5,15-bis (2,3,5,6-tetrafluoro-4-(dimethylamino)phenyl)-10,20bis (pentafluorophenyl) porphyrinの構造解析

藤井 なり美・赤司 治夫

岡山理科大学フロンティア理工学研究所

2021年12月15日受理

5,15-bis (2,3,5,6-tetrafluoro-4-(dimethylamino) phenyl)-10,20-bis (pentafluorophenyl) porphyrin (H₂TFPP-(NMe₂)₂)の 単結晶を用いて、その結晶構造を明らかにした.結晶学的データは次の通り: crystal system monoclinic, space group P2₁/c (#88), Lattice parameters; a = 13.5839(4) Å, b = 11.4816(3) Å, c = 16.0057(6) Å, V = 2460.20(14) Å³, Z = 2, RI = 0.0933, wR = 0.2437. H₂TFPP-(NMe₂)₂は, H₂TFPPのポルフィリン環に結合している4つのペンタフルオロフェ ニル基のうち、対面した2つが、テトラフルオロ-N,N-ジメチルアニリンに置換された構造をとっている.

1. Introduction

我々は、フッ素化ポルフィリン5,10,15,20-tetrakis(p entafluorophenyl) porphyrin (= H_2TFPP), およびフッ素 化クロリン5,10,15,20-tetrakis (pentafluorophenyl (N-methyl) iminomethano)chlorin)(=H2TFPC)等の光機能性を有す る有機化合物やそれらの誘導体を合成し、それらの応 用に関する研究を行ったり, 合成した有機分子を配位 子とする金属錯体の合成と機能性に関する研究を行っ たりしている。例えば、HoTFPCに糖を連結した水溶 性のフッ素化クロリン誘導体が、先端癌治療法として 注目を集めている光線力学療法の光増感剤として優れ た特性(腫瘍細胞に選択的に取り込まれること,可視 光の照射により、腫瘍細胞に対する強い細胞毒性を発 現すること、また暗所においては毒性を発現しないこ と等)を有していることを報告したり,¹⁾H₂TFPCを 配位子とする亜鉛錯体が、空気中の酸素を酸化剤とす るアミンの光酸化反応の触媒となることを報告したり している.²⁾

本 論 文 で は、5,15-bis(2,3,5,6-tetrafluoro-4-(dimethylamino) phenyl)-10, 20-bis (pentafluorophenyl) porphyrin (H₂TFPP-(NMe₂)₂)の単結晶構造解析の結果 を報告する. H₂TFPP-(NMe₂)₂ は、H₂TFPPの4つ のペンタフルオロフェニル基のうち、対面する位置に あるペンタフルオロフェニル基のパラ位のフッ素原子 をジメチルアミノ基に置換した配位子である.

2. Experiemental

H₂TFPPをDMF中で還流して得られた赤色粉末を, クロロホルム/DMSOより再結晶して,赤色板状結晶 を得た.この結晶をFOMBLIN OILでコーティングし, Cryoloop (HAMPTON RESEARCH社製) に固定した. 測定は、Rigaku Saturn724自動X線回折計上で, Graphite monochromatorにより単色化したMoKa線を用いて行った.測定中は、吹付低温装置を用いて、結晶 を-180℃に保った.構造解析は直接法(SHELXL)³⁾を 用いて初期構造を決定した後、Full matrix最小二乗法 とD合成を繰り返し、水素原子を除くすべての原子位 置を決定した.水素原子は、幾何学的計算(C-H 0.95 Å)によりその位置を決定した後、riding model (水素原 子が結合している炭素原子に対して、 $U_{iso}(H) =$ 1.2 U_{eq})を用いて原子位置の精密化を行った.最終的 に行ったD合成の結果から、化学的に意味のあるピー クは発見されなかった.すべての計算はProgram package Olex²を用いて行った.⁴⁾

3. Results and discussion

今回,単結晶構造解析に用いたH₂TFPP-(NMe₂)₂ の単結晶(赤色板状)は,H₂TFPPをDMF中で還流 して得られた赤色粉末を,クロロホルム/DMSOから 再結晶して合成した.⁵⁾

H₂TFPP-(NMe₂)₂の結晶学的パラメーターおよび 結晶精密化のパラメーターをTable 1 に示した.

H₂TFPP-(NMe₂)₂では、H₂TFPPの4つのペンタ フルオロフェニル基のうち、対面する2つのペンタフ ルオロフェニル基のパラ位のフッ素原子がジメチルア ミノ基で置換された構造を取っていることが明らかに なった.H₂TFPP-(NMe₂)₂の構造をFigure 1に示した. また、この構造解析の結果、今回の構造解析に用いた **H₂TFPP-(NMe₂)₂の結晶には、再結晶に用いたジメ チルスルホキシドの分子がH₂TFPP-(NMe₂)₂の1分 子あたり2分子,結晶構造中に含まれていることが明 らかになった**.

 H_2 TFPPの4つのペンタフルオロフェニル基すべて にジメチルアミノ基を導入した5,10,15,20-tetrakis (2,3,5,6-tetrafluoro-4-(dimethylamino)phenyl)-porphyrin (= H_2 TFPP-(NMe₂)₄)の構造はSomanらによって報告 されている.⁶⁾ H_2 TFPP-(NMe₂)₂の構造を, H_2 TFPP-(NMe₂)₄の構造と比較しても、それらの構造に大きな 差はなかった、すなわち、部分的にジメチルアミノ基を 導入しもポルフィリン環の構造はほとんど変化しない.

 H_2 TFPP-(NMe₂)₂のポルフィリン環の中心に結晶学 的2回回転軸が存在しているため、Figure 1に示した原 子の半分のみが結晶学的に独立な原子であり、対称操 作により発生した原子には元素名のラベルの右肩に1を 付して対称操作を示している.水素を除く各原子の座標 および、原子変位パラメーター (Atomic coordinates and B_{eq})をTable 2、水素を除く各原子の異方性原子変位パ ラメーター (Anisotopic displacement parameters) をTable 3に示した. 各原子間の結合距離をTable 4 (Bond lengths (Å)),結合角をTable 5 (Bond angles (°))にそれぞれまと めた. 水素原子の座標および,原子変位パラメーター (Hydrogen atomic coordinates and B_{eq})をTable 6に示した.

4. References

- K. Moriwaki, T. Sawada, M. Akiyama, A. Ikeda, J. Kikuchi, T. Matsumura, S. Yano, H. Kataoka, M. Inoue, and H. Akashi, *Bull. Chem. Soc. Jpn.*, 2018, *91*, 230-236.
- K. Marui, A. Nomoto, H. Akashi, A. Ogawa, Synthesis 2016, 48(1), 31-42.
- 3) Sheldrick, G. M., Acta Cryst., 2008, A64, 112-122.
- Dolomanov Oleg V., Bourhis Luc J., Gildea Richard J., Howard Judith A. K., Puschmann Horst, 2009, J. Appl. Cryst., 42(2), 339-341.
- 5) 藤井なり美, 2020, 岡山理科大学理学研究科化学専攻修士 論文.
- R. Soman, S. Sujatha, S. De, Vallyanga C. R., P. Parameswaran,
 B. Varghese, C. Arunkumar, *Eur. J. Inorg. Chem.*, 2014, 2014(16), 2653-2662.

Figure 1. ORTEP drawing of H_2 TFPP-(NMe₂)₂. Solvent molecules are omitted for clarity. The thermal ellipsoids are shown at 50% probability level. Symmetry cords: (1) –x+1, -y+1, -z+1.

5	1 5 5 5.
Empirical formula	$C_{52}H_{34}F_{18}N_6O_2S_2$
Formula weight	1180.97
Temperature/K	93
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.5839(4)
b/Å	11.4816(3)
c/Å	16.0057(6)
β/°	99.760(3)
Volume/Å ³	2460.20(14)
Ζ	2
µ/mm ⁻¹	0.227
F(000)	1196.0
Crystal size/mm ³	$0.07 \times 0.05 \times 0.04$
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.388 to 63.098
Index ranges	-19 \leq h \leq 18, -16 \leq k \leq 16, -23 \leq l \leq 23
Reflections collected	46940
Independent reflections	7856 [$R_{int} = 0.0410$, $R_{sigma} = 0.0267$]
Data/restraints/parameters	7856/0/365
Goodness-of-fit on F^2	1.030
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0933$, $wR_2 = 0.2437$
Final R indexes [all data]	$R_1 = 0.1243$, $wR_2 = 0.2656$
Largest diff. peak/hole / e Å ⁻³	1.01/-1.21

Table 1. Crystal data and structure refinement parameters for H_2TFPP -(NMe₂)₂.

Table 2. Fractional Atomic Coordinates ($\times\,10^4)$ and Equivalent Isotropic Displacement Parameters (Å $^2\,\times\,10^3).$

Atom	x	У	z	U(eq)
S(1)	10026.4(11)	6480.0(12)	7375.6(8)	81.1(5)
O(1)	10156(2)	7679(3)	7735.7(19)	60.5(7)
C(25)	10889(6)	5550(5)	8038(4)	104(2)
C(26)	8930(6)	5871(7)	7694(4)	126(3)
F(1)	3952.5(16)	2579(2)	7652.5(16)	58.9(6)
F(2)	3985.6(18)	1995(2)	9282.6(19)	71.9(7)
F(3)	5229(2)	3134(2)	10547.4(16)	74.1(8)
F(4)	6474.3(19)	4793(2)	10131.8(15)	68.0(7)
F(5)	6433.1(15)	5385(2)	8506.9(15)	57.9(6)
F(6)	7869.1(12)	1674.3(16)	4252.2(12)	43.0(4)
F(7)	9736.1(14)	974.1(19)	4344.8(15)	55.1(5)
F(8)	10842.8(14)	4350(2)	5945.7(15)	58.6(6)
F(9)	8995.5(14)	4997.6(19)	5858.3(13)	51.0(5)
N(1)	4114.1(17)	5275(2)	5880.7(17)	37.7(5)
N(2)	6074.9(17)	4253(2)	5926.5(17)	37.8(5)
N(3)	11344.4(19)	2209(3)	5155(3)	61.7(9)
C(1)	3188.4(19)	5776(3)	5760(2)	35.7(6)
C(2)	2780(2)	5789(3)	6535(2)	39.5(6)
C(3)	3467(2)	5285(3)	7134(2)	41.6(7)
C(4)	4291(2)	4955(3)	6713(2)	38.5(6)
C(5)	5143(2)	4365(3)	7116(2)	41.2(7)
C(6)	5965(2)	4049(3)	6745(2)	40.4(6)
C(7)	6843(2)	3460(3)	7143(2)	45.3(7)
C(8)	7458(2)	3332(3)	6562(2)	43.5(7)
C(9)	6972.5(19)	3815(3)	5783(2)	37.3(6)
C(10)	7323.5(19)	3809(3)	5019(2)	35.5(6)
C(11)	5183(2)	4015(3)	8020(2)	42.6(7)
C(12)	4574(2)	3138(3)	8246(2)	47.3(8)
C(13)	4595(3)	2831(3)	9095(3)	54.1(9)

C(14)	5228(3)	3395(3)	9722(2)	53.2(9)		
C(15)	5849(3)	4241(4)	9519(2)	52.6(9)		
C(16)	5819(2)	4542(3)	8678(2)	47.1(8)		
C(17)	8359.9(18)	3367(3)	5047.4(19)	35.6(6)		
C(18)	8601.8(19)	2354(3)	4668.3(19)	36.5(6)		
C(19)	9576(2)	1997(3)	4707(2)	42.2(7)		
C(20)	10385(2)	2636(3)	5137(2)	46.3(8)		
C(21)	10135(2)	3639(3)	5523(2)	44.3(7)		
C(22)	9162(2)	3987(3)	5484(2)	40.5(6)		
C(23)	11674(4)	2051(6)	4338(5)	105(2)		
C(24)	12164(3)	2695(5)	5804(5)	111(3)		
Beg = $8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta $						
$2U_{23}(bb*cc*)\cos\alpha$)						

Table 3. Anisotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$).

Atom	U ₁₁	U ₂₂	U_{33}	U_{23}	U ₁₃	U ₁₂
S(1)	95.4(9)	89.8(9)	68.2(7)	-37.0(6)	42.7(6)	-56.5(7)
O(1)	49.5(14)	62.4(16)	68.1(17)	-16.5(14)	5.9(12)	-10.5(12)
C(25)	175(7)	53(3)	107(4)	9(3)	88(5)	4(3)
C(26)	139(6)	167(7)	85(4)	-47(4)	52(4)	-112(6)
F(1)	42.6(10)	53.0(12)	83.3(16)	1.2(11)	16.7(10)	-5.4(9)
F(2)	61.7(14)	55.9(13)	109(2)	27.5(13)	46.2(14)	12.0(11)
F(3)	89.5(18)	76.4(16)	63.9(14)	24.7(12)	34.7(13)	42.4(14)
F(4)	62.7(14)	83.1(17)	55.4(13)	-5.8(12)	1.7(11)	17.2(12)
F(5)	41.6(10)	67.2(14)	62.1(13)	5.3(11)	1.1(9)	-8.0(10)
F(6)	28.3(8)	43.3(10)	55.6(11)	-7.4(8)	1.5(7)	-3.3(7)
F(7)	37.4(9)	49.9(11)	79.0(15)	-2.4(10)	13.1(9)	10.9(8)
F(8)	28.7(9)	75.6(15)	66.8(13)	-2.2(11)	-5.7(8)	-16.8(9)
F(9)	38.3(9)	56.2(12)	58.0(12)	-15.6(9)	7.2(8)	-11.4(8)
N(1)	22.8(10)	41.3(13)	48.4(14)	2.8(11)	4.8(9)	0.6(9)
N(2)	23.9(10)	42.5(13)	47.0(14)	4.9(11)	5.8(9)	5.0(9)
N(3)	19.6(11)	70(2)	93(2)	4.5(18)	2.7(13)	12.6(12)
C(1)	22.4(11)	35.5(14)	48.8(16)	-2.8(12)	4.7(10)	-1.7(10)
C(2)	25.3(12)	44.0(16)	49.5(16)	-3.3(13)	7.5(11)	0.2(11)
C(3)	27.8(12)	47.8(17)	48.8(17)	1.4(13)	5.8(11)	2.8(11)
C(4)	25.4(12)	42.4(15)	47.9(16)	0.2(13)	6.3(11)	-0.7(10)
C(5)	29.0(13)	45.4(16)	48.8(17)	4.7(13)	5.8(11)	3.7(11)
C(6)	27.3(12)	44.5(16)	49.4(17)	5.9(13)	6.8(11)	3.6(11)
C(7)	29.4(13)	54.2(19)	52.5(18)	12.4(15)	7.0(12)	7.7(12)
C(8)	26.1(12)	51.1(17)	53.1(18)	7.8(14)	6.2(11)	5.3(12)
C(9)	20.2(11)	40.6(14)	51.2(16)	1.5(12)	5.7(10)	0.7(10)
C(10)	20.8(10)	36.0(13)	49.0(16)	-1.2(12)	3.6(10)	-0.8(9)
C(11)	28.1(12)	48.1(17)	52.6(18)	9.4(14)	9.6(12)	8.1(12)
C(12)	33.2(14)	44.7(17)	68(2)	6.5(15)	19.0(14)	8.0(12)
C(13)	45.1(17)	44.8(18)	80(3)	17.1(17)	31.7(17)	16.5(14)
C(14)	57(2)	55(2)	51.9(19)	12.6(16)	21.3(16)	26.1(17)
C(15)	43.5(17)	61(2)	54(2)	2.4(17)	8.9(15)	20.5(16)
C(16)	32.9(14)	53.2(19)	56.0(19)	7.9(15)	9.5(13)	7.1(13)
C(17)	18.6(10)	43.6(15)	43.7(15)	0.4(12)	2.9(9)	-1.6(10)
C(18)	21.1(11)	44.2(15)	42.9(15)	1.8(12)	2.0(10)	-0.4(10)
C(19)	28.3(12)	45.0(16)	53.7(18)	4.4(14)	8.7(12)	5.7(11)
C(20)	19.9(11)	57.1(19)	60.2(19)	11.8(16)	1.6(11)	4.3(12)
C(21)	22.0(11)	56.9(19)	51.3(18)	4.6(14)	-0.9(11)	-7.7(12)
C(22)	26.0(12)	48.3(17)	46.3(16)	-2.7(13)	3.9(11)	-6.6(11)
C(23)	47(2)	88(4)	188(7)	-14(4)	45(3)	12(2)
C(24)	34.4(19)	64(3)	214(8)	1(4)	-35(3)	6.0(19)

Table 4. Dona Lenguis.						
Atom	Atom	Length /Å	Atom	Atom	Length /Å	
S(1)	O(1)	1.491(3)	C(3)	C(4)	1.452(4)	
S(1)	C(25)	1.793(7)	C(4)	C(5)	1.400(4)	
S(1)	C(26)	1.795(5)	C(5)	C(6)	1.400(4)	
F(1)	C(12)	1.325(4)	C(5)	C(11)	1.495(5)	
F(2)	C(13)	1.334(4)	C(6)	C(7)	1.423(4)	
F(3)	C(14)	1.354(4)	C(7)	C(8)	1.360(5)	
F(4)	C(15)	1.343(5)	C(8)	C(9)	1.421(4)	
F(5)	C(16)	1.336(4)	C(9)	C(10)	1.385(4)	
F(6)	C(18)	1.349(3)	C(10)	C(17)	1.490(4)	
F(7)	C(19)	1.344(4)	C(11)	C(12)	1.390(5)	
F(8)	C(21)	1.352(4)	C(11)	C(16)	1.382(5)	
F(9)	C(22)	1.343(4)	C(12)	C(13)	1.399(5)	
N(1)	C(1)	1.366(3)	C(13)	C(14)	1.370(6)	
N(1)	C(4)	1.363(4)	C(14)	C(15)	1.361(6)	
N(2)	C(6)	1.363(4)	C(15)	C(16)	1.384(5)	
N(2)	C(9)	1.374(3)	C(17)	C(18)	1.376(4)	
N(3)	C(20)	1.389(4)	C(17)	C(22)	1.387(4)	
N(3)	C(23)	1.464(8)	C(18)	C(19)	1.376(4)	
N(3)	C(24)	1.496(6)	C(19)	C(20)	1.401(5)	
C(1)	C(2)	1.442(4)	C(20)	C(21)	1.376(5)	
C(1)	$C(10)^{1}$	1.405(4)	C(21)	C(22)	1.371(4)	
C(2)	C(3)	1.350(4)				

Table 4. Bond Lengths.

Symmetry Operators: ¹1-X, 1-Y, 1-Z

Table 5. Bond Angles.

Atom	Atom	Atom	Angle /°	Atom	Atom	Atom	Angle /°
O(1)	S(1)	C(25)	107.4(3)	F(1)	C(12)	C(11)	119.9(3)
O(1)	S(1)	C(26)	107.4(3)	F(1)	C(12)	C(13)	118.7(3)
C(25)	S(1)	C(26)	95.2(4)	C(11)	C(12)	C(13)	121.4(4)
C(4)	N(1)	C(1)	104.9(2)	F(2)	C(13)	C(12)	119.2(4)
C(6)	N(2)	C(9)	110.0(2)	F(2)	C(13)	C(14)	120.8(4)
C(20)	N(3)	C(23)	116.9(4)	C(14)	C(13)	C(12)	120.0(3)
C(20)	N(3)	C(24)	118.0(4)	F(3)	C(14)	C(13)	120.5(4)
C(23)	N(3)	C(24)	111.2(4)	F(3)	C(14)	C(15)	119.5(4)
N(1)	C(1)	C(2)	111.3(3)	C(15)	C(14)	C(13)	120.0(3)
N(1)	C(1)	$C(10)^{1}$	125.0(3)	F(4)	C(15)	C(14)	120.2(4)
$C(10)^{1}$	C(1)	C(2)	123.7(3)	F(4)	C(15)	C(16)	120.2(4)
C(3)	C(2)	C(1)	106.6(3)	C(14)	C(15)	C(16)	119.6(4)
C(2)	C(3)	C(4)	106.0(3)	F(5)	C(16)	C(11)	119.5(3)
N(1)	C(4)	C(3)	111.2(3)	F(5)	C(16)	C(15)	117.6(3)
N(1)	C(4)	C(5)	125.1(3)	C(11)	C(16)	C(15)	122.9(3)
C(5)	C(4)	C(3)	123.6(3)	C(18)	C(17)	C(10)	124.7(2)
C(4)	C(5)	C(11)	117.9(3)	C(18)	C(17)	C(22)	115.4(2)
C(6)	C(5)	C(4)	126.0(3)	C(22)	C(17)	C(10)	119.9(3)
C(6)	C(5)	C(11)	116.1(3)	F(6)	C(18)	C(17)	119.7(2)
N(2)	C(6)	C(5)	126.0(3)	F(6)	C(18)	C(19)	118.2(3)
N(2)	C(6)	C(7)	107.0(3)	C(19)	C(18)	C(17)	122.1(3)
C(5)	C(6)	C(7)	127.0(3)	F(7)	C(19)	C(18)	117.8(3)
C(8)	C(7)	C(6)	108.1(3)	F(7)	C(19)	C(20)	119.9(3)
C(7)	C(8)	C(9)	108.1(3)	C(18)	C(19)	C(20)	122.3(3)
N(2)	C(9)	C(8)	106.8(3)	N(3)	C(20)	C(19)	118.8(3)
N(2)	C(9)	C(10)	126.7(3)	C(21)	C(20)	N(3)	126.0(3)
C(10)	C(9)	C(8)	126.5(3)	C(21)	C(20)	C(19)	115.2(3)
$C(1)^{1}$	C(10)	C(17)	117.7(3)	F(8)	C(21)	C(20)	121.4(3)
C(9)	C(10)	$C(1)^{1}$	126.1(2)	F(8)	C(21)	C(22)	116.4(3)
C(9)	C(10)	C(17)	116.1(3)	C(22)	C(21)	C(20)	122.2(3)

C(12)	C(11)	C(5)	121.4(3)	F(9)	C(22)	C(17)	119.4(3)	
C(16)	C(11)	C(5)	122.4(3)	F(9)	C(22)	C(21)	117.7(3)	
C(16)	C(11)	C(12)	116.2(3)	C(21)	C(22)	C(17)	122.8(3)	
		1						

Symmetry Operators: ¹1-X, 1-Y, 1-Z

Table 6. Hydrogen Atom Coordinates (Å $\times 10^4$) and Isotropic Displacement Parameters (Å² $\times 10^3$).

Atom	x	У	z	U(eq)
H(25A)	11572.91	5747.23	7969.3	156
H(25B)	10750.57	4736.11	7874.16	156
H(25C)	10815.45	5658.37	8631.21	156
H(26A)	9000.58	5893.8	8313.13	190
H(26B)	8848.36	5062.5	7498.83	190
H(26C)	8343.07	6325.46	7443.04	190
H(2)	5635.2	4612.34	5546.16	45
H(2A)	2150.23	6093.97	6609.72	47
H(3)	3420.76	5169.59	7714.13	50
H(7)	6975.67	3202.43	7715.06	54
H(8)	8100.77	2980.85	6659.9	52
H(23A)	11104.16	1815.69	3910.79	157
H(23B)	12189.93	1446.77	4390.95	157
H(23C)	11947.61	2785.66	4165.87	157
H(24A)	12398.97	3430.4	5596.31	166
H(24B)	12718.62	2138.66	5906.1	166
H(24C)	11912.28	2835.04	6333.51	166

X-ray structure determination of 5, 15-bis (2, 3, 5, 6-tetrafluoro-4-(dimethylamino) phenyl) -10, 20-bis (pentafluorophenyl) porphyrin

Narimi FUJII and Haruo AKASHI

Institute of Frontier Science and Technology, Okayama University of Science

Crystal structure of 5,15-bis (2,3,5,6-tetrafluoro-4- (dimethylamino)phenyl)-10,20-bis (pentafluorophenyl) porphyrin (H₂TFPP-(NMe₂)₂) has been determined by the X-ray structure analysis. Crystallographic data: crystal system monoclinic, space group P2₁/c (#88), Lattice parameters; a = 13.5839(4) Å, b = 11.4816(3) Å, c = 16.0057(6) Å, V = 2460.20(14) Å³, Z = 2, RI = 0.0933, wR = 0.2437. H₂TFPP-(NMe₂)₂ has the structure in which the two of the four pentafluorophenyl groups attached to the porphyrin ring of H₂TFPP are replaced by tetrafluoro-N, N-dimethylaniline moiety. X-ray diffraction analysis of H₂TFPP-(NMe₂)₂ revealed that the two tetrafluoro-N, N-dimethylaniline moieties are located in opposite positions each other.