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DYNAMIC PROPERTIES OF THE NASH EQUILIBRIUM 

ABSTRACT 

In this paper the authors examine the games with well-defined 
reaction functions. The focus is on the stability property of the 
Nash equilibria, i.e. the convergency in the strategy profile 
space to a Nash equilibrium when, beginning with some initial 
strategy choices in a neighborhood, players take turn to make 
improvements. Some interesting propositions on the dynamic 
properties have been established, which offer a kind of 
explanation as to why in general the outcomes of games and 
the economic dynamic process can be rather diversified. 
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DYNAMIC PROPERTIES OF THE NASH EQUILIBRIUM 

1. Introduction 

The concept of the Nash equilibrium (NE) is a static concept in the sense that at the 

same instant of time every player of the game has to choose his strategy as a best 

response to the choices of the others'. Thus one of the weakness of this concept is, the 

criterion for the "best response" depends on the "conjecture" of what the other players 

are playing. As a result, in games with multiple Nash equilibria, usually it is very 

difficult to offer any acceptable justification as to which particular NE should be 

chosen as a "solution" of the game. Therefore it is of great interests to make clear 

whether or not it is possible to justify an NE solution by examining some dynamic 

process in some neighborhood of the NE. To some extent this is similar to what has 

been done for the justification of a cooperative bargaining solution by examining the 

convergency of some sequential bargaining process. 

In this paper we examine the above mentioned dynamic property of the Nash 

equilibrium of a class of games, namely, games with real-valued reaction functions. 

Though most of the examples we discuss here are games with pure strategies to be 

able being described by real numbers. The reader can observe from the example of a 

sell-all market game that the stability criterions developed in this paper can be also 

applied to games with more complicated strategies. We want to emphasize here, while 

our basic results in this paper can be applied to all games with well-defined reaction 

functions, they are particularly useful for those games with incomplete information, 

where a player knows only the reaction function of himself. Traditionally it is 

assumed that in a game with incomplete information, a player can assign some 

probabilities for his opponents being of some possible types ( or having some possible 

payoffs), and then play some Bayesian equilibrium strategy. But in the reality, 



equilibrium is more likely being achieved through a dynamic process, in which 

players make improvements step by step according to their reaction functions. 

While we examine the dynamic process, we only consider the situations where only 

one player is allowed to make an improvement each time. As pointed out by Professor 

Shapley when he examines potential games [refer to Shapley (1994)], in the case with 

simultaneous improvements, even the Cournot equilibrium with one homogeneous 

product with three or more firms can be not stable. Actually, with one-by-one 

alternate improvements, the convergency of the dynamic process may still depend on 

the order to make improvement. The reader can observe this interesting phenominon 

from Example 2 in the next section. 

Section 2 is mainly devoted to the basic definitions and the fundamental result for 

games with linear reaction functions. Some simple examples can be found there for 

the explanation of the basic concepts. In Section 3 we discuss the stability of the 

Bertrand equilibrium with n firms and with differentiate products. We have proved 

that with constant marginal costs and linear market demands, the Bertrand 

equilibrium is globally asymptotically stable. In Section 4, we give a nonstable 

example with linear reaction functions. In Section 5 we generalize our results in 

Section 2 for games with non-linear reaction functions. An example of a strategic 

market game is discussed in Section 6. One can see there, even with linear separable 

utility functions, the NEs of strategic market games may or may not be asymptotically 

stable. Finally we conclude the paper in Section 7. 

We point out here, while the nonstability property of a market equilibrium may not 

be welcome by the economists who always_want to choose an equilibrium as a 

"solution", it really reflects the complicated economic phenomina of the real world, 

where people can observe more of cyclings, chaos than of equilibria. Therefore it is 

not necessary for us always to choose an equilibrium as a solution. Sometimes, a 
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disequilibrium path may be even more welcome by every party being involved in the 

game. 

2. Nash Equilibrium with Linear Reaction Functions 

Consider an n-person game Gin which the strategy of Player i can be expressed by 

a real number x, E R. Assume that for x., = (xl' ... , x,., , , x,., , ... , x") chosen by all 

other players, the unique best response of Player i is determined by 

x, = f,(x.,) = C, + I,.., aiixi; (i = 1, ... , n) (1) 

Then we say that G is a game with linear reaction functions. 

Assume that the linear system of equations of (1) has a unique solution x* = (x/, 

... ,x/). Thus x* is the unique Nash equilibrium of G. Now we want to examine the 

following dynamic property of x * -- Imagine that at the beginning the players choose 

an arbitrary strategy profile x0 = (x 10, ••• , x"0). Then Player 1 computes his best 

response x11 to (, x20, ••• , x"11) according to (1), and then Player 2 computes his best 

response x21 to (x11 , , x,0 ••• , x"0), •••• Continue the above computation to the infinite 

horizon, for every i, we then have a sequence 

(2) 

We want to examine that, under what conditions, we have for every i, 

(3) 
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Here we give 

Definition 1. The Nash equilibrium x* of G is said to be globally asymtotically stable 

under one-by-one optimal improvement in the natural order, if beginning with any 

initial strategy profile x0 , (3) holds for every i. If the stability property is not affectted 

by the ordering of the players, (i.e. the order of making improvements), then x* is said 

to be globally asymptotically stable under one-by-one optimal improvement. If (3) 

holds for all initial strategy profile x contained in some neighborhood of x*, then we 

say that x* is locally asymptotically stable under one-by-one improvement (in the 

natural order). 

To explain the above definition, we examine the following 

Example 1. In the Bertrand competition of two firms, assume that Firm i has a zero 

fixed cost, and a constant marginal cost c,. Assume that the market demands are given 

by q, = Q, - p, + a,pp (when the right-hand-side is negative, we agree that actually q, = 

0), where p, is the price charged by Firm i, pi is the price charged by the rival, q, is 

Firm i's quantity demanded; and Q, and a,i are constants with Q, > 0 and O :5 a,i < 1. (i, 

j=l,2;i;tj). 

It is easy to verify that the reaction function for Firm i is 

P, = 0.S(Q, + c, + a,p) (4) 

and the Bertrand equilibrium is given by 

(5) 
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According to the description of the construction of the sequence {x;k} in (2), we have 

(6) 

From ( 4) and ( 6) one derives 

Plk+1 - Pi*= O.Sa1,(p'" -p/); P2k+1 -p,* = O.Sa,1(p1k+1 -p/) (7) 

Thus 

From (8) it is obvious that lim k (p;, - P;*) = 0, or equivalently lim kp"- = P;* for i = 1, 2. 

It is also easy to verify the above results do not depend on the ordering of the two 

players. Thus the Bertrand equilibrium is globally asymptotically stable under one-by

one optimal improvement. 

We point out here that for n > 2, the argument for the stability of a Nash 

equilibrium is not so straight forward as that in the above example. Here we consider 

the general situation. In the construction of the sequence in (2) we have 

(i = 1, ... , n) (9) 

Combine (9) with (1), we have 

Let 
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y,k = x" - x,*, (i =I, ... , n; k = I, 2, ... ); yk = (y,k, ... , Y,)' 

and 

(

I O ...... o~-
A= -.~~,I.~··· .. ?. 

-anl •.• -ann•l 1 _. 

-( 0 a12 •••••• a,~-
B - ooa,, ... a,, 

... . .. 
0 ......... 0 

We then have a system of linear difference equations 

Ay,., = By, (11) 

Obviously detA = I, and A is invertible. Let M = A 1B. Then (11) is equivalent to 

Y,., = My, (12) 

Note that the Nash equilibrium corresponds to the zero solution of (12). Thus we 

have the following 

Theorem 1. The Nash equilibrium of G is globally asymptotically stable under one

by-one optimal improvement in the natural order if and only if every eigenvalue of M 

= A 1B has an absolute value less than 1. 

Proof. The above conclusions directly follow from the structure of the fundamental 

solution matrix of (12). [refer to, for example, Miller (1968)] For the "if' part, just 

observe that every solution (every real solution in particular) yk of (12) can be 

expressd in the form PY'y 0, where P is a nonsingular constant matrix with complex 
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entries and IIPII = 1, y0 is the constant column n-vector equal to Xo-X*, and y, is a 

block matrix [Y\ EB ___ Et) Y'ml with Y\ being defined by 

( 'J..; c.1'J..:-1 ___ ___ ___ c.,-i'J..;-,•I) 

Y\ = I 
0

~----- __ "-_ : _____ :"~-:-1_-_:- ~~'.-'"-:-,., 
\ --- --- --- 'J..; 

Here we assume that in the Jordan normal form P·1MP of M, the eigenvalue A, 

corresponds to an rxr Jordan block 

(

"-, 1 

A, 1 

\ 
\ 
l 
I 'J.., 1 ; 

I 
"-/ 

Obviously, when all the eigenvalues are with absolute value less than 1, for any 

solution yk of (12), we have 

lly,11 = ll(PYk)y,11:::; IIPII-IIYk[[.[[y,11 = IIY'll-lly,11 

Since lim, IIY'II = 0, we thus have lim ,lly,11 = 0. 

In case with some l'J..I;;; 1, we can find a (complex) solution~ of (12) with lim llz,11 

;t 0. Let z, = y, + iw, with y, being the real part, and w, the imaginary part of zk. Then 

y, and w, are all real solution of (12). Moreover, at least one of lim llykll = 0 and lim 

llwkll = 0 is violated. Thus the zero solution of (12) is not asymptotically stable. 
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Theorem 1 is thus proved. o 

Let us now examine an example with different stability properties in different order 

of making improvements. 

Example 2. Consider a three person game with reaction functions given by 

x, = 0.0lx, + 0.lx,; x2 = x, + 0.0lx,; x, = x, + 20x, 

We have 

I I 0 p) A-'= ( i 0 i) A= ( -I I 1 
-I -20 \ 21 20 I ! , 

I 0 0.01 0.1. 
B= lo 0 0.01) io 0 I o, 

0 0.01 0.1) 
M= I 0 0.01 0.11 

,0 0.21 2.3 

It is easy to check that M has an eigenvalue greater than I. Thus the NE <0,0,0> is not 

stable. 

Now we interchange the order of Player 2 and Player 3. We than have the reaction 

functions 

x\ = 0.0lx'2 + 0.lx'3 ; x'2 = x\ + 20x'3 ; x'3 = x\ + 0.0lx'2 
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Thus 

B'= ( ~ 

M'= ( ~ 

0 
1 

-0.01 

0.01 
0 
0 

0.01 
0.01 

0.0101 

0.1) 
20 

0 

0.1 ·. 
20.1 ) 
0.301 

A'-1=( 1i 
1.01 

0 
1 

0.01 

This time all the eigenvalue of M' are with absolute value less than 1. Thus the NE 

<0,0,0> is asymptotically stable. 

We have compute the data for the first several rounds for the above two examples, 

from which one can observe the trend of convergence and that of divergence. 

Xw= 1 X
1

10 = 1 

X2ll = 1 x'20 = 1 

x,0 = I X
1

30 = 1 

x11 = 0.11 X' 11 =0.11 

x21 = 0.12 x'21 = 20.11 

x,1 = 2.51 x',1 = 0.3111 

x12 = 0.2642 x\, = 0.23221 

x,, = 0.5403 x'22 = 6.45421 

x32 = 11.0702 x',, = 0.2967521 

... , ... ... , ... 
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3. Bertrand Equilibrium with n Firms 

As an application of Theorem 1, let us examine the Bertrand competition with n 

firms. Assume that Firm i produces product i with a zero fixed cost and a constant 

marginal cost c,. Assume that the market demands are given by 

(13) 

where p, is the price charged by Firm 1, q, is Firm I's quantity demanded, and Q, > c,, 

and the a,; are nonnegative constants satisfying 

(14) 

It is not difficult to prove that there exists a unique Bertrand equilibrium p* = 

(p/, ... ,p.*) under the price competition. (Refer to Yao [2]) The reaction function for 

Firm i is given by 

(15) 

Construct the sequences {p"}. Ifwe write y,, = P., - P.*, and yk = (y,k, ... , y .. )', we have 

Ay,.1 =By, (16) 

Here 

A= 
/ 1 0 ...... 0\ 

( -0.~~21···1 ~. ··:.. 0 J 
\ -0.Sa., ... -0.Sa ••. , 1 / 

_ ( 0 0.5a12 ••• • •• 0.5a") 
B - 0 0 0.5a23 ••• 0.5a2, 

............... 
\ 0 ... ... ... ... 0 
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To show that p* is globally asymptotically stable under one-by-one optimal 

improvement, it suffices to show that A-1B has no eigenvalue with absolute value 

greater than I. 

Let A be an eigenvalue of A-1B, and let v be the associate eigenvector. We then have 

A-1Bv = AV, or, equivalently, (11A-B)v = 0. Because vis not a zero vector, we must 

have det(AA-B) = 0, which is equivalent to det(A-A·1B) = 0 when A ;tO. Thus to obtain 

the required conclusion, we need only show that for any A with IAI ;::, 1, 

det(A-A·'B) if. 0 (17) 

It is easy to verify that (14) guarantees (A-'},,_· 1B) being a dominant diagonal matrix for 

any A with IAI ;::, 1, and thus being nonsingular. The required conclusion thus follows. 

Thus we have shown 

Proposition 1. The Bertrand equilibrium with linear market demands and constant 

marginal costs is globally asymptotically stable if all the inequalities in (14) hold. 

4. A Nonstable Example 

In the section we examine an example with nonstable Nash equilibriums. 
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Example 3. Two people, 1 and 2, simultaneously choose a real number. Let r be 

chosen by 1, and s be chosen by 2. Then the payoffs are given by 

re, = -(r - s)2 ; n, = 1 - (0.5s - r + 0.25)' 

Note that the reaction functions are given by 

r = s ; s = 2r - 0.5 

The unique Nash equilibrium is <r*,s*> 

= <0.5,0.5>. The dynamic system is 

given by 

( I O )fr,.,} ( 0 I) ( r,) 
-2 1 \ s,., I 0 0 I Sk 

' 

or, equivalently 

/ r,.,-0.5) /0 1 )i r,-0.5) 
\ = \o \ s,.,-0.5 2 \s,-0.51 

' 

s 
·'li 

cl ' I 

I 
! 
I 

. ··-·----

IS.= Z.f-C•>-b,,"=S . 
.. /. . :I/ ... 

F 1)ure.- i 
' 

Since 'A= 2 is an eigenvalue of the coefficient matrix in (17), the Nash equilibrium is 

not stable. In fact, from Figure 1 one can see that along any trajectory starting with s0 

> 0.5, we always have lim, rk = lim k sk = =. 

12 



Remark. If we introduce the constraints 0 :::; r, s :::; 1 in the above example, then it is 

easy to show that, in addition to the Nash equilibrium <0.5,0.5>, we have other two 

Nash equilibria <0,0> and <1,1>. Moreover, in a small neighbourhood of (1,1), the 

reaction functions are given by r = s, s = 1, the dynamic system in this neighbourhood 

is given by 

(

r,.,-1\_ 

s,.,-1 r 
/0 1)/rk-l) 

\o o1 \ s,-1 

of which the coefficient matrix has 

eigenvalues all equal to 0. Thus 

<l, l> is (locally ) asymptoically 

stable. In fact for any trajectory 

starting with s0 > 0.5, we always 

5 

I . i . + -~ 

Pt
) _...-N~, 

- --- I _,..- I 
. ! 

I. i 

NE.,,,/ ! 
' 

have lim , rk = lim, s, = 1. Similarly 

we can argue <0,0> is also locally 

asymptotically stable with all 

trajectories starting with a s0 < 0.5 

tending to (0,0). (Figure 2) Now if this 

__ __,_ __________ r 

i 
F1j..;,-1:. 2 

were a game of incomplete information with each player only knows the payoff of 

himself, generically any dynamic playing process with one-by-one optimal 

improvement must be with probability 1 finally reach to a "solution" either of <0,0> 

or of <1,1>. This support our arguments in Section 1. 

5. Games with General Reaction Functions 
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We now consider then-person games with each player having Ras his strategy set, 

having a well-defined reaction function which may not be linear. We still write the 

reaction functions as 

x, = f,(x.,) ; (i = 1, ... , n) (18) 

Assume that x* is a Nash equilibrium. Therefore 

x.* = f.(x.*) 
I I •\ 

(19) 

For any given x = (xl' ... , x,), we define 

(20) 

We now want to examine the dynamic system (20). Assume that all the f, are C1• 

Subtracting (19) from (20) one can derive 

(21) 

where 

(j < i) ; 

0 < ej = 0,(Xk) < 1 , (j * i) 

14 



We introduce the following notations 

A(xk) = (a;;(x,))"'"; a;;(x,) = -a;((z) if i > j; a;;(x,) = 1 if i = j; and a;;(x,) = 0 if i <j 

B(x,) = (b;;(x,)),,,; b;;(x,) = O ifi 2':j; b;;(xk) = af,Cz) ifi <j 

Then (21) is equilivalent to 

Since A(x,) is nonsingular, we obtain 

Y,+1 = M(x*+y,)y, (22) 

where M(x) = [A(x)]-1B(x) 

Definition 2. Given the f, as in (18), we define a function f = f(f., ... ,f,) : R" --> R" by 

f(x., ... ,x,) = (z., ... ,z,) 

where 

Theorem 2. Assume that the f, are all C'. Then 
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(i). if M(x*) has all eigenvalues wit]:t absolute value less than I, then the zero 

solution of (22) and hence the Nash equilibrium x* of (18) is locally asymptotically 

stable under one-by-one improvements in the natural order; 

(ii). if there exist a natural number m, some natural number i:,; n, a real number o > 

0, such that (u1, ... , un)' see [M(x*+ym) ... M(x*+y1)]v has the property that 11.\1;::: !vii for 

any y1 with lly111 < o and any column n-vectorv = (v1, ..• , vn)', and if the function f(f1, 

... ,fn) defined in definition 2 has the propertiy that the set S = {y E Rn : fk(y) has 

nonzero ith component for every k E N} is dense in Rn, then the zero solution of (22) 

and hence the Nash equilibrium x* of (18) is not assymptotically stable. 

The proof of Theorem is a bit lengthy, we leave it in the Appendix. 

6. Strategic Market Games 

Here we use Theorem 2 to examine a simple example of a two trader sell-all market 

game. [For the general descriptions of strategic market games the reader can refer to 

Dubey and Shubik (1978), Sahi and Yao (1989), Amir, Sahi, Shubik and Yao 

(1990)]. Assume Trader i receives at the beginning an initial endowment 

(23) 

where a,; is the amount of commodity j, j = 1, ... , m; and b, is the amount of 

commodity money which will be used for the payments. For simplicity we assume in 

this example that all the a,; and bi are positive, and we also assume that each trader has 

a linear separable utility function u, : Rm•1 --> R. defined by 

16 



(24) 

where x,; is i's final holding of goodj after the trade (and hence is the amount he 

consumes), and y, is his final holding of the commodity money; and all the c,; and d, 

are positive constants. 

We now describe the trading mechanism. After they receive the endowments, each 

trader must send all of them except the money good to the market, one commodity to 

one trading post. Then each trader announces an amount of money r,; for the bidding 

of commodity j. The price of commodity j is computed by 

P; = (r,; + r,)/(a,; + a,) (25) 

The final holdings are given by 

r/pj' ifpj > 0 

xij = i 
aij, ifpj = 0 

(26) 

and 

y, = b, - I ;1,; + I /li;P; (27) 

Thus we have a strategic market game G. The two traders are the players. The 

strategy set for Player i is 

S, = {r, = (r," ... , r,m): r,;;;; 0, and}: ;r; :5 bJ (28) 

The payoffs are given by 

17 



(29) 

A Nash equilibrium of G is said to be a strategic sell-all market equilibrium. 

For simplicity we want that the b, are sufficiently large so that we always have an 

interior equilibrium. i.e. an equilibrium <r1 * ,r2 *> with I ; ¾; * < b for every i. For this 

purpose we assume that for every Trader i: 

(30) 

here k stands for the oponent of i. To see that (30) guarantees any equilibrium to be 

interior, it suffices to show that at any equilibrium r/ ~ b/m for any (i,j). If not, say, 

rll* > b/m;:: cll(a11+a12)'a,i"1d/. Imagine Trader 1 reduces his bid rll* by an amount .6 

< r 1/. By calculation the reduction ofxll is less than (all+a,).6(ru*+r2/)·1 < a,1d1.6 

[cu(all+a,)J1• But at the same time the increment of his y1 is precisely equal to a,1.6 

(a11+a,)·1• Hence the increment in his utility is greater than d1a,1.6(au+a,J1-cua,1d1.6 

[cll(a11+a,1)J1 = 0. This contradicts the fact that <r/,r,*> is a Nash equilibrium. 

Please note that (30), though not a necessary condition, makes it easy to argue that 

at any equilibrium we must have all the r/ > 0. In fact we cannot haver/ = r2; * = 0 

for any j. Otherwise any trader can make an improvement by bidding with any small 

amount of money for goodj and receives all goodj. We can neither have, say, r/ = 0 

but r2/ > 0. Otherwise Trader 2 can reduce r2; * a little bit to make an improvement. 

We will see that with (30) different trading posts can be regarded as separate 

markets, since in a small neighbourhood of a equilibrium any trader's decision at any 

trading post is only affected by his opponent's decision at the same trading post. To 

18 



compute the reaction functions, we differentiate (29) with respect to r;;- The first order 

condition is 

If we write CX;; = c;;d,1, Ai = a,;+a,i' from the above equation we can solve 

ru = (Ap/'a";""')r"/12 
- r"i ; i, h = 1, 2; i c/c h 

Thus the reaction functions at the jth trading post are given by 

ru = f;;(r") = max {O, (Ap;;'12
~/

2)r";'" - r"i } ; i, h = 1, 2, i c/c h (31) 

The unique Nash equilibrium is given by 

(32) 

Let us now examine the dynamic property of the equilibrium. At the NE r*, in the 

jth trading post, we have 

(
·o O.S(Ap;;"'a.;""')r,*1012-1) 

B(r.*) = 
J 0 

19 



And 

(
. o (2a2p,)-1(a1p.ra,ia,) \ 

M(r.*) = / 
' O -(4a1p 2p.ia,)-1(a1pu-a,ia,):1 

Now it is easy to see that the two eigenvalues of M(r;*) are 

Therefore we have 

Proposition 2. In the above sell-all market game G, the Nash equilibrium is 

asymptotically stable under one-by-one improvements if D.= (4a1.a,.a1.a,.)-1(a1.a1
.-a 

J J -J J -J J J 

,ia,)' < 1 holds for every j. The Nash equilibrium is not asymptotically stable if Di = 

Proof. The proof of the first assertion directly follows from Theorem 2 (i). To verify 

the second assertion, assume that Di> 1 for some j. Let r1i = (r11i, r12} be the initial 

bids in the jth trading post, where r1;i is the bid by trader i. let { r1, r2, .•. , rk, ... } be the 

trajectory starting from r1. From (31), in a small neighborhood ofr*, we have 

0) 
1/ 
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0.5(Ap/'ak/')r,*112-l+o(llr1-r*II). Hence we have 

Now we see that for any 2-colurnn vector v = (x,y)' and for any r1 sufficiently close to 

r*, the absolute value of the second component of M(r tj)v, i.e. the absolute value of 

or equal to lyl. On the other hand, for any r21 which is transcendental with respect to all 

those r*0 , Ai' a,;, and CX,;, (note that the set of all 2-vectors with these r21 is dense in R2), 

we have r,k remaining to be transcendental with respect to them and r,. -r*,
1 
never 

equals to zero for any k. Thus the NE r* is not assymptotically stable according to 

Theorem 2 (ii). ® 

We now examine two numerical examples. 

Example 4. m= 1, a1 =a,= 1, A=2, 0 1 =4,a, = 1, b1 =b, = 3; D = 9/16 < 1. (We 

omit the subscript j = 1.) 

It is not difficult to determine the strategic market equilibrium with <r
1 
* ,r, *> = 

<2.56, 0.64>. According to Proposition 2, this NE must be asymptotically stable. The 

reaction functions in some neighborhood of this NE look like 
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r = 4r 112 - r · r = 2r 112 - r I 2 2 ' 2 I I 

Let us chooser"= 2, and r20 = 0.828427225 (the best response to rw)- Then we have 

r11 = 2.81229176 

r21 = 0.541686033 

r12 = 2.402286884 

r22 = 0.697577619 

r13 = 2.643262081 

r23 = 0.608360333 

r,4 = 2.511537955 

r24 = 0.658028548 

rl5 = 2.586729805 

r,, = 0.629932941 

r16 = 2.544799655 

r26 = 0.645685985 

r
17 

= 2.568497545 

r27 = 0.636809021 

2.. 

'2. 
. ,'- .. 

It is not difficult to observe the trend of convergence. (Figure 3) 

Example 5. m= 1, a,= a,= 1,A=2, 0 1 =9,a,= 1, b, =b,= 10; D= 16/9> 1. 

It is not difficult to determine the strategic market equilibrium with <r/ ,r, *> = 

<3.24, 0.36>. According to Proposition 2, this Ne must be nonstable. The reaction 

functions in some neighborhood of this NE look like 

r = 6r 112 - r · r = 2r 112 - r I 2 2 ' 2 I I 

Let us choose rw = 1, and r20 = 0.35. Then we have 
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r,, = 3.1996 .. . 

r21 = 0.3779 .. . 'f 

r,, = 3.3104 .. . 

r22 = 0.3286 .. . 

r,,=3.1103... 2. 

r,, = 0.4169 ... 

r 14 = 3.4572 

r
24 

= 0.2615 ... 

... , ... , ... 

We thus can observe the trend of divergence. (Figure 4) 

7. Concluding Remarks 

.,, 

., 

Through the above discussions one can see that, although the Nash equilibrium 

concept has been chosen as one of the very important solution concepts in economic 

games, Nash equilibria obtained in different setings may have rather different 

dynamic properties. Under the situation that deviations being inevitable and firms or 

players can adjust their strategies simultaneously from time to time, many Nash 

eqilibrium could be not stable, and, as a result, what people can observe is not the 

eqilibrium but some cyclical path or even the chao phenominon. 
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Appendix 

Proof of Theorem 2. Given e > 0, since M(x*) has its eigenvalues all less than 1, 

there must exist a sufficiently large K, such that ll[M(x*)]KJI < e. In particular we can 

determine such a K for e = 1/4. 

On the other hand, by 

It is easy to see that the product matrix 

is continuously dependent on y 1• When lly 1 II tends to the zero vector, this product 

matrix tends to [M(x*)]K. Consequently there exist some o > 0, such that 

IIM(x*+YK-r) ... M(x*+y1) - [M(x*)JK[[ < 1/4, V y1 with llyr!I < o 

Hence we have 

IIM(x*+YK-r) ... M(x*+y1)11 < 1/2, V y1 with lly111 < o 

Let 
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I',.= max {IIM(x*+yk_1) ••• M(x*+y1)11: k = 2, ... ,Kand lly1II < 8) 

For any natural number n we can express n as n = mK+r, where m is some natural 

number, and r is some nonnegative integer less than K. Now for 'ii y 1 with lly 111 < 8, 

and y n = M(x*+y n-l) •.• M(x*+y 1), it is easy to deduce that 

For n • oo, we also have m • oo. Thus we obtain 

The first statement (i) in Theorem 2 has been proved. 

Now consider the case in (ii). Choose some y 1 in the set S, then the trajectory 

{Y 1,y2, .•. , Yk, ... } can never tend to 0. In fact, if this trajectory tended to 0, then there 

should exist some sufficiently large K, such that IIYkll < 8 for all k 2'. K. But then by 

our assumptions, the ith component of y K is not zero and the absolute values of the ith 

components of YK, YK+m• YK+2m, ... form an increasing sequence, and thus contradicts 

with {y 1,y2, ••• , Yk, ... } tending to 0. 
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Theorem 2 is thus proved. o 
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