attenuation produced by dust 
deposited over the Ultraviolet Sensor. This attenuation is calculated by taking images of 
the sensor by the rover’s cameras and by applying an algorithm developed at CAB. 
 
All these processing levels, for each sensor, are public and stored in the PDS. 
 
Focusing on the sensors that are the subject of our study, Table 2 summarizes the 
different processing levels from ATS and PS, which will be explained, with more details, 
in Chapter 4 and 5. 
 

Table 2: Data containing in file processing level, from ATS and PS. 

NASA levels / 
REMS data 
product 

ATS PS 

Level-0 / 
EDR or raw 

Resistance counts digitized. Pressure Sensor counts 
digitized, from its 8 
channels. 

Level 1-A / 
TELRDR 

Temperatures, in kelvin, measured 
by each of the 5 Pt1000 sensors. 
Mean of the three thermopiles from 
the GTS replaces temperature at the 
base of the rod at Boom 1. 

Pressure Sensor 
capacitances, in picofarad, 
from the 8 channels. 

Level 1-B / 
ENVRDR 

No changes from previous level 
except for adding the estimated 
uncertainties columns for each data. 

Temperature from both 
thermocaps (K); Pressure 
for both barocaps (Pa), and 
estimated uncertainties. 

Level 1-C / 
MODRDR 

A local air temperature (K) is 
calculated by the m-model [20] for 
each boom. The cooler temperature 
is chosen, between both booms, as 
ambient temperature (K). 

Pressure, in pascals, and its 
estimated uncertainty. 
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To summarize, in this chapter we have presented the mission, the sensors involved in 
this study, and we have explained how to obtain physical measurements from the data 
received from the rover. 

 

In the next chapter, we detail the signal processing methods that will be used to analyze 
the data and try to characterize relevant information about the thermal processes in 
Mars.   
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Chapter 3: Methodology 

This chapter is dedicated to the explanation of the theory of the signal processing 
methods used in this thesis. Three different methods have been mainly used in this 
thesis and they are going to be detailed below. Singular Spectrum Analysis is the method 
used for detection of given environmental processes, while wavelets and the Hilbert-
Huang Transform are applied for denoising. 

 

3.1. Singular Spectrum Analysis for environmental 
processes detection. 

 

The Singular Spectrum Analysis is a recent method. The first mentions seem to be 
around 1989, by Rober Vautard [22]. The SSA is a technique for decomposing a time 
series into a sum of components, each of which has a meaningful physical 
interpretation. The method is based on the Singular Value Decomposition (SVD)[23] and 
the subspace projection and it can be applied to analyze any measured time series with 
a potential structure. The procedure mainly depends upon two important parameters: 
the window length M, the main parameter to determine the dimension of the trajectory 
matrix, and the number of eigenvalues/eigenvectors [24]. 

 

This technique has been intended for the extraction of information from short and noisy 
time series, and then provide insight into the unknown or only partially known dynamics 
of the underlying system that generate the series. Additionally, the SSA method, apart 
from decomposing the series into subcomponents, may reconstruct the signal by leaving 
the noise component behind. 

 

It is a technique that works well with arbitrary statistical processes, whether linear or 
nonlinear, stationary or non-stationary, Gaussian or non- Gaussian [25]. This technique 
has been previously used for the analysis of climate time series [26]. Moreover, it has 
been also for Viking Lander pressure data [27]. 

 

Next, a detailed description of the method is explained [28]: 

 

1. Let's consider two time series, X, sol, 
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𝑋 = (𝑥 , 𝑥 , . . , 𝑥 ) 
𝑠𝑜𝑙 = (𝑠𝑜𝑙 , 𝑠𝑜𝑙 , … , 𝑠𝑜𝑙 ),  

(1) 

 

where sol contains the mission sols that measured 24 observations, X shows their 
respective measured values in these sols, and n is the number of sols for which REMS 
collected a full diurnal cycle, 24 observations 

 

2. The signal X is detrended by removing its mean xmean. The resulting sequence of values, 
X − xmean, has gaps for missing sols where there was not a full diurnal cycle of magnitudes 
measured. 

 

𝑋 − 𝑥 = (𝑥 − 𝑥 ), (𝑥 − 𝑥 ), . . , (𝑥 − 𝑥 ) . (2) 

 

3. To solve the gaps problem in the vector X, an expanded signal is defined, Ẍ, where a 0 is 
added at the positions of sols where there are no 24 observations, while maintaining 
the main frequency characteristics [29], 

 

Ẍ =  (�̈� , �̈� … �̈� , … , �̈� ), �̈� =  
0 𝑖𝑓 𝑆𝑂𝐿 ⊄ 𝑠𝑜𝑙

(𝑥 − 𝑥 )  𝑖𝑓 𝑆𝑂𝐿  ⊂ 𝑠𝑜𝑙,
 (3) 

 

where j is the position where SOLi is in sol, SOLi is a random sol from the mission and N 
is the dimension of the new vector Ẍ, corresponding to the last sol considered in the 
study. 

 

4. Create the trajectory matrix Y with dimensions (N – M + 1) x M, where M is the temporal 
window covering. This converts from a one-dimensional time series Ẍ into a 
multidimensional series, Y, with columns defined as:  

 

Y =  (�̈� , �̈� … �̈� ), ( �̈� … , �̈� ), … , ( �̈� … , �̈� ). (4) 

 

The result of this step is the trajectory matrix 𝑌 = [𝑌 ,   𝑌 , … 𝑌 ], 
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𝑌 =

�̈� �̈� �̈� … �̈�
�̈� �̈� �̈� … �̈�
⋮ ⋮ ⋮ ⋱ ⋮

�̈� �̈� �̈�… … �̈�

. 

 
 

(5) 

The range of temporal window length, M, should be approximately 2 ≤ M ≤ N/2. If M is 
close to N/2, it can make the trajectory matrix overlap its rows and columns. If the 
window length M is relatively small, it can cause the trajectory matrix to produce 
improper decomposition of mixed signal. It is advisable to take M proportional to the 
period of the selected time series, Ẍ, which may have a periodic component with an 
integer period [24]. 

 

5. Compute the matrix S = YYT (dimension M x M) in order to apply the Singular Value 
Decomposition, SVD [23]. 

 

6. Compute the eigenvalues and the eigenvectors of the Matrix S. In this case, the cross 
correlation between Y and YT is calculated so that its eigenvalues are normalized and 
each eigenvalue, ei, measures the ratio of variability associated with its eigenvector, vi 

 

𝑣  =  (𝑣 , , 𝑣 , , … . , 𝑣 , ). (6) 

 

7. There are N − M + 1 principal components, pci, each one associated with an eigenvalue, 
ei, obtained as the projection of the matrix Y into the subspace associated with its 
eigenvector, vi, 

 

𝑝𝑐  =  𝑌 . 𝑣 . (7) 

 

8. The expanded signal, Ẍ, can be reconstructed using all the principal components, pci. 
Each component provides the contribution, rk, to the reconstruction of Ẍ by multiplying 
the component by the eigenvector as 

 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  

𝑟 , =
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 ,

2
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𝑟 , =  
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 , + ⋯ +  𝑝𝑐 , . 𝑣 ,

𝑗
       𝑗 = 3, … . . 𝑀 − 1 

……. 

𝑟 , =
𝑝𝑐 , . 𝑣 , +   𝑝𝑐 , . 𝑣 ,  

2
 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  . 

        (8) 

 

The reconstruction is made with the principal components that explain 95 % of the 
variability of the original signal. This percentage of reconstruction has been decided by 
heuristic and empirical criteria. To reach the final result, we covered the data gaps and 
thereby reduced their influence at each transition from missing data to existing data by 
comparing the reconstructed signal with the zeroes in the gaps of the original Ẍ. Those 
zeroes were replaced with the rk,i to repeat the previous analysis, extracting a new set 
of rk. It is then compared the new rk values with the previous set, repeating the iteration 
until the difference between one reconstruction in the gaps and the next reconstruction 
agreed within a standard deviation of 1 %. 

 

This general method is going be adapted and applied to both sensors data, PS and ATS. 
In Annex 1, the code to apply SSA to both sensors data is shown. 

 

3.2. Discrete Wavelet Transform for denoising 

From an historical point of view, wavelet analysis is a new method, though its theoretical 
mathematical foundations are subsequent to the research presented by Joseph Fourier, 
in the nineteenth century [30]. Fourier laid the foundations with his theories of 
frequency analysis, which proved to be tremendously important and influential. The 
attention of researchers gradually turned from frequency-based analysis to scale-based 
analysis when it started to become clear that an approach measuring average 
fluctuations at different scales might prove less sensitive to noise. The first recorded 
mention of what we now call a “wavelet” seems to be in 1909, when Alfred Haar, a 
Hungarian mathematician-scientist, introduced the idea of HAAR orthogonal system 
through his doctoral thesis at University of Gottingen, Germany. The concept of 
wavelets in its present theoretical form was first proposed by Jean Morlet and the team 
at the Marseille Theoretical Physics Center working under Alex Grossmann in France, in 
1982 [31], [32]. The methods of wavelet analysis have been developed mainly by Y. 
Meyer and his team, who have ensured the dissemination of the methods [33]. The main 
algorithm dates back to the work of Stephane Mallat, in 1988 [34]. Since then, research 
on wavelets domain has become world-renowned. A lot of mathematical papers and 
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practical researches are published every month. Such research is particularly active by 
the work of scientists such as Ingrid Daubechies, Ronald Coifman, and Victor 
Wickerhauser.  

 

Since they have become internationally known, wavelets have been developed 
independently in many different fields such as mathematics, quantum physics, electrical 
engineering, or seismic geology. Interchanges between these fields during the last ten 
years have led to many new wavelet applications such as signal denoising, image 
compression, human vision, radar, and earthquake prediction. 

 

From a methodological point of view, the wavelets are functions that divide data into 
different frequency components, and then work with each component with a resolution 
matched to its scale. They allow for an analysis adapted to the data scale. Wavelets are 
functions that satisfy certain mathematical requirements and are used in representing 
data and multiple functions. Wavelet algorithms process data at different scales or 
resolutions and this is the novelty with respect to Fourier. Wavelets are well-suited for 
estimating data with sharp discontinuities, and this advantage over the Fourier series is 
very useful for our specific data.  

 

Wavelet transforms are broadly divided into two classes: the Continuous Wavelet 
Transform (CWT), which is a formal tool that provides a complete representation of a 
signal by letting the translation and scale parameter of the wavelets vary continuously, 
and the Discrete Wavelet Transform (DWT), which is any wavelet transform for which 
the wavelets are discretely sampled. There is a set of families, the mother wavelets, 
specific to each class, which have their own characteristics. When a specific wavelet 
shape is needed because it is physically related to the data to study, DWT is the wavelet 
alternative more appropriate to use. In the next paragraphs, the data processing flow 
based on the Discrete Wavelet Transform [33] (DWT) for denoising is explained. The 
specific configurations of the method will be detailed in the chapter devoted to its 
applications, Chapter 5: 

 

1. The DWT is applied to the data. 

Wavelet analysis makes use of short-duration waveforms, ψ[n], with zero mean and a 
sharp decay to zero at both ends. These short-duration waveforms are scaled and 
shifted to set the optimum time-frequency resolution. We use the definition and 
formulation of Mallat [35], where the discrete wavelet scaled by 2j is expressed as 

 



 

26 

𝜓 [𝑛] =  
1

√2
·  𝜓

𝑛

2
, 

(9) 

   

where j is the number of decomposition levels and ψ[n] corresponds to a wavelet family 
that will be later detailed. The number of decomposition levels, j, will vary depending 
on the number of samples. The DWT coefficients of the signal x[n] with respect to the 
wavelet function ψ[n] can be written as 

 

𝑋 [𝑚] =  𝑥[𝑛]  ·  𝜓∗[𝑛 − 𝑚], (10) 

 

where 𝜓∗[𝑛]  is the complex conjugate of the scaled wavelet family, m is the translation 
parameter, and N the number of samples of the noisy signal. In similar applications [36], 
the choice of the mother wavelet is mainly based on visual inspection and on the 
correlation between the original signal and the wavelet-denoised signal. 

 

It is worth noting that equation (10) can be expressed as a circular convolution, so that 
we can resort to the Fast Fourier Transform when making the corresponding 
computation. This approach just requires O (N log2 N) operations for each scale, 
resulting in high computational efficiency. 

 

2. Thresholding of the sub band signals with a threshold 𝜃. 

After having decomposed the original signal, a thresholding step is applied to the 
coefficients of the wavelet decomposition. Its purpose is finding out which part of them 
should be qualified as noise, and should be consequently removed. For this purpose, the 
universal threshold from Donoho and Johnstone [37] has been used. Said threshold is 
calculated as [37] 

 

𝜃 =  𝜎 ·  2 ·  𝑙𝑜𝑔 𝑁 , (11) 

  

where σ is the estimated standard deviation of the noise, which is calculated using the 
so-called Median Absolute Deviation (MAD) from the higher signal frequency 
decomposition level of the wavelet transform, X1[m], as [37] 
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𝜎 =  
𝑀𝐴𝐷

0.6745
 . (12) 

 

The MAD is defined as 

 

𝑀𝐴𝐷 =  𝑚𝑒𝑑 {|𝑋 [𝑚]  −  𝑚𝑒𝑑 {𝑋 [𝑚]}|},   (13) 
 

where med{} is the median value. These expressions take into account that the value of 
the noise standard deviation σ is often estimated from the median value of the Xj[m] 
wavelet coefficients belonging to the first level of signal decomposition 𝑋 [𝑚] [38], 
corresponding to the finest level of decomposition. 
Once the value of 𝜃 is obtained, the thresholding process is performed. In the 
application chapter, Chapter 5, the thresholding process will be specified according to 
the nature of our measurements. 

 

3. Reconstruction of the filtered output signal. 

Once the thresholding has been applied to Xj[m], the output coefficients 𝑋 [𝑚] are 
obtained. They are used to produce the reconstructed signal yw[n] by means of the 
inverse DWT, 

  

𝑦  [𝑛] =  𝑋 [𝑚] · 𝜓 [𝑛 − 𝑚], (14) 

 

where J is the number of decomposition levels.  

 

4. By subtracting the reconstructed signal from the original one x[n], we obtain an 
estimation of the perturbing noise 𝜖 [𝑛] as 

 

𝜖  [𝑛] = 𝑥[𝑛] − 𝑦 [𝑛]. (15) 
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3.2.1. Wavelets families considered 

In this section, we present the 3 wavelets that were initially preselected in a process 
intended to find the one that could best fit our data. These 3 wavelet families were 
chosen among all possibilities taking into account the shape of our signals. 

 

3.2.1.1. Daubechies 

Ingrid Daubechies, one of the brightest people in the world of wavelet research, 
invented what are called compactly supported orthonormal wavelets [39], which made 
discrete wavelet analysis practicable. The specific Daubechies wavelet family is denoted 
by dbN, where N is the order, and db the surname of the wavelet. Figure 12 shows the 
different forms of this family: 

 

 
Figure 12: Daubechies family. (Credit: MATLAB toolbox) 

 

For our purpose, we performed tests with the higher order wavelets, due to the fact 
that they look more similar to the signals under analysis. 

 

3.2.1.2. Coiflets 

Coiflets are discrete wavelets designed by Ingrid Daubechies [40], in order to have 
scaling functions with vanishing moments. Each mother wavelet in the family is near 
symmetric, and have 2N moments equal to 0, being N being the order. Figure 13 shows 
the different forms of this family. We also performed tests with the higher order 
wavelets, due to the fact that they look more similar to the signals under analysis. 
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Figure 13: Coiflets family. (Credit: MATLAB toolbox) 

 

3.2.1.3. Symlets 

The symlets group are nearly symmetrical wavelets proposed by Daubechies as 
modifications to the Daubechies family [39]. The properties of both wavelet families are 
very similar. Figure 14 shows the different forms of this family. We also performed tests 
with the higher order wavelets, due to the fact that they look more similar to the signals 
under analysis. 

 

 
Figure 14: Symlet family. (Credit: MATLAB toolbox) 

 

3.3. Hilbert-Huang Transform for denoising 

The Hilbert-Huang Transform (HHT), was proposed by Norden E. Huang and his team in 
1996 [41]. It is used in multiple areas such as biomedical applications, neuroscience, 
image processing, speech recognition, among others. HHT is able to extract the 
frequency components from possibly nonlinear and nonstationary intermittent signals. 

HHT is the result of mixing the Empirical Mode Decomposition (EMD) [41], [42], a fully 
data-driven approach, with which any complicated dataset can be decomposed into a 
finite and often small number of functions that admit well-behaved Hilbert transforms, 
and the Hilbert Spectral Analysis (HSA)[41], which is a signal analysis method applying 
the Hilbert transform to compute the instantaneous frequency of a signal. 
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The HHT uses the EMD method to decompose a signal into so-called Intrinsic Mode 
Functions (IMF), and applies the HSA method to the IMFs to obtain instantaneous 
frequency data. Since the signal is decomposed in time domain and the length of the 
IMFs is the same as the original signal, the HHT preserves the characteristics of the 
varying frequency. This is an important advantage of HHT since real-world signal usually 
has multiple causes happening in different time intervals.  

The denoising process based on the Hilbert-Huang Transform method, HHT, [43] is 
detailed in the following, according to Boudraa [44]. The method proceeds as follows: 

 

1. The EMD is applied to the data. By using this method, a noisy signal is adaptively 
decomposed into oscillatory modes with variable amplitudes, the IMFs, plus a residual 
signal. Each component is defined as an intrinsic mode function (IMF) satisfying the 
following requirements:  

 
a. In the whole dataset, the number of extrema and the number of zero 

crossings must be either equal or differ at most by one. 
b. At any data point, the mean value of the envelope defined using the local 

maxima and the envelope defined using the local minima is zero. 
 

2. The procedure required to extract an IMF is called sifting, and is defined by the following 
steps: 

a. Consider a dataset x[n]. 
b. Extract the local maximum and local minimum from the signal. 
c. Compute upper and lower envelope. 
d. Compute the envelopes mean. Figure 15 shows an example from the 

envelope computation to facilitate its comprehension.  
e. Calculate the stop criterion to define the IMF: 

 

𝑆𝐷 =  ∑
𝐼𝑀𝐹𝑗,𝑖−1[𝑛]− 𝐼𝑀𝐹𝑗,𝑖[𝑛]

2

(𝐼𝑀𝐹𝑗,𝑖−1[𝑛])
2

𝑁
𝑛=0 , (16) 

 
where N is the length of x[n].  

 

 

 

Local maximum Local minimum 

Figure 15: Local maximum and local minimum of a random signal. 
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f. Find an IMF, following the stop criterion. The difference between the 
original signal x[n] and the IMF becomes the new signal, and a 
subsequent sifting process is performed to find the next IMF. 
 

𝑥[𝑛] − 𝑐  =   𝑟 [n], (17) 

 
where c1 is the first IMF found and r1 the residual signal, which becomes 
the new signal. 

 

The sifting process has to be repeated as many times as required to make the extracted 
signal satisfy the definition of an IMF, fulfilling the two requirements mentioned above. 
The sifting process can be stopped when the residual signal, ri[n], becomes a monotonic 
function from which no more IMF can be extracted. 

 

3. The decomposition of the signal in M−empirical modes can be written as 

 

𝑦[𝑛]  =  𝑐 [𝑛]  +  𝑟[𝑛]

𝑀

𝑚=1

, (18) 

 
where cm [n] is the IMF of the m-th decomposition level, and r[n] is the residual signal. 
The signal y[n] is the reconstruction after applying the EMD to the input data x[n]. Under 
ideal conditions, without further processing of the IMF values, the reconstructed signal 
should be equal to the input signal, i.e., y[n] = x[n]. 

 

4. Apply the Consecutive Mean Square Error (CMSE). This step is mainly based on the idea 
that the main part of the meaningful signal structure has to be found in the last IMFs, 
which represent the lower frequencies, while the noise is usually associated to the first 
IMFs, which represent the higher frequencies. Accordingly, the denoising process 
consists in the reconstruction of the signal after discarding the initial IMF levels. 
Therefore, 

𝑦 [𝑛]  =  ∑  𝑀
𝑚=𝑘 𝑐 [𝑛]  +  𝑟[𝑛], (19) 

   
is the reconstructed signal taking into account just the last M − k + 1 levels. We consider 
the CMSE as a measure of the distortion in the reconstructed signal, according to [44]. 
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The CMSE measures the squared Euclidean distance between two consecutive 
reconstructions of the signal, and it is defined as 

 

𝐶𝑆𝑀𝐸(𝑦 , 𝑦 ) =  
1

𝑁
 |𝑦  [𝑛] − 𝑦  [𝑛]| =  

=  
1

𝑁
 |𝑐  [ ]| .  

 (20) 

 

5. Apply the threshold. Apply a threshold to the lowest IMF levels. In order to explicitly 
filter the additive Gaussian noise, the universal threshold 𝜃 is applied here. A different 
𝜃 has to be calculated for each decomposition level, since noise is found in all levels of 
decomposition. If we denote the threshold for the m-th level as 𝜃 , where m = 0, …, j, 

 

𝜃 = 𝜎 · 2 · 𝑙𝑜𝑔 𝑁 , (21) 
 
where N is the length of the noisy signal, and 𝜎  the noise standard deviation of the m-
th IMF. The estimated value for 𝜎  is [45], [46]: 

 

𝜎 =  
𝑀𝐴𝐷

0.6745
, 

(22) 

 

where MADm is the absolute median deviation of the m-th IMF, calculated as 

 

𝑀𝐴𝐷  =  𝑚𝑒𝑑 {|𝑐 [𝑛] −  𝑚𝑒𝑑 {𝑐 [𝑛]}|}. (23) 

 

The index j that minimizes the CMSE allows to determine which IMF level represents the 
limit between the part of the signal where the noise can be considered negligible, and 
the part where the noise is dominant [46]. The index j is given by calculating 

 

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶𝑀𝑆𝐸(𝑦 , 𝑦 ) .  (24) 

 

Before reconstruction, a soft thresholding method is applied as in [47]. 
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6. Reconstruction of the filtered output signal. After applying the thresholding to the 
corresponding levels, the reconstructed signal yh[n] is obtained by adding up the 
thresholded IMFs, the non-thresholded IMFs and the residual signal 

 

𝑦  [𝑛] =  �̂� [𝑛] +  𝑐 [𝑛] +  𝑟[𝑛]. (25) 

 
7. By subtracting the reconstructed signal from the original one, x[n], we obtain an 

estimation of the perturbing noise 𝜖  [𝑛] as 

 
𝜖  [𝑛] = 𝑥[𝑛] − 𝑦 [𝑛]. (26) 

 
In this chapter, we have detailed the algorithms used in the thesis and the functionality 
given to them. 

 

Chapters 4 and 5 explain the application of these methods to our data.   
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Chapter 4: Processing and analysis of 
the Pressure Sensor data 

After having reviewed the methodology chosen for our data analytical purposes, this 
chapter focuses on the application of the required methods to the pressure data. 

 

The Pressure Sensor data has been chosen as a target for processing and analysis 
because of the relevance of this magnitude in meteorology, which has been studied in 
Mars for years [48][49]. With all the previous studies done on Mars pressure and since 
pressure gives substantial information about changes in the planet atmosphere, we 
consider that extracting information from the REMS pressure data can help in the 
detection of Mars environmental processes. 

 

Pressure is a very stable magnitude because it is a measurement of the force exerted by 
the atmosphere on the surface of a planet. So, its value is not characterized by sudden 
changes, as happens with the temperature, a fact that will be discussed in the next 
chapter. Because the pressure measurements are not much affected by noise, we have 
chosen not to apply a denoising method. 

 

After reading bibliography related to the subject and doing an intensive study of 
different algorithms, such as Kalman [50], the Hilbert Spectral Analysis (HSA) [51], or 
Singular Spectrum Analysis (SSA) [52], this last one has been chosen as the appropriate 
method to decompose the pressure data and extract information relevant to 
characterize certain atmospheric processes. 

 

Since the pressure has been previously studied to understand better the behavior of the 
dust storms [53], our study is based on the possibility to analyze these data to extract 
possible alarms that warn of the onset of the dust storms, what we could name as storm 
harbingers or precursors. 

 

The next section is devoted to explaining the whole processing of the pressure data. 

 



 

35 

4.1. From counts to pressure in pascals 

As explained in the Pressure Sensor section, in Chapter 2, much of the information about 
the Pressure Sensor is confidential. It is for this reason that the description of its 
processing is limited. Although the processing method is confidential, we have sufficient 
assurance of the robustness and reliability of this transforming algorithm, from counts 
to pascals, to be able to work with the data resulting from the application of such 
algorithms. The public information about the retrieval process which transforms counts 
(dimensionless values logged by the flight electronics) to pascals (final physical 
magnitude), described in Table 2, is detailed below: 

 

1.  Jet Propulsion Laboratory, JPL, through its pipelines provides the data received from 
Mars. Pressure Sensor measurements are received in a raw format from each of the 8 
channels plus a pressure estimation channel, the latter could be used for event 
detection.  Each channel has 3 bytes.  
 

2. The next processing level, the REMS TELRDR dataset (see Table 2), contains processed 
REMS data where the counts given by the analog/digital converters from the instrument 
sensors have been converted to their corresponding values, taking into account 
calibration information, gains and other possible electrical altering factors, such as the 
ASIC temperature. This level contains Pressure Sensor capacities, in picofarad, for each 
of the 8 channels. 

 

3. The next level contains the processing of the ENVRDRs environmental magnitudes with 
minimal corrections, mainly based on the degradation of the sensors. This level contains 
the temperature from both thermocaps, in kelvin, and pressure for both barocaps, in 
pascals, as well as their estimated uncertainties. 
 

4. The last level contains the MODRDR product. At this processing level, a drift correction 
is adjusted by the REMS pressure team and the confident level is added. This level 
contains the pressure values, in pascals. 

 

4.2. Application of the SSA to the Pressure Sensor 
data 

 

In this section, we are going to explain how the SSA has been applied to the MODRDR 
of the pressure data, as well as the motivation behind. Our main goal behind the 
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application of this algorithm is the detection of environmental processes in Gale. Digging 
into meteorological events on Mars, we have found out that dust storms dominate 
much of the research done about the environmental processes on Mars. There are many 
researches done about the pressure during the dust storms periods.  It is believed that 
the atmospheric circulation patterns are responsible for the growth of the dust storm 
but their exact trigger and prediction remain a mystery [28]. Motivated by these 
researchers, the idea arose to search how the pressure behaves before the dust storms 
arrives, since there were indications in the pressure data that could be precursors of 
storms. Data used for this study are the most exhaustive data, in terms of accuracy and 
period of time measured. 

 

As it is shown in Figure 10, data are presented in different processing levels. For our 
purpose, the last and more elaborated level has been chosen as input data, the 
MODRDR file. This type of file contains the pressure data in pascals, in its column 38. 
The highest level of processing has been chosen because it presents the data with the 
highest level of correctness and reliability and the algorithms used to obtain them have 
been widely tested. 

 

By using the pressure data from the MODRDR product, we have created an intermediate 
file, the pressure tide file, containing the decomposition of the pressure per sol. For this 
purpose, we have used a standard method, the least-square technique, consisting on 
the decomposition of the temporal evolution of pressure signals into a harmonic series 
[28], represented in equation (27). The main goal of doing this preprocessing algorithm 
is to decompose each observed pressure cycle (one cycle per sol) into the mean 
pressure, its diurnal, semidiurnal, terdiurnal, tetradiurnal components, etc., containing 
each decomposition the pressure tide amplitudes and the pressure tide periods. The 
pressure tide amplitude indicates the force with which the tide arrives and the phase 
indicates when the tide arrives. 

 

To decompose the pressure cycle observed over one sol into frequencies, a least-
squares fitting technique is used on sols where at least 22 REMS observation windows 
of 5 minutes are available. If the number of observations is lower than 22 during one 
sol, said sol is not taken into account. The observed pressure, p, is fitted using the 
expression: 

 

𝑝 =  𝑝 +  𝑝 · 𝑠𝑖𝑛 2𝜋
𝑖 · 𝐿𝑇𝑆𝑇

24
+ 𝜑  , 

(27) 
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where p0 represents the mean pressure per sol, pi are the amplitudes of the different 
pressure tide modes, 𝜑  is their phase, and LTST is Local True Solar Time in hour fraction. 

Each pi is associated with a frequency corresponding to the different pressure tide 
modes: diurnal, semidiurnal, terdiurnal, tetradiurnal, etc. Each mode has its physical 
influence on the atmosphere, although studying this in detail is not our task in this 
thesis. In our study, we are going to use the diurnal mode, p1. The diurnal iteration mode 
indicates how the diurnal tide changes over time. 

 

More information about this intermediate file is presented in Annex 1, while Annex 4 
contains an extract of the tide file generated. 

 
Figure 16: Mean pressure, p0, per Martian day during the whole mission. Values obtained from equation 22. 

 

This intermediate file provides the input values to the SSA. It contains all the pressure 
modes. 

 

Figure 16 shows the mean pressure mode, p0, calculated per Martian day, during the 
whole Curiosity mission. The advantages of the SSA detrending are its ability to capture 
the contribution of interannual changes in pressure caused by changes in altitude from 
a moving rover, as it can be seen in Figure 16, which the harmonic analyses cannot 
model without additional rover altitude information.  
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Given the contribution by Tillman [53], who noted that the diurnal pressure tide, p1, 
changed when dust storms took place, it would be interesting to put the focus on this 
specific tide. Figure 17 represents the diurnal tide pressure, p1 obtained using the 
decomposition method explained in equation (27) with pressure data. This figure also 
shows the opacity, in orange. This information, provided by the MastCam team, is 
obtained by calculating the radiance of images taken directly of the solar disk. This 
opacity informs us when a dust storm is occurring, although it cannot warn us before 
the storm arrives. 

 

Because of the information contained in p1, we have chosen these values to apply the 
Singular Spectrum Analysis. 

 

 
Figure 17: Diurnal pressure, p1, during the whole mission. Values obtained from equation 22. 

 

Next, the application of the SSA to the diurnal pressure data, p1, is detailed: 

 

1. Let's consider two time series, a pressure signal, p, and a sol series, sol, 

 

𝑝 = 𝑝 , 𝑝 , 𝑝 , … , 𝑝   
𝑠𝑜𝑙 = (𝑠𝑜𝑙 , 𝑠𝑜𝑙 , 𝑠𝑜𝑙 , … , 𝑠𝑜𝑙 ), 

(28) 
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where sol contains the mission sols that measured 24 observations, p shows their 
respective measured values of pressure in these sols, and n is the number of sols for 
which REMS collected a full diurnal cycle (24 observations). 

 

2. The pressure signal p is detrended by removing its mean value pmean 

 

𝑝  =   𝑛 𝑝 _  , (29) 

    
where the p0_i is the average pressure found, from sol i, in equation (27). 

 

3. The resulting sequence of values, p − pmean, has gaps for missing sols where there was 
not a full diurnal cycle of magnitudes measured. 

 

𝑝 − 𝑝 =  (𝑝 , 𝑝 … , 𝑝 ). 

 
(30) 

4. To solve the gaps problem, an expanded signal is defined, �̈�, where a 0 is added at the 
positions of sols where there are no 24 observations, while maintaining the main 
frequency characteristics [29], 

 

�̈� =  (𝑃 , 𝑃 , … , 𝑃 … , 𝑃 ),   𝑃 =   
0 𝑖𝑓 𝑆𝑂𝐿 ⊄ 𝑠𝑜𝑙

𝑝  𝑖𝑓 𝑆𝑂𝐿 ⊂ 𝑠𝑜𝑙,
 (31) 

 

where j is the position where SOLi is in sol, SOLi is a random sol from the mission and N 
is the dimension of the new vector �̈�, corresponding to the last sol considered in the 
study. 

 

5. Create the trajectory matrix Y with dimensions (N – M + 1) x M, where M is the 
temporal window covering. The choice of M has been detailed in Chapter 3. This 
converts a one-dimensional pressure series �̈� into a multidimensional pressure series 
Y = (P1…PM), (P2…PM+1), …, (PN-M+1…PN). 

The result of this step is the trajectory matrix 𝑌 = [𝑌 ,   𝑌 , … 𝑌 ], 

 

𝑌 =

𝑃 𝑃 𝑃 … 𝑃
𝑃 𝑃 𝑃 … 𝑃
⋮ ⋮ ⋮ ⋱ ⋮

𝑃 𝑃 𝑃… … 𝑃

. (32) 
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6. Compute the matrix S = YYT (dimension M x M) in order to apply the Singular Value 
Decomposition (SVD) [23]. 

 

7. Compute the eigenvalues and the eigenvectors of the Matrix S. In this case, the cross 
correlation between Y and YT is calculated so that its eigenvalues are normalized and 
each eigenvalue, ei, measures the ratio of variability associated with its eigenvector, vi 

 

𝑣  =  (𝑣 , , 𝑣 , , … . , 𝑣 , ). (33) 

 
8. There are N − M + 1 principal components, pci, each one associated with an eigenvalue, 

ei, obtained as the projection of the matrix Y into the subspace associated with its 
eigenvector, vi, 

𝑝𝑐  =  𝑌 . 𝑣 . (34) 

 

9. The expanded signal, �̈�, can be reconstructed using all the principal components, pci. 
Each component provides the contribution, rk, to the reconstruction of �̈� by 
multiplying the component by the eigenvector as 
 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  

𝑟 , =
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 ,

2
 

𝑟 , =  
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 , + ⋯ +  𝑝𝑐 , . 𝑣 ,

𝑗
             𝑗 = 3, … . . 𝑀 − 1 

……. 

𝑟 , =
𝑝𝑐 , . 𝑣 , +   𝑝𝑐 , . 𝑣 ,  

2
 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  . 

 

 

      (35) 

 

The reconstruction is made with the principal components that explain 95 % of the 
variability. This percentage of reconstruction has been decided by heuristic and 
empirical criteria. This 95 % of variability corresponds to the first 8 principal 
components. To reach the final result, we covered the data gaps and thereby reduced 
their influence from missing data to existing data at each transition by comparing the 
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reconstructed signal with the zeroes in the gaps of the original �̈�. Those zeroes are 
replaced with the rk,i and the previous analysis is repeated, extracting a new set of rk. It 
is then compared the new rk values with the previous set, repeating the iteration until 
the difference between one reconstruction over the gaps and the next reconstruction 
agreed within a standard deviation of 1 %. 

 

4.3. Results and discussion 

In this section, we show the results of applying the SSA to the diurnal pressure data, p1, 
as explained in the previous section. 
 

 
Figure 18: Diurnal pressure minus reconstruction from SSA. 

 

Figure 18 represents the result of the subtraction between p1, represented in blue in 
Figure 17, and the reconstruction of p1 by using the first 8 eigenvectors from SSA 
decomposition, which represent the 95 % of the original signal. With this operation, we 
find sudden jumps in the signal coming earlier than the opacity peaks from the MastCam 
camera, represent in orange in Figure 18. 

 

Figure 19, Figure 20, Figure 21 and Figure 22 are enlarged subperiods of the sols from 
Figure 18. They mainly zoom in dust storm periods. During a dust storm period, there 
are several subperiods where it reaches maximum opacity and others where its intensity 
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decreases. Figure 19 shows the beginning of the third storm observed since the rover 
Curiosity landed in Gale crater, from sol 1350 to sol 1550. Figure 20 shows the beginning 
of the fourth storm, from sol 2000 to sol 2200, Figure 21 shows the second peak of the 
fourth dust storm, from sol 2200 to sol 2400 and Figure 22 shows the beginning of the 
fifth dust storm period, from sol 2700 to sol 2800. Different examples from different 
periods observed by the rover Curiosity have been used to support the finding we wish 
to demonstrate. As it can be seen in these figures, sudden jumps in the pressure are 
prior to MastCam opacity jumps. Studying these figures, and noticing that the behavior 
is repeated in each storm, we can confirm that there are changes in pressure, extracted 
and discovered by the SSA algorithm, prior to the storm, which warn us of its onset. 
Therefore, there are precursors that warn us of the dust storm. This information, 
although found in the pressure data, cannot be visualized in the pressure data itself. It 
has been discovered thanks to the analysis based on the SSA processing [28]. 

 

 
Figure 19: Zoom from Figure 13 from sol 1350 to sol 1550. 



 

43 

 
Figure 20: Zoom from Figure 13 from sol 2000 to sol 2175. 

 

 

 
Figure 21: Zoom from Figure 13 from sol 2200 to sol 2400. 
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Figure 22: Zoom from Figure 13 from sol 2700 to sol 2820. 
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Chapter 5: Processing and analysis of 
the Air Temperature Sensor data 

After the innovative results found in the pressure data explained in chapter 3, we 
decided to explore also the ATS data in depth, due to the close relationship between 
pressure and temperature in the context of the Martian atmospheric dynamics. 

 

 
Figure 23: Scheme of the processing chains applied to ATS and PS data. 
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Though the working hypothesis that seemed reasonable was to look for the same 
precursors in the temperature, it turned out that we could not find them, so we have 
proceeded to look for another relationship with meteorological processes that seems to 
make sense and give a utility to the noise processing to improve the starting signal. 

 

That is why this chapter is dedicated to the Temperature Sensor, to explain the 
algorithm that translates the data coming from the rover, in dimensionless counts, into 
tangible temperature values. After the data conversion process, we explain how the 
methods have been adapted to denoise the ATS data in order to find indicators that can 
be related to meteorological events. 

 

In Figure 23, the pressure and temperature datasets and their respective processing 
schemes are compared. 

 

5.1. From counts to temperature in kelvin 

In Chapter 2, section REMS data management, we explain, in a generic way, the 
processing of the sensors readings from data arriving in raw format, or counts, until 
obtaining a tangible value for the given physical magnitude.  

 

In this section, we focus on the Temperature Sensor, and we explain step by step how 
this process is performed to finally obtain the temperature data in kelvin. 

 

As explained in the subsection Air Temperature Sensor, REMS is composed of a suite of 
sensors, and many of them are located within two booms, including the two ATS.  

 

Due to their location, both ATS are constantly exposed to a number of external and 
internal perturbations. Externally, they are exposed to solar radiation and Martian 
winds, the most important external alteration factors, which can affect the readings with 
respect to the real magnitude, we intend to measure. Moreover, the ATS operation is 
mainly affected by the thermal contamination generated by the rover power supply, a 
Radioisotope Thermoelectric Generator (RTG), which is the warmest spot in the 
Curiosity rover. Internally, meaningful perturbations are related to the switching on and 
off of other sensors belonging to REMS, such as the WS, or the changes in configuration 
of the ASIC itself, which is shared with other sensors and may introduce disturbing 
effects to the temperature readings. Due to all this, it is difficult to provide a reliable 
temperature measurement without further processing. 
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Currently, the ATS REMS data downloaded to Earth are processed as follows [10][54]: 

1. The ATS REMS data reach the Earth through eight data channels. Five channels contain 
information from the five Pt1000 sensors from both ATSs, and the other three channels 
contain information about the temperature readings from the GTS, corresponding to 
three different infrared wavelength channels. At this stage, the data are in a raw format, 
better known as counts, which represent the readings related to the physical magnitude 
corresponding to each physical sensor. 
 

2. For the TELRDR product, the counts are translated into kelvin (K) by using the Pt1000 
physical model and its conversion equations [55]. This gives the temperature measured 
by the sensors, and will serve as the basis for the estimation of the air temperature. The 
physical model takes into account certain corrections depending on other sensors' 
status, such as the gain of the GTS or the activation/deactivation state of the WS. The 
model considers six measurement signals, one from each of the five Pt1000 of both 
booms, while the temperature at the ATS 1 base is obtained from the three GTS 
readings, as mentioned before. The signals obtained from each sensor, already 
translated to kelvin, will be denoted from now on as xk[n], where the indexes k = 1, 2, 3 
identify the three signals from the Temperature Sensors of Boom 1 (a Pt1000 at the tip, 
a Pt1000 at an intermediate point and the mean value of the three thermopiles of the 
GTS located at the boom base, respectively), and the indexes k = 4, 5, 6 identify the 
signals from the corresponding Pt1000 sensors of the Boom 2 (tip, intermediate point 
and base, respectively). The signals are considered after the analog-to-digital conversion 
(ADC) step, hence the discrete-time nature of the defined variables. 
 

3. For the ENVRDR product, there is no change from the previous level, except for the 
addition of the estimated uncertainties for each ATS data column. This uncertainty value 
is obtained from the sum of the absolute value of the minimum value found and the 
absolute value of the maximum value found, both data searched for each sol. 

 

𝑢 = |𝑚𝑖𝑛 (𝑥  [𝑛], 𝑥 [𝑛], … . 𝑥 [𝑛])| 
         +|𝑚𝑎𝑥 (𝑥  [𝑛], 𝑥 [𝑛], … . 𝑥 [𝑛]|, 

(36) 

 
where xk1[n] represents the first temperature value of the signal xk[n] and N represents 
the number of measurements found per signal xk[n]. There are six uncertainties values, 
one per xk[n]. 
 

4. At the last level, a the MODRDR file is generated. At this processing level, a filtering is 
first performed and then a specific model is applied. Both processes are detailed below:  
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a. A filter is applied to each of the signals in order to reduce the noise, so that 
we can write 

 

𝑦 [𝑛] = 𝑥 [𝑛]  ∗ ℎ[𝑛], (37) 

 
where yk[n] is the filtered version of the k-th signal, h[n] is the impulse 
response of the filter and ∗ denotes the convolution operator. A Moving 
Average (MA) filter is the method currently applied for this task. Its 
application is based on the assumption that the noise is statistically 
independent from the temperature evolution and, therefore, it should not 
change the underlying structure of the signal. Under this hypothesis, 
averaging over a few points would effectively reduce the noise 
contribution. Specifically, for each data sample, it calculates the average 
over a predefined number of neighbors, defined by a span parameter. As 
it is widely known, this is an instance of a Finite Impulse Response (FIR) 
lowpass filter, where the span is related to the cutoff frequency. The 
computational cost is low but the stopband attenuation, approximately 21 
dB, is often insufficient [56]. Increasing the span will reduce the cutoff 
frequency and the effects of the noise, at the expense of a noticeable signal 
distortion. 

 

The MA filter, in fact, provides useful results for signals that are lowpass, 
continuous and smooth. However, when abrupt or fast changes are 
present, and they may arise from artifacts that may contain meaningful 
information, the filtering process might mask or distort them. Accordingly, 
this filter cannot be used if we want to get further insights about complex 
phenomena affecting the measurements. The calibration of the ATS and 
the experimental sensor response time were dominant factors to 
determine the span value best fitted to the nature of the ATS signals. The 
criterion chosen to set the MA filter was extremely conservative to avoid 
removing at least certain relevant artifacts, and it was decided that a 
reasonable trade-off for the span would be 9 samples. The coefficients 
used for the MA filter are constant, and the impulse response h[n] is 
defined as follows: 

ℎ[𝑛] =
1

9
𝛿 [𝑛 − 𝑘].   

(38) 
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b. The retrieval model, whose details can be found in [20], extrapolates the 
ambient temperature using the previously processed temperature data 
from the three sensors at each ATS. The thermal model of the FR4 beam is 
based on the theory of heat transfer from a constant section fin 
surrounded by a fluid. In this context, a fin is a surface protruding out from 
an object, whose function is to increase the heat transfer rate to or from 
the environment by offering a maximal exposure surface area. The FR4 
beam can be modeled as such a fin, transferring heat from the boom to 
the environment. This model, based on the principle of an infinite fin [21], 
is applied to give a local temperature estimation next to the tip by using all 
the temperature measurements from both ATSs. The estimated ambient 
temperature of each boom will be denoted as 

 𝑡 [𝑛] = 𝑅{𝑦 [𝑛], 𝑦 [𝑛], 𝑦 [𝑛]} 
  𝑡 [𝑛] = 𝑅{𝑦 [𝑛], 𝑦 [𝑛], 𝑦 [𝑛]}, 

(39) 

 

where the application of the retrieval method is represented by the 
operator R{}, and t1[n] and t2[n] are the estimated ambient temperatures 
from the Boom 1 and the Boom 2, respectively. 

 

5. At the end of the processing chain, a unique ambient temperature estimation t[n] is 
obtained from the ATS 1 and ATS 2 estimated temperatures. Due to the low 
temperatures measured on Mars during the whole Curiosity mission, it is considered 
that the ambient temperature closest to the real value should be the coolest one among 
t1[n] and t2[n], specially because the rover may significantly contribute to an undesirable 
increase in the temperature of the air surrounding it. This can be denoted as 

 

𝑡[𝑛] = 𝑚𝑖𝑛 (𝑡  [𝑛], 𝑡 [𝑛] ), (40) 

 

with some exceptions: It has been proven throughout the mission, that during the night, 
if the temperature drops too much, the ATS 2 does not work properly and shows 
unreliable temperatures, so it was decided, after multiple empirical tests, from 12 a.m. 
to 8 a.m. (LMST), the measurements will be taken exclusively from ATS 1, which provides 
more reliable temperatures,  

 

𝑡[𝑛] = 𝑡1[𝑛].  

 
 (41) 
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5.2. Denoising the ATS measurements 

 

Our initial purpose was to repeat the same process as we proceeded with pressure data, 
but, by comparing both dataset, it became evident that an additional denoising 
processing was needed before proceeding with the Singular Spectrum Analysis, as it can 
be seen in Figure 24, Figure 25, Figure 26 and Figure 27. 

 

Figure 24 and  Figure 25 show pressure and temperature information about sol 2000 
and Figure 26 and Figure 27 show pressure and temperature information about sol 
3483. Both sols were chosen randomly. The main purpose is to the variability of the 
pressure and temperature data. As it can be seen in both datasets, the variability of the 
temperature data is higher than the variability of the pressure data. The ATS provides 
noisier data than the Pressure Sensor, and this is mainly due to their respective 
locations. 

 

Although an instance of noise filtering is currently applied to the ATS data, as described 
above, we consider that the current denoising method has some shortcomings that 
could be circumvented. In this section, it is explained how the temperature data can be 
denoised with more suitable alternative methods [54], before applying the SSA. 

 

 
Figure 24: ATS data from sol 2000. 
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Figure 25: PS data from sol 2000. 

 

 
Figure 26: ATS data from sol 3483. 
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Figure 27: PS data from sol 3483. 

 

Every day we receive very noisy data from REMS sensors and the processing explained 
in the previous sections is applied to such data. 

 

As the ATS measurements are extremely noisy, due to the sensor location on the rover, 
it was necessary to reconsider the denoising method currently used and evaluate more 
efficient and powerful denoising methods to obtain higher quality data [57], before 
applying the SSA method. 

 

As explained before, the methodology currently used for denoising the ATS, the Moving 
Average filter, MA, results in six different filtered signals, denoted as yk[n]. The 
limitations of this method and its lack of further in-depth analysis capabilities about the 
results raise certain doubts about its suitability. For this reason, we have studied 
alternative algorithms, compared the results, and observed their potential with respect 
to the currently used algorithm, in order to improve the quality of the data presented 
to the scientific community. After having performed a thorough research, and knowing 
the specificity of our data, we have chosen two possible algorithms. One of the 
possibilities is based on the wavelets [58][59][60][61][62][63][64][65] (specifically the 
DWT), which comprise a family of functions that has proven to be especially useful in 
signal denoising. A second possibility is the Hilbert-Huang Transform [66][67], whose 
main feature is its high versatility for the processing of random data. In order to verify 
the suitability of these methods, they have been applied to two different kinds of 
datasets: on the one side, measurement data recorded under real conditions on Martian 
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surface, and, on the other side, a set of test measurements theoretically unaffected by 
external perturbations (see Annex 3 for more information). 

 

In this case, we will use the ENVRDR files instead of MODRDR files because the data at 
this level contain the MA filtering, and we wanted to avoid this processing to propose a 
different denoising method.  

 

In order to simplify the notation and without loss of generality, we have described the 
denoising procedure based on each of the above-mentioned methods for a generic 
signal x[n], where we have dropped the subindex for convenience. It is to be understood 
that these methods will be independently applied to each of the six original signals, xk[n], 
k = 1, . . . 6. 

 

As the current denoising filtering method has been explained and applied in detail in the 
previous section, only the application of the two denoising proposals is explained below. 

 

5.2.1. Denoising with wavelets 

As the wavelet algorithm was theoretically detailed in the previous section, here we only 
highlight the specific adaptations to our data: 

 

1. The DWT is applied to the ATS data. The choice of the mother wavelet is mainly based 
on visual inspection and on the correlation between the original signal and the wavelet-
denoised signal. The wavelet families Daubechies [68][69], Symlets [70] and Coiflets 
[40], due to the shape of their waves and the similarities with the signals we work, have 
been used to test which one may be better fitted to the nature of our data. We have 
done comparative analysis with all these bases. According to Walczak [71], the best-
basis wavelet family can be defined as the basis with the minimal number of coefficients 
(less entropy) or maximum information for its distribution of coefficients. We have 
performed a test with 6000 fragments of data from 400 different sols. By using this test 
and the definition of best basis proposed by Walczak, we concluded that the Symlet4 
family was the one determining better reconstruction results for this specific 
application. 
 

2. The subband signals are thresholded with a threshold 𝜃. After having decomposed the 
original signal, a thresholding step is applied to the coefficients of the wavelet 
decomposition. Its purpose is finding out which part of them should be qualified as 
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noise, and should be consequently removed. After having done deep research of the 
different possibilities of thresholding, a universal threshold from Donoho and Johnstone 
has been used [37]. This threshold has been referenced in hundreds of articles and was 
chosen because of its relevance in the signal processing area. In our case, this threshold 
is calculated by using the coefficients from the finest decomposition level. They are 
related to the higher signal frequencies, where the main contribution from the noise is 
supposed to be found. This unique threshold is used for all the coefficients of the 
different scales, and is calculated as [37] 
 

𝜃 =  𝜎 ·  2 ·  𝑙𝑜𝑔 𝑁 , (42) 

 

where N is the number of samples of the signal, and σ is the estimated standard 
deviation of the noise, which is calculated using the so-called Median Absolute Deviation 
(MAD) from the finest decomposition level of the wavelet transform, X1[m], as [37] 

 

𝜎 =  
𝑀𝐴𝐷

0.6745
,  

(43) 

 

where the MAD is defined as 

 

𝑀𝐴𝐷 =  𝑚𝑒𝑑 {|𝑋 [𝑚]  −  𝑚𝑒𝑑 {𝑋 [𝑚]}|},  (44) 

 

where med{} is the median value. These expressions take into account that the value of 
the noise standard deviation σ is often estimated from the median value of the Xj[m] 
wavelet coefficients belonging to the first level of signal decomposition 𝑋 [𝑚] [38], 
corresponding to the finest level of decomposition. 

 

There is the possibility to perform hard or soft thresholding. The hard thresholding is 
the process of setting to zero the coefficients whose absolute values are lower than the 
threshold 𝜃, while the soft thresholding acts by first setting to zero the coefficients 
whose absolute values are lower than the threshold 𝜃 and then shrinking the nonzero 
coefficients toward zero. After having done multiples tests with both alternatives, we 
have concluded that soft thresholding actually gives better results for our specific 
signals. According to this, the thresholding process is applied, following [47], for each 
zero-mean decomposition level, and in order to obtain the thresholded coefficients 
𝑋 [𝑚], as 
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𝑋  [𝑚] =  

𝑋  [𝑚] −  𝜃,       𝑋  [𝑚] ≥ 𝜃

  0,                         𝑋 [𝑚]  < 𝜃

    𝑋  [𝑚] +  𝜃,       𝑋  [𝑚] ≤ −𝜃.

 
(45) 

 

According to [37], the wavelet levels that do not have vanishing means should not be 
thresholded, since this would lead to severe distortion. 

 

3. Reconstruction of the filtered output signal. As described, once the thresholding has 
been applied to Xj[m], the output coefficients 𝑋 [𝑚] are obtained. They are used to 
produce the reconstructed signal 𝑦 [𝑛] by means of the inverse DWT, 
 

𝑦  [𝑛] =  𝑋 [𝑚] · 𝜓
𝑗
[𝑛 − 𝑚], 

(46) 

 

where J is the number of decomposition levels. In our developments, the maximum 
decomposition level permitted has been used, according to the length of the signal x[n]. 

 

4. By subtracting the reconstructed signal from the original one xk[n], we obtain an 
estimation of the perturbing noise 𝜖 [𝑛] as 
 

𝜖  [𝑛] = 𝑥 [𝑛] − 𝑦 [𝑛]. (47) 

 

In Annex 1, the code to denoise the ATS data by using wavelet is shown. 

 

5.2.2. Denoising with the Hilbert-Huang Transform 

The denoising of the temperature data based on the Hilbert-Huang Transform, HHT, is 
detailed below. The exact procedure has been the result of a number of tests, where 
different numbers of Intrinsic Mode Functions (IMFs) and other parameters have been 
tuned in order to reconstruct the signal, in accordance with the nature of our data. The 
method proceeds as follows:  
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1. The EMD, explained in Chapter 3, is applied to the ATS data. The procedure consists in 
the extraction of IMFs (also called the sifting procedure): 

a. Consider the temperature dataset x[n]. 
b. Extract the local maximum and local minimum from the signal. 
c. Compute upper and lower envelope. 
d. Compute the envelopes mean.  
e. Determine a criterion for the sifting process to stop and thus guarantee 

the IMF components retain enough physical amplitude and frequency 
modulations: 

 

𝑆𝐷 =  ∑ , [ ]  , [ ]

( , [ ])
, (48) 

 

where N is the length of x[n]. A typical value for SD is set between 0.2 and 
0.3 [41]. Comparing with the two Fourier spectra, calculated by shifting only 
five of the 1024 points of the same dataset, can have an equivalent SD of 
0.2-0,3, calculated on a point-by-point basis. Therefore, this range of values 
for the sifting process is a very rigorous limitation for the difference between 
siftings. 
f. Find an IMF following the stop criterion. The difference between the 

original signal x[n] and the IMF becomes a new signal, and a subsequent 
sifting process is performed to find the next IMF. 

𝑥[𝑛] − 𝑐  =   𝑟 [n], (49) 

 
where c1 is the first IMF found and r1 the residual signal, which becomes 
the new signal. 

 

The sifting process has to be repeated as many times as is required to make the 
extracted signal satisfy the definition of an IMF. The sifting process can be stopped when 
the residual signal, ri[n], becomes a monotonic function from which no more IMF can be 
extracted. 

 

2. The decomposition of the signal in M−empirical modes can be written as 
 

𝑦[𝑛]  =  𝑐 [𝑛]  +  𝑟[𝑛], 
(50) 



 

57 

where cm [n] is the IMF of the m-th decomposition level, and r[n] is the residual. This 
latter is a monotonic function from which no more IMFs can be extracted. The signal 
y[n] is the reconstruction obtained after applying the EMD to the input data x[n]. Under 
ideal conditions, without further processing of the IMF values, the reconstructed signal 
should be equal to the input signal, i.e., y[n] = x[n]. 

 
3. Apply the Consecutive Mean Square Error (CMSE). This step is mainly based on the idea 

that the main part of the meaningful signal structure has to be found in the last IMFs, 
which represent the lower frequencies, while the noise is usually associated to the first 
IMFs, which represent the higher frequencies. Accordingly, the denoising process 
consists in the reconstruction of the signal after discarding the initial IMF levels. 
Therefore, 

𝑦 [𝑛]  =  𝑐 [𝑛]  +  𝑟[𝑛] , 
(51) 

   
is the reconstructed signal by taking into account just the last M − k + 1 levels. We 
consider the CMSE as a measure of the distortion in the reconstructed signal, according 
to [44]. The CMSE measures the squared Euclidean distance between two consecutive 
reconstructions of the signal, and it is defined as 

𝐶𝑆𝑀𝐸(𝑦 , 𝑦 ) =  
1

𝑁
 |𝑦  [𝑛] −  𝑦  [𝑛]| =  

=  
1

𝑁
 |𝑐  [ ]| . 

 

(52) 

Therefore, the signal reconstructed using the decomposition levels from this index and 
the subsequent ones are judged to mainly contain the noise-free signal components. A 
large number of experiments have been performed and reported in the literature to 
support this hypothesis [44]. The IMFs from index j + 1 to the last one, plus the residual, 
should be related to the structure of the noise-free signal. However, in our case, the first 
IMFs could contain meaningful signal artifacts, and therefore we consider the inclusion 
of the first IMFs processed through thresholding. 

 

4. Apply a threshold to the lowest IMF levels. As the noise is assumed to be distributed 
among the mentioned IMF levels, 𝐼𝑀𝐹 ,…, , it is thought reasonable that a different 
threshold should be calculated for each of them [46]. In order to explicitly filter the 
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additive Gaussian noise, the universal threshold by Donoho [37] is applied here, but with 
a different value for each decomposition level. If we denote the threshold for the m-th 
level as 𝜃 , where m = 0, …, j,  

𝜃 = 𝜎 · 2 · 𝑙𝑜𝑔 𝑁 , (53) 

 

where N is the length of the noisy signal, and 𝜎  the noise standard deviation of the m-
th IMF. The estimated value for 𝜎  is [45] 

𝜎 =  
𝑀𝐴𝐷

0.6745
, 

(54) 

where MADm is the absolute median deviation of the m-th IMF, calculated as 

 

𝑀𝐴𝐷  =  𝑚𝑒𝑑 {|𝑐 [𝑛]  −  𝑚𝑒𝑑 {𝑐 [𝑛]}|}. (55) 

 

Again, a soft thresholding method is proposed to reconstruct the signal, corresponding 
to the expression [47] 

 

�̂� [𝑛] =  

  𝑐 [𝑛] − 𝜃  ,     𝑐  [𝑛] ≥ 𝜃

    0,                        |𝑐  [𝑛]| < 𝜃

      𝑐 [𝑛] + 𝜃  ,     𝑐  [𝑛] ≤ −𝜃  .

 (56) 

  
The threshold depends on the decomposition level, and only the first j modes are 
processed. 

 

The index j that minimizes the CMSE allows to determine which IMF level represents the 
limit between the part of the signal where the noise can be considered negligible, and 
the part where the noise is dominant [46]. The index j is given by calculating 

 

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶𝑀𝑆𝐸(𝑦 , 𝑦 ) . (57) 

 
5. Reconstruction of the filtered output signal. After applying the thresholding to the 

corresponding levels, the reconstructed signal yh[n] is obtained by adding the 
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thresholded IMFs, the IMFs from the non-thresholded j + 1-th level and the residual, so 
that 

 

𝑦  [𝑛]  =  �̂� [𝑛]  +  𝑐 [𝑛]  +  𝑟[𝑛]. 
(58) 

 

By subtracting the reconstructed signal from the original one, x[n], we obtain an 
estimation of the perturbing noise 𝜖 [𝑛] as 

 

𝜖  [𝑛] = 𝑥[𝑛] − 𝑦 [𝑛]. (59) 

 
In Annex 1, the code to denoise the ATS data by using HHT is shown. 

 

5.2.3. Comparison of both methods 

 

 
Figure 28: Results with a TVT dataset at 0 ⁰C. MA (span = 9), DWT (symlet4) and HHT (stop criterion: 0.05 and 0.5). 

 

As we already know, the MA filter is the one currently used to process and make 
temperature data public in the PDS. In Figure 28 we have depicted data obtained from 
a nominal ATS TVT dataset, see Annex 3, where there are no abrupt changes in the 
evolution of the average temperature. The blue dotted line, labeled “TVT at 0 degree”, 
represents the original signal from the test at 0 ⁰C, the line labeled “Wavelet output”, in 
green, represents the filtered TVT signal after having applied the DWT based method of 
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equations (42)-(47), the line labeled “ HHT output”, in orange, represents the filtered 
TVT signal after having applied the HHT based method of equations (48)-(59), and the 
line labeled “MA output”, in red, represents the filtered TVT signal after having applied 
the MA filter, corresponding to equations (37) and (38). We can thus visualize how each 
method performs the filtering of the noise. The MA filter is the method with the softest 
reconstruction since it makes use of a relatively large span, as mentioned earlier. As a 
consequence, in this situation, a loss of artifacts in the signal may easily occur. The HHT 
and the DWT based methods use more elaborated processing algorithms, and are able 
to follow the original signal with greater accuracy, at least by visual inspection. 
Nevertheless, overall, the three methods do not offer a much different behavior when 
processing a signal that do not contain abrupt changes. 

 

However, when using the MA filter with a dataset containing abrupt changes in the 
measured temperatures, its limitations become noticeable. To confirm this, a 
characteristic dataset from REMS [57] has been used. The data belong to measurements 
in sols 68, 74, 107 and 120, where we can see how some kind of sharp temperature 
variations are present. Due to the ATS sensitivity, we think that these signal features 
might provide extra information possibly related to meteorological events occurring in 
Gale, also supported by other sensors, as evidenced in [72]. The plots in Figure 29, Figure 
30, Figure 31 and Figure 32 show data from the previously mentioned sols. They make 
evident how each method behaves distinctively when processing the noise and 
reconstructing the filtered signal. The MA filter cannot follow the noisy signal as 
accurately as the HHT or DWT based filtering, possibly losing relevant features for the 
study of local atmospheric temperature variations or for the discrimination of signal 
disturbances. Therefore, we can say that the current processing method softens the 
abrupt signal changes excessively. The zoomed-in area shown in Figure 30 and plots in 
Figure 29, Figure 31 and Figure 32 highlight how the MA filter fails to follow the signal 
evolution, in contrast with any of the other two methods detailed. For this reason, more 
powerful denoising algorithms such as the ones based on the HHT or the DWT have been 
proposed when abrupt changes may appear, as it is very often the case with the data 
taken in the Martian atmosphere. 

 

In order to characterize the performance of these methods for the discrimination 
between noise and the target signal, and to assess the corresponding filtering potential, 
we compare the results when using the ATS TVT with the results when using the ATS 
data taken on Mars. As it is explained in Annex 3, the TVT and the cruise checkout signals 
are supposed to be virtually free from external disturbances, and may be used as a 
reference to evaluate the denoising performance in conditions without noticeable signal 
distortion. To perform fair comparisons, it has been necessary to select datasets from 
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Mars measurement campaigns with similar temperatures and the same sensors 
configuration. To obtain the estimated noise signals in both cases, from the ATS TVT 
data and from the Martian ATS data, we have applied the MA, the DWT and the HHT 
methods as explained before. 

 

As previously seen, the noisy part of the signal is estimated by subtracting the 
reconstructed signal, using the MA, DWT or the HHT, from the original one, x[n]. The 
standard deviation is used here as the comparison parameter, because by hypothesis it 
should be directly related to the estimated noise power. If the standard deviation values 
are similar when using a controlled signal dataset (i.e., TVT data) as compared to the 
results from a very perturbed dataset from Mars, it may be inferred that the 
corresponding method is effective in filtering the noise without affecting relevant signal 
information, because we can assume that we are essentially removing the electronic 
noise contribution.  

 

According to all this, Table 3 shows the estimated standard deviation of the noise, under 
the conditions mentioned, at different nominal temperatures. Table 4 shows the 
numerical results for the signals in Figure 29, Figure 30, Figure 31 and Figure 32. The 
data in Table 3 and the first three rows in Table 4 can be easily compared by matching 
the closest nominal temperatures, so that we can see a high degree of compatibility 
between the standard deviation of the noise estimated with the TVT data, and the 
standard deviation obtained by perturbed Mars data, in the cases when we apply either 
the DWT or the HHT methods. Notice that, in the case of the fourth row, in  

Table 4, corresponding to a mean temperature around −125 ⁰C degrees, from sol 68, 
there is no TVT data to compare with. 

 

By examining both tables, we can corroborate that, when there is no perturbation, the 
estimated noise variance, shown in Table 3, is quite similar for any of the three methods. 
If this were the only figure-of-merit, any of the three methods would be equivalent. 
However, when a perturbation is present in the target signal, as it can be seen in  

Table 4, the estimated standard deviation of the noise is clearly higher in the case of the 
MA with respect to the values attained with HHT and DWT. 
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Table 3: ℴ with non-perturbed ATS data against the ℴ with TVT data, when applying MA, DWT and HHT methods. 

Nominal 
temp ⁰C 

Origin from 
Data 

ℴ noise ⁰C 
(DWT) 

ℴ noise ⁰C 
(HHT) 

ℴ noise ⁰C 
(MA) 

0 TVT  0.04  0.05  0.05 
0 ATS (Mars)  0.06  0.04  0.07 
-10 Cruise  0.05  0.06  0.06 
-10 ATS (Mars)  0.07  0.05  0.07 
-30 TVT  0.04  0.04  0.05 
-30 ATS (Mars)  0.08  0.05  0.08 
-50 TVT  0.04  0.04  0.04 
-50 ATS (Mars)  0.08  0.06  0.09 
-70 TVT  0.05  0.07  0.06 
-70 ATS (Mars) 0.09  0.05  0.07 
-90 TVT  0.07  0.08  0.08 
-90 ATS (Mars 0.09  0.05  0.07 

 

Table 4: Estimated ℴ of the noise from Martian ATS data with perturbations, when applying MA, DWT and HHT. 

Origin from Data ℴ ⁰C (DWT) ℴ ⁰C (HHT) ℴ ⁰C (MA) 
Noise from Sol 120  0.064  0.078  0.1251 
Noise from Sol 87  0.0935  0.1760  0.2865 
Noise from Sol 107  0.1094  0.1700  0.2713 
Noise from Sol 68  0.9465  0.9802  1.3773 

 
 

 
Figure 29: Artifacts on Sol 120, around 16:00. 
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Figure 30: Artifacts on Sol 68, around 7:00. 

 

Figure 31: Artifacts on Sol 107, around 4:35. 
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Figure 32: Artifacts on Sol 87, around 4:00. 

 

In order to quantitatively assess the goodness of the proposed methods, we have 
included a metric, normally used in the denoising literature to measure the distortion 
introduced in the filtering of a signal, i.e., the percentage root mean square difference 
(PRD) [73], defined as 

 

PRD =
∑ (𝑥[𝑛] − 𝑦[𝑛])

∑ (𝑥[𝑛])
. 100, 

(60) 

  

where x[n] is the original data, and 𝑦[𝑛] is the reconstructed signal. A lower PRD 
represents a better reconstruction of the signal after denoising. As can be seen in Table 
5, the current moving average filtering significantly increases the PRD of the signal, while 
the other proposed techniques improve the denoising with reduced levels of distortion, 
in agreement with what is seen in the plots of Figure 29, Figure 30, Figure 31 and Figure 
32. 

 

This metric provides additional evidence that supports our decision to modify the 
denoising filtering method, since MA distorts the reconstruction signal excessively. 
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For all of these reasons, we discard the MA filter method. 

Table 5: PRD Metrics. 

Data from DWT HHT MA 

Sol 120 0.2592 0.2525 0.3551 
Sol 87 0.1706 0.2510 0.4084 
Sol 107 0.2201 0.2711 0.3756 
Sol 68 0.5568 0.6306 0.9562 

 

5.2.4. Selection of the most appropriate denoising method 

Once we have seen that the DWT and the HHT methods proposed can be equally 
efficient in processing the noise while keeping characteristic signal features, an 
additional issue to be considered in order to choose the best denoising method for our 
purpose is the processing time consumption. This is an important requirement for the 
processing of REMS ATS data due to the fact that reports of results from all REMS 
sensors must be delivered in a very short period of time after the arrival of the raw data 
to Earth. Table 6 shows the time taken by the application of the three methods to a 
dataset of 20 MBytes, using an Intel Core processor i7, python 3.7 software and standard 
libraries. We can see that the DWT based algorithm is around 50 times faster than the 
HHT based algorithm. For this reason, the DWT would be a better option in this 
particular case, where processing time matters. This does not mean that HHT could not 
be used at all in this context, though it will be very convenient to prioritize the method 
with higher time efficiency. The reason is that this will give a valuable margin that could 
be used to address possible unexpected outcomes and perform other side tasks (e.g., 
adding significant flags to the data) before presenting the final results. 

 

Table 6: Processing time comparison, using a PC with INTEL CORE PROCESSOR I7-7500U CPU @ 2.70GHZ, 2904MHZ. 

Algorithm Processing time (s) 
MA 0.0009 
HHT 0.12 
DWT 0.0023 
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5.3. Application of SSA to the Air Temperature 
Sensor data 

In the previous subsection, it has been argued that DWT is the more appropriate method 
to denoise ATS data due to the faster computational time compared to HHT.  

 

As it is shown in Figure 10, data are presented in different processing levels. As stated 
before, in this case, it was decided not to use the MODRDR product, as was done for the 
pressure, because the data at this level contained the MA filtering, and we wanted to 
avoid this processing because we propose a different denoising method. For our 
purpose, we have used the ENVRDR file, containing temperature data in columns 28, 29, 
30, 35, 36 and 37. Specifically, we have used the data from the ATS 1 tip, column 30, 
because the tip position is the one that suffers less the thermal plume of the MSL, due 
to its position furthest from the mast. Moreover, it has been chosen ATS 1 instead of 
ATS 2 because, as explained before, temperatures from ATS 2 are not always correct 
during nights and have to be discarded. 

 

As mentioned above, at the beginning of this chapter, a reasonable working hypothesis 
was to apply the SSA to the temperature to look for the same precursors in this 
magnitude, but as we could not find them, we have proceeded to look for another 
relationship with meteorological processes that seems to make sense and give a utility 
to the noise processing to improve the ATS signal. 

 

Prior to the application of SSA to temperature data, and after multiple empirical tests, 
we found that the minimum temperature revealed some information that caught our 
attention and could be relevant to our research. We calculated the minimum value for 
each sol, by using all ATS 1 tip temperature data measured on each sol (ENVRDR file). 
We have also created an intermediate file to save all these values. This intermediate file 
has provided the input data for the SSA algorithm. The code to generate this file can be 
seen in Annex 1 and an extract of the file is shown in Annex 4. 

 

Next, we detail the application of the SSA to the minimum temperature, tmin: 

 

1. Let's consider two time series, a minimum temperature signal, tmin, and a sol series, 
sol, 
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𝑡 = 𝑡 _ , 𝑡 _ , 𝑡 _ , … , 𝑡 _   
𝑠𝑜𝑙 = (𝑠𝑜𝑙 , 𝑠𝑜𝑙 , … , 𝑠𝑜𝑙 ),  

(61) 

 

where sol contains the mission sols that measured 24 observations, tmin shows their 
respective measured values of minimum temperature in these sols, and n is the 
number of sols for which REMS collected a full diurnal cycle (24 observations). 

 

2. The minimum temperature signal tmin is detrended by removing its mean value tmean 

 

𝑡  =   𝑛 𝑡 ( 𝑠𝑜𝑙 ), 

 

(62) 

3. The resulting sequence of values, tmin − tmean, has gaps for missing sols where there was 
not a full diurnal cycle of magnitudes measured. 

 

𝑡 − 𝑡 =  (𝑡 , 𝑡 … , 𝑡 ), (63) 

 

4. To solve the gaps problem, an expanded signal is defined, �̈�, where a 0 is added at the 
positions of sols where there are no 24 observations, while maintaining the main 
frequency characteristics [29], 

 

�̈� =  (𝑇 , 𝑇 , … , 𝑇 … , 𝑇 ),  𝑇 =
0 𝑖𝑓 𝑆𝑂𝐿 ⊄ 𝑠𝑜𝑙

𝑡   𝑖𝑓 𝑆𝑂𝐿 ⊂ 𝑠𝑜𝑙,
 (64) 

 

where j is the position where SOLi is in sol, SOLi is a random sol from the mission and N 
is the dimension of the new vector �̈�, corresponding to the last sol considered in the 
study. 

 

5. Create the trajectory matrix Y with dimensions (N – M + 1) x M, where M is the 
temporal window covering. The choice of M has been detailed in Chapter 3. This 
converts a one-dimensional minimum temperature series �̈� into a multidimensional 
minimum temperature series Y = (T1…TM), (T2…TM+1), …, (TN-M+1…TN). 

 

The result of this step is the trajectory matrix 𝑌 = [𝑌 ,   𝑌 , … 𝑌 ], 
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𝑌 =

𝑇 𝑇 𝑇 … 𝑡
𝑇 𝑇 𝑇 … 𝑇
⋮ ⋮ ⋮ ⋱ ⋮

𝑇 𝑇 𝑇… … 𝑇

 

 

(65) 

 

6. Compute the matrix S = YYT (dimension M x M) in order to apply the Singular Value 
Decomposition [23]. 

 

7. Compute the eigenvalues and the eigenvectors of the Matrix S. In this case, the cross 
correlation between Y and YT is calculated so that its eigenvalues are normalized and 
each eigenvalue, ei, measures the ratio of variability associated with its eigenvector, vi 

 

𝑣  =  (𝑣 , , 𝑣 , , … . , 𝑣 , ). (66) 

 

8. There are N − M + 1 principal components, pci, each one associated with an eigenvalue, 
ei, obtained as the projection of the matrix Y into the subspace associated with its 
eigenvector, vi, 

𝑝𝑐  =  𝑌 . 𝑣 . (67) 

 

9. The expanded signal, �̈�, can be reconstructed using all the principal components, pci. 
Each component provides the contribution, rk, to the reconstruction of �̈� by multiplying 
the component by the eigenvector as 

 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  

𝑟 , =
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 ,

2
  

𝑟 , =  
𝑝𝑐 , . 𝑣 , +  𝑝𝑐 , . 𝑣 , + ⋯ + 𝑝𝑐 , . 𝑣 ,

𝑗
              𝑗 = 3, … . . 𝑀 − 1 

……. 

𝑟 , =
𝑝𝑐 , . 𝑣 , +   𝑝𝑐 , . 𝑣 ,  

2
 

𝑟 , =  𝑝𝑐 , . 𝑣 ,  . 

 

 

                
(68) 
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The reconstruction is made with the principal components associated with the 
eigenvectors that explain 95 % of the variability, decided by heuristic and empirical 
criteria. This corresponds to the first 3 eigenvectors. To reach the final result, as it has 
been detailed before, we covered the data gaps and thereby reduced their influence 
from missing data to existing data at each transition by comparing the reconstructed 
signal with the zeroes in the gaps of the original �̈�. Those zeroes were replaced with the 
rk,i to repeat the previous analysis, extracting a new set of rk. It is then compared the 
new rk values with the previous set, repeating the iteration until the difference between 
one reconstruction over the gaps and the next reconstruction agreed within a standard 
deviation of 1 %. 

 

5.4. Results and discussion 

This section focuses on the results obtained after having applied the SSA to the 
minimum temperature values.  

 

Figure 33 shows the minimum tip ATS 1 temperature of each Martian day data after 
being denoised with wavelets and before applying SSA. 

 

Figure 34 shows, in blue, the reconstruction of the minimum temperature, after 
subtracting the mean, by using the first 3 eigenvectors from SSA decomposition, which 
represent the 95 % of the original signal. Circles in orange mark the storms period. After 
the storms period, the aphelion starts, which is the period of time when Mars is farthest 
away from the Sun. For this reason, we should expect temperatures to be coldest, as 
marked with circles in green. However, during these periods after the storm, we observe 
some humps, where the temperature rises. This pattern is remarkable because it is 
repeated always after the dust storms. As we can see in Figure 33, these peaks were not 
clearly observed before applying the SSA. 

 

With the aim to find a physical meaning of these peaks, which the SSA algorithm has 
revealed in the ATS data, we find in the bibliography there have been publications about 
ice clouds in the Aphelion period [74]. Apparently, these clouds create a greenhouse 
effect that raises the temperature. 

 

To study this hypothesis, the Nasa’s Mars Exploration Program has a website where all 
images for all missions are published. We have found very interesting images from 
science cameras, the MastCam camera, and engineering cameras, NAVCAM, both from 
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the Curiosity rover. Figure 38, Figure 39 and Figure 40  show ice clouds during sols 1757, 
2425 and 3063. As it can be seen in Figure 34 and in enlargements of this figure, Figure 
35, Figure 36 and Figure 37, a kind of humps are happening during these sols. We show 
Figure 35, Figure 36 and Figure 37 to facilitate the visualization of these humps. So, we 
could conclude that these temperature increments, revealed by the SSA algorithm, 
seem to correspond to the greenhouse effect caused by the ice clouds. Moreover, 
images from Curiosity cameras help to assess this hypothesis.  

 

After a thorough study, the correct application of signal processing methods to 
temperature data reveals very interesting information. 

 

It is very rare to capture images of the sky, since these cameras mainly capture rock 
formations. Although it is a very important milestone to have found these clouds, which 
coincide with these hump periods, a deeper study and a search and measurement 
campaign is needed to strengthen the idea. 

 

All this valuable information found, thanks to the use of the explained methods, seems 
to corroborate an initial hypothesis of finding cloud periods in the temperature data, 
although it needs further elaboration and study in the near future. Finding three 
concrete cases is really a start and a great milestone but this hypothesis requires further 
and systematic study. The possibility of relating atmospheric events with indicators of 
clouds discovered in the temperature data opens the door for further research after the 
completion of this thesis. 
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Figure 33: Minimum temperatures from the ATS 1 tip data denoised before applying the SSA. 

 

 
Figure 34: Reconstruction of the min temperature by using SSA for all sols of the mission. Areas marked in orange 

determine the dust storms periods and areas in green determine the non-dust storms periods. Mean values has been 
subtracted from the reconstruction. 
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Figure 35: Zoom1, after storm 3. 

 

 
Figure 36: Zoom 2, after storm 4. 

 

Clouds on Sol 1757, 
figure 38 

 

Clouds on Sol 2425, 
figure 39 
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Figure 37: Zoom 3, after storm 5. 

 

 

 
Figure 38: Clouds from sol 1757, NAVCAM camera from rover Curiosity. (Credit: NASA/JPL-Caltech) 

 

 

Clouds on Sol 3063, 
figure 40 
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Figure 39: Clouds from sol 2425, MCAM camera from rover Curiosity. (Credit: NASA/JPL-Caltech) 
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Figure 40: Set of 3 images of clouds from Sol 3063, captured by NAVCAM camera, from rover Curiosity. (Credit: 

NASA/JPL-Caltech) 
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Chapter 6: Conclusions 

This research has been motivated by the processing of REMS Pressure and Temperature 
Sensors data, for the analysis of environmental processes occurring in Gale crater, on 
Mars.  

 

● Pressure is initially chosen as the magnitude to be studied, as it is a highly 
influential atmospheric characteristic that models and influences the global 
atmospheric circulation patterns of the Mars planet. 

● Singular Spectrum Analysis has been applied to the pressure data, and 
precursors of dust storms, one of the most studied atmospheric events on Mars 
due to the turbulent changes they produce on the planet, have been discovered. 

● Finding precursors of dust storms on Mars is a breakthrough in science. 
● Dust storms wreak havoc on many Martian mission sensors. Anticipating the 

storm could help future Mars missions to protect sensors before the storm 
arrives. 

● Due to the discovery in the pressure data, we have analyzed the temperature 
data, because of the close relationship between both atmospheric magnitudes.  

● However, temperature has undergone a prior denoising process because they 
are noisier data due to their location on the rover, and because they are local 
data. 

● Several methods have been proposed for the temperature denoising: wavelets 
and EMD. 

● Finally, a wavelet-based method has been applied to the temperature data for 
denoising. 

● After having applied Singular Spectrum Analysis to the denoised temperature 
data, the results reveal humps and other interesting features in different periods 
of the signals. 

● However, these ultimately could not be correlated with the same atmospheric 
processes and dynamics that control storms, in the same way that they are 
identified through pressure. 

● On the contrary, our analysis led us to another interesting result that can be 
related to periods of clouds in Gale crater, creating a greenhouse effect in the 
area, and raising temperatures. 

● These exciting results, the cloud periods in Gale, have been corroborated with 
cameras from the Curiosity rover, NAVCAM and MastCam. 

● We consider finding cloud periods thanks to indicators in temperature data is 
another relevant discovery. 
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● The application of signal processing methods to the data has revealed 
information, which a priori, is not shown in the data. 

● In our study, methods have helped to discover indicators of relevant 
atmospheric features on Mars, and in this way, we do our bit to know our 
neighboring planet better. 

● The application of signal processing, suitably motivated and adapted to the 
REMS data, has served to demonstrate our initial purpose: the analysis of 
atmospheric processes on Mars. 
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Chapter 7: Future work 

There are several and quite interesting open research lines as a consequence of this 
thesis: 

 To continue investigating possible ice cloud indicators in the temperature data. 
 To continue investigating possible dust storms precursors in the temperature 

data. 
 Application of the denoising algorithms to the rest of the sensors that make up 

REMS and to the sensors of the Perseverance meteorological station. 
 The identification of interesting features by applying the Singular Spectrum 

Analysis to other REMS sensors. 
 Application of the proposed signal processing methods to other missions 

currently operating. 
 Correlation of data from the different missions currently operating. 

  



 

79 

Bibliography 

[1] Peters, William T. “The Appearances of Venus and Mars in 1610”. In: Journal for 
the History of Astronomy, vol. 15, no. 3, pp. 211–214, (1984), 
doi:10.1177/002182868401500306. 

[2] Leovy, Conway B. and Smith, Bradford, A. and et al. “Mariner Mars 1969: 
Atmospheric results”. In: Journal of Geophysical Research, vol.76, (1971). 

[3] Larsen, S.E. and Jørgensen, H.E. and Landberg, L. and Tillman, J.E. “Aspects of The 
Atmospheric Surface Layers on Mars and Earth”. In: Boundary-Layer Meteorology vol. 
105, pp. 451–470, (2002). DOI: https://doi.org/10.1023/A:1020338016753. 

[4] Haberle, R. M. and McKay, C. P. and Schaeffer, J. and Cabrol, N. A. and Grin, E. A. 
and Zent, A. P., and Quinn, R.  “On the possibility of liquid water on present-day Mars”, 
In:  J. Geophys. Res., vol. 106, pp. 23317– 23326, (2001), doi:10.1029/2000JE001360. 

[5] Orosei, R and et al. “Radar evidence of subglacial liquid water on Mars”. In: 
Science. Vol. 361, pp. 490-493, (2018). 

[6] Cantor, Bruce A. and James, Philip B. and et al. “Martian dust storms: 1999 Mars 
Orbiter Camera observations”. In: Journal of Geophysical Research: Planets, vol. 106, 
(2001). 

[7] Gierasch, Peter J. “Martian dust storms”. In: Reviews of Geophysics, vol. 12, 
(1974). 

[8] Leovy, Conway B. and Saltzman, Barry “The General Circulation of Mars: Models 
and Observations”. In: Elsevier, vol. 28, (1985). 

[9] Arvidson, Raymond E. and Guinness, Edward A. and Moore, Henry and Tilman, 
James and et al. “Three Mars Years: Viking Lander 1 Imaging Observations”. In: Science, 
(1983). 

[10] Gómez-Elvira, Javier and et al. “REMS, The environmental Sensor Suite for the 
Mars Science Laboratory Rover”. In: Space Science Reviews, (2012). 

[11] Westfall, Richard “Science and Patronage: Galileo and the Telescope”. In: Isis, 
vol. 76, no. 1, (1985). 

[12] Golombek, Mathew P. “The Mars Pathfinder Mission”. In: Journal of Geophysical 
Research, vol. 102, (1997). 

[13] Soffen, Gerald A.  and Young, A. Thomas. “The Viking Mission to Mars”. In: Icarus, 
vol. 16, no. 1, (2012). 

[14] Grotzinger, John P.  and et al. “Mars Science Laboratory Mission and Science 
Investigation”. In: Space Science Reviews, (2012). 



 

80 

[15] Gómez-Elvira, Javier et al. “Curiosity’s rover environmental monitoring station: 
Overview of the first 100 sols”. In: Journal of Geophysical Research: Planets, vol. 119, no. 
7, pp. 1680–1688, (2014). DOI: 10.1002/2013JE004576. 

[16] Audouard, J. et al. “Analysis of Curiosity surface temperature Data”. In: European 
Planetary Science Congress, EPSC2015–300, (2015). 

[17] Martínez, G.M. et al. “Likely frost events at Gale crater: Analysis from MSL/REMS 
measurements”. In: Icarus, vol. 280, pp. 93–102, (2016). 

[18] Mischna, Michael et al. “Results from the Rover Environmental Monitoring 
Station (REMS) on Board the Mars Science Laboratory”. In: Fifth international workshop 
on the Mars atmosphere: Modelling and observations, (2014). 

[19] Zorzano, M.-P. et al. “Near surface temperature monitoring by the Air 
Temperature Sensor (ATS) on the Mars Science Laboratory Rover at Gale crater”. In: 
Planetary and Space Science, (2013). 

[20] Zorzano, M.-P., Lepinette, A. and et al. “Air temperature measurements with the 
Rover Environmental Monitoring Station (REMS). Air Temperature Sensor for Mars”. In: 
Planetary and Space Science, (2009).  

[21] Mueller, D.W.  and Abu-Mulaweh, H.I. “Prediction of the temperature in a fin 
cooled by natural convection and radiation”. In: Applied Thermal Engineering, vol. 26, 
no. 14, pp. 1662–1668, (2006). 

[22] Vautard, R. and M. Ghil. “Singular spectrum analysis in nonlinear dynamics, with 
applications to paleoclimatic time series”, In: Physica D, vol. 35, pp. 395-424, (1989). 

[23] Klema, V. and Laub, A. "The singular value decomposition: Its computation and 
some applications," In: IEEE Transactions on Automatic Control, vol. 25, no. 2, pp. 164-
176, (1980), doi: 10.1109/TAC.1980.1102314. 

[24] Rui, Wang and Hong-Guang, Ma and Guo-Qing, Liu and Dong-Guang, Zuo. 
“Selection of window length for singular spectrum analysis”. In: Journal of the Franklin 
Institute, vol. 352, (2015). 

[25] Elsner, J.B., and Tsonis, A.A. “Singular Spectrum Analysis, A new Tool in Time 
Series Analysis”, Plenum Press: New York and London, (1996). 

[26] Ghil, M. et al. “Advanced Spectral Methods for Climatic Time Series”. In: Reviews 
of Geophysics, vol. 40, no. 1, (2002). 

[27] Collins, M. and Lewis, S. R. and Read, P. L., and Hourdin, F. “Baroclinic wave 
transitions in the Martian atmosphere”. In: Icarus, vol. 120, pp. 344–357, (1996) 
https://doi.org/10.1006/icar.1996.0055. 

[28] Zurita-Zurita, S. and de la Torre Juárez, M. and Newman, C. E. and Viúdez-
Moreiras, D. and Kahanpää, H. T. and Harri, A.-M., et al. “Mars surface pressure 
oscillations as precursors of large dust storms reaching Gale”. In: Journal of Geophysical 
Research: Planets, vol. 127, (2022). https://doi.org/10.1029/2021JE007005. 



 

81 

[29] Kondrashov, D. and Shprits, Y. and Ghil, M. “Gap filling of solar wind data by 
singular spectrum analysis”. In: Geophysical Research Letters, vol. 37, no. 15, (2010). 
https://doi.org/10.1029/2010gl044138 

[30] Price, John F. “Fourier techniques and applications”, (1985). 

[31] Morlet, J and Arens, G and Fourgeau, E. and Glard, D. “Wave propagation and 
sampling theory—Part I: Complex signal and scattering in multilayered media”. In: 
GEOPHYSICS, vol. 47, no. 2, pp. 203-221, (1982). 
[32] Morlet, J and Arens, G and Fourgeau, E. and Glard, D. “Wave propagation and 
sampling theory—Part II: Sampling theory and complex waves”. In: GEOPHYSICS, vol. 47, 
no. 2, pp. 222-236, (1982). 

[33] Meyer, Y. Ondelletes et fonctions splines, Seminaire Equations aux Dérivées 
Partielles, Ecole Polytechnique, Paris, France, (1986). 

[34] Mallat, Stephane G. “Multiresolution approximations and wavelet orthonormal 
bases of L2 (R)”. In: Trans. Amer. Math. Soc, vol. 315, pp. 69-87, (1989). 

[35] Mallat, Stéphane. “A wavelet tour of signal processing”. In: Elsevier, (1999). 

[36] Galvez, Maria Cecilia et al. “Wavelet Signal Denoising Applied to 
Multiwavelength-Depolarization White Light LIDAR Measurement”. In: Proceedings of 
the 23rd International Laser Radar Conference, (2006). 

[37] Donoho, David and Johnstone, I. “Ideal Spatial Adaptation by Wavelet 
Shrinkage”. In: Biometrika, vol. 81, pp. 425–455, (1993). 

[38] Somekawa, Toshihiro et al. “Noise Reduction in White Light Lidar Signal Using a 
One-Dim and Two-Dim Daubechies Wavelet Shrinkage Method”. In: Remote Sensing, 
(2013). 

[39] Daubechies, I. “Orthonormal bases of compactly supported wavelets”. In: 
Communications on Pure and Applied Mathematics, vol. 41, pp. 909-996, 
(1988).  https://doi.org/10.1002/cpa.3160410705. 

[40] Shyh-Jier Huang and Cheng-Tao Hsieh, "Coiflet wavelet transform applied to 
inspect power system disturbance-generated signals". In: IEEE Transactions on 
Aerospace and Electronic Systems, vol. 38, no. 1, pp. 204-210, (2002), doi: 
10.1109/7.993240. 

[41] Huang, N.E and et al. “The empirical mode decomposition and the Hilbert 
spectrum for nonlinear and non-stationary time series analysis” In: Royal Society, vol. 
454, (1996). 

[42] Rilling, Gabriel and Flandrin, Patrick and Gonçalves, Paulo. “On empirical mode 
decomposition and its algorithms”. IEEE-EURASIP workshop, (2003). 

[43] Huang, N. E. “Hilbert-Huang transform and its applications”, In: World Scientific, 
vol. 16, (2014). 



 

82 

[44] Boudraa, Abdel-O and Cexus, Jean-Christophe. “EMD-Based Signal Filtering”. In: 
IEEE T. Instrumentation and Measurement, vol. 56, pp. 2196–2202, (2007), DOI: 
10.1109/TIM.2007.907967. 

[45] Boudraa, Abdel-O and Cexus, Jean-Christophe. “Denoising via empirical mode 
decomposition”. In: Second International Symposium on Communications, Control and 
Signal Processing, (2006). 

[46] Boudraa, Abdel-O, Cexus, Jean-Christophe, and Saidi, Zazia. “EMD-Based Signal 
Noise Reduction”. In: Signal Processing, vol. 1, (2005). 

[47] Donoho, David. “Denoising by Soft-Thresholding”. In: IEEE Transactions on 
Information Theory, vol. 41, no. 03, pp. 613–627, (1995). 

[48] Hess, S.L., Ryan, J.A., Tillman, J.E., Henry, R.M. and Leovy, C.B., “The annual cycle 
of pressure on Mars measured by Viking Landers 1 and 2”. In: Geophys. Res. Lett., vol. 7, 
(1980), https://doi.org/10.1029/GL007i003p00197. 

[49] Spiga, A. and Forget, F. and Dolla, B. and Vinatier, S. and Melchiorri R. 
and Drossart, P. and Gendrin, A. and Bibring, J.-P. and Langevin, Y., and Gondet, 
B., “Remote sensing of surface pressure on Mars with the Mars Express/OMEGA 
spectrometer: 2. Meteorological maps”, In: J. Geophys. Res., vol. 112, (2007), 
doi:10.1029/2006JE002870. 

[50] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." In: 
ASME. J. Basic Eng., vol. 82, (1960). 

[51] Huang, Norden E. and Shen, Zheng and Long, Steven R.,” A new view of nonlinear 
water waves: the Hilbert spectrum”. Annual Review of Fluid Mechanics, vol. 31, pp. 417-
457, (1999).  

[52] Vautard, Robert and Yiou , Pascal and Guil, Michael. “Singular Spectrum Analysis: 
A toolkit for short, noisy chaotic signal”. In: Physica D, vol. 95, no. 126, (1992). 

[53] Tillman, J. E. “Mars global atmospheric oscillations: Annually synchronized 
transient normal-mode oscillations and the triggering of global dust storms”. In: J.  
Geophys. Research, (1988). 

[54] Zurita-Zurita, S. et al. “Denoising Atmospheric Temperature Measurements 
Taken by the Mars Science Laboratory on the Martian Surface”.     In: IEEE Transactions 
on Instrumentation and Measurement, vol. 70, pp. 1–10, (2021),  

DOI: 10.1109/TIM.2020.3034986. 

[55] Thin Film Platinum RTDs specifications. URL: http://bit.ly/32PZxqn. 

[56] Proakis, John G and Manolakis, Dimitris K. “Digital signal processing: principles 
algorithms and applications”. In: Pearson Higher Education, (2013). 

[57] S. Zurita, “Denoising temperature on martian surface dataset”, (2020).  [Online]. 
Available: http://dx.doi.org/10.21227/ban4-km41. 



 

83 

[58] Barros, J., Diego, R. and Apraiz, Matilde. “Applications of Wavelet Transform for 
Analysis of Harmonic Distortion in Power Systems: A Review”. In: IEEE Transactions on 
Instrumentation and Measurement, vol. 61, pp. 2604–2611, (2012).   

DOI: 10.1109/TIM.2012.2199194. 

[59] Driesen, J. L. J.  and Belmans, R. J. M. “Wavelet-Based Power Quantification 
Approaches”. In: IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, 
pp. 1232–1238, (2003). 

[60] Ramos, Pablo and Ruisanchez, Itziar. “Noise and background removal in Raman 
spectra of ancient pigments using wavelet transform”. In: Journal of Raman 
Spectroscopy, vol.36, no. 848-856, (2005). 

[61] Seok, Jong Won and Bae, Keun Sung. “Speech enhancement with reduction of 
noise components in the wavelet domain”. In: IEEE International Conference on 
Acoustics, Speech, and Signal Processing, (1997). 

[62] Tan, Hu-Wei and Brown, Steven. “Wavelet analysis applied to removing non-
constant, varying spectroscopic background in multivariate calibration”. In: Journal of 
chemometrics, vol. 16, no. 228-240, (2002). 

[63] Vasudha, N.  and Sundararajan, N. “Detection of Discontinuity in ECG using 
Wavelet transform”. In: Applied Mathematical Sciences, vol. 6, no. 117, (2012). 

[64] Yoon, Weon-Ki and Devaney, M. J. “Power Measurement Using the Wavelet 
Transform”. In: IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 5, 
pp. 1205–1210, (1998). 

[65] Yoon, Weon-Ki and Devaney, M. J. “Reactive Power Measurement Using the 
Wavelet Transform”. In: IEEE Transactions on Instrumentation and Measurement, vol. 
49. no. 2, pp. 246–252, (2000). 

[66] Wu, Zhaohua and Huang, Norden E. “Ensemble Empirical Mode Decomposition: 
A Noise-Assisted Data Analysis Method”. In: Advances in Adaptive Data Analysis, vol. 01, 
no. 01, pp. 1–41, (2009). 

[67] Yan, R.  and Gao, R. X. “Hilbert-Huang Transform-Based Vibration Signal Analysis 
for Machine Health Monitoring”. In: IEEE Transactions on Instrumentation and 
Measurement, vol. 55, no. 6, pp. 2320–2329, (2006). 

[68] Agbinya, J. I. "Discrete wavelet transform techniques in speech processing," In: 
Proceedings of Digital Processing Applications (TENCON '96), vol. 2, pp. 514-519, (1996) 
doi: 10.1109/TENCON.1996.608394. 

[69] Popov, Dmitry and Gapochkin, Artem and Nekrasov, Alexey. “An Algorithm of 
Daubechies Wavelet Transform in the Final Field When Processing Speech Signals”. In: 
Electronics, vol. 7, (2018). 

[70] Thakral, S., Manhas, P. “Image Processing by Using Different Types of Discrete 
Wavelet Transform”. In: Springer, vol. 955, (2018).  



 

84 

[71] Walczak, B. and Massart, D.L “Noise suppression and signal compression using 
the wavelet packet transform”. In: Elsevier, vol. 26, (1997). 

[72] Zorzano, M.-P., Soria-Salinas, Álvaro et al. “Wind retrieval from temperature 
measurements from the Rover Environmental Monitoring Station, Mars Science 
Laboratory”. In: Icarus, (2020). 

[73] Sharma, L. and Dandapat, S. and Mahanta, A. “ECG signal denoising using higher 
order statistics in Wavelet subbands”. In: Biomed. Signal Process Control, vol. 5, pp. 214–
222, (2010). 

[74] Cooper, B., de la Torre Juárez, M., Mischna, M., Lemmon, M., Martínez, G., Kass, 
D., et al. “Thermal forcing of the nocturnal near surface environment by martian water 
ice clouds”. In: Planets: Journal of Geophysical Research, vol. 126, (2021).  

 

  



 

85 

Annex 1: Code 

1. READING ENVRDR and MODRDR FILES (PS and ATS data) 

import datetime as dt 

import matplotlib 

import pandas as pd 

import matplotlib.pyplot as plt 

from matplotlib import scale as mscale 

from matplotlib import transforms as mtransforms 

from matplotlib.ticker import FixedLocator 

import numpy as np 

import os 

 

#esta clase se usa para poder imprimir los ejes x 

class SegmentedScale(mscale.ScaleBase): 

    name = 'segmented' 

 

    def __init__(self, axis, **kwargs): 

        mscale.ScaleBase.__init__(self, axis) 

        self.points = kwargs.get('points',[0,1]) 

        self.lb = self.points[0] 

        self.ub = self.points[-1] 

 

    def get_transform(self): 

        return self.SegTrans(self.lb, self.ub, self.points) 

 

    def set_default_locators_and_formatters(self, axis): 

        axis.set_major_locator(FixedLocator(self.points)) 

 

    def limit_range_for_scale(self, vmin, vmax, minpos): 

        return max(vmin, self.lb), min(vmax, self.ub) 

 

    class SegTrans(mtransforms.Transform): 

        input_dims = 1 

        output_dims = 1 

        is_separable = True 

 

        def __init__(self, lb, ub, points): 

            mtransforms.Transform.__init__(self) 
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            self.lb = lb 

            self.ub = ub 

            self.points = points 

 

        def transform_non_affine(self, a): 

            masked = a # ma.masked_where((a < self.lb) | (a > self.ub), 
a) 

            return np.interp(masked, self.points, 
np.arange(len(self.points))) 

 

        def inverted(self): 

            return SegmentedScale.InvertedSegTrans(self.lb, self.ub, 
self.points) 

 

    class InvertedSegTrans(SegTrans): 

 

        def transform_non_affine(self, a): 

            return np.interp(a, np.arange(len(self.points)), 
self.points) 

        def inverted(self): 

            return SegmentedScale.SegTrans(self.lb, self.ub, 
self.points) 

 

# Now that the Scale class has been defined, it must be registered so 

# that ``matplotlib`` can find it. 

mscale.register_scale(SegmentedScale) 

 

 

colores=['blue', 
'green','red','yellow','orange','cyan','m','k','olive','navy','peru', 
'black','pink', 'lime', 'violet','skyblue','coral','gold', 'purple'] 

solPath = 'F:/sols_2000_2249' 

solPath='C:/Users/zurit/Documents/doctorado/ats_signal_processing/tesi
s/RDR-sol3483-1' 

my_xticks=['00','01','02','03','04','05','06','07','08','09','10','11'
,'12','13','14','15', '16','17','18','19','20','21','22','23','24']   

 

 

### READ MODRDR FILEs for PS ##### 

list_of_rems_files = [] 

list_of_rems_files_temp =[] 

lastVersion = [] 

for root, dirs, files in os.walk(solPath): 
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    for file in files: 

        if  'RMD' in file and '.TAB' in file and '3483' in file: 

            list_of_rems_files.append(root+'/'+file) 

        if  'RNV' in file and '.TAB' in file and '3483' in file: 

            list_of_rems_files_temp.append(root+'/'+file) 

 

for i in range(0,len(list_of_rems_files)):   

    solstr = 
list_of_rems_files[i].split('/')[8].partition('RMD')[2][0:4] 

    print(solstr) 

    

 

    time = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # keep 
information about if there measurements each hour. If not, do not use 
the sol 

    with open ( list_of_rems_files[i], 'r') as f: 

            

            aobt = [] 

            time1= [] 

            psdata = [] 

             

            for line in f: 

                s = line.split(',') 

              

               # 
labelTime.append((s[1].partition("M")[2].partition(".")[0])) 

                if s[37].find('UNK')<0:                

                    psdata.append(float(s[37])) 

                    aobt.append(float(s[0])) 

                    if len(aobt)==1: 

          pepe = s[1].partition('M')[2].partition('.')[0] 

                        counter = int(pepe[0:2])*3600 
+int(pepe[3:5])*60 + int(pepe[6:8]) 

                    if len(aobt)>=2: 

                        if aobt[-1]-aobt[-2]==1: 

                            counter = counter + 1 

                        else: 

                            counter = counter+int((aobt[-1]-aobt[-2])) 

                              

                 

 time1.append(counter) 
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    #ONLY WORKS WELL IF THE SAME DOWNLOADED FREQUENCY IS IN THE ALL 
FILE. genracion del vector eje x de raw 

    for l in range(len(time)):  

        if time[l]==0 and l!=0: 

            time[l]= l*3699                

      

    fig, ax = plt.subplots( figsize = (20,12)) 

    plt.plot(time1, psdata, color = 'blue', label = 'REMS data ', 
linewidth = 3, marker = '.', linestyle='None')  

    #plt.plot(time1, psdata, color = 'blue', label = 'REMS data ', 
linewidth = 1, marker = '.')  

    plt.gca().set_xscale('segmented', points = time)   

    plt.xticks(time, my_xticks, fontsize = 29)  

    plt.yticks(fontsize = 35)                      

    plt.grid(True) 

    plt.title('Pressure Sol %s'%solstr, fontsize = 45) 

    plt.xlabel("LMST hour", fontsize = 45) 

    plt.ylabel("Pressure (Pa)", fontsize = 45)  

    plt.savefig('ps_sol%s.png'%solstr,  format='png',  dpi=600)     

     

                     

 

" READ RNV FILEs for ATS #####" 

for i in range(0,len(list_of_rems_files_temp)):   

    solstr = 
list_of_rems_files_temp[i].split('/')[8].partition('RNV')[2][0:4] 

    print(solstr) 

    

    time = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

    with open ( list_of_rems_files_temp[i], 'r') as f: 

            timeTemp = [] 

            temperature = [] 

            aobt =[] 

            for line in f: 

                s = line.split(',') 

                if s[29].find('UNK')<0:          ##BOOM1_TIP_AIR_TEMP     

                    temperature.append(float(s[29])) 

                    aobt.append(float(s[0])) 

                    if len(aobt)==1: 

                        pepe = s[1].partition('M')[2].partition('.')[0] 

                        counter = int(pepe[0:2])*3600 + 
int(pepe[3:5])*60 + int(pepe[6:8]) 
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                    if len(aobt)>=2: 

                        if aobt[-1]-aobt[-2]==1: 

                            counter = counter + 1 

                        else: 

                        counter = counter + int((aobt[-1]-aobt[-2])) 

                            

                
#time.append(dt.datetime.strptime(s[1].partition("M")[2].partition("."
)[0],'%H:%M:%S')) 

                    timeTemp.append(counter) 

    for l in range(len(time)):  

        if time[l]==0 and l!=0: 

            time[l]= l*3699   

      

    fig, ax = plt.subplots( figsize = (20,12)) 

    plt.plot(timeTemp, temperature, color = 'blue', label = 'REMS data 
', linewidth = 2,  marker = '.', linestyle='None')     

    plt.gca().set_xscale('segmented', points = time) 

    plt.xticks(time, my_xticks, fontsize = 29)  

    plt.yticks(fontsize = 35)                         

    plt.grid(True) 

    plt.title('Temperature Sol %s'%solstr, fontsize = 45) 

    plt.xlabel("LMST hour", fontsize = 45) 

    plt.ylabel("Temperature (K)", fontsize = 45)  

    plt.savefig('temp_sol%s.png'%solstr,  format='png',  dpi=600)    

               

                     

2. Printing figures (Data after SSA processing) 

file = open(MCAMpath,'r')   

data = [esta.strip().split() for esta in file.readlines() ] 

ptau = np.array(data[:-1],dtype= 'float') 

 

f = open('filecominMaxv1.txt','r') 

file = [linea.strip().split(' ')[0:4] for linea in f.readlines()] 

f.close() 

hours = np.array(file, dtype='float')[:,3] 

sols = np.array(file, dtype='float')[:,0][hours==24] 

mintemp = np.array(file, dtype='float')[:,1][hours==24] 

maxtemp = np.array(file, dtype='float')[:,2][hours==24] 
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fig, ax = plt.subplots( figsize = (20,12)) 

plt.xticks(fontsize = 29)  

plt.yticks(fontsize = 35)       

salida = x0-rc                   

plt.xlabel("Sols", fontsize = 45) 

plt.ylabel("Temperature (K)", fontsize = 45)  

#l1= plt.plot(sols[2080:2405], pm[2080:2405], color = 'green', label = 
'min-mean(min)', linewidth = 2,  marker = '.')#, linestyle='None')  

#l1= plt.plot(sols[1376:1767], pm[1376:1767], color = 'green', label = 
'min-mean(min)', linewidth = 2,  marker = '.')#, linestyle='None') storm 
my33 

#l2= plt.plot(solsv1[2250:2600], rc[2250:2600], color = 'blue', label = 
'rc from min', linewidth = 2,  marker = '.')#, linestyle='None')  

#l3= plt.plot(solsv1[2250:2600], rc[2250:2600], color = 'blue', label = 
'rc', linewidth = 2,  marker = '.')#, linestyle='None')  

#l3= plt.plot(solsv1[1500:1900], rc[1500:1900], color = 'blue', label = 
'rc', linewidth = 2,  marker = '.')#, linestyle='None') storm year 33 

l1= plt.plot(solsv1[2950:3210], rc[2950:3210], color = 'blue', label = 
'rc', linewidth = 2,  marker = '.')#, linestyle='None') storm year 33 

 

#l1= plt.plot(sols, pm, color = 'green', label = 'min-mean(min)', 
linewidth = 2,  marker = '.')#, linestyle='None')  

#l2= plt.plot(solsv1, rc, color = 'blue', label = 'reconstruction', 
linewidth = 2,  marker = '.')#, linestyle='None')  

#l3= plt.plot(solsv1, salida, color = 'orange', label = 'x0-rc', 
linewidth = 2,  marker = '.')#, linestyle='None')  

plt.xlim() 

#l1 = plt.plot(sols, mintemp, color = 'blue', label = 'min temperature 
', linewidth = 2,  marker = '.')#, linestyle='None')  

#l11 = plt.plot(sols, maxtemp, color = 'green', label = 'max temperature 
', linewidth = 2,  marker = '.', linestyle='None')  

ax1 = ax.twinx() 

#l3=ax1.plot(ptau[:,0],ptau[:,2], 'v', markeredgewidth = .55, markersize 
= 6, fillstyle='none', color='orange', label='MCAM tau') 

ax1.set_ylim(0,3) 

ax1.set_ylabel("tau MCAM", fontsize = 35) 

ax1.set_yticks([1,2,3])  
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ax1.set_yticklabels([1,2,3], fontsize=35)  

 

 # leyenda con los datos en dos ejes distintos 

lns = l1 + l2 +l3 

labs = [l.get_label() for l in lns]  

ax.legend(lns, labs, loc=0, fontsize=29) 

plt.show() 

 

3. SSA code 

""" aplication of SSA method to Mintemp or/and MAxtemp""" 

 

f = open(fileREMSminmax,'r') 

file = [linea.strip().split(',')[0:4] for linea in f.readlines()] 

f.close() 

""" para rems""" 

hours = np.array(file, dtype='float')[:,3] 

sols = np.array(file, dtype='float')[:,0][hours==24] 

mintemp = np.array(file, dtype='float')[:,1][hours==24] 

maxtemp = np.array(file, dtype='float')[:,2][hours==24] 

 

 

dtmin = (sols[1:]-sols[:-1]).min() 

 

dsols = sols[((sols[1:]- sols[:-1])<=dtmin*1.001).nonzero()[0]]+0.5 

t = np.arange(sols.min(), sols.max()+1,dtmin) 

#dt = np.arange(dsols.min(), dsols.max()+1,dtmin) # el salto de fase 
solo existe cuando está un sol y el anterior 

 

differenece= maxtemp-mintemp 

pm= mintemp -mintemp.mean() 

s =[] 

N0 = int(sols[-1] - sols[0] + 1) #para rems 

#N0 = int(sols[-1]+1) #para  MEDA 

 

solsv1 = [] 

for c in range(N0): #para rems 

    solsv1.append(c) 

#for c in range((int(sols[-1]+1))): #para meda 

#    solsv1.append(c) 
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dtmax = (sols[1:]-sols[:-1]).max() 

M0 = 45 

rc = np.zeros(N0) 

l = 0 

dM = int(M0/2) 

adapta = 1 

while l <20: 

    if l>2: 

        if ((s[-2]-s[-1])/s[-2])<0.001 and s[-1]<s[-3]: 

            #if adapta and (M0-dM) > 2*dtmax: 

            dM = int(dM/2) 

         

    x0 = pm[0] 

    j1 =0 

    for k in range (1,(sols.size - 1)): 

        x0 = np.hstack([x0,pm[k]]) 

        j1 +=1 

        for j in np.arange(sols[k] + dtmin, sols[k+1], dtmin): 

            x0 = np.hstack([x0,rc[j1]]) 

            j1 +=1 

    x0 = np.hstack([x0,pm[sols.size - 1]]) 

    xm = x0.mean() 

    x0 = x0 - xm 

    matrix0 = [x0[0:M0]] 

    for i in range (1,N0-M0): 

        matrix0.append(x0[i:i+M0]) 

    matrix0 = np.array(matrix0) #PARA REMS 

    #matrix0 = np.array(matrix0[0:324]) #meda 

    c0 = np.corrcoef(matrix0.transpose()) 

    evals0, evecs0 = la.eigh(c0) 

    ii = evals0.argsort()[::-1] ## indices de mayor a menor 

    v = evecs0[:,ii] 

    e = evals0[ii] 

    numAutovect = (e.cumsum()/(e.sum())>0.95).nonzero()[0][0]# número 
de autovectores que debo coger 

    #cp = np.matmul(c0,v) 

    cp = np.matmul(matrix0,v) #cálculo de componentes principales 

 

    #reconstruction de la evolucion temporal proyectada sobre los 
numAutovect 
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    r=[cp[0,0]*v[0,0]] 

    nn = N0-M0 

    #nn = 3016 

    for i in range(1,M0): 

        r.append((cp[i::-1,0]*v[:i+1,0]).sum()/(i+1)) 

    # pc[:,0] tiene la evolucion temporal asociada al autovalor e[0] 
hasta el tiempo M (una ventana de %d puntos)\n ahora vamos con el tiempo 
de M a N-M+1."%(m)) 

    for i in range(M0,nn):   

        r.append((cp[i:i-M0:-1,0]*v[:M0,0]).sum()/M0) 

        #    Ahora para los valores de N-M+1 (=%d/%d) a N (=%d)"%(nn,n0-
m,n0)) 

    for i in range(nn,(t.size)): 

        r.append((cp[nn-1:i-M0:-1,0]*v[i-(nn-
1):,0]).sum()/np.min([i,(N0-i)])) 

    r=[r] 

    #      Prepara una segunda fila con el siguiente autovector 

    for k in range(1,numAutovect +1): 

        rk=[cp[0,k]*v[0,k]] 

        for i in range(1,M0):    

            rk.append((cp[i::-1,k]*v[:i+1,k]).sum()/(i+1)) 

        #    a[:,k] tiene la evolucion temporal asociada al autovalor 
e[k] hasta el tiempo M (una ventana)\n ahora vamos con el tiempo de M a 
N-M+1. 

        for i in range(M0,nn):  

            rk.append((cp[i:i-M0:-1,k]*v[:M0,k]).sum()/M0) 

        #  Ahora para los valores de N-M+1 a N") 

        for i in range(nn,(t.size)):  

            rk.append((cp[nn-1:i-M0:-1,k]*v[i-(nn-
1):,k]).sum()/np.min([i,(N0-i)])) 

        r=r+[rk] 

    r = np.array(r) 

    rc = sum(r) 

    s.append(np.std(rc-x0))#[:len(rc)])) 

    l +=1 

 

4. HHT code  

 

def softEMD (dataDegree):  

     

    imf_umbralised_std = [] ; reconstructed_signal_emd =[] 

    startTime = time() 
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    decomposer = EMD(dataDegree, nbsym=5) 

    imf = decomposer.decompose() 

    

     

    cmse = [] 

    for g in range(len(imf)-2): 

        cmse.append((1/len(imf[g]))*sum(imf[g]**2)) 

    argMin = np.argmin(cmse) 

    if argMin == 0: 

        argMin = 1 

    for r in range ( 0, argMin): 

        sigma = np.median(np.abs(imf[r]-np.median(imf[r])))/0.6745        

        thresholdEMD = sigma*math.sqrt(2*math.log(len(imf[r]))) 

 

        imf_umbralised_std.append([]) 

        for g in range (0,len(imf[r])): 

            if abs(imf[r][g]) >= thresholdEMD: 

                
imf_umbralised_std[r].append(np.sign(imf[r][g])*(np.abs(imf[r][g])-
thresholdEMD))        

            else: 

                imf_umbralised_std[r].append(0) 

    """  add residual signal """ 

    for r in range(argMin, len(imf)): 

        imf_umbralised_std.append(imf[r].tolist()) 

     

    reconstructed_signal_emd = [sum(x) for x in 
zip(*imf_umbralised_std)] 

    varianceEmd = np.std(reconstructed_signal_emd)  

   

    return varianceEmd, reconstructed_signal_emd 

 

5. Wavelet code  

 

# split in 5 minutes sessions        

def session_split(timestamp): 

    MARGIN_SESSION = 40 

  #  NUM_SAMPLES = 308 

    index_start = 0 

    index_ini = [] 
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    index_fin = [] 

     

    for i in range((len(timestamp)-1)): 

        if ((timestamp[i+1] - timestamp[i]) >= MARGIN_SESSION  or 
i == range(len(timestamp)-1)): 

            index_ini.append(index_start) 

            index_start = i+1; 

            index_fin.append(i) 

    index_ini.append(index_start) 

    index_fin.append(i+1)     

    return (index_ini, index_fin) #devolvemos los índices de 
inicio y fin 

 

def softWavelet (dataDegree):    

    n = 0 

    family = 'coif4' 

    base = pywt.Wavelet(family)        

    coeffs = pywt.wavedec(dataDegree, base, mode = 'symmetric')#, 
axis = 0)   

  

    # Apply it to the signal and get the wavelet coefficients 

    thresholdedCoeffs = copy.deepcopy(coeffs) 

    """calculo del umbral """ 

    sigma = np.median(np.abs(coeffs[-1]-np.median(coeffs[-
1])))/0.6745  

    threshold = sigma* math.sqrt(2*math.log(len(dataDegree))) 

    """ buscar en qué listas de coeff no se aplica el threshold 
""" 

    for p in range(len(coeffs)-1): 

        meanCoeff = np.mean(coeffs[p]) 

        if (np.abs(meanCoeff)> threshold/10 and len(coeffs) > 1): 

            n= n + 1             

    """ no se aplica el th a las primeras 'n' listas, que contienen 
componente de contínua  """         

    for level in range(n, len(coeffs)):  

        for g in range (0,len(coeffs[level])): 
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            if abs(coeffs[level][g]) < threshold: 

                thresholdedCoeffs[level][g] = 0 

            else: 

                 thresholdedCoeffs[level][g]= 
np.sign(coeffs[level][g])*(np.abs(coeffs[level][g])-threshold)                                   

                                

  reconstructed_signal_wavelet = pywt.waverec(thresholdedCoeffs, 
base, axis=0)    

    return (reconstructed_signal_wavelet) 

 

6. Generate the min temperature file (temperature 
intermediate file) 

 

" Calculating min max values from ATS RNV #####" 

### READ RNV FILEs for TMEP ##### 

list_of_rems_files = [] 

list_of_rems_files_temp =[] 

lastVersion = [] 

for root, dirs, files in os.walk(solPath): 

    for file in files: 

        if  'RNV' in file and '.TAB' in file: 

            list_of_rems_files_temp.append(root+'/'+file) 

 

for i in range(0,len(list_of_rems_files_temp)):   

    solstr = 
list_of_rems_files_temp[i].split('/')[2].partition('RNV')[2][0:4
] 

    isTimethere = 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # keep 
information about if there measurements each hour. If not, do not 
use the sol 

    sols=[] 

    with open ( list_of_rems_files_temp[i], 'r') as f: 

            temperature = [] 

            token =[] 

            sclkvector= [] 
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            for line in f: 

                s = line.split(',') 

                if s[29].find('UNK')<0:          
##BOOM1_TIP_AIR_TEMP     

                    sclkvector.append(float(s[0])) 

                    temperature.append(float(s[29])) 

                    lts = s[2].partition(' ')[2].split(':') 

                    if len(lts)== 1: # if LTST not appearing, 
using timestamp and convert to ltst 

                        sclk = s[0].strip() 

                        et = spice.scs2e(MSL_SCID, str(sclk)) 

                        out = spice.sce2s(LMST_SCID, et) 

                        out = out.split('/')[1].split(':')    

                        positionR, lt = spice.spkpos(MSL_LS, 
int(sclk),'IAU_MARS', 'NONE', 'MARS') 

                        positionP = spice.reclat(positionR) 

                        CuriositySitePosition = positionP[1] 

                        out1 = spice.et2lst(et, 
mars,CuriositySitePosition, 'PLANETOCENTRIC') 

                        lts = (out[0]+' '+out1[3]).partition(' 
')[2].split(':') 

                    if isTimethere[int(lts[0])]==0:                                                

                            isTimethere[int(lts[0])] = 1    

                  

            #split the sessions 

            index1, index2 = session_split(sclkvector) 

             

            #wavelet aplication to tip data 

            wavetemperature=[] 

            for h in range (len(index1)): 

                out = 
softWavelet(temperature[index1[h]:index2[h]]) 

                wavetemperature = wavetemperature + out.tolist() 
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            token.append(solstr)     

            token.append(str(min(wavetemperature))) 

            token.append(str(max(wavetemperature))) 

            token.append(str(sum(isTimethere))) 

            f = open ('fileMinMaxTempWithWavelet.txt','a') 

            for i in token: 

                f.write(i) 

                f.write(',') 

            f.write('\n') 

            f.close() 

 

7. Generate the p_tides file (pressure intermediate file) 

import numpy as np 

from scipy.optimize import leastsq 

import os 

import matplotlib.pyplot as plt 

import spiceypy as spice 

spice.furnsh("C:/Users/zurit/ownCloud/pythonCodev2/SPICE_kernels
_MSL/kernels.msl_ops120808_v1") 

n = 12 

Ls =[] 

t = 668.45 

MSL_SCID = -76 

LMST_SCID=-76900 

MSL_LS= "MSL_LANDING_SITE" 

mars = 499 

sclk_sol_1 = 397535243.0 

et_seconds_landing =397446666.183000 

 

def func (p,x,n): 

    total = 0 

    for i in range (1, n+1): 

        total = total +p[2*i1]*np.sin((x/1440*i+p[2*i])*2*np.pi) 

    total = total + p[0] 
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    return   total 

 

 

positionR = np.array((1,1,1), dtype= 'float') 

lt = 1.0 

positionR, lt = spice.spkpos(MSL_LS, sclk_sol_1,'IAU_MARS', 
'NONE', 'MARS') 

#positionR, lt = spice.spkpos(MSL_LS, sclk_sol_1,'IAU_MARS', 
'NONE', 'MARS') 

positionP = spice.reclat(positionR) 

CuriosityLandingSitePosition = positionP[1]  

solPath ='C:/Users/zurit/Documents/REms/Manuel_mareasMarte/sols' 

ptidesPath = 'p_tidesversion.txt' 

initialLs = np.array([160.948, 360.001,-10.6935, 1.24961,-
0.631483,-0.00890294]) 

 

#read MODRDR files 

list_of_rems_files_all_versions = [] 

list_of_rems_files_last_version = [] 

lastVersion = [] 

for root, dirs, files in os.walk(solPath): 

    for file in files: 

        if  'RMD' in file and '.TAB' in file: 

           list_of_rems_files_all_versions.append(root+'/'+file) 

     

# filter from list_of_rems_files_all_versions only the last 
version from each sol           

i =0 

solList =[] 

while i<len(list_of_rems_files_all_versions): 

         

      #calcule Sol file  

    solstr = 
list_of_rems_files_all_versions[i].split('/')[7].partition('RMD'
)[2][0:4]  

    if solstr in solList: 
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        i = i +1 

    else:     

        samesol = [] 

        version =[]  

        solList.append(solstr) 

        for j in range(len(list_of_rems_files_all_versions)): 

if 
list_of_rems_files_all_versions[j].split('/')[7].par
tition('RMD')[2][0:4].find(solstr)>=0: 

samesol.append(list_of_rems_files_all_versions[j])                
version.append(int(list_of_rems_files_all_versions[j
].partition('.TAB')[0][-1:])) 

        lastVersion.append(max (version))   

        
list_of_rems_files_last_version.append(samesol[version.index(max
(version))]) 

 

     
for i in range(0,len(list_of_rems_files_last_version)):   

    solstr = 
list_of_rems_files_last_version[i].split('/')[7].partition('RMD'
)[2][0:4] 

    print(solstr) 

    x1 = int(solstr)/t 

    #calcule Ls from Sol 

    pls = 
initialLs[0]+initialLs[1]*x1+initialLs[2]*(np.sin((x1+initialLs[
3])*2*np.pi))+initialLs[4]*(np.sin((2*x1+initialLs[5])*2*np.pi)) 

    isTimethere = 
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # keep 
information about if there measurements each hour. If not, do not 
use the sol 

    with open ( list_of_rems_files_last_version[i], 'r') as f: 

            ltstminutes = [] 

            psdata = [] 

            for line in f: 

                s = line.split(',') 

                if s[37].find('UNK')<0:                
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                    psdata.append(float(s[37])) 

                    lts = s[2].partition(' ')[2].split(':') 

                    if len(lts)== 1: # if LTST not appearing, 
using timestamp and convert to ltst 

                        sclk = s[0].strip() 

                        et = spice.scs2e(MSL_SCID, str(sclk)) 

                        out = spice.sce2s(LMST_SCID, et) 

                        out = out.split('/')[1].split(':')    

                        positionR, lt = spice.spkpos(MSL_LS, 
int(sclk),'IAU_MARS', 'NONE', 'MARS') 

                        positionP = spice.reclat(positionR) 

                        CuriositySitePosition = positionP[1] 

                        out1 = spice.et2lst(et, 
mars,CuriositySitePosition, 'PLANETOCENTRIC') 

                        lts = (out[0]+' '+out1[3]).partition(' 
')[2].split(':') 

                    if isTimethere[int(lts[0])]==0:                                                

                            isTimethere[int(lts[0])] = 1    

                    ltstminutes.append(int(lts[0])*60 + 
int(lts[1]) + int(lts[2].replace('"',''))/60) 

    p0= [800, 30, 0, -10, -0.5, -1, 0.5, 1, 0.1, 1, -0.1, 1, 0, 
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]     

    desv = lambda p,x,y,n:(func(p,x,n)-y) 

    p = np.array(p0,dtype=float) 

    x = np.array(ltstminutes,dtype=float) 

    y = np.array(psdata,dtype=float) 

    out, success = leastsq(desv, p , args=(x,y,n))  

    Ls.append(pls) 

 

    #update p_tides.txt file    when a new sol arrives 

    outFile = open(ptidesPath, 'a') 

    outFile.write(solstr + ','+ str(Ls[-1]) + ',') 

    for j in range(len(out)):        

        outFile.write(str(out[j])+',')  

    outFile.write(str(sum(isTimethere)) + ',') 

    outFile.write(str(lastVersion[i]) + ',') 
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    outFile.write('\n') 

    outFile.close()  
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Annex 2: The m-model 

The m-model [20] explains the model that generate the last processing level of the ATS 
data, the MODRDR product. Due to the similarities of the ATS to a cylinder thin fin, this 
Air Temperature Retrieval model is based on the Mueller theory [21], based on a 
thermal physics of a cylinder thin fin in equilibrium with the fluid around it. This 
mathematical model describes the procedure to retrieve the temperature of the fluid, 
Tf, around the ATS fin, using the three known temperatures Ta (temperature at the free 
end), Tb (temperature at the base) and Tint (temperature at the intermediate point) of 
the ATS. 

The Mueller experiment explains that, for a known and fixed Ta, Tb and Tint, the 
temperature difference in the thin fin, with temperature value Tf, can be written as: 

 

𝑇 − 𝑇 = 𝑇 − 𝑇
1

𝑐𝑜𝑠ℎ (𝑚) 
 

𝑇 − 𝑇 = 𝑇 − 𝑇
𝑐𝑜𝑠ℎ 𝑚 1 −

1
𝑛

𝑐𝑜𝑠ℎ 𝑚 
, 

 

 where 𝑚 = 𝐿  is an average value over the length, K is the thin fin conductivity, L 

and D, the length and the diameter of the cylinder and h the convection term.   

This equation system is composed of two equations with two unknowns, Tf and m, which 
can be obtained by using the measured values of Ta, Tb and Tint.  
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Annex 3: Calibration data 

Here we detail two sources of temperature measurement datasets that have been used 
to contrast and assess the goodness of the proposed approaches. 

These two sources of data that, in principle, can be considered practically unaffected by 
the typical external perturbations are: 

Cruise Checkout 

The so-called ATS Cruise Checkout data, a vacuum health status check performed during 
the cruise phase to Mars, where the ambient temperature was estimated to be −10 ⁰C. 
Under these conditions, such data should be largely considered free from noticeable 
external perturbations and can be used for benchmarking purposes while processing the 
ATS noise. 

Thermal Vacuum Test (TVT) 

The so-called ATS TVT was performed before the mission launch. The test took place 
inside a vacuum chamber with a cooling screen placed at the boom base, and a 
surrounding cover refrigerated with liquid nitrogen. Under these conditions, intensive 
measurement tests were performed to check the electronic noise generated by the 
instrument at different target temperatures: 0 ⁰C, −30 ⁰C, −50 ⁰C, −70 ⁰C and −90 ⁰C. 

The noise affecting the datasets mentioned above, which are processed using the 
previously detailed methods, stems by hypothesis from the system electronics the ATS. 
Under the described conditions, such data should be largely considered free from 
noticeable external perturbations and can be used for benchmarking purposes while 
processing the ATS noise. 
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Annex 4: Files generated  

 This annex shows two portions of the two intermediate files used in this thesis. The first 
file, the pressure file, shows the pressure modes (amplitude and phase) for each sol. The 
second file, the temperature file, shows the minimum and the maximum temperature 
values for each sol. The last column, in both files, shows the number of measurement 
periods taken per sol. 

 

1. Extract from the pressure tides file: 

 

Sol 
Ls (Solar 

longitude) 

p0, 
pressure 
mean per 

day p1 amplitude p1 phase p2 amplitude p2 phase 

Measure
ment 

periods 
per sol 

1 150,816767 807,595812 35,1691542 -0,02156833 -2,45729327 -0,62591044 2 
9 155,066242 765,437984 72,0019757 0,05803301 1,57072434 -0,48694841 11 
10 155,601739 739,371927 34,6859153 0,06809742 12,4898258 -0,52646789 24 
11 156,138206 740,133771 35,1320255 0,06444578 12,3447692 -0,51683297 24 
12 156,675647 740,615911 34,645483 0,06247828 12,2472187 -0,52242216 24 
13 157,214065 746,236909 42,9173483 0,0319504 17,6203556 -0,44385778 17 
14 157,753462 739,465991 35,6179646 0,05561911 12,600955 -0,52252676 24 
15 158,293842 740,098306 36,6588643 0,05426372 13,1045826 -0,52401879 24 
16 158,835208 740,579751 37,9169257 0,05348745 13,080365 -0,51534696 24 
17 159,377563 741,669954 37,0171896 0,04961273 13,7829129 -0,52379876 24 
18 159,920909 767,438061 -16,9395814 0,08699567 -30,1979632 -0,73732337 12 
19 160,465249 760,574599 67,4587062 0,02087528 -16,0176039 -0,82651926 12 
20 161,010585 725,344767 40,0086696 0,17486875 -7,74031226 -0,69498251 15 
21 161,55692 741,754443 38,1350221 0,06327448 14,110782 -0,52134194 24 
22 162,104256 742,304274 40,378672 0,06755095 13,2594629 -0,51382708 24 
23 162,652595 742,037214 39,4195663 0,06565386 13,7221021 -0,52198469 24 
24 163,20194 742,893141 38,9125238 0,06664249 13,6964973 -0,51392713 24 
25 163,752292 744,472892 38,3364381 0,06784434 13,5300421 -0,50492165 24 
26 164,303653 744,850618 37,8736253 0,06232086 13,101672 -0,49782031 24 
27 164,856025 743,852963 37,341603 0,06225883 12,0731803 -0,50900407 24 
28 165,40941 745,273192 37,5226817 0,05892361 12,4667789 -0,51463742 24 
29 165,963808 746,746181 37,9329928 0,05855668 13,019648 -0,52188918 24 
30 166,519222 746,650363 38,1065776 0,05767368 13,3114616 -0,52321492 24 
31 167,075653 746,686362 37,7724213 0,060884 13,5742057 -0,51306359 21 
…        
3469 2024,77143 811,518006 91,7091173 -0,14618294 -74,5111314 -0,55899286 14 
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3470 2025,41166 840,325413 42,2692891 0,06419278 12,2663824 -0,56328035 24 
3471 2026,0524 839,967318 38,6605758 0,05966608 14,090896 -0,54488202 24 
3472 2026,69363 841,742002 41,4729171 0,06361415 14,6568566 -0,53295412 23 
3473 2027,33535 843,046422 40,9836129 0,0615306 15,5730113 -0,53656937 23 
3474 2027,97753 844,069085 39,8513361 0,06288424 14,7347197 -0,54945747 24 
3475 2028,62017 845,620228 39,4158554 0,05608617 15,06797 -0,54931774 24 
3476 2029,26325 845,682564 39,7153101 0,05302507 15,6017625 -0,54784823 24 
3477 2029,90677 846,594197 39,6836354 0,061747 14,3385991 -0,5522516 24 
3478 2030,55072 848,145316 39,4115427 0,05370898 14,7512448 -0,55470047 24 
3479 2031,19507 850,564054 38,3199125 0,05151651 15,5033905 -0,55368057 24 
3480 2031,83982 852,138862 40,4844263 0,05791967 15,5199052 -0,54723703 24 
3481 2032,48497 854,501901 39,1401328 0,06424799 15,5782894 -0,5441407 24 
3482 2033,13048 856,553955 41,2279968 0,063202 15,396396 -0,54257975 24 
3483 2033,77636 855,410993 41,7605975 0,06057329 13,5840672 -0,55641117 24 
3484 2034,42259 857,456845 49,8744374 0,0589836 19,1428655 -0,53356467 24 
3485 2035,06916 858,542256 53,0127841 0,06548976 16,3599516 -0,53354365 24 
3486 2035,71605 857,939627 47,8906657 0,06657192 15,0584253 -0,54227647 24 
3487 2036,36326 860,240512 42,3050294 0,06671727 14,637008 -0,55271588 24 
3488 2037,01077 861,355654 43,0147008 0,06507479 15,9020068 -0,55812811 24 
3489 2037,65857 862,093409 41,678896 0,07420494 15,4091482 -0,5615148 24 
3490 2038,30665 863,543314 40,1522357 0,06617729 15,1236846 -0,57159594 24 
3491 2038,95499 864,425582 41,3330118 0,07104404 15,1269487 -0,55970491 24 
3492 2039,60358 865,750253 38,08683 0,06037407 14,6719792 -0,58017854 22 
3493 2040,25241 865,639448 37,8569168 0,06809855 15,6532494 -0,5500359 24 
3494 2040,90147 866,670838 38,4642663 0,06478423 15,4280331 -0,54409357 24 
3495 2041,55074 831,016779 80,3891591 -0,04159701 -19,3858942 -0,55187593 13 

 

 

2. Extract from the temperature file: 

Sol Min temp Max temp 
Measurement periods 

per sol 

1 273,110242 276,269153 2 

9 207,999804 272,199453 11 

10 198,768539 271,230968 24 

11 197,23071 272,33678 24 

12 196,984329 271,948891 24 

13 199,334475 272,242046 17 

14 199,438439 271,548791 24 

15 195,552618 273,694644 24 
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16 197,013167 273,306255 24 

17 197,035328 269,356696 24 

18 200,330399 251,809366 12 

19 212,090423 269,99745 12 

20 205,219458 271,785547 15 

21 199,283075 272,803033 24 

22 198,828429 274,539456 24 

23 198,623983 270,104109 24 

24 198,13767 274,849118 24 

25 197,949504 274,585416 24 

26 197,704082 271,290683 24 

27 198,36549 266,514823 24 

28 198,228318 266,58086 24 

29 198,111449 271,071681 24 

30 199,481946 270,193032 24 

31 199,820394 249,775985 12 

32 211,436306 271,294 12 

33 199,91262 271,046484 24 

34 200,172568 273,783748 23 

35 200,583444 271,541242 24 

36 200,1875 271,879151 24 

37 199,857762 272,852822 24 

38 200,600317 276,171734 24 

39 198,311104 275,562717 24 

40 198,528923 275,006209 24 

41 198,562101 275,600877 24 

42 198,695429 277,964559 24 

….    

3408 207,010753 263,513212 24 

3409 208,273867 261,372551 21 

3410 206,647206 261,893632 24 

3411 207,034788 264,699726 24 

3412 208,099659 261,497153 24 
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3413 208,919753 266,543267 24 

3414 205,498365 266,866931 24 

3415 204,68965 270,693003 24 

3416 206,009976 272,730718 24 

3417 205,818311 274,165982 24 

3418 204,547925 273,322023 24 

3419 205,627662 274,145694 24 

3420 205,559996 278,871792 24 

3421 206,294649 280,127319 24 

3422 205,464832 280,833272 24 

3423 205,705577 280,284262 24 
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Annex 5: Time Standards 

Time format Definition 
SCLK Spacecraft Clock. This is an on-board 64-

bit counter, in units of nano seconds and 
increments once every 100 milliseconds. 
Time zero corresponds to midnight on 1-
Jan-1980 

Local Solar Time (LST). This is the local solar time defined by the 
local solar days (sols) from the landing 
date using a 24 Martian hour clock within 
the current local solar day (HR:MN:SC). 
Since the Mars Day is 24h 37m 22s long, 
each unit of LST is slightly longer than the 
corresponding Earth unit. LST is 
computed using positions of the Sun and 
the landing site from SPICE kernels. If a 
landing date is unknown to the program 
(e.g., for calibration data acquired on 
Earth) then no sol number will be 
provided on output 
LST examples: 
SOL 12 12:00:01 
SOL 132 01:22:32.498 
SOL 29 
 

Local True Solar Time (LTST) 
 

This is related to LST, which is also known 
as the mean solar time. 
It is the time of day based on the position 
of the Sun, rather than the measure of 
time based on midnight to midnight 
“day”. LTST is used in all MIPL/OPGS 
generated products. 
 

Local Mean Solar Time (LMST) Specifies the local mean solar time, or 
LMST. It is one of two types of solar time 
used to express the time of day at a point 
on the surface of a planetary body. 
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The desire to work with solar days, hours, 
minutes and seconds of uniform length 
led to the concept of the fictitious mean 
Sun or FMS. The FMS is defined as a point 
that moves over the celestial equator of a 
planetary body at a constant rate 
representing the average mean motion of 
the Sun over a planetary year. 
Local mean solar time, LMST, is defined, 
by analogy with local true solar time 
(LTST), as the difference between the 
areocentric right ascensions of a point on 
the surface and that of the FMS. The 
difference between LTST and LMST varies 
over time. The length of a mean solar day 
is constant and can be computed from 
the mean motion of the FMS and the 
rotation rate of a planet. 
The mean solar day is also called a 'sol'. 
Mean solar hours, minutes, and seconds 
are defined in the same way as the true 
solar units. 

SOL Solar Day Number, also known as PLANET 
DAY NUMBER in PDS label. This is the 
number of complete solar days on Mars 
since landing. The landing day is SOL one. 
 

 

 


