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Abstract
This paper will discuss two versions of probabilistic context-
free grammar password-guessing models. The first model
focuses on using English semantics to break down passwords
and identify patterns. The second model identifies repeating
chunks in passwords and uses this information to create
possible passwords. Then, we will show the performance
of each model on leaked password databases, and finally
discuss the observations made on these tests.
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1 Introduction
Text-based passwords are the most common form of authen-
tication used by companies because they are cost-efficient,
easy to implement, and familiar to users. Several compa-
nies have had security breaches in which users’ passwords
have been leaked. While it is an unfortunate circumstance
for a company (and their users) to lose users’ information,
this now allows researchers to study people’s passwords.
By studying user-created passwords, researchers hope to
identify how people create them and what makes certain
passwords weak or strong against malicious attacks.

Passwords are made up of the characters and symbols on
our keyboards, but the majority of the time, these passwords
are not created randomly. Many password database leaks
have shown that people commonly use information based
on their life or easy-to-remember patterns. For example, re-
searchers noted that frequently used words in passwords
included: ‘password,’ ‘love’ and ‘4ever’ [6, 8]. This infor-
mation helps attackers narrow down their guesses of what
someone’s password could be.
But how do we know if our passwords can be guessed?

Researchers have created password-guessingmodels to deter-
mine if people are making strong enough passwords. These
models learn from previously leaked data to make guesses
on what a password could be. The purpose of these models
is to educate people on what makes a strong password and
expose the vulnerabilities in weak password requirements.

This paper provides the necessary background needed to
understand these models in Section 2. Then, we will look at
two versions of password-guessing models that use proba-
bilistic context-free grammar. Each model uses a different

method for detecting patterns in passwords from the data
sets. In Section 3, we discuss at the Semantic PCFG which
focuses on the usage of semantics in the English language.
By breaking down passwords into identifiable words and
categorizing them, the model better understands why people
select certain words for their passwords. In Section 4, we will
look over the Chunk-Level PCFG, which uses a password-
specific segmentation algorithm. Xu et al. [8] determined
people may purposefully misspell words or use substitutions
in words (e.g. a ‘0’ for an ‘o’). So by identifying characters
that are commonly seen together in previous passwords, the
model makes guesses using those discovered patterns. Fi-
nally, we will go over our conclusion of these two models in
Section 5.

2 Background
In this section, background is given on the technology used
to build password-guessing models. First, we present context-
free grammar. The models discussed in this paper are each
built using probabilistic context-free grammar, thus it is im-
portant to understand these concepts. Then we introduce
previous models that use probabilistic context-free grammar
and their influence on the models we will discuss in this
paper. Finally, we will go over some information about the
data leaks used in training and testing.

2.1 Context-Free Grammar
A context-free grammar is a formal grammar that can build
any possible string within a given set of strings that is re-
ferred to as a language. There are three items required for
building a grammar: production rules, non-terminal tokens,
and terminal tokens. Production rules determine how the
strings are supposed to be written. Non-terminal tokens can
be described as a category or group, such as ‘adjectives’ or
‘colors.’ Terminal tokens are the final output of the gram-
mar, such as ‘red’ [1]. The language defined by a grammar
contains all strings that can be derived by all possible com-
binations of rules. In this discussion, a grammar specifies
the language of all possible passwords that follow certain
patterns.
As an example, let non-terminal tokens be ‘adjectives,’

‘nouns,’ and ‘numbers’, terminal tokens be ‘red,’ ‘dog,’ and
‘3,’ and use the following production rules: a password must
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Region Data sets Year Total Passwords Unique Passwords Passwords longer than 16 characters

English

RockYou 2009 32,584,165 14,270,373 250,242
LinkedIn 2012 177,500,189 61,829,207 -
000webhost 2015 15,251,074 - -
Neopets 2016 67,672,205 27,474,769 1,081,877
Cit0day 2020 86,835,796 40,589,949 1,869,877

Chinese
CSDN 2011 6,425,243 4,031,226 68,817
178 2011 9,071,979 3,461,974 7,431
Youku 2016 47,607,615 47,462,025 395,701

Table 1. Data leaks used in training and testing the models

be an adjective followed by either a noun or a number; a
password may end in a number. For current and future use,
we will use the following abbreviations: N for noun; ADJ
for adjective; and NUM for number. The following is how
we would write this context-free grammar, with PASSWORD
being our starting terminal:

<PASSWORD>→ <ADJ><N> | <ADJ><NUM>
<N>→ dog<NUM> | dog
<ADJ> → red
<NUM>→ 3
With these production rules we have the following deriva-

tion:
<PASSWORD>→ <ADJ><N>→reddog<NUM>→reddog3.
With this context-free grammar, we can also make the

following passwords: ‘red3’ and ‘reddog’. Note that this is a
very limited grammar; the grammars used in actual models
consist of much larger grammars and use lexical databases
such as WordNet [2] for information on words to decide tags
(discussed in Section 3).

2.2 PCFG Models
Now that we have an understanding of context-free grammar,
we will look at an evolved version, probabilistic context-free
grammar (PCFG), and how it is used in password-cracking
models. PCFGs are the same as regular context-free gram-
mars, only with the addition of probability attached to the
production rules. The probability is determined by the amount
of times a production rule is seen being used in a data set,
also known as maximum-likelihood estimation (MLE).

As an example, let us take a look at our previous context-
free grammar; In the starting terminal, we have two pro-
duction rules for the same non-terminal: <PASSWORD>→
<ADJ><N> and <ADJ><NUM>. Suppose in the training data
set that the first rule was seen at a .6 frequency and the
second rule at .4. We would attach these frequencies to the
production rules, and the grammar takes the frequencies to
determine what passwords are more likely to exist when
generating guesses. In the real data tests, the probability of
the majority of the production rules is under .1 frequency
[6].

The first password-guessing model to use probabilistic
context-free grammar was released in 2009 by Weir et al.
[7]. The grammar for this model only consists of three non-
terminal tokens: alphabetic, numeric, and symbol. For exam-
ple, a production rule in this grammarmay have the structure
of 𝐿6𝑁2𝑆1, where a password consists of 6 letters, followed
by 2 numbers, followed by 1 symbol [6].
A major improvement in PCFG password-guessing was

reported by Komanduri, who added word segmentation for
the grammar to identify words within passwords. In addition,
the Komanduri model [5] learns whole passwords, which
helps themodel perform better in the early stages of guessing.
[6]

2.3 Data Leaks
To train and test the models, the researchers need a substan-
tial amount of data. These leaks were chosen for testing and
training because of their sizes as well as the years the com-
panies were hacked. Each of these leaks gives a significant
amount of data for the models to be trained and tested, with
the small data leak containing 6.4 million passwords.

The years that these leaks happen are important to testing
because they can help researchers determine whether a data
leak used for training provide relevant to data leaks being
tested on. Over time, password requirements have become
stronger, meaning that users’ passwords are becoming more
complex than theywere (e.g. many passwords in the RockYou
data leak were comprised of a single word or exclusively
numbers).
Another thing that is important to note about these data

leaks is the amount unique passwords within these leaks. For
example, The RockYou data leak contained over 32 million
passwords, but only 14 million of the passwords words were
unique. This means that 43.8% of these passwords are unique.
In fact, passwords such as ‘123456’ were used 290,731 times
[4]. Table 1 shows all the data for the RockYou, LinkedIn,
000webhost, Neopets, Cit0day, CSDN, 178, and Youku data
leaks.
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3 Semantic PCFG Model
In this section, we will discuss the PCFG model that uses
semantics to break down and create passwords. The semantic
model is a probabilistic context-free grammar that focuses on
understanding password patterns by syntactic and semantic
information, such as parts of speech. Veras et al. [6] noted
that previous models that used PCFGs did not encode vital
information on natural languages, such as the logical form
and word sense (e.g. parts of speech) people use in their
creation of passwords [6]. For example, production rules in
previous PCFG models would identify the word ‘smart’ as
<WORD> instead of <ADJECTIVE>. We will then present a
comparison between the semantic model versus the previous
models.

3.1 Set-Up
For the PCFG to create production rules necessary for pass-
word guessing, it needs to be fed data. The method used for
this is a text processing pipeline, which feeds a training set
that contains data from password leaks. As seen in Figure 1,
the text processing pipeline segments passwords by words,
numbers, and symbols. Then each segmented piece is tagged
with a parts-of-speech tag, then semantic tags if required.
After the passwords have been segmented and labeled by
their semantic tokens, they go through a generalization pro-
cess so the less frequently seen semantics can be grouped
into broader categories. Finally, the production rule based
on the password is given by the pipeline. It is important to
note that the model does not classify any misspellings or
substitutions (e.g. l0ve and 4ever) into the grammar, and any
attempt to identify passwords with these characteristics will
take significantly more time and guesses.
Like the first PCFG, the semantic model also uses maxi-

mum likelihood estimation to determine the terminal proba-
bilities. However, this does not take into account production
rules not seen in training samples (unseen strings) and can
affect the models’ performance with small training samples
(smaller training samples mean less time for training the
grammar).

Veras et al. [6] add terminal smoothing using the Laplace
estimator to enhance the models’ performance in guessing
these unseen strings.

The equation for Laplace smoothing is:

Θ𝑖 =
(𝑥𝑖 + 𝛼)
(𝑁 + 𝛼𝑑) (1)

where Θ𝑖 is the resulting smoothed probability of category 𝑖;
𝑖 = 1, ..., 𝑑 ranges over the number of string categories; 𝑥𝑖 is
the observed frequency of the category 𝑖 in the training set;
𝛼 is the number of times strings are assumed to be observed
a priori; 𝑁 is the sum of the observed frequencies under the
non-terminal symbol, and 𝑑 is the number of different cate-
gories under the given non-terminal (e.g. the non-terminal
noun may have categories ‘person’, ‘animal’, etc.) [6].

Figure 1. Example of the text processing pipeline breaking
down a password (Adapted from [6]).

3.2 Testing
The study was done to test the effectiveness of the Semantic
PCFG trained on passwords leaked from RockYou.com. From
the list of passwords leaked from RockYou, the researchers
created 51 training samples in five different sizes to train
the models. When testing the semantic models, Veras et al.
[6] ran two other PCFG models and a neural network model
trained on the same samples. In Figure 2, the PCFG models
are labeled ‘Komanduri’ and ‘Weir’, and the neural network
model is labeled ‘Melicher’. The neural network model used
for comparison is the first neural network model to be cre-
ated for password guessing in 2016 byMelicher et al. [3]. This
model uses probability to guess the next character used in
a password when guessing whole passwords. However, the
neural network model could only be trained on one training
sample from each size due to the amount of time required to
properly train the neural network model (the time allotted
was 140 hours) [6, 7]. After the models were trained, they
were then ran to guess passwords. These passwords were
compared to another data leak to determine if a password
was correctly guessed. Veras et al. [6] also ran the tests with
and without terminal smoothing to determine how it would
improve the performance of the model. In addition, the re-
searchers also ran the semantic model with and without
semantic tagging but kept the parts-of-speech tagging on
both models. In Figure 2 the grammar with the semantic
tagging is labeled ‘semantic’, and the grammar without is
labeled ‘POS’.
The researchers decided to test the models on two sepa-

rate data leaks, LinkedIn and 000webhost. Their reasoning
is that the time difference between the LinkedIn leak and
the RockYou leak is close (3-year difference) and the 000web-
host leak and RockYou leak is not (6-year difference). The
researchers wanted to determine if the time difference be-
tween the training samples and the data leak the model is
being tested on affected the results.

3.2.1 Results. The first test on the LinkedIn password leak
raised some notable points. First, the size of the training sets
significantly affects the guessing performance (i.e. the larger
the training sample, the more correctly guessed passwords).
However, the training set sizes larger than a million did not
make much difference compared to the training size of one
million.
Second, the usage of terminal smoothing improved the

results in the smaller training sets (training sets with under
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Figure 2. The results of the LinkedIn test. Each graph corresponds to the training set size as seen at the top. The total number
of guesses made in each test is labeled on the horizontal axis and the number of correctly guessed passwords is on the vertical
axis (Taken from [6]).

1 million passwords) than those without terminal smoothing
(MLE).

Finally, the results show that there was not much differ-
ence between the grammars with semantic tagging and with-
out. This led Veras et al. to three hypotheses: (1) the LinkedIn
passwords lacked English semantics; (2) the LinkedIn pass-
words have English semantics, but their semantics are vastly
different from the semantics found in RockYou; (3) general
English passwords lack semantics [6]. Veras et al. hoped that
these hypotheses would be answered with the second test
on 000webhost passwords.

In the 000webhost test, Veras et al. saw similar results be-
tween the parts-of-speech and semantic grammar, where the
number of cracked passwords was relatively the same. The
Komanduri PCFG performed better than the semantic PCFG
when the training sets were small but performed about the
same as the larger ones (training sample sizes of over 1 mil-
lion). They also noted the neural network model performed
worse than all the PCFG models in the larger training sam-
ples; this is believed to be due to over-fitting. Over-fitting is
when the model learns ‘too well’ from the training set and
mimics the set rather than making accurate guesses.

The results from the 000webhost test suggest that Veras et
al. [6] third hypothesis is correct. However, the researchers
believe that because their model only guesses that are spelled
correctly their vocabulary is limited. This means that any
passwords with words that are semantically connected but
with incorrect spelling are not guessed [6].

Figure 3. Example of the PwdSegment method (Taken from
[8]).

4 Chunk-Level Guessing Model
In this section, we will go over the model created by Xu
et al. [8]. The researchers propose that redesigning current
models to use a password-specific segmentation will make
a more efficient password-guessing model. Rather than the
semantics method of determining formal dictionary words
and digits commonly used in password words, the model
defines chunks by learning individual characters’ relation
to others (i.e., what characters are found next to each other
often) through training sets. This overcomes what the se-
mantic PCFG failed to find in passwords: misspellings and
substitutions. As an example, take the password "sk8er4ever";
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Figure 4. Results from Chunk-Level test. Each graph corresponds to a train set and a data set the models are being tested on.
The top portion of the graphs are the data sets with all passwords and the bottom portion is exclusively passwords longer than
sixteen characters. The horizontal axis is the number of guesses made by the models and the vertical axis is the percentage of
correct passwords guessed (Taken from[8]).

this password can be broken into two chunks: "sk8er" and
"4ever". Additionally, this password can be easily guessed as
these two chunks had a high frequency in one of the training
sets used for the test of the model.
The researchers created three different guessing models

to test their method of a password-specific segmentation:
Whole-String Markov, Template-Based PCFG, and Neural-
Network-Based. We will be narrowing our focus on the Tem-
plate Based PCFG model.

4.1 Set-Up
To train the model, Xu et al. [8] create a method called Pwd-
Segment, which extends the preexisting Byte-Pair-Encoding
(BPE) algorithm. BPE is a method of compressing data by
identifying characters in a string often seen paired and merg-
ing them with a new identifier. In this case, this identifier is
a chunk. Xu et al. change this method by adding an average
length parameter to stop the recursive operation of merging
pairs once the average length of chunks is equal to or greater
than the threshold [8]. An example of the algorithm can be
seen in Figure 3.

Instead of using non-terminals usually seen in other mod-
els [6, 7], Xu et al. [8] also created their own non-terminals
to be used in the grammar. These non-terminal points are
based on the chunks seen in passwords. There are a total of
7 non-terminals seen in the grammar: L, U, D, and S denote
chunks with single types of characters (lower and upper-
case, digits, and symbols); DM denotes chunks with two
types of characters; TM denotes chunks with three types of
characters, and FM denotes chunks with all four types of
characters.

4.2 Testing
The training for this model uses the samemethod for training
the grammar used for the semantic PCFG. In addition, the
researchers separated passwords longer than sixteen char-
acters and ran a second test with only these passwords. In
Figure 4, all refers to the data set will all of the passwords,
and long refers to the data set with the longer passwords
only. Xu et al. [8] noticed in prior research that passwords
from English-based websites typically contained words and
letters with minimal usage of numbers, and passwords on
Chinese-based websites contained numbers rather than let-
ters. So they trained the model twice to test on English and
Chinese passwords. The first training data set came from
RockYou and was tested on Neopets and Cit0day, and the
second training data set came from CSDN and was tested on
Youku and 178 (see Section 2.3). In Figure 4, the chunk-level
PCFG is labeled as ‘CKL_PCFG’.
Xu et al. [8] chose to compare their PCFG to three other

PCFG models: the semantic PCFG model, version 4.1 of the
original PCFG model, and the Komanduri PCFG model (la-
beled as ‘Hybrid_PCFG’ in Figure 4). All of thesemodels were
also trained with the data sets from RockYou and CSDN.

4.2.1 Results. In all of the tests, the chunk-level PCFG
outperforms all of the other models. In Figure 4, we see
that the results from the English-based websites are close,
but the results of the Chinese-based website have a large
gap between the chunk-level model and the others. The
researchers believe this is due to the fact the other models
are built with a focus on English password sets. In addition,
Xu et al. [8] point out that the percentage of correct guesses
on the 178 (all) data set is nearly one hundred percent, they
believe that this is because the data set is old and newer
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password requirements have forced users to create stronger
passwords [8].

5 Conclusion
Probabilistic context-free grammar password-guessing mod-
els are effective in correctly guessing passwords and help us
identify the weaknesses in currently used passwords. PCFG
models are more time efficient than neural network models
in terms of training the models. The two PCFG models we
have looked over have pointed out that using popular pat-
terns and words makes passwords easier to guess. Having
identified these flaws, we can now change password require-
ments to encourage people to make stronger passwords. As
noted in the chunk-level PCFG testing, passwords longer
than sixteen characters were much harder for the model to
guess.
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