ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXVI, NO. 2, 2022

SECTIO A

45-54

ANDRZEJ WALENDZIAK

On implicative BE algebras

ABSTRACT. We consider some generalizations of BCK algebras (RML, BE, aBE, BE** and aBE** algebras). We investigate the property of implicativity for these algebras. We prove that for any implicative BE** algebra the commutativity property is equivalent to the property of antisymmetry and show that implicative aBE** algebras are commutative BCK algebras. We also show that the class of implicative BE** algebras is a variety.

1. Introduction. In 1966, Y. Imai and K. Iséki [3] introduced a new notion called a BCK algebra. It is an algebraic formulation of the BCK-propositional calculus system of C. A. Meredith [12], which generalizes the concept of implicative algebras (see [1]). Hundred of papers were written on BCK algebras, and the books [11] and [4]. In [10], as a generalization of BCK algebras, H. S. Kim and Y. H. Kim defined BE algebras. In 2008, A. Walendziak [14] defined commutative BE algebras and proved that they are BCK algebras. A. Iorgulescu [5] introduced new generalizations of BCK algebras (RML, aBE, BE**, aBE** algebras and many others).

In 1978, K. Iséki and S. Tanaka [8] introduced the notion of implicativity in the theory of BCK algebras. The present paper is a continuation of the author's paper [15], where the property of implicativity for various generalizations of BCK algebras was studied. Here we consider RML, BE, aBE, BE** and aBE** algebras and investigate the implicative property for these

 $^{2010\} Mathematics\ Subject\ Classification.\ 03G25,\ 06A06.$

Key words and phrases. BE algebra, BE** algebra, BCK algebra, commutativity, implicativity.

algebras. We prove that for any implicative BE** algebra the commutativity property is equivalent to the property of antisymmetry and show that implicative aBE** algebras are commutative BCK algebras. We also show that the class of implicative BE** algebras is a variety.

- **2. Preliminaries.** Let $\mathcal{A} = (A, \to, 1)$ be an algebra of type (2,0). We consider the following list of properties ([5]) that can be satisfied by \mathcal{A} :
 - (An) (Antisymmetry) $x \to y = 1 = y \to x \Longrightarrow x = y$,
 - (BB) $(y \to z) \to [(z \to x) \to (y \to x)] = 1$,
 - (D) $y \to ((y \to x) \to x) = 1$,
 - (Ex) (Exchange) $x \to (y \to z) = y \to (x \to z)$,
 - $(K) \ x \to (y \to x) = 1,$
 - (L) (Last element) $x \to 1 = 1$,
 - (M) $1 \to x = x$,
 - (Re) (Reflexivity) $x \to x = 1$,
 - (*) $y \to z = 1 \Longrightarrow (x \to y) \to (x \to z) = 1$,
 - (**) $y \to z = 1 \Longrightarrow (z \to x) \to (y \to x) = 1$,
 - (Tr) (Transitivity) $x \to y = 1 = y \to z \Longrightarrow x \to z = 1$.

Lemma 2.1 ([5], Proposition 2.1). Let $A = (A, \rightarrow, 1)$ be an algebra of type (2,0). Then the following hold:

- (i) (M) + (BB) imply (Re), (**),
- (ii) (M) + (BB) + (An) imply (Ex),
- (iii) (M) + (**) imply (Tr),
- (iv) (Re) + (Ex) imply (D),
- (v) (Re) + (L) + (Ex) imply (K),
- (vi) (Re) + (Ex) + (Tr) imply (**),
- (vii) (M) + (*) imply (Tr).

Definition 2.2 ([5]).

- 1. An RML algebra is an algebra $\mathcal{A} = (A, \to, 1)$ verifying (Re), (M), (L).
- 2. A BE algebra is a RML algebra verifying (Ex).
- 3. An aBE algebra is a BE algebra verifying (An).
- 4. A BE^{**} algebra is a BE algebra verifying (**).
- 5. An aBE^{**} algebra is a BE** algebra verifying (An).
- 6. A BCK algebra is an algebra $\mathcal{A} = (A, \to, 1)$ verifying (An), (BB), (M), (L).

Denote by **RML**, **BE**, **aBE**, **BE****, **aBE**** and **BCK** the classes of RML, BE, aBE, BE**, aBE** and BCK algebras, respectively. By definition and Lemma 2.1 (i) and (ii), we have

 $BCK \subset aBE^{**} \subset aBE \subset BE \subset RML \text{ and } aBE^{**} \subset BE^{**} \subset BE.$

The interrelationships between the classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if X and Y are classes of algebras, then $X \longrightarrow Y$ means $X \subset Y$.)

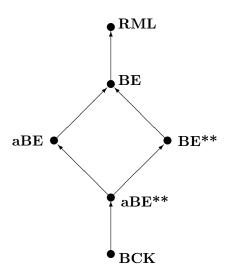


Figure 1

Let $\mathcal{A} = (A, \to, 1)$ be an algebra of type (2,0). We define the binary relation \leq by: for all $x, y \in A$,

$$x \le y \iff x \to y = 1.$$

It is known that \leq is an order relation in BCK algebras. By definition, in RML and BE algebras, \leq is a reflexive relation; in aBE algebras, \leq is reflexive and antisymmetric. By Lemma 2.1 (iii), in BE** algebras, \leq is reflexive and transitive (i.e., it is a pre-order relation). Lastly, in aBE** algebras, \leq is an order relation.

In [13], S. Tanaka introduced the notion of commutativity in the theory of BCK algebras. A BCK algebra $\mathcal{A} = (A, \to, 1)$ is called *commutative* if, for all $x, y \in A$,

(Com)
$$(x \to y) \to y = (y \to x) \to x$$
.

H. Yutani [17] proved that the class of commutative BCK algebras is equationally definable. Commutative BCI and BE algebras were considered in [7] and [14, 2], respectively. K. Iséki [7] proved that any commutative BCI algebra is a BCK algebra. For BE algebras, this was shown in [14]. The property of commutativity for other generalizations of BCK algebras was investigated in [16].

As in the case of BCK algebras, we define:

Definition 2.3. An RML algebra $\mathcal{A} = (A, \rightarrow, 1)$ is called *commutative* if it satisfies (Com).

Lemma 2.4. Let $A = (A, \rightarrow, 1)$ be an algebra of type (2,0). Then:

- (i) (Com) + (M) imply (An),
- (ii) (Com) + (K) imply (D),
- (iii) (Com) + (Re) + (L) + (Ex) imply (BB).

Proof. The statements (i) and (ii) are proved in [16] (see Proposition 3.3).

(iii) Let \mathcal{A} verify (Com), (Re), (L) and (Ex). By Lemma 2.1 (v), \mathcal{A} verifies (K). Let $x, y, z \in A$. We have

$$\begin{aligned} (y \to z) &\to [(z \to x) \to (y \to x)] \\ &\stackrel{(\mathrm{Ex})}{=} (y \to z) \to [y \to ((z \to x) \to x)] \\ &\stackrel{(\mathrm{Com})}{=} (y \to z) \to [y \to ((x \to z) \to z)] \\ &\stackrel{(\mathrm{Ex})}{=} (y \to z) \to [(x \to z) \to (y \to z)] \stackrel{(\mathrm{K})}{=} 1, \end{aligned}$$

that is, (BB) holds in A.

3. Implicative BE algebras. The well-known implicative and positive implicative BCK algebras were introduced by K. Iséki and S. Tanaka [8].

Let $\mathcal{A} = (A, \to, 1)$ be an algebra of type (2,0). We first consider the following properties:

- (Im) $(x \to y) \to x = x$,
- (pi) $y \to (y \to x) = y \to x$,

(pimpl)
$$x \to (y \to z) = (x \to y) \to (x \to z)$$
.

Remark 3.1. Note that from Theorem 8 of [8] it follows that for BCK algebras, (pimpl) and (pi) are equivalent. By Theorem 9 of [8], in commutative BCK algebras, we have (Im) \iff (pi) \iff (pimpl).

Proposition 3.2. Let $A = (A, \rightarrow, 1)$ be an algebra of type (2,0). Then

- (i) (Re) + (Im) imply (M),
- (ii) (M) + (Im) imply (L),
- (iii) (Im) implies (pi),
- (iv) (Re) + (M) + (pimpl) + (An) imply (Ex),
- (v) (Re) + (Im) + (BB) + (An) imply (pimpl),
- (vi) (Re) + (pimpl) imply (L),
- (vii) (M) + (K) + (Com) + (pimpl) imply (Im).

Proof. (i)–(iii) follow from Proposition 3.5 of [15].

(iv) follows from Theorem 6.16 of [5].

(v) By above (i)–(iii), \mathcal{A} satisfies (M), (L) and (pi). By Lemma 2.1 (ii) and (v), \mathcal{A} also satisfies (Ex) and (K). Let $x, y, z \in A$. We have

$$(x \to (y \to z)) \to [(x \to y) \to (x \to z)]$$

$$\stackrel{(\text{Ex})}{=} (x \to y) \to [(x \to (y \to z)) \to (x \to z)]$$

$$\stackrel{(\text{Ex})}{=} (x \to y) \to [(y \to (x \to z)) \to (x \to z)]$$

$$\stackrel{(\text{pi})}{=} (x \to y) \to [(y \to (x \to z)) \to (x \to (x \to z))] \stackrel{(\text{BB})}{=} 1.$$

Then

$$(3.1) x \to (y \to z) \le (x \to y) \to (x \to z).$$

On the other hand, from (K) we see that $y \to (x \to y) = 1$, and we obtain

$$[(x \to y) \to (x \to z)] \to (x \to (y \to z))$$

$$\stackrel{\text{(Ex)}}{=} [(x \to y) \to (x \to z)] \to (y \to (x \to z))$$

$$\stackrel{\text{(M)}}{=} [y \to (x \to y)] \to [((x \to y) \to (x \to z)) \to (y \to (x \to z))]$$

$$\stackrel{\text{(BB)}}{=} 1$$

Hence

$$(3.2) (x \to y) \to (x \to z) \le x \to (y \to z).$$

Applying (An), from (3.1) and (3.2), we get (pimpl).

- (vi) follows from Proposition 6.4 (i) of [5].
- (vii) By Lemma 2.4, \mathcal{A} satisfies (An) and (D). Let $x, y, z \in A$. We have

$$((x \to y) \to x) \to x \stackrel{\text{(Com)}}{=} (x \to (x \to y)) \to (x \to y)$$

$$\stackrel{\text{(pimpl)}}{=} x \to ((x \to y) \to y) \stackrel{\text{(D)}}{=} 1.$$

Therefore, $(x \to y) \to x \le x$. On the other hand, from (K) we see that $x \le (x \to y) \to x$. Applying (An), we get (Im).

Lemma 3.3 ([15], Lemma 3.8). Let $\mathcal{A} = (A, \rightarrow, 1)$ be an algebra of type (2,0). Then

$$(Re) + (Com) + (Im) + (BB) \iff (Re) + (Com) + (Im) + (Ex).$$

As in the case of BCK algebras, we now define:

Definition 3.4. An RML algebra \mathcal{A} is called *implicative* if it satisfies (Im).

Example 3.5 ([15], Example 3.24). Consider the set $A = \{a, b, c, d, 1\}$ and the operation \rightarrow given by the following table:

We can observe that the properties (Im), (Re), (M) and (L) are satisfied. Hence, $(A, \to, 1)$ is an implicative RML algebra. It does not satisfy (An) for (x, y) = (c, d); (Ex) for (x, y, z) = (a, b, d); (Tr) for (x, y, z) = (d, c, a); (**) for (x, y, z) = (a, d, c).

Example 3.6. Let $A = \{a, b, c, 1\}$ and \rightarrow be defined as follows:

$$b, c, 1$$
 and \rightarrow be defined by $b, c, 1$ and $b, c, 1$ and $b, c, 1$ and $b, c, 1$ by $b, c, 1$ and $b, c, 1$ and $b, c, 1$ and $b, c, 1$

It is easy to check that the properties (Im), (Re), (M), (L) and (Ex) are satisfied; (An) is not satisfied for x=b, y=c; (**) is not satisfied for x=a, y=b, z=c. Therefore, $(A, \rightarrow, 1)$ is an implicative BE algebra without (An) and (**).

Example 3.7. Consider the set $A = \{a, b, c, 1\}$ and the operation \rightarrow given by the following table:

The algebra $\mathcal{A} = (A, \to, 1)$ satisfies properties (Im), (Re), (M), (L), (Ex), (**). It does not satisfy (An) for (x, y) = (b, c). Hence, \mathcal{A} is an implicative BE** algebra without (An).

Example 3.8 ([15], Example 3.34). Let $A = \{a, b, c, 1\}$ and \rightarrow be defined as follows:

We can observe that the properties (Im), (An), (Re), (M), (L), (BB) and (Ex) are satisfied. Therefore, $\mathcal{A} = (A, \to, 1)$ is an implicative BCK algebra.

Denote by **im-RML** the class of all implicative RML algebras. Similarly, if **X** is a subclass of the class **RML**, then **im-X** denotes the class of all implicative algebras belonging to **X**. Examples 3.5–3.8 show that

$$im\text{-BCK} \subseteq im\text{-aBE**} \subset im\text{-BE**} \subset im\text{-BE} \subset im\text{-RML}.$$

Proposition 3.9 ([15], Proposition 3.14). Let $A = (A, \rightarrow, 1)$ be an algebra verifying (Re), (D), (**) and (Im). Then

$$(3.3) y \le x \Longrightarrow (x \to y) \to y \le x$$

for all $x, y \in A$.

Theorem 3.10. If $A = (A, \rightarrow, 1)$ is an implicative BE^{**} algebra, then A is commutative if and only if it satisfies (An).

Proof. Let \mathcal{A} be an implicative BE** algebra. If \mathcal{A} is commutative, then \mathcal{A} satisfies (An) by Lemma 2.4 (i). Conversely, suppose that (An) holds in \mathcal{A} . From Lemma 2.1 (iii)–(v) it follows that \mathcal{A} satisfies (Tr), (D) and (K). By Proposition 3.9, \mathcal{A} satisfies (3.3). Let $x, y \in \mathcal{A}$. From (K) we have $x \leq (y \to x) \to x$. Applying (**) twice, we obtain

$$(3.4) (x \to y) \to y \le (((y \to x) \to x) \to y) \to y.$$

By (D), $y \le (y \to x) \to x$, and hence, using (3.3), we get

$$(((y \to x) \to x) \to y) \to y \le (y \to x) \to x.$$

Since A satisfies (Tr), from inequalities (3.4) and (3.5) we have

$$(x \to y) \to y \le (y \to x) \to x.$$

Hence, by (An), we obtain (Com).

Proposition 3.11. In aBE^{**} algebras, we have

$$(Im) \iff (Com) + (pimpl).$$

Proof. Let $\mathcal{A} = (A, \to, 1)$ be an aBE** algebra. Assume that \mathcal{A} satisfies (Im). From Theorem 3.10 we conclude that (Com) holds in \mathcal{A} . Applying Lemma 2.4 (iii), we see that \mathcal{A} satisfies (BB). By Proposition 3.2 (v), (pimpl) holds in \mathcal{A} .

Conversely, suppose that \mathcal{A} satisfies (Com) and (pimpl). By Lemma 2.1 (v), (Re) + (L) + (Ex) imply (K). Then, from Proposition 3.2 (vii) we deduce that \mathcal{A} satisfies (Im).

Remark 3.12. Since every BCK algebra is an aBE** algebra, from Proposition 3.11 we obtain Theorem 9 of [8].

Corollary 3.13. Any implicative aBE^{**} algebra is a commutative BCK algebra.

Proof. Let \mathcal{A} be an implicative aBE** algebra. By Proposition 3.11, \mathcal{A} is commutative. From Lemma 3.3 we see that \mathcal{A} verifies (BB). Hence \mathcal{A} is a BCK algebra.

Remark 3.14. Note that from Corollary 3.13 we deduce that **im-BCK** = **im-aBE****.

By Proposition 3.2 (i) and (ii), we obtain:

Proposition 3.15. An algebra $A = (A, \rightarrow, 1)$ is an implicative BE algebra if and only if it satisfies the equations (Re), (Ex) and (Im).

Lemma 3.16. If $A = (A, \rightarrow, 1)$ is an implicative BE^{**} algebra, then it satisfies the following condition:

(W)
$$(((y \rightarrow x) \rightarrow x) \rightarrow z) \rightarrow (y \rightarrow z) = 1.$$

Proof. By Lemma 2.1 (iv), \mathcal{A} satisfies (D). Let $x, y, z \in A$. From (D) it follows that $y \leq (y \to x) \to x$. Applying (**), we obtain $((y \to x) \to x) \to z \leq y \to z$. Hence we have (W).

The next theorem shows that the class of implicative BE** algebras is a variety.

Theorem 3.17. An algebra $\mathcal{A} = (A, \to, 1)$ is an implicative BE^{**} algebra if and only if it satisfies the equations (Re), (Ex), (Im) and (W).

Proof. If \mathcal{A} is an implicative BE** algebra, then it satisfies (Re), (Ex), (Im) and, by Lemma 3.16, (W).

Conversely, let \mathcal{A} satisfy (Re), (Ex), (Im) and (W). Obviously, \mathcal{A} is an implicative BE algebra. To prove (**), let $x, y, z \in A$ and $y \leq x$. By (M) and (W), $x \to z \leq y \to z$, that is, \mathcal{A} satisfies (**). Thus \mathcal{A} is an implicative BE** algebra.

Recall the definition of Tarski algebras. A Tarski algebra is an algebra $\mathcal{A} = (A, \to, 1)$ of type (2,0) satisfying the following axioms ([9]): for all $x, y, z \in A$,

- (T1) $1 \rightarrow x = x$,
- (T2) $x \to x = 1$,
- (T3) $(x \to y) \to y = (y \to x) \to x$,
- (T4) $x \to (y \to z) = (x \to y) \to (x \to z)$.

Note that (T1) is (M), (T2) is (Re), (T3) is (Com) and (T4) is (pimpl).

Theorem 3.18. Let $A = (A, \rightarrow, 1)$ be an algebra of type (2,0). The following conditions are equivalent:

- (i) A is an implicative aBE^{**} algebra,
- (ii) \mathcal{A} satisfies (Re) + (Com) + (Im) + (Ex),
- (iii) \mathcal{A} satisfies (Re) + (Com) + (Im) + (BB),
- (iv) A is a Tarski algebra.

Proof. (i) implies (ii) and (ii) implies (iii) by Proposition 3.11 and Lemma 3.3, respectively. Now let \mathcal{A} satisfy (Re), (Com), (Im) and (BB). By Proposition 3.2 (i), (Re) + (Im) imply (M), thus, (T1) = (M) holds. By Lemma 2.4 (i), (Com) + (M) imply (An); then, by Proposition 3.2 (v), (Re) + (Im) + (BB) + (An) imply (pimpl); thus, (T4) = (pimpl) holds. Consequently, \mathcal{A} is a Tarski algebra.

Finally, let \mathcal{A} satisfy (M), (Re), (Com) and (pimpl). By Lemma 2.4 (i), (Com) + (M) imply (An); thus, (An) holds. By Proposition 3.2 (vi), (Re) + (pimpl) imply (L); thus, (L) holds. By Proposition 3.2 (iv), (Re) + (M) + (pimpl) + (An) imply (Ex); thus, (Ex) holds.

By Lemma 2.4 (iii), (Com) + (Re) + (L) + (Ex) imply (BB); then, by Lemma 2.1 (i), (M) + (BB) imply (**); thus, (**) holds. By Lemma 2.1 (v), (Re) + (L) + (Ex) imply (K); then, by Proposition 3.2 (vii), (M) + (K) + (Com) + (pimpl) imply (Im); thus (Im) holds.

Consequently, A is an implicative aBE** algebra, that is, (i) holds. \square

Corollary 3.19. Let A be an implicative aBE algebra satisfying (Tr). Then A is a Tarski algebra.

Proof. By Lemma 2.1 (vi), \mathcal{A} satisfies (**). Then \mathcal{A} is an implicative aBE** algebra. From Theorem 3.18 we see that \mathcal{A} is a Tarski algebra. \square

Remark 3.20. If \mathcal{A} is an algebra satisfying (M) and (*), then it also satisfies (Tr) by Lemma 2.1 (vii). Therefore, implicative aBE algebras with (*) are Tarski algebras.

Open Problem 3.21. Is there an implicative aBE algebra not satisfying (Tr)?

References

- [1] Abbott, J. C., Semi-boolean algebras, Mat. Vesnik 4 (1967), 177–198.
- [2] Çiloğlu, Z., Çeven, Y., Commutative and bounded BE-algebras, Algebra 2013, Article ID 473714, 5 pp. https://doi.org/10.1155/2013/473714.
- [3] Imai, Y., Iséki, K., On axiom system of propositional calculi. XIV, Proc. Japan Acad. **42** (1966), 19–22. https://doi.org/10.3792/pja/1195522169.
- [4] Iorgulescu, A., Algebras of logic as BCK algebras, Academy of Economic Studies Press, Bucharest, 2008.
- [5] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras Part I, J. Mult.-Valued Logic Soft Comput. **27** (2016), 353–406.
- [6] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407–456.
- [7] Iséki, K., On BCI-algebras, Math. Semin. Notes 8 (1980), 125–130.
- [8] Iséki, K., Tanaka, S., An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978/79), 1–26.
- [9] Jun, Y. B., Kang, M. S., Fuzzifications of generalized Tarski filters in Tarski algebras, Comp. Math. Appl. 61 (2011), 1–7.
- [10] Kim, H. S., Kim, Y. H., On BE-algebras, Sci. Math. Jpn. 66 (2007), 113–128.
- [11] Meng, J., Jun, Y. B., BCK algebras, Kyung Moon Sa Company, Seoul, 1994.

- [12] Meredith, C. A., Formal Logics, Oxford, 2nd ed., 1962.
- [13] Tanaka, S., A new class of algebras, Math. Semin. Notes **3** (1975), 37–43.
- [14] Walendziak, A., On commutative BE-algebras, Sci. Math. Jpn. 69 (2009), 281–284.
- [15] Walendziak, A., The implicative property for some generalizations of BCK algebras, J. Mult.-Valued Logic Soft Comput. **31** (2018), 591–611.
- [16] Walendziak, A., The property of commutativity for some generalizations of BCK algebras, Soft Comput. 23 (2019), 7505–7511.
- [17] Yutani, H., On a system of axioms of commutative BCK-algebras, Math. Semin. Notes **5** (1977), 255–256.

Andrzej Walendziak Faculty of Exact and Natural Scieces Siedlce University 3 Maja 54, 08-110 Siedlce Poland

e-mail: walent@interia.pl

Received August 11, 2022