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Abstract

In this paper, we analyze neural network-based dialogue systems trained in an end-to-end man-
ner using an updated version of the recent Ubuntu Dialogue Corpus, a dataset containing almost
1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words1.
This dataset is interesting because of its size, long context lengths, and technical nature; thus, it
can be used to train large models directly from data with minimal feature engineering. We provide
baselines in two different environments: one where models are trained to select the correct next
response from a list of candidate responses, and one where models are trained to maximize the log-
likelihood of a generated utterance conditioned on the context of the conversation. These are both
evaluated on a recall task that we call next utterance classification (NUC), and using vector-based
metrics that capture the topicality of the responses. We observe that current end-to-end models are

1. This work is an extension of a paper appearing in SIGDIAL (Lowe et al., 2015). This paper further includes results on
generative dialogue models, more extensive evaluation of the retrieval models using vector-based generative metrics,
and a qualitative examination of responses from the generative models and classification errors made by the Dual
Encoder model. Experiments are performed on a new version of the corpus, the Ubuntu Dialogue Corpus v2, which is
publicly available: https://github.com/rkadlec/ubuntu-ranking-dataset-creator. The early
dataset has been updated to add features and fix bugs, which are detailed in Section 3.
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unable to completely solve these tasks; thus, we provide a qualitative error analysis to determine the
primary causes of error for end-to-end models evaluated on NUC, and examine sample utterances
from the generative models. As a result of this analysis, we suggest some promising directions for
future research on the Ubuntu Dialogue Corpus, which can also be applied to end-to-end dialogue
systems in general.

1. Introduction

Deriving statistical models that can naturally and coherently converse with humans is one of the cor-
nerstone problems of artificial intelligence. Until recently, such models required significant hand-
engineering of features, and thus could only generate a limited number of responses and be deployed
in constrained situations. Recent advances in neural network-based language models have begun to
make feasible the idea of learning an entire dialogue model directly from conversational data, with
humans only specifying the model hyper-parameters. However, significant work needs to be done
before these models can be implemented in practice with high confidence.

In this paper we consider the problem of building dialogue agents in an end-to-end manner.
We define end-to-end systems, contrary to modular systems, as those that are trained directly from
conversational data to optimize a single objective function (see Section 1.1). We use the recently
released Ubuntu Dialogue Corpus, which consists of almost one million two-person (dyadic) con-
versations extracted from the Ubuntu chat logs, which provide technical support for various Ubuntu-
related problems. Dialogues in the corpus are multi-turn and unstructured, as there is no a priori
logical representation for the information exchanged during the conversation. This is in contrast to
recent systems which focus on structured dialogue tasks, using slot-filling representations (Williams
et al., 2013; Henderson et al., 2014a; Singh et al., 2002).

The creation of such a large, unstructured dialogue dataset was motivated by observations of
progress in various sub-fields of AI. In particular, it has been argued that this progress can be at-
tributed to three major factors: 1) the public distribution of very large rich datasets (Deng et al.,
2009), 2) the availability of substantial computing power, and 3) the development of new training
methods for neural architectures, in particular leveraging unlabeled data.

We conduct an analysis of several dialogue models that can be used in conjunction with the
Ubuntu Dialogue Corpus. We first consider classification models, which are trained to select the cor-
rect next response of a conversation from a list of candidate responses. We use a baseline model that
calculates term frequency-inverse document frequency (TF-IDF) between the context and each re-
sponse, and compare it to a Dual Encoder (DE) model using both recurrent neural networks (RNNs)
and long short-term memory (LSTMs). Next, we present Encoder-Decoder models that are trained
to generate an utterance given the context. We consider both the traditional LSTM language model,
which corresponds to the encoder and decoder having tied weights, and the recently proposed Hi-
erarchical Recurrent Encoder-Decoder (HRED) (Serban et al., 2016), which has a second recurrent
network that encodes utterance-specific information, and is thus able to model longer-term depen-
dencies in the context.

We evaluate these models on the task of next utterance classification (NUC), where the model
ranks a list of candidate responses by how likely they are to have followed the context. We also
evaluate using vector-based metrics to determine the quality of generated responses, in terms of
semantic similarity to the ground-truth next utterance. We observe that the state-of-the-art models,
the LSTM dual encoder and HRED, outperform the baselines on all metrics.

32



TRAINING END-TO-END DIALOGUE SYSTEMS

Finally, we conduct a qualitative analysis to determine the main sources of error for the DE
model. We find that the most common errors are a lack of understanding of the semantics of the re-
sponses, which includes missing key words that are copied between the context and target response,
and a lack of higher-level inference. There are also a number of cases where the model would
benefit from explicitly incorporating the turn-taking structure of dialogue, and using some source
of external knowledge for Ubuntu terminology. An examination of the responses produced by the
generative models reveals similar shortcomings; while the models are able to generate reasonable
responses, they are often generic or lack a semantic understanding of the context. It is clear that
end-to-end systems are not close to solving a domain as complex as Ubuntu. We hope that this
analysis can help guide future research on the Ubuntu Dialogue Corpus, and the development of
end-to-end dialogue systems.

1.1 Motivation for End-to-End Dialogue Systems

It is important to define specifically what is meant by an ‘end-to-end’ dialogue system. We begin
with the standard architecture for a dialogue system, which incorporates a Speech Recognizer, Lan-
guage Interpreter, State Tracker, Response Generator, Natural Language Generator, and Speech
Synthesizer. In the case of text-based (written) dialogues, the Speech Recognizer and Speech
Synthesizer can be left out. Although some previous literature on dialogue systems identifies
only the State Tracker and Response Selection components as belonging inside the dialogue man-
ager (Young, 2000), we adopt a broader view where the Language Interpreter and Natural Language
Generator are also part of the dialogue manager.

Figure 1: An end-to-end dialogue system replaces the traditional components of a dialogue system
with a single statistical model.

When we speak of an ‘end-to-end’ dialogue system, we mean a single system that can be used
to solve each of these four aspects simultaneously (see Figure 1). Typically this is a system that
takes as input the history of the conversation and is trained to optimize a single objective, which
is a function of the textual output produced by the system and the correct (ground truth) response.
This is in contrast to the ‘modular’ system approach to dialogue systems, where each component of
Figure 1 is trained separately, and either takes a more structured input, such as a set of dialogue acts,
or is trained to maximize an intermediary objective, such as slot-filling. More formally, we define
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a modular dialogue system as a system where two or more elements (sub-components or system
parameters) are optimized with respect to two or more different objective functions (e.g. where the
State Tracker is trained to minimize the cross-entropy error of predicting the slot-value pairs, and
where the Response Generator is trained to maximize the conditional log-likelihood of the correct
response given the slot-value pairs). Thus, any machine learning-based dialogue system which is
not a modular dialogue system is an end-to-end dialogue system.

Note that, according to this definition, whether a system is end-to-end is independent of how it is
evaluated. Both retrieval and generative models can be end-to-end so long as they are trained using
a single objective function. Similarly, end-to-end models can be evaluated using intermediary tasks
such as NUC, which do not evaluate the ability of the models to generate new utterances unseen in
the training set. Of course, in order to evaluate the full capability of the models it is best to evaluate
their outputs in a setting as realistic as possible; however, this this difficult to do automatically when
there is no notion of task completion (Liu et al., 2016).

Examples of end-to-end dialogue systems in the recent literature involve neural network-based
approaches that are fully differentiable, and are usually trained to maximize the log-likelihood of
the generated utterance conditioned on some conversational context (Serban et al., 2016; Vinyals
and Le, 2015). These systems learn off-line through examples of human-human dialogues, and thus
learn to emulate the behaviour of agents in the training corpus. However, differentiability and off-
line learning are not strict prerequisites for end-to-end dialogue systems, and other methods could
be devised.

Modular dialogue systems have been historically preferred over end-to-end systems. This is
because such modular systems are easier to train, require less data, and so far have been shown
to achieve better results in practice, albeit typically for highly structured tasks. It is also easier to
manually program each component specifically to obey certain task constraints or to solve one or
more isolated tasks. However, there are significant advantages to end-to-end dialogue systems that
make investigating them worthwhile. In particular, modular dialogue systems are restricted to task-
specific domains, and often require significant human feature engineering, including pre-defining
the state and action spaces of the model. Although this can work well for narrow domains, it does
not necessarily generalize to general-purpose dialogue.

On the other hand, end-to-end models do not require a pre-defined state or action space rep-
resentation; instead, these representations are learned directly from conversational data. Once an
end-to-end model architecture is specified, all that is needed to have the system learn to converse
about another domain is to provide new training data for that domain. As the amount of available
dialogue data grows and more general-purpose conversational systems are desired, we believe that
training end-to-end models without hand-crafted features will yield better performance.

However, despite these advantages it is not clear whether end-to-end approaches will work for
any dialogue domain. For example, in complex negotiation domains where thorough analysis is
required and little data is available, end-to-end systems may not be able to learn successful strategies
for every combination of preferences and goals. Thus, it is crucial to conduct further research on
end-to-end dialogue systems in order to determine the domains in which they are most effective.

1.2 Paper Outline

The paper is structured as follows. In Section 2, we detail some relevant dialogue datasets that are
available, and give an overview of existing end-to-end dialogue systems. In Section 3, we describe
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the Ubuntu Dialogue Corpus, including corpus statistics, how it was collected, and any changes
made in the updated version. We then go on to describe the response ranking models on the Ubuntu
Dialogue Corpus in Section 4, and the response generation models in Section 5. We give our
results in each of these sections, including our models’ performance on next utterance classification
and embedding similarity. We also provide a qualitative error analysis of the mistakes made by
the classification model in Section 4.6. Finally, we conclude in Section 6, and discuss potential
extensions and limitations of the Ubuntu Dialogue Corpus, evaluation metrics, and future directions
for end-to-end dialogue systems.

2. Related Work

We briefly review existing dialogue datasets, and some of the more recent learning architectures
used for both structured and unstructured dialogues. This is by no means an exhaustive list, but
surveys resources most related to our contributions.

2.1 Dialogue Datasets

The Switchboard dataset (Godfrey et al., 1992), and the Dialogue State Tracking Challenge (DSTC)
datasets (Williams et al., 2013, 2016) have been used to train and validate dialogue management
systems for interactive information retrieval. In the case of the DSTC, the problem is typically
formalized as a slot filling task, where agents attempt to predict the goal of a user during the con-
versation. These datasets have been significant resources for structured dialogues, and have allowed
major progress in this field, though they are relatively small compared to datasets currently used for
training neural architectures for language-related tasks.

Recently, a few datasets have been used containing unstructured dialogues extracted from Twit-
ter2. Ritter et al. (2010) collected 1.3 million conversations; this was extended in Sordoni et al.
(2015b) to take advantage of longer contexts by using A-B-A triples. Shang et al. (2015) used data
from a similar Chinese website called Weibo3. However to our knowledge, these datasets have not
been made public, and furthermore, the post-reply format of such microblogging services is perhaps
not as representative of natural dialogue between humans as the continuous stream of messages in
a chat room. In fact, Ritter et al. (2010) estimate that only 37% of posts on Twitter are ‘conversa-
tional in nature’, and 69% of their collected data contains exchanges of only length 2 (Ritter et al.,
2010). We hypothesize that the interaction patterns of chat-room style messaging are more closely
correlated to human-human dialogue than micro-blogging websites, or forum-based sites such as
Reddit.

Part of the Ubuntu chat logs have previously been aggregated into a dataset, called the Ubuntu
Chat Corpus (Uthus and Aha, 2013b). However that resource preserves the multi-participant struc-
ture and thus is less amenable to the investigation of more traditional two-party conversations.

Also weakly related to our contribution is the problem of question-answer systems. Several
datasets of question-answer pairs are available (Boyd-Graber et al., 2012), however these interac-
tions are much shorter than what we seek to study.

For a comprehensive survey of both available dialogue datasets and prevalent models, see Serban
et al. (2015).

2. https://twitter.com/
3. http://www.weibo.com/

35



LOWE, POW, SERBAN, CHARLINN, LIU AND PINEAU

2.2 Learning Architectures for End-to-End Dialogue Systems

Most dialogue research has historically focused on structured slot-filling tasks (Schatzmann et al.,
2005). Various approaches were proposed, yet few attempts leverage more recent developments in
neural learning architectures. A notable exception is the work of Henderson et al. (2014b), which
proposes an RNN structure, initialized with a denoising autoencoder, to tackle the DSTC 3 domain.

Work on end-to-end dialogue systems was recently pioneered by Ritter et al. (2011), who pro-
posed a response generation model for Twitter data based on ideas from Statistical Machine Trans-
lation. In particular, they consider a model that ‘translates’ from the context of a conversation to the
associated response. This is shown to give superior performance to previous information retrieval
(e.g. nearest neighbour) approaches (Jafarpour et al., 2010). This idea was further developed by
Sordoni et al. (2015b) to exploit information from a longer context, using a structure similar to the
Recurrent Neural Network Encoder-Decoder model (Cho et al., 2014). This achieves rather poor
performance on A-B-A Twitter triples when measured by the BLEU score (a standard for machine
translation), yet performs comparatively better than the model of Ritter et al. (2011). Their results
were also verified with a human-subject study.

A similar Encoder-Decoder framework for dialogue is presented by Shang et al. (2015) and
Vinyals and Le (2015). This model also uses one RNN to transform the input to some vector
representation, and another RNN to ‘decode’ this representation to a response by generating one
word at a time. The model from Shang et al. (2015) was also evaluated in a human-subject study,
although on a smaller scale compared to Sordoni et al. (2015b).

A hierarchical version of the Encoder-Decoder framework has also recently been proposed (Ser-
ban et al., 2016). This model consists of two RNNs stacked on top of each other: one ‘sentence-
level’ RNN encodes each utterance into a fixed length vector, while a ‘conversation-level’ RNN
takes as input each utterance vector and outputs a vector that summarizes the conversation so far.
This is mapped back to text using a recurrent decoder. This improves over the traditional Encoder-
Decoder frameworks in both word perplexity and word error rate, particularly when bootstrapped
with word embeddings derived from distributional semantics. However, the model has not been
evaluated in any human-subject studies.

Another approach, taken in Traum et al. (2015), uses information retrieval techniques to map
user questions to systems responses in the domain of time-offset interaction. Since the natural lan-
guage interpreter, dialogue response selection, and natural language generator model are all com-
bined, this can also be seen as a form of end-to-end dialogue system. Inaba and Takahashi (2016)
also propose an end-to-end retrieval model, however they use neural networks to select a response
from a fixed dataset. This is similar to the model used by Lowe et al. (2015). Our work is also
inspired by Nio et al. (2014) whose model, although rule-based, is not composed of modules, as it
retrieves a response to the context based on cosine similarity. This is in turn related to the work on
example-based dialogue modeling (Lee et al., 2009).

There has been some work on combining end-to-end dialogue models with auxiliary information
regarding the persona or participant role of each person in the dialogue. Luan et al. (2016) investi-
gate several models that incorporate participant roles, using topic-modelling based approaches with
LDA. Li et al. (2016a) use an embedding for each separate speaker in the conversation, which is
used to condition the decoder in an LSTM model. They achieve improvements in both perplexity
and BLEU on a Twitter dataset.
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There has also been interesting work using deep reinforcement learning for end-to-end dialogue
generation. Li et al. (2016b) propose using a deep Q-network (DQN) for dialogue generation,
using a set of reward functions designed to increase the diversity of generated responses. Zhao
and Eskenazi (2016) similarly use a deep recurrent Q-network (DRQN) to replace the conventional
NLU, state tracking, and dialogue policy modules for task-oriented dialogue.

One of the most effective task-oriented end-to-end systems is presented by Wen et al. (2016),
who train an end-to-end system on a small dataset of restaurant recommendations. They show that
they are able to achieve a higher task completion rate than a modular baseline, and have significantly
higher scores in naturalness, comprehension, preference, and performance.

Overall, these models highlight the potential of end-to-end learning architectures for interactive
systems. However, much work remains before these can be implemented with confidence in a
variety of settings.

3. The Ubuntu Dialogue Corpus

There are several factors that motivated the creation of the Ubuntu Dialogue Corpus. In particular,
there was a lack of large, multi-turn, publicly available dialogue datasets. In addition to providing
a dataset that satisfied these constraints, we wanted the dataset to be two-way (dyadic), as opposed
to multi-participant chat, and we desired a task-specific domain. All of these characteristics are
satisfied by the Ubuntu Dialogue Corpus.

3.1 Ubuntu Chat Logs

The Ubuntu Chat Logs refer to a collection of logs from Ubuntu-related chat rooms on the Freenode
Internet Relay Chat (IRC) network. This protocol allows for real-time chat between a large number
of participants. Each chat room, or channel, has a particular topic, and every channel participant
can see all the messages posted in a given channel. Many of these channels are used for obtaining
technical support with various Ubuntu issues.

As the contents of each channel are moderated, most interactions follow a similar pattern. A
new user joins the channel, and asks a general question about a problem they are having with
Ubuntu. Then, another more experienced user replies with a potential solution, after first addressing
the ‘username’ of the first user. This is called a name mention (Uthus and Aha, 2013a), and is
done to avoid confusion in the channel — at any given time during the day, there can be between
1 and 20 simultaneous conversations happening in some channels. In the most popular channels,
there is almost never a time when only one conversation is occurring; this renders it particularly
problematic to extract dyadic dialogues. A conversation between a pair of users generally stops
when the problem has been solved, though some users occasionally continue to discuss a topic not
related to Ubuntu.

Despite the nature of the chat room being a constant stream of messages from multiple users, it
is through the fairly rigid structure in the messages that we can extract the dialogues between users.
Figures 2 and 3 show an example chat room conversation from the #ubuntu channel as well as the
extracted dialogues, which illustrates how users usually state the username of the intended message
recipient before writing their reply (we refer to all initial questions and replies as ‘utterances’). For
example, it is clear that users ‘Taru’ and ‘kuja’ are engaged in a dialogue, as are users ‘Old’ and
‘bur[n]er’, while user ‘ pm’ is asking an initial question, and ‘LiveCD’ is perhaps elaborating on a
previous comment.
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Time User Utterance
03:44 Old I dont run graphical ubuntu,

I run ubuntu server.
03:45 kuja Taru: Haha sucker.
03:45 Taru Kuja: ?
03:45 bur[n]er Old: you can use “ps ax”

and “kill (PID#)”
03:45 kuja Taru: Anyways, you made

the changes right?
03:45 Taru Kuja: Yes.
03:45 LiveCD or killall speedlink
03:45 kuja Taru: Then from the terminal

type: sudo apt-get update
03:46 pm if i install the beta version,

how can i update it when
the final version comes out?

03:46 Taru Kuja: I did.

Sender Recipient Utterance
Old I dont run graphical ubuntu,

I run ubuntu server.
bur[n]er Old you can use “ps ax” and

“kill (PID#)”
kuja Taru Haha sucker.
Taru Kuja ?
kuja Taru Anyways, you made the

changes right?
Taru Kuja Yes.
kuja Taru Then from the terminal type:

sudo apt-get update
Taru Kuja I did.

Figure 2: Example chat room conversation from the #ubuntu channel of the Ubuntu Chat Logs
(left), with the disentangled conversations for the Ubuntu Dialogue Corpus (right).

Time User Utterance
[12:21] dell well, can I move the drives?
[12:21] cucho dell: ah not like that
[12:21] RC dell: you can’t move the

drives
[12:21] RC dell: definitely not
[12:21] dell ok
[12:21] dell lol
[12:21] RC this is the problem with

RAID:)
[12:21] dell RC haha yeah
[12:22] dell cucho, I guess I could

just get an enclosure
and copy via USB...

[12:22] cucho dell: i would advise you to
get the disk

Sender Recipient Utterance
dell well, can I move the drives?

cucho dell ah not like that
dell cucho I guess I could just get an

enclosure and copy via USB
cucho dell i would advise you to get the

disk
dell well, can I move the drives?
RC dell you can’t move the drives.

definitely not. this is
the problem with RAID :)

dell RC haha yeah

Figure 3: Example of before (left) and after (right) the algorithm adds and concatenates utterances
in dialogue extraction. Since RC only addresses dell, all of his utterances are added,
however this is not done for dell as he addresses both RC and cucho.

3.2 Dataset Creation

In order to create the Ubuntu Dialogue Corpus, first a method had to be devised to extract dyadic
dialogues from the chat room multi-party conversations. The first step was to separate every mes-
sage into 4-tuples of (time, sender, recipient, utterance). Given these 4-tuples, it is straightforward
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Figure 4: Plot of number of conversations with a given number of turns. Both axes use a log scale.

to group all tuples where there is a matching sender and recipient. Although it is easy to separate
the time and the sender from the rest, finding the intended recipient of the message is not always
trivial.

3.2.1 RECIPIENT IDENTIFICATION

While in most cases the recipient is the first word of the utterance, it is sometimes located at the end,
or not at all in the case of initial questions. Furthermore, some users choose names corresponding to
common English words, such as ‘the’ or ‘stop’, which could lead to many false positives. In order
to solve this issue, we create a dictionary of usernames from the current and previous days, and
compare the first word of each utterance to its entries. If a match is found, and the word does not
correspond to a very common English word4, it is assumed that this user was the intended recipient
of the message. If no matches are found, it is assumed that the message was an initial question, and
the recipient value is left empty.

3.2.2 UTTERANCE CREATION

The dialogue extraction algorithm works backwards from the first response to find the initial ques-
tion that was replied to, within a time frame of 3 minutes. A first response is identified by the
presence of a recipient name (someone from the recent conversation history). The initial question is
identified to be the most recent utterance by the recipient identified in the first response.

All utterances that do not qualify as a first response or an initial question are discarded; initial
questions that do not generate any response are also discarded. We additionally discard conversa-
tions longer than five utterances where one user says more than 80% of the utterances, as these are

4. We use the GNU Aspell spell checking dictionary.
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# dialogues (human-human) 936,000
# utterances (in total) 7,100,000

# words (in total) 100,000,000
Min. # turns per dialogue 3
Avg. # turns per dialogue 7.71

Avg. # words per utterance 10.34
Median conversation length (min) 6

Training set dialogues 898,000
Validation/test set dialogues 19,000

Training set examples unspecified

Table 1: Properties of Ubuntu Dialogue Corpus. Note that any number of training examples can be
specified during creation of the training set. Depending on the desired number of exam-
ples, multiple passes are made through the dataset, where each pass samples a new context
stochastically from each dialogue. Very large training sets are possible, yet they will have
overlapping examples.

typically not representative of real chat dialogues. Finally, we consider only extracted dialogues
that consist of 3 turns or more to encourage the modeling of longer-term dependencies.

To alleviate the problem of ‘holes’ in the dialogue, where one user does not address the other
explicitly, as in Figure 3, we check whether each user talks to someone else for the duration of
their conversation. If not, all non-addressed utterances are added to the dialogue. An example
conversation along with the extracted dialogues is shown in Figure 3. Note that we also concatenate
all consecutive utterances from a given user.

We do not apply any further pre-processing (e.g. tokenization, stemming) to the data as released
in the Ubuntu Dialogue Corpus. However the use of pre-processing is standard for most NLP
systems, and was also used in our analysis (see Section 4).

3.2.3 SPECIAL CASES AND LIMITATIONS

It is often the case that a user will post an initial question, and multiple people will respond to it with
different answers. In this instance, each conversation between the first user and the user who replied
is treated as a separate dialogue. This has the unfortunate side-effect of having the initial question
appear multiple times in several dialogues. However the number of such cases is sufficiently small
compared to the size of the dataset.

Another issue to note is that the utterance posting time is not considered for segmenting conver-
sations between two users. Even if two users have a conversation that spans multiple hours, or even
days, this is treated as a single dialogue. However, such dialogues are rare. We include the posting
time in the corpus so that other researchers may filter as desired.

3.3 Dataset Statistics

Table 1 summarizes properties of the Ubuntu Dialogue Corpus. One of the most important features
of the Ubuntu chat logs is its size. This is crucial for research into building dialogue managers based
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on neural architectures. Another important characteristic is the number of turns in these dialogues.
The distribution of the number of turns is shown in Figure 4. It can be seen that the number of
dialogues and turns per dialogue follow an approximate power law relationship.

3.4 Test Set Generation

We set aside 2% of the Ubuntu Dialogue Corpus conversations to form a test set that can be used for
evaluation of response selection algorithms5. Compared to the rest of the corpus, this test set has
been further processed to extract a pair of (context, response, flag) triples from each dialogue. The
flag is a Boolean variable indicating whether or not the response was the actual next utterance after
the given context. The response is a target (output) utterance which we aim to correctly identify. The
context consists of the sequence of utterances appearing in the conversation prior to the response.

We create a pair of triples, where one triple contains the correct response (i.e. the actual next
utterance in the dialogue), and the other triple contains a false response, sampled randomly from
elsewhere within the test set. The flag is set to 1 in the first case and to 0 in the second case. An
example pair is shown in Table 2. To make the task harder, we can move from pairs of responses
(one correct, one incorrect) to a larger set of wrong responses (all with flag=0). In our experiments
below, we consider both the case of 1 wrong response and 10 wrong responses.

Context Response Flag
well, can I move the drives? I guess I could just 1

eot ah not like that get an enclosure and
copy via USB

well, can I move the drives? you can use “ps ax” 0
eot ah not like that and “kill (PID #)”

Table 2: Test set example with (context, reply, flag) format. The ‘ eot ’ tag is used to denote the
end of a user’s turn within the context, and the ‘ eou ’ tag is used to denote the end of a
user utterance without a change of turn.

Since we want to learn to predict all parts of a conversation, as opposed to only the closing
statement, we consider various portions of context for the conversations in the test set. The context
size is determined stochastically by uniform sampling6:

c =∼ Unif(2, t− 1).

Here, parameter t is the actual length of that dialogue (thus the constraint that c ≤ t − 1). In
practice, this leads to short test dialogues having short contexts, while longer dialogues are often
broken into a combination of short, medium, and long contexts.

5. Note that, contrary to the original Ubuntu Dialogue Corpus, the updated version separates the training, validation, and
test sets by time. That is, the training set consists of conversations that started from 2004 to approximately April 27,
2012; the validation set consists of dialogues starting from April 27 to August 7, 2012; and the test set has dialogues
from August 7 to December 1, 2012. This mimics the training of dialogue systems in practice, where we only have
access to data in the past, and want to answer user queries in the future.

6. Note that this is a different formula than the original Ubuntu Dialogue Corpus, which sampled from a decreasing
distribution. The new formula is simpler and leads to longer sampled contexts, which we consider desirable.
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Note that, except for the plot in Figure 7, all experiments, results, and analysis in this paper will
refer to the updated Ubuntu Dialogue Corpus v2.

4. Response Classification Architectures

To provide further evidence of the value of our dataset for research into neural architectures for
dialogue managers, we provide performance benchmarks using two different training and evaluation
criteria: response classification, and response generation.

We first consider response classification architectures, which attempt to distinguish between
valid and invalid next responses to the context of a conversation. These are trained on the task of
best response selection, which we call next utterance classification (NUC). This can be achieved
by processing the data as described in Section 3.4, without requiring any human labels. This clas-
sification task is an adaptation of the recall and precision metrics previously applied to dialogue
datasets (Schatzmann et al., 2005).

Note that retrieval models trained on the task of NUC are still end-to-end, as the natural language
understanding, dialogue planning, and generation modules are combined, and the system is learned
with a single supervision signal. These models can be used to ‘generate’ the next utterance in a
conversation by retrieving the most probable next utterance from the entire training set, given the
context. Thus, we can also evaluate these models using several generative metrics, that compare the
selected response to the ground-truth response. We carry this out in Section 4.5.

We consider one naive model and two neural network-based retrieval models. The approaches
considered are: TF-IDF, and models using Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM). Prior to applying each method, we perform standard pre-processing of the data
using the NLTK7 library and Twitter tokenizer8 to parse each utterance. We use generic tags for
various word categories, such as names, locations, organizations, URLs, and system paths.

To train the RNN and LSTM architectures, we process the full training Ubuntu Dialogue Corpus
into the same format as the test set described in Section 3.4, extracting (context, response, flag)
triples from dialogues. For the training set, we sample the responses in the same way described in
Section 3.4. One can generate any number of training examples by iterating several times through
the training data. Negative responses are selected at random from the rest of the training data. We
note that for all models presented in this paper, the entire context of the dialogue that is available
(i.e. after the context length sampling procedure in Section 3.4 used to create the dataset) is taken
into account, and not just the most recent utterance. For the response classification architectures,
this is done by concatenating all context utterances together.

We note that the models proposed below do not explicitly take into account ordinal information.
The reasons for doing this are two-fold. First, training neural networks using classification for rank-
ing tasks is well-established in the literature (Bordes et al., 2014), and is both simple to implement
and effective in practice. Second, in the Ubuntu Dialogue Corpus we do not have supervised ordi-
nal data for the relative quality of next responses given a context. More advanced methods could
consider some way to approximate this ordinal information, such that a neural network model could
be explicitly trained as a ranking system; however, this is beyond the scope of this paper.

7. www.nltk.org/
8. http://www.ark.cs.cmu.edu/TweetNLP/
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4.1 TF-IDF

Term frequency-inverse document frequency is a statistic that intends to capture how important a
given word is to some document, which in our case is the context (Ramos, 2003). It is a technique
often used in document classification and information retrieval. The ‘term-frequency’ term is simply
a count of the number of times a word appears in a given context, while the ‘inverse document
frequency’ term puts a penalty on how often the word appears elsewhere in the corpus. The final
score is calculated as the product of these two terms, and has the form:

tfidf(w, d,D) = f(w, d)× log
|D|

|{d ∈ D : w ∈ d}|
, (1)

where f(w, d) indicates the number of times word w appeared in context d and the denominator
represents the number of dialogues in which the word w appears.

For classification, the TF-IDF vectors are first calculated for the context and each of the candi-
date responses. Given a set of candidate response vectors, the one with the highest cosine similarity
to the context vector is selected as the output. For Recall@k, the top k responses are returned.

4.2 RNN Dual Encoder

Recurrent neural networks are a variant of neural networks that allows for time-delayed directed
cycles between units (Elman, 1990). This leads to the formation of an internal state of the network,
ht at time step (word index) t, which allows it to model time-dependent data. The internal state is
updated at each time step as some function of the observed variables xt, and the hidden state at the
previous time step ht−1, with W x and W h matrices associated with the input and hidden state:

ht = f(W hht−1 +W xxt). (2)

RNNs have been the primary building block of many current neural models for language-related
tasks (Sutskever et al., 2014; Sordoni et al., 2015b), which use RNNs as encoders and decoders;
in this case, the first RNN is used to encode the given context, and the second RNN generates
a response by using beam-search, where its initial hidden state is biased using the final hidden
state from the first RNN. We detail such models in Section 5. However, in this section, we are
concerned with classification of responses, and thus using a decoder RNN for generation is not
strictly necessary (and thus is not used in the model shown in Figure 5). In this section we build
upon the approach in (Bordes et al., 2014), which has also been recently applied to the problem of
question answering (Yu et al., 2014), and use RNNs for classification rather then generation.

We use a siamese network consisting of two RNNs with tied weights to produce the embeddings
for the context and response, that we call the Dual-Encoder (DE) model. Given some input context
and response, we compute their embeddings — c, r ∈ Rd, respectively — by feeding the word
embeddings one at a time into its respective RNN. Word embeddings are initialized using the pre-
trained vectors (Common Crawl, 840B tokens from (Pennington et al., 2014)), and fine-tuned during
training. The hidden state of the RNN is updated at each step, and the final hidden state represents
a summary of the input utterance. Using the final hidden states from both RNNs, we then calculate
the probability that this is a valid pair:

p(flag = 1|c, r,M) = σ(cTMr + b), (3)
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Figure 5: Diagram of the Dual Encoder (DE) model. The RNNs have tied weights. c, r are the last
hidden states from the RNNs. ci, ri are word vectors for the context and response, i < t.
We consider contexts up to a maximum of t = 160.

where the bias b and the matrix M ∈ Rd×d are learned model parameters. This can be thought
of as a generative approach; given some input response, we generate a context with the product
c′ = Mr, and measure the similarity to the actual context using the dot product. This is converted
to a probability with the sigmoid function. The model is trained by minimizing the cross entropy of
all labeled (context, response) pairs (Yu et al., 2014):

L = −
∑
n

log p(flagn|cn, rn,M) (4)

where ||θ||2F is the Frobenius norm of θ = {M, b}. A diagram of the DE model can be seen in
Figure 5.

For training, we used a 1:1 ratio between true responses (flag = 1), and negative responses
(flag=0) drawn randomly from elsewhere in the training set. The RNN architecture is set to 1 hid-
den layer with 100 neurons (optimized over {10, 50, 100, 200, 300}), and a learning rate of 0.0001
(optimized over {0.1, 0.01, 0.001, 0.0001}). The W h matrix is initialized using orthogonal weights
(Saxe et al., 2013), while W x is initialized using a uniform distribution with values between -0.01
and 0.01. We use the first-order stochastic gradient optimization procedure Adam (Kingma and Ba,
2014) with the default parameters, using gradients clipped to 10 and a batch size of 512 (optimized
over {128, 256, 512}). We found that weight initialization as well as the choice of optimizer were
critical for training the RNNs.

4.3 LSTM Dual Encoder

In addition to the RNN model, we consider the same architecture but change the hidden units to
long-short term memory (LSTM) units (Hochreiter and Schmidhuber, 1997). LSTMs were intro-
duced in order to model longer-term dependencies. This is accomplished using a series of gates
that determine whether a new input should be remembered, forgotten (and the old value retained),
or used as output. The error signal can now be propagated back much further using the gates of
the LSTM unit. This helps overcome the vanishing gradient and exploding gradient problems in
standard RNNs, where the error gradients would otherwise decrease or increase at an exponential
rate. For this model, we used 1 hidden layer with 200 neurons, a learning rate of 0.001, and a batch
size of 256 (optimized over the same values as the RNN). We again use the default Adam settings,
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and initialize the forget gate bias of the LSTM to 2.0. The hyper-parameter configuration (including
number of neurons) was optimized independently for RNNs and LSTMs using a separate validation
set extracted from the training data.

4.4 Evaluation Metrics

We consider two types of evaluation metrics: retrieval metrics, and generative metrics. These
metrics are applicable to both models trained on the task of NUC, detailed in this section, and
the generative models introduced in Section 5. In particular, they offer two ways of automatically
evaluating dialogue systems trained in an end-to-end manner.

For retrieval, we evaluate using Recall@k (denoted R@1 R@2, R@5 below), which has often
been used in language tasks. Here the agent is asked to select the k most likely responses, and it is
correct if the true response is among these k candidates. Only the R@1 metric is relevant in the case
of binary classification (as in the Table 2 example). Although a language model that performs well
on these retrieval metrics is not guaranteed to achieve good performance on utterance generation,
we hypothesize that improvements on a model with regards to the classification task will eventually
lead to improvements for the generation task. See Section 6 for further discussion of this point.

We also consider generative metrics that compare the generated or retrieved utterance to the
ground-truth next utterance. In general, this is a hard open problem (Liu et al., 2016). We use
methods based on word embeddings that have recently been proposed for use in evaluating non-
task oriented dialogue systems, when no task completion signal is available. These metrics use
external word embeddings trained via distributional semantics, such as GloVe, to determine how
close the generated utterance is to the ground truth next utterance. We note that these metrics do
not necessarily correlate strongly with human judgement (Liu et al., 2016); here, we consider them
to be measures of the topicality of the retrieved responses. If the generated response and ground-
truth response are semantically similar, then the vector-based metrics should be higher, as word
embeddings themselves contain semantic information (Mikolov et al., 2013). It is because of this
interpretation that we prefer the vector-based metrics over word-overlap metrics such as BLEU.

The embedding average score approximates the compositional embedding of each utterance
by taking an average of the word vectors that compose the utterance. The utterance embedding
similarities are then compared using cosine similarity. The greedy matching score, originally used
to analyze semantic similarity between sentences in intelligent tutoring systems (Rus and Lintean,
2012), matches the most similar word in the generated utterance to the actual utterance using cosine
similarity of the word embeddings. The vector extrema score was proposed by (Forgues et al., 2014)
for dialogue systems. Instead of averaging each word embedding, this approach takes the element-
wise maximum (or minimum) of each component in the word vectors composing an utterance.
This results in utterance embeddings of the same size of each word vector, which can again be
compared using cosine similarity. These metrics are able to capture some aspects of dialogue that
are not present in BLEU score. We note that, to keep the assumptions of independent and identically
distributed (i.i.d.) training and test data examples valid, it is important to have the word embeddings
used for the metrics trained on a different corpus than the task corpus, as argued by Liu et al. (2016).
This preserves the statistical independence between the task and each performance metric, and
alleviates the possibility of spurious and potentially misleading correlations between data examples.
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4.5 Experimental Results

We examine the performance of the models using both retrieval and vector based metrics, as shown
in Tables 3 and 4. For NUC, the models were evaluated using both 1 (1 in 2) and 9 (1 in 10) false
examples.9

Retrieval Metrics
Method 1 in 2 R@1 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5
TF-IDF 74.9% 48.8% 58.7% 76.3%
Dual Encoder w/RNN units 77.7% 37.9% 56.1% 83.6%
Dual Encoder w/LSTM units 86.9% 55.2% 72.1% 92.4%

Table 3: Results for the three algorithms using various recall measures for binary (1 in 2) and 1 in
10 (1 in 10) next utterance classification %.

Generative Metrics
Method Embedding Average Greedy Matching Vector Extrema
TF-IDF 0.536 0.370 0.342
Dual Encoder w/ LSTM units 0.650 0.413 0.376

Table 4: Results for TF-IDF and the DE model with LSTM units on the embedding average, greedy
matching, and vector extrema scores. These scores provide an estimate of the topic con-
sistency of the generated responses.

Context
“any apache hax around ? i just deleted all of

path - which package provides it ?”,
“reconfiguring apache do n’t solve it ?”

Ranked Responses Flag
1. “does n’t seem to, no” 1
2. “you can log in but not transfer files ?” 0

Figure 6: Example showing the ranked responses from the LSTM. Each utterance is shown after
pre-processing steps.

We observe that the Dual Encoder with LSTM units outperforms both the Dual Encoder with
RNN units and TF-IDF on all evaluation metrics. It is interesting to note that TF-IDF actually
outperforms the RNN on the Recall@1 case for the 1 in 10 classification. This is most likely due to
the limited ability of the RNN to take into account long contexts, which can be overcome by using
the LSTM. An example output of the LSTM where the response is correctly classified is shown in
Figure 6.

We also show, in Figure 7, the increase in performance of the LSTM as the amount of data used
for training increases. This confirms the importance of having a large training set.

9. The performance metrics Recall@2 and Recall@5 are not relevant in the binary classification case.
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Figure 7: The LSTM (with 200 hidden units), showing Recall@1 for the 1 in 10 classification, with
increasing dataset sizes up to 120k dialogues. Note that this was calculated using the old
version of the Ubuntu Dialogue Corpus, and thus the Recall@1 values are higher than
those in Table 3.

4.6 Qualitative Error Analysis

There are a large number of technical challenges that must be solved in order to construct a system
that can provide adequate responses in a dialogue. In fact, almost all common challenges in natural
language processing are present in some form or another in the dialogue problem. These include,
but are not limited to: coreference resolution, lexical semantics, discourse coherence and cohesion,
natural language understanding, natural language generation, compositional semantics, the turn tak-
ing structure of dialogue, and more. Further, it is often necessary to have some technical knowledge
about the subject matter being discussed. It is clear that current end-to-end dialogue systems are
not able to adequately address all these problems, yet precisely which aspects of conversation are
the most prevalent sources of errors remains relatively unknown. This is particularly true for neural
network models for dialogue, which have only recently come into prominence.

We undertake the task of evaluating an end-to-end dialogue system, the DE model with LSTM
units, on the Ubuntu Dialogue Corpus for the NUC task. We hope that an understanding of the
most common errors made by this model can help inform future work on neural dialogue systems,
particularly on the Ubuntu Dialogue Corpus.

We conduct an error analysis with three participants10 evaluating a total of 100 randomly chosen
errors made by the Dual Encoder. For each error made by the model11, we consider what abilities the
model would need to have in order to answer the question correctly. We classify these into several

10. Participants were graduate students in computer science, who had familiarity with both dialogue systems and the
Ubuntu domain.

11. We consider an error to be any example where the correct response is not the top 1 response ranked by the model.
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categories: using knowledge, understanding tone and style of the responses, a better understanding
of the semantic similarity of phrases, and explicitly considering the turn-taking nature of dialogue.
Since we are evaluating a classification model, we do not consider problems associated with natural
language generation. Note that an error can be classified into multiple categories, if they are each
necessary to answer the question correctly.

In addition to classifying the errors made by the model, we qualitatively evaluate the difficulty
of the questions on a scale from 1-5. A rating of 1 on the difficulty scale means that the question is
easily answerable by all humans. A 2 indicates moderate difficulty, which should still be answerable
by all humans but only if they are paying attention. A 3 means that the question is fairly challenging,
and may either require some familiarity with Ubuntu or the human respondent paying very close
attention to answer correctly. A 4 is very hard, usually meaning that there are other responses that
are nearly as good as the true response; many humans would be unable to answer questions of
difficulty 4 correctly. A 5 means that the question is effectively impossible: either the true response
is completely unrelated to the context, or it is very short and generic.

Finally, we evaluate the appropriateness of the response chosen by the model for each question
on a scale from 1-3. A score of 1 indicates that the chosen response is completely unreasonable
given the context. A 2 means that the response chosen was somewhat reasonable, and that it’s
possible for a human to make a similar mistake. A 3 means that the model’s response was more
suited to the context than the actual response.

We note that such an analysis is partially dependent on the model and the domain. The end-
to-end system from Wen et al. (2016) achieves very strong performance, and thus would not face
exactly the same problems as the models we present here. However, this is because the model was
trained on a very narrow dataset of restaurant recommendations, and thus the space of generated
responses is comparatively small. We believe that other conversational models trained on large,
complex datasets are likely to encounter the same problems that we present here.

In the Ubuntu domain, questions where using external knowledge would be helpful for the
model involve technical terminology. In most cases, the correct response contains the name of a
command or process that is related to one stated in the context; however, the model is unable to
link the two together. An example of such a question is shown in Figure 8. In this case, the context
of the conversation is about file searching in Ubuntu, and the correct response (in italics) mentions
the locate command. This response would have been assigned a higher probability if it was able to
determine the meaning of the locate command.

There are other examples where the model may be incapable of taking into account the specific
tone or style of the users in the conversation. For instance, a speaker may use many emoticons,
have poor English grammar skills and be prone to misspelling words, use frequent abbreviations,
or use a particularly formal tone. Being able to spot these distinct language features could lead the
model to improve its performance in terms of selecting the actual next response. An example of this
is shown in Figure 9. In the context, Speaker A appends his question with an (unnecessary) smiley
face. Thus, it is more likely that the candidate response with multiple smiley faces is the correct
response.

One of the most important challenges in natural language is understanding the semantics of
phrases. Classification dialogue models can make errors due to an inability to detect semantic
similarities between sentences, or due to the detection of spurious similarities. This category covers
the general case where the topic of the model’s response is clearly different than the topic of the
context and true response. In this category, we also define two special cases: one where there is a
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Context: Speaker A: is there anything I can do to make ubuntus filesearching faster ? I
am running from an ssd and it ’s still painfully slow eou

Speaker B: searching how ? eou
Speaker A: hitting the search button from nautilus eou searching systemwide eou

Binary
Probability Candidate Responses

0.10 i tend to use the locate command . eou
0.38 I‘m not that into it , but it has to be session in one , or track in one or something to have the

rw funtion eou
0.06 Np eou
0.56 probably just junky firefox eou I bet you have a tonne of addons eou that all takes

resources eou what other apps are you running ? eou how much ram frees after you
close skype ( if its convenient )

0.48 except I get an invite eou
0.44 installing from source on ubuntu isn’t a great idea IMO . but look for a make uninstall option eou
0.16 oh i get it , thanks a lot eou
0.21 the python one eou i think cron may be able to do that .. to restart a task if it dies out

prematurely eou well you can show your #python script and people may suggest the best way to
*overcome and premature *unknown** .. eou if it ’s a buggy script then you’d expect it to
be very problematic with anything starting it eou

0.22 or killall ftl* eou
0.54 any help with custom msg eou

Figure 8: Example where the model would benefit from using an external knowledge source. Cor-
rect answer is in italics, and the model’s selected answer is in bold. Note that the prob-
abilities do not sum up to 1, as they are binary probabilities – the model considers each
candidate response independently.

Context: Speaker A: Whats the best RDP software for Ubuntu ? I want to be able to RDP into my
ubuntu desktop from my ubuntu laptop :) eou

Speaker B: Then just use VNC . eou
Binary

Probability Candidate Responses
0.15 what software , do you have any links to show how to to it ? : ) eou ur a beast ! TY again :) eou
0.04 wrong place stop it eou
0.33 could use puppet :) eou
0.29 lol eou
0.17 I’ve installed mine from “ Additional drivers ” eou
0.36 xP yeah that its been a long time since i last used my vpn server eou
0.00 yes , and where does it say it ’s released , or you can buy it , in actually anything about it

eou **unknown** ’s not released eou it ’s a concept canonical are working on / trying
to create eou

0.75 it ’s that “ persistence ” stuff ? what do you mean ? eou
0.00 sudo chown root : root /tmp && sudo chmod 1777 /tmp eou
0.00 python eou python eou

Figure 9: Example where the model would benefit from understanding the tone and style of the
speakers. Correct answer is in italics, and the model’s selected answer is in bold.
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Context: Speaker A: how do I move programs and all their dependencies automatically ? eou
Speaker B: you mean between two Ubuntu installations ? eou

Binary
Probability Candidate Responses

0.04 I have a chroot partition I’ve been using ldd and doing it manually but it is quite slow eou
0.00 if your not a geek then you won’t understand eou would you advise your grandmother to try and

install linux ? eou
0.02 that ’s where im stumped ... an older kernel made no difference , whilst an older release of Ubuntu did eou
0.71 well , everything with indicators is basically dbus eou
0.01 it ’s cool that you help people who run free software ;) bye eou
0.00 not by default , but it can . /var holds a lot of temp stuff like logs and debs , you don’t need those

cluttering your SSD and using write cycles eou also , move your web cache to ramdisk to make it
fast as well as not use your HDD at all :) eou its a disk space ... in ram eou

0.59 yes , but they speak http so I could use the Browser as a low-level access tool for browing repos and I
would like to do that , but that doesn’t seem to work . eou

0.61 sure eou
0.97 I believe it uses gdm but I’m not sure . The login manager thing looks the same as the stock ubuntu

12.10 one eou
0.14 ok , ty eou

Figure 10: Example where the model would benefit from the ability to conduct high-level infer-
ence to better understand the semantic similarity between context and correct response.
Correct answer is in italics, and the model’s selected answer is in bold.

direct word copying between the context and true response that the model failed to detect, and one
where some high-level inference is required to answer correctly. An example of the latter case is
shown in Figure 10; Speaker A asks how to install some programs automatically, and the correct
response states that they had previously been ‘doing it manually’. Thus, if the model was able to
infer that a person who has asked to perform an operation automatically could previously have been
doing it manually, it would have assigned a higher probability to the correct response.

Finally, we consider errors where the model is unable to account for the turn-taking structure
of dialogue. For the Ubuntu Dialogue Corpus, interactions between users usually take a certain
form, where one user is asking for help and the other user is providing answers. Thus, it is important
to consider the role of the current user when selecting the correct response; indeed, there has been
preliminary work in this direction (Luan et al., 2016; Li et al., 2016a). We also consider a special
case of this error, when the last utterance in the context asks a question and the response chosen by
the model is not answering any question at all. For example, in Figure 11, the final utterance asks
the question ‘no MM’s?’. The response selected by the model begins with ‘thanks’, which is clearly
not a reasonable response to a question.

An example of the general turn-taking error is shown in Figure 12. This depicts a typical di-
alogue between two users in the Ubuntu Dialogue Corpus: Speaker A is having trouble with their
brightness keys, and Speaker B is trying to help them. The model must predict the next response
of Speaker A. In the first response, the user states that they are appreciative of the help being given,
which fits with Speaker A’s behaviour in the context; thus, it is more likely to be the correct response.

We examined 100 randomly selected errors of the DE model on the Ubuntu Corpus to compute
the number of errors in each category; the results are shown in Table 13. We can first note that
there is significant progress to be made for classification models on the Ubuntu Dialogue Corpus;
over half (60%) of the errors made by the model can be considered feasible for the majority of
humans (1-3 on the difficulty rating). However, the number of questions that every human could
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Context: Speaker A: i can’t seem to get audio working as a non-root user . has anyone ever had this problem ? eou
Speaker B: alsamixer to the rescue eou
Speaker A: alsamixer shows everything turned on , and looks exactly the same for my normal user as it does for root eou
Speaker B: no MM’s? eou

Binary
Probability Candidate Responses

0.62 correct eou
0.92 true but how will he find my new ip so easily if i get it changed ? All i do is programming c and check

my mail usually eou
0.68 yes strange . then omit the dash altogether , try giving set default sink :/ eou
0.93 thanks eou where is the db app - i cannot locate it ( sorry to be such a noob ! ) eou
0.03 I’m switching the location to my on board SSD drive that ’s embedded to the laptops board . I just haven’t

been using the storage so I figure I could try and utilize the space while the ram being 8 gig ’s itself I
see no problem with the switch . Do you understand what I’m doing . I’m only asking here so I don’t go
screwing up and save myself hours of headaches eou

0.03 you’ll love it eou I am joking , but you will probably enjoy learning about it eou well it ’s a
step up from opening your hard drive up and using a magnet eou

0.44 yeah , 512 is plenty eou
0.20 i use it on a number of machines with no problems . just this one . eou modprobe pulls up a variety

of mouse drivers eou
0.62 so the issue is **unknown** **unknown** . gz ’ is different from the same file on the system ” but i don’t

have any idea why/what that means , sorry . best of luck . eou
0.89 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680m comes with optimus technology . so i think it

has an onboard intel card eou

Figure 11: Example where the model selects an inappropriate response to a question. Correct an-
swer is in italics, and the model’s selected answer is in bold.

Context: Speaker A: hi eou I have a problem with fn keys for brightness with my laptop and nvidia
propertiary driver eou

Speaker B: what make and model laptop ? ¿ eou
Speaker A: sony vaio vgn fz31z eou and im using nvidia propertiary driver version current ( recommended one ) eou
Speaker B: try the boot option : acpi backlight=vendor eou
Speaker A: i have added acpi backlight for vendor i have updated grub but the keys are not working eou my grub

cmd line linxu default : quiet splash acpi backlight=vendor eou
Speaker B: try the boot option : acpi osi=LINUX eou
Speaker A: ok i must remove the acpi backlihgt/ eou
Speaker B: I’d also report a bug eou could try Quantal liveCD to see if the newer kernel plays nicer eou
Speaker A: I think that is a nvidia problem with the propertiary eou
Speaker B: possibly , or it could be acpi based eou
Speaker A: ok thank you i must remove the previous about the vendor ok ? eou
Speaker B: could try both and then just one eou

Binary
Probability Candidate Responses

0.38 thanks for the help . Trying now . Is there any other same bug report for vaio/ eou
0.20 it ’s actually ubuntu support , since i’m using ubuntu , isn’t it ? eou
0.49 yes eou the usb disk will just be seen as a hard disk , install to it eou
0.50 if you do unattended-upgrades -d , that might tell you a few things ? eou
0.58 does this have ’ open terminal here ’ and ’ 2pane mode ’ options ? eou found terminal option , just looking

for 2pane eou
0.71 it ’s cool eou
0.02 it ’s like hotel internet eou http://www.fdlinux.com/networksetuphowto.html eou
0.01 I’ll check what it means in google . Thank you . eou
0.36 i never liked it ... for thin versions , i use fluxbox or some other window manager eou
0.49 so do I just paste that code in to the beginning of the script ... ? eou sorry experienced linux user ,

very very novice coder ;-P eou

Figure 12: Example where the model does not take into account the roles of the participants in the
dialogue. Correct answer is in italics, and the model’s selected answer is in bold.
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Difficulty Rating (1-5) Number of Errors % of Errors
Impossible (5) 19 19%
Very difficult (4) 21 21%
Difficult (3) 22 22%
Moderate (2) 25 25%
Easy (1) 13 13%
Model Response Rating (1-3)
Very reasonable (3) 14 14%
Somewhat reasonable (2) 37 37%
Unreasonable (1) 49 49%
Error Category
Tone and style 8 9%
Knowledge 18 20%
Semantic similarity 45 49%

Word copying 11 12%
High-level inference 16 18%

Turn-taking structure 20 22%
Answering questions 6 7%

Figure 13: Qualitative evaluation of the errors from the DE model. Note that counts for parent cat-
egories (semantic similarity and turn-taking structure) include the counts for the child
categories. Error categories are not classified for impossible questions and are not mu-
tually exclusive, thus totals may not add up to 100.

answer unconditionally is small, as technical language can often be confusing for people who are
unaccustomed to it. The other questions are roughly uniformly distributed over the remaining levels
of difficulty, from moderate to impossible. We also note that there are a large number of cases (49%)
where the response retrieved by the model was completely unreasonable given the context, which
further indicates that there is room for improvement in these models.

It is also interesting to examine the distribution of errors across the examples. As can perhaps
be expected, the most common form of error was a lack of understanding of the semantics of the
responses. What is more surprising is that there is a significant number of examples where the model
failed to observe that there was a key word shared between the context and the correct response;
this could be because there are often common words between the context and false responses in the
training set, and the model is unable to distinguish between words that are relatively unimportant
and those that carry significant semantic meaning. Thus, there is much progress to be made in
dialogue systems by working on the general problem of natural language understanding.

There are many examples where the model could be improved by explicitly accounting for the
turn-taking structure of dialogue, as there were often instances where the model selected a response
that was not suited to the current speaker. In several cases, the model also needed some form of
external knowledge base in order to answer the question correctly. Note that the number of such
examples in Table 13 refers to instances where the correct response mentions a Ubuntu term that is
related but not identical to the terminology in the context; if this were to be extended to all questions
where technical vocabulary is mentioned, the number would be significantly higher. Finally, there
is a small number of cases where a better understanding of the tone of the dialogue would help the
model, however this does not seem to be the best direction for future research.
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Figure 14: Diagram of the RNN architecture for dialogue modeling. Note that utterances in the
context are concatenated together before being fed into the RNN.

5. Generative Response Architectures

In order to aid progress towards the goal of building fully generative conversational models, we
present baseline models for generating responses conditioned on the context of the conversation for
the Ubuntu Dialogue Corpus. It should be noted that the format of the dataset can easily be altered
to support training in this manner: one can simply remove all (context, response, flag) triples with
flag = 0, and be left with only the valid (context,response) pairs.

5.1 Generative Recurrent Neural Language Model

We first describe the standard recurrent neural network language model (RNN-LM), as shown in
Figure 4.6, a neural network model which is used to predict the next word in a sequence of words
(Mikolov et al., 2010). The model observes the dialogue word-by-word and updates its hidden state
ht at time step (word index) t. Given a hidden state ht the model outputs a probability distribution
over all words in the vocabulary. Formally, the model computes the hidden state as described
in Equation (2): ht = f(W hht−1 + W xxt), where, ht−1 is the previous hidden state, xt is the
current input word, f(·) is a non-linear activation function such as tanh, and W x and W h are
model parameters. We will take ŷn = {w1, ..., wT } as the target output sequence for the nth training
example, given the input sequence x̂n = {x1, ..., xT }. The conditional distribution over each output
symbol is computed in a similar manner, and depends on the current hidden state ht:

p(wt|wt−1, ..., w1) =
exp(W o

wt
· ht)∑

w exp([W o]w · ht)
, (5)

where W o is the output matrix, and W o
w indicates the row of the W o matrix corresponding to the

output index for word w. The model is trained with teacher forcing, meaning the input xt to the
network is the previous ground-truth output word wt−1.

The model is trained in an end-to-end fashion by gradient descent to maximize the conditional
log-likelihood of input-output pairs from the training set, {x̂n, ŷn}:

max
θ

1

N

N∑
n=1

log pθ(ŷn|x̂n), (6)
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Figure 15: Diagram of the HRED model. Note that each utterance in the context is encoded with a
separate ‘utterance-level’ encoder, which is then fed into a ‘context-level’ encoder.

where θ are the parameters of the model, including W x,W h,W o, and the corresponding biases.
Thus, the model learns a probability distribution over all output sequences, p(ŷ1, ..., ŷT ).
For dialogue response generation, the model is conditioned on the previous dialogue context

and used to generate a response, i.e. the next utterance in the dialogue. Such a model could be used
as a full dialogue system, as defined in Section 1.1, to carry out a conversation with a user.

5.2 Hierarchical Recurrent Encoder-Decoder

One problem with directly applying a standard RNN language model to modeling dialogues is that
it does not take into account the turn-taking nature of conversations. It is well known that recurrent
neural networks have trouble learning long-term dependencies (Bengio et al., 1994), a problem only
partially alleviated with LSTMs. Thus, if a long context is fed into the encoder, it is possible for the
model to put a large weight on only the most recent utterance. In order to investigate models that
are able to retain state over long conversations, we implement the recently proposed hierarchical
recurrent encoder-decoder (HRED) Sordoni et al. (2015a). While this model was initially proposed
for context-sensitive query suggestion, it has been adapted for dialogue response generation on a
dataset of movie subtitles (Serban et al., 2016).

The HRED model builds on the traditional encoder-decoder model (Cho et al., 2014). The main
addition is a second encoder, the utterance-level encoder, that takes as input the fixed-length vectors
produced by the lower-level encoder, which we refer to as the word-level encoder. Instead of letting
the decoder take as input the fixed-length vectors from the word-level encoder, the decoder takes as
input the output of the utterance-level encoder. Intuitively, the utterance-level encoder summarizes
the history of the conversations into a single vector, which is more sensitive to previous utterances
in the conversation. This provides a more powerful architecture as it is now possible for the model
to encode order-dependent patterns inherent in the turn-taking nature of dialogue. As before, the
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model is trained end-to-end to maximize the log-likelihood of the generated utterance. A diagram
of the HRED model can be seen in Figure 5.1.

To summarize: the RNN-LM (Figure 4.6) uses a single RNN (or LSTM) to encode the entire
history of the dialogue, which consists of all utterances in the context concatenated together. It then
uses the same RNN (i.e. an RNN with the same parameters) to decode the prediction utterance.
The Encoder-Decoder model (not shown here) augments this with a second RNN with different
parameters for the decoder. All context utterances are still concatenated in the encoder, and thus
it is difficult to model long-term dependencies for utterances that occur earlier in the dialogue.
This problem is alleviated with the HRED model (Figure 5.1), which does not concatenate the
context utterances: each is encoded with a separate utterance-level encoder, whose output is fed
into an additional context-level encoder. The output of the context-level encoder depends on all the
utterances in the context, and is fed into the decoder. Each RNN has separate parameters.

Generative Metrics
Embedding Average Greedy Matching Vector Extrema

LSTM-LM 0.561 0.425 0.380
HRED 0.617 0.452 0.408
TF-IDF 0.536 0.370 0.342
Dual Encoder w/ LSTM units 0.650 0.413 0.376

Table 5: Results for both the generative and retrieval models on the embedding average, greedy
matching, and vector extrema scores. These scores provide an estimate of the topic con-
sistency of the generated responses.

Retrieval Metrics
1 in 2 R@1 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5

LSTM-LM 58.9% 19.6% 33.1% 61.4%
HRED 61.8% 21.5% 35.8% 64.5%
TF-IDF 74.9% 48.8% 58.7% 76.3%
Dual Encoder w/RNN units 77.7% 37.9% 56.1% 83.6%
Dual Encoder w/LSTM units 86.9% 55.2% 72.1% 92.4%
MEMN2N (Dodge et al., 2015) — 63.72% — —
RNN-CNN (Baudiš and Šedivỳ, 2016) 91.1% 67.2% 80.9% 95.6%
Ensemble (Kadlec et al., 2015) 91.5% 68.3% 81.8% 95.7%
r-LSTM (Xu et al., 2016) 88.9% 64.9% 78.5% 93.2%

Table 6: Results for both the generative and retrieval models using various recall measures for bi-
nary (1 in 2) and 1 in 10 (1 in 10) next utterance classification %. We include state-of-the-
art results from more recent papers.
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5.3 Experimental Results

We now examine the performance of the generative models using the vector-based metrics defined in
Section 4.4. The results for the RNN language model with LSTM units (LSTM-LM) and the HRED
model can be seen in Figure 5. As expected, the HRED model outperforms the baseline LSTM
model across all of the metrics. However, it is interesting to note that in a direct comparison with
the Dual Encoder model, the HRED model has a higher score in 2 out of the 3 metrics considered.
Thus, it is likely that the HRED model is generating responses that are more semantically similar to
the ground-truth response, and is better at staying on topic.

We also present the results for these models on the NUC task. It is possible to apply the genera-
tive models to the NUC task, as all that is required is the ability to assign probabilities to sequences
of utterances. Again, the HRED model predictably outperforms the LSTM-LM model on all met-
rics. This coincides with the results of (Serban et al., 2016) on a different dataset, using different
metrics. We can also see that the generative models perform much worse than the models explicitly
trained to retrieve utterances from a list. This is to be expected, as the retrieval models were trained
explicitly on the NUC task, while the generative models were not. Because of the discrepancy in
training objectives, we do not recommend the use of NUC for comparing generative models with
retrieval models. However, we believe that NUC is very useful for comparing generative models
with other generative models, and retrieval models with retrieval models; we justify this further in
Section 6.3.

5.4 Examples of Generated Responses

In order to obtain a better understanding of the quality of responses from the generative model, we
provide a table of examples from the LSTM-LM and HRED models in Table 7. We chose several
representative samples that provide insight into the behaviour, and the limitations, of the generative
models.12

First, we note that there are several situations where the generative models, particularly the
HRED model, produce reasonable responses. For instance, in example 8), the models are able to
generate a coherent and useful response concerning the installation of grub. The models achieve
this despite having no knowledge of Ubuntu other than what it has observed in the training corpus.

The HRED model is also able to generate reasonable responses when it is playing the role of the
non-expert who is seeking help. This is the case in examples 1), 3), and 6). However, the responses
from the model are fairly homogeneous; it is simply stating that it does not know how to solve the
problem. This is a commonly observed behaviour in the generated samples of the model. Given a
context, it is often reasonable to simply state ‘I don’t know’, or ‘I’m not sure’, and indeed these are
likely responses in the training set given many different contexts. This is the problem of generic
responses, and has previously been observed in end-to-end generative dialogue models (Vinyals and
Le, 2015).

There are other instances where the lack of semantic understanding is clear. In example 2), the
HRED makes a relevant statement about the command ‘sudo apt-get’, stating that the user should
try to run this command. However, it fails to understand that the last user utterance (‘I tried that, it
comes the same error’), refers to the user having already tried this exact command. It is difficult for
these models to integrate information from multiple utterances (Li et al., 2016b), and to understand
the concept of coreference.

12. The full set of model samples are available at: www.iulianserban.com/Files/UbuntuDialogueCorpus.zip
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Context Response
1) i set up my hd such that i have to type a passphrase to access it at boot. how can i remove
that passwrd, and just boot up normal. i did this at install, it works fine, just tired of having
reboots where i need to be at terminal to type passwd in. help? → backup your data, and
re-install without encryption “ might ” be the easiest method

HRED: how would i do
that?
LSTM: how do i do
that?

2) hi, everyone. I download the googleearth. deb, and want to install it with : sudo dpkg -i
something. deb, It tells me : google-earth-stable depends on lsb-core (>= 3.2 ) ; however :
Package lsb-core is not installed. So i just install the lsb-core, But it comes error : <url>
what should i do? → the error suggests running “ sudo apt-get -f install ” → i tried that, it
comes the same error

HRED: try “ sudo apt-
get -f install ”
LSTM: <unk>

3) I’ve a 2.0 TB hard drive. It no longer boots from the hard drive, but I can see it from
Gpart and it has a “ boot ” flag. How do I recover it? → the boot flag doesn’t mean anything
in Linux why do you not have a backup? you can mount the partition in liveCD and access
the data easily ( assuming the partition is healthy ) → I have one hard drive for the moment
( well, I don’t count the 250GB drive ) besides, I don’t have two SATA cables I will make a
backup as soon as I get another nice sized hard drive and a SATA cable And how do I find
out if the partition is healthy? → boot to ubuntu livecd and try and mount the partition

HRED: How do I do
that?
LSTM: on the live cd?

4) bottom line is usually if you got 64bit why not use it? ( unless there is something that
doesn’t work on 64bit, which is amitedly not much ) → well, now Clip2net is not work-
ing... just seems Ubuntu runs more seamlessly on 32-bit and after reading this article, Im
wondering if 64 is a bit hyped? <url>

HRED: I have no
experience with 64bit,
so I don’t know what
you mean.
LSTM: <unk>,
<unk>, <unk>,
<unk>, <unk>

5) How would I enable vim syntax highlighting on a default install of ubuntu 12.04? →
have you insalled vim instead of the default vim-tiny? → I installed vim-runtime but still
no highlighting

HRED: yes
LSTM: yes

6) Its comming from my computer 15 people using same router and they have no issues,
also it happened recently, before it was ok → yes but your router may have optional settings
for dns which if not set to the same dns will override your network interface... it ’s an option
to consider

HRED: how do I do
that?
LSTM: that is what I
was looking for, thanks

7) it looks as if the network ’s DHCP server is dead : “ < warn > ( eth0) : DHCPv4 request
timed out ” → but it isn’t. windows works

HRED: that ’s what
I thought, but I don’t
know how to fix it
LSTM:?

8) I’ve been having trouble with a new 3TB harddrive and a fresh Ubuntu install. I install (
as GPT ) and the install looks ok. But then get GRUB “ error : out of disk ” after reboot.
I have an October 2011 PC with updated BIOS and I do see the 3TB. google searches
haven’t been to helpful so far. has anyone seen GRUB trouble when installing on 3TB
harddrives? → have you tried installing grub again and updating it? sudo grub-install
sudo update-grub? → I guess I could try that. So I would have to install GRUB from an
older Ubuntu install?

HRED: yes, you can
install grub to the MBR
of your hard drive
LSTM: grub is in-
stalled on the mbr of
the hard drive

Table 7: Ubuntu model examples. The → token indicates a change of turn, and <unk> is the
unknown token.

Finally, we also observed that the LSTM language model in general produced many poor re-
sponses, consisting either of a single punctuation mark or a series of unknown tokens. This is seen
in examples 2), 4), and 7). On the contrary, the HRED model rarely produced such responses; thus,
there is some indication that by improving the model architecture, we will produce models that
generate longer and more interesting responses.

57



LOWE, POW, SERBAN, CHARLINN, LIU AND PINEAU

6. Discussion

This paper presents the Ubuntu Dialogue Corpus v2, a large dataset for research in unstructured
multi-turn dialogue systems. We describe the construction of the dataset and its properties. The
availability of a dataset of this size opens up several interesting possibilities for research into dia-
logue systems based on rich neural-network architectures. We present results demonstrating use of
this dataset to train end-to-end RNN-based models, and critically evaluate the errors they make. We
find that, while these models hold promise for building non-task oriented dialogue systems, they
still make many obvious errors, and there is significant room for improvement.

Next, we outline several interesting directions for future work.

6.1 Conversation Disentanglement

Our approach to conversation disentanglement consists of a small set of rules. More sophisticated
techniques have been proposed, such as training a maximum-entropy classifier to cluster utterances
into separate dialogues (Elsner and Charniak, 2008). However, since we are not trying to repli-
cate the exact conversation between two users, but only to retrieve plausible natural dialogues, the
heuristic method presented in this paper may be sufficient. This seems supported through qualitative
examination of the data, but could be investigated with a more formal evaluation.

6.2 Non-Task Oriented Model Evaluation

It may seem unconventional that, given the technical nature of the Ubuntu Dialogue Corpus and the
fact that it involves interactions where the end goal is solving a user’s problem, we are treating our
models as non-task oriented, meaning that we do not incorporate a supervised task completion or
user satisfaction signal during training or evaluation.

The reasons for this are purely practical; in general, training large, end-to-end goal-driven mod-
els is very difficult as it requires the collection of a large amount of task completion data. An-
notating data in this way on a large scale is extremely expensive, and is usually only feasible for
technical support channels at large corporations, which are rarely released publicly. Indeed, the
Ubuntu Dialogue Corpus has no such labelled task completion data, and thus cannot be analyzed in
the task-oriented setting for the time being. Obtaining such signals automatically remains an open
problem. On the other hand, training non-task oriented dialogue systems such as chatbots only re-
quires conversational data, which can be obtained and shared publicly on a large scale. We believe
that significant progress in dialogue systems can be made in this manner, as there remains many
unsolved problems as illustrated in Section 4.6.

6.3 Automatic Evaluation of Dialogue Systems

A crucial part of research in building dialogue systems concerns the problem of evaluation. In
the goal-oriented setting, when there is a supervised task completion signal available with the data,
methods for automatic evaluation are well-established, such as PARADISE (Walker et al., 1997) and
MeMo (Möller et al., 2006). An overview of such methods can be found in Jokinen and McTear
(2009) and Hastie (2012).

However, in the non-goal oriented setting we consider here, evaluation is more difficult. This
is particularly true for end-to-end systems, as there is no way to measure the accuracy of the state
tracking module using tasks such as slot filling, since they are not modular systems. Indeed, there
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are several reasons for wanting to move away from the slot filling metrics that have become common
for modular systems. In slot filling, the set of candidate outputs (states) is identified a priori through
knowledge engineering, and is typically rather small in comparison to the set of responses consid-
ered by NUC. Further, it has been speculated that state-of-the-art state-tracking models (Henderson
et al., 2014b; Williams, 2014) are achieving close to human-level performance. Thus it is desirable
to move beyond this domain into more difficult problems. To do this, it is crucial to investigate ways
to evaluate models in the non-goal oriented setting that do not require supervised test data for the
internal modules of a system.

Researchers have previously proposed measuring word perplexity and word classification error
rate, as these are widely applied in the language modeling and automatic speech recognition com-
munity (Serban et al., 2016; Vinyals and Le, 2015; Pietquin and Hastie, 2013). However, these
metrics cannot be computed for retrieval models. Researchers have also proposed to use word over-
lap metrics from machine translation (Galley et al., 2015; Sordoni et al., 2015b). However, such
metrics based on word overlaps suffer from severe sparsity issues, since it is unlikely that any se-
quence of words will be identical in both the generated and reference responses. These have shown
to correlate poorly with human judgements when only a single ground-truth response is available
(Liu et al., 2016), and they have at best a mediocre correlation when multiple ground-truth responses
are available (Galley et al., 2015). Furthermore, it has been argued that such metrics mainly focus on
pronouns and punctuation marks when applied to non-task oriented dialogue datasets (Serban et al.,
2016). While the word embedding metrics used here do not have a strong correlation with human
judgement, they have an additional interpretation of measuring the semantic similarity between the
generated and reference responses (as argued in Section 4.4), which is why we favour them over
word-overlap scores such as BLEU. However, we reiterate that none of these metrics measures the
coherence of the generated responses, and this remains an important direction for future work.

Another option for evaluating dialogue systems trained in an end-to-end manner is using an
alternative task such as next utterance classification. While this does not directly compare the gen-
erated response of the system to the ground-truth response, there are several reasons for preferring
the recall metric:

1. It is a more difficult task than slot filling, and thus will require further development of more
sophisticated dialogue systems in order to solve the task.

2. It does not suffer from the same problems as the word overlap metrics, as it does not have to
directly compare the quality of a generated response to the ground-truth response, an inher-
ently noisy process. Instead, it measures the model’s capacity to pick out the correct response
from a list of responses.

3. Performance using the recall metrics is easily interpretable, and can easily be compared to
human performance. Indeed, this has been recently done by Lowe et al. (2016), who show
that human performance on this task is above the performance for the Dual Encoder model on
the Ubuntu Dialogue Corpus, as well as on movie and Twitter corpora. Thus, there is room
for improvement for models on this task.

4. The task is consistent with the end goal of building dialogue systems that can converse nat-
urally with humans. More precisely, models that are able to generate good responses should
also be able to pick good responses from a list of candidates, as in NUC.
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5. It is easy to alter the task difficulty in a controlled manner. We demonstrated this by moving
from 1 to 9 false responses, and by varying the Recall@k parameter. In the future, instead
of choosing false responses randomly, one could consider selecting false responses that are
similar to the actual response (e.g. as measured by TF-IDF cosine similarity). A dialogue
model that performs well on this more difficult task should also manage to capture a more
fine-grained semantic meaning of sentences, as compared to a model that naively picks replies
with the most words in common with the context such as TF-IDF. In fact, when the set of
candidate responses for the model to choose from is close to the size of the dataset (e.g. all
utterances ever recorded), then NUC becomes close to the response generation case.

Given the above points, we believe that evaluating models with the NUC task is very useful for
the time being. However, we believe that caution should be used when comparing retrieval models
to generative models using NUC, as the retrieval models are directly trained on the task of NUC,
rendering it an unfair comparison.

6.4 Future Research Directions for End-to-End Systems

Given the analysis performed in Section 4.6, we postulate several interesting directions for future
research on end-to-end dialogue systems, particularly on the Ubuntu Dialogue Corpus.

An important challenge in dialogue systems is the ability to understand the turn-taking structure
of dialogue. This is a significant source of errors for the Dual Encoder model. Some progress in this
direction has been made for end-to-end dialogue systems (Luan et al., 2016; Li et al., 2016a), using
approaches derived from topic modelling or by explicitly modelling each user with a continuous-
valued vector. However, this is still an open problem. This is related to the issue of end-to-end
dialogue personalization, which involves building end-to-end dialogue systems that are tailored to
a particular user and that evolve over time as the user’s preferences change.

The largest source of errors from the analysis in Section 4.6 was in the failure to understand the
semantic similarity between the context and response. This falls under the more general problem
of natural language understanding, which arises in many NLP tasks. This will require adjustments
in the architecture of end-to-end models to render them more suited to processing language. It
is possible that insights can be derived from architectures developed on more targeted language
understanding tasks, such as the CNN/ Daily Mail reading comprehension dataset (Hermann et al.,
2015), where attention-based models have achieved strong performance.

In order to be able to correctly answer questions regarding Ubuntu and solve the user’s problem,
dialogue models will inevitably require some knowledge of the Ubuntu domain. This will most
likely be achieved by using some source of external knowledge, in addition to the knowledge that is
present in the dialogue of the Ubuntu Dialogue Corpus. Thus, an important direction for research is
the investigation of methods that incorporate external knowledge sources with end-to-end dialogue
systems. This applies more generally to any end-to-end system that is developed for the goal-
oriented setting, and may require imposing additional structure on the output space of the model.
There is promising work in this direction from Wen et al. (2016), however methods must be derived
that are effective in a larger and more general setting than restaurant recommendation.

A common problem that has been observed when training generative end-to-end models that
maximize the log-likelihood of the conversational response is that these models tend to produce
generic responses at test time. This has been observed empirically (Vinyals and Le, 2015; Serban
et al., 2016), and was also seen in some of the LSTM and HRED examples presented in Section
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5.4. This has been investigated in (Li et al., 2015), where the authors construct an objective function
based on mutual information that promotes diversity, however they achieve only modest improve-
ments. This is a large impediment for building end-to-end systems that can have interesting and
engaging interactions with users.

Finally, an important direction for future research is building large-scale datasets that allow
the training of goal-oriented systems. The Ubuntu domain is particularly suited for training goal-
oriented systems, however this is not yet possible on the Ubuntu Dialogue Corpus as there are
no supervised task completion signals, as mentioned in Section 6.2. Building models that can
approximate such signals is challenging, yet it may be necessary in order to develop systems that
can solve users’ problems in a meaningful way in a domain as complex as Ubuntu.
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