Cosmogenic ³⁹Ar in extraterretrial materials: Application to ⁴⁰Ar/³⁹Ar dating

Tetsumaru ITAYA and Hironobu HYODO

Institute of Frontier Science and Technology Okayama University of Science 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan

Accepted on December 15, 2021

Meteorites and other extraterrestrial materials have cosmogenic ³⁹Ar which may be proportional to their potassium contents. Assuming several conditions, direct in situ ⁴⁰Ar/³⁹Ar dating without neutron irradiation may be applicable on those naturally activated samples. We consider the conditions to obtain satisfactory results. The estimate of ³⁹Ar production rate from nuclear data shows disagreement with experimental data by several orders of magnitude, suggesting processes other than n-p transformation might be working.

Introduction

In meteorites and extraterrestrial materials, cosmogenic ³⁹Ar is normally found. The amount is small and limited because of their small sample sizes. Recent development of technology allows us to have an accurate determination of such argon isotopes even in underground (Xu, *et al.*, 2015). We have already reported a possibility of ⁴⁰Ar/³⁹Ar dating on meteorites without neutron irradiation in a reactor (Takeshima, 2001). Conditions for such determination is considered here.

Cosmogenic argon isotopes

We assume that the cosmogenic argon isotopes have the same process as that we observe in a nuclear reactor. The major isotope reactions in ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age determination are as follows.

$${}^{35}\text{Cl}(n, \gamma) {}^{36}\text{Cl} \rightarrow {}^{36}\text{Ar} (\beta \text{ decay})$$

$${}^{40}\text{Ca} (n, n\alpha) {}^{36}\text{Ar}$$

$${}^{40}\text{Ca} (n, \alpha) {}^{37}\text{Ar}$$

$${}^{42}\text{Ca}(n, \alpha) {}^{39}\text{Ar} \rightarrow {}^{39}\text{K} (\beta \text{ decay})$$

$${}^{39}\text{K} (n, p) {}^{39}\text{Ar} \rightarrow {}^{39}\text{K} (\beta \text{ decay})$$

$${}^{40}\text{K} (n, p) {}^{40}\text{Ar}$$

Possible source of neutron are solar wind and galactic cosmic ray. Because the sun is the closest source, the flux is probably the strongest. Let us assume that the neutron flux mostly from solar wind is uniform over a long period (*e.g.* 10^4 years), and assume that the production rate R₃₉ is constant. The differential equation for production and decay of ³⁹Ar which has a half life of 269 years, is written as

$$\frac{dN_{39Ar}}{dt} = -\lambda_{39}N_{39Ar} + N_{39K}R_{39}$$
(1)

where λ_{39} is the decay constant of ³⁹Ar, and N_{39Ar} and N_{39K} represent number of atoms for ³⁹Ar and ³⁹K in a mineral, respectively. The beta decay of ³⁹Ar brings itself back to ³⁹K. Therefore, the total number of atoms during the production and dacay does not change. i.e.

$$N_0 = N_{39Ar} + N_{39K}$$
(2)

From this relation, Eq. (1) is rewritten as

$$\frac{dN_{39Ar}}{dt} = -(\lambda_{39} + R_{39}) N_{39Ar} + N_0 R_{39}$$
(3)

The solution of Eq.(3) is

$$N_{39Ar}(t) = N_{39Ar0} \exp[-(\lambda_{39} + R_{39})t] + \frac{R_{39}}{\lambda_{39} + R_{39}} N_0 \quad (4)$$

 N_{39Ar0} is determined by initial condition; $N_{39Ar}(0) = 0$. *i.e.*

$$N_{39Ar}(t) = -\frac{R_{39}}{\lambda_{39} + R_{39}} N_0 \exp[-(\lambda_{39} + R_{39})t] + \frac{R_{39}}{\lambda_{39} + R_{39}} N_0 \quad (5)$$

After a long period, N_{39Ar} reaches to an equilibrium of $N_0R_{39}/(\lambda_{39}+R_{39})$ (*e.g.* t = 1.3×10^3 years for 99% of equilibrated value). This is actually the same result obtained from a equilibrium condition;

$$dN_{39Ar}/dt = 0 = -\lambda_{39}N_{39Ar} + N_{39K}R_{39}$$
(6)

Thus, the equilibrated 39 Ar is proportional to initial potassium content N₀.

The decay constant for 39 Ar, λ_{39} is 2.58×10⁻³/y, or $8.17 \times 10^{-11}/^{39}$ K atom/sec. We do not exactly know the rate R₃₉. On lunar surface for an example, R₃₉ could be the same everywhere (i.e. the neutron flux is the same) over a long time. An estimation of cosmogenic ³⁹Ar in atmosphere has been made at sea level (Saldanha et al. 2019), although the process is different from 39 K (n, p) ³⁹Ar, Their value for ³⁹Ar production is 759 atoms/ kgAr/day which is 5.84×10^{-28} atoms/Ar atom/sec. This is significantly lower than the detection limit in a mass spectrometer. The incoming neutron flux above atmosphere is measured by Lockwood and Friling (1968). It is dependent on the earth's latitude, varying from 0.1 to 0.8 neutrons/cm²/sec. On the lunar surface, neutron flux is estimated by Livengood et al. (2018). For fast neutron, it varies from 1.2 to 16 depending on the methods.

A simple estimate of ³⁹Ar production rate can be made using cross section of ³⁹K in the n-p reaction. Assuming uniform average fast neutron flux of $F_n = 1$ neutrons/cm²/sec and the maximum cross section of the reaction; $\sigma = 0.38$ barn = 3.8×10^{-25} cm² at 10-20 MeV (Shibata *et al.*, 2002), the production rate R₃₉ is the number of reactions, *i.e.*;

$$R_{39} = F_n \sigma = 3.8 \times 10^{-25/39} \text{K} \text{ atom /sec}$$
 (7)

Since this estimate is a lot smaller than the decay constant, the equilibrated value A for ³⁹Ar after reasonably long period is,

A = R₃₉ /
$$\lambda_{39}$$
 = 4.7×10⁻¹⁵/³⁹K atom . (8)

In other expression, cosmogenic ³⁹Ar in 1 gram of potassium of extraterrestrial material could be found as

A*
$$1/39 = 4.7 \times 10^{-15} \times 6.02 \times 10^{23}/39 = 7.3 \times 10^{7}$$
 ³⁹Ar atom/g,
or 1.2×10^{-16} mole/g.

This value may be compared with ³⁹Ar found in Allende meteorite. In an experiment (Takeshima, 2001), ³⁹Ar contained in a chondrule of about 10^{-7} gram was typically found to have ³⁹Ar of about 10^{-12} ccSTP, which is equivalent to 4.5×10^{-17} mole. Assuming high concetration of potassium about 7%, the estimation and the experimental data disagree. It may possibly be due to a wrong estimate of neutron flux and/or that other ³⁹Ar production process are involved, suggesting that

 10^7 to 10^8 times greater production rate which Allende meteorite experienced.

The similar formulation can be applied on other interfering argon isotopes. ³⁶Ar and ³⁹Ar from calcium isotopes, ³⁶Ar from ³⁵Cl, and ⁴⁰Ar from ⁴⁰K affect on the ⁴⁰Ar/³⁹Ar age determination. Among them ⁴⁰Ar may not play an important role. Since neutron has relatively short life (14.8 minutes), thermal neutron which contributes to the majority of the ⁴⁰K (n, p)⁴⁰Ar reaction, seems to exist little and its penetration in silicate materials may be shallow compared to fast neutrons.

Contribution of interfering calcium isotopes are estimated from calcium derived ³⁷Ar. It is known that ³⁶Ar and ³⁹Ar have a lot smaller production rate which is represented by ³⁶Ar/³⁷Ar and ³⁹Ar/³⁷Ar ratios of 2 - 3×10^{-4} and 7×10^{-4} , respectively. ³⁶Ar is a stable isotope, and ³⁷Ar has a half life of 35 days. Therefore, ³⁶Ar can build up, and ³⁹K from ³⁹Ar decay also adds up after a long period of time. The theoretical and experimental cross sections for 40 Ca (n, n α) 36 Ar reaction varies (Shibata et al., 2002). In general, it is one order of magnitude less (c.a. 0.02 - 0.1 barns) compared to ³⁹K $(n, p)^{39}$ Ar reaction at 10-20MeV. For 42 Ca $(n, \alpha)^{39}$ Ar reaction, the cross section ranges between 0.04 and 0.1 barns. Considering the small isotopic ratio of calcium (⁴²Ca is 0.65% of total calcium) and their small cross section compared to ³⁹Ar production in the reactions, the contribution from these interfering isotopes on 40 Ar/ 39 Ar age may not be significant as long as the K/ Ca ratio is more than 100.

If extraterrestrial material has chlorine, it also contributes to the increase of ³⁶Ar and ³⁸Ar. We have made ⁴⁰Ar/³⁹Ar dating on Allende meteorite which has chlorine bearing sodalite (Takeshima, 2001; Takeshima et al., 2003). The amount of ³⁶Ar possibly from ³⁵Cl was so large compared to terrestrial material. However, it has so large amount of ⁴⁰Ar that ³⁶Ar does not affect the age results possibly due to the potassium content. If we assume atmospheric ratio of ⁴⁰Ar/³⁶Ar, the apparent "air" contamination was about 2%. Allowing some uncertainty of the age determination, the 2% error is tolerable.

Summary

The present estimate of ³⁹Ar production and experimental results disagree at least 7 orders of magnitude. Whatever processes are involved, samples from same environment would have the same production rate R₃₉. Combination of pilot sampling with precise measurement in a laboratory and survey using in-situ measurement may be possible to carry out age mapping on extraterrestrial materials. assuming relatively low calcium content. Since in situ sampling by a laser apparatus is applicable, this method may particularly suitable for survey purpose on lunar surface and other inner planets like mars.

References

- Shibata, K., Kawano, T., Nakagawa, T., Iwamoto, O., Katakura, J., Fukahori, T., Chiba, S., Hasegawa, A., Murata, T., Matsunobu, H., Ohsawa, T., Nakajima, Y., Yoshida, T., Zukeran, A., Kawai, M., Baba, M., Ishikawa, M., Asami, T., Watanabe, T., Watanabe, Y., Igashira, M., Yamamuro, N., Kitazawa, H., Yamano, N. and Takano H. (2002)"Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3. J. Nucl. Sci. Technol. 39, 1125. from Evaluated Nuclear Data File (2021) https://www-nds. iaea.org/exfor/endf.htm
- Livengood, T.A., Mitrofanov, I.G. Chin, G. Boynton, W.V. Bodnarik, J.G., Evans, L.G., Harshman, K.P., Litvak, M.L. MacCalanahan, T.P., Sagdeev, R.Z., Sanin, A.B., Starr, R.D., Su, J.J. (2018) Back

ground and Lunar Neutron Populations detected by LEND and average concentration of near-surface hydrogen near the Moon's poles. *Planetary and Space Science* **162**. 89–104.

- Lockwood, J.A. and Friling, L.A. (1968) Netron flux measurement in space, J. Geophys. Res. 73, 6649
- Saldanha, R., Back, H.O., Tsang, R.H.M., Alexander, T. Elliott, S.R., Ferrara, S., Mace, E., Overman, C. and Zalavadia, M. (2019) Cosmogenic production of ³⁹Ar and ³⁷Ar in argon. *Physical Review C*, **100**, 24068.
- Takeshima, Y. (2001) Isotopic ratios of argon in meteorites. Bachelor's thesis. unpublished.
- Takeshima, Y., Gozu, C., Tsujimori, T., and Hyodo, H., 2003. Fundamental research on the application of ⁴⁰Ar-³⁹Ar chronology to chondrite I: Significance of chlorine-bearing phase in Allende meteorite. Bulletin of Research Institute of Natural Sciences, Okayama University of Science, no. 29, pp. 43–49. (in Japanese with English abstract)
- Xu, J., Calaprice, F., Galbiati, C., Goretti, A., Guray, G., Hohman, T., Holts, D., Ianni, An., Laubenstein, M., Loer, B., Love, D., Martoff, C.J., Montanari, D., Mukhopadhyay, S., Nelson, A., Rountree, S.D., Volgelaar, R.B. and Wright, A. (2015) A study of the trace 39Ar content in argon from deep underground sources. *Astroparticle Physics* 66 53–60.