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Abstract

Background: Bioinformatics visualization tools are often not robust enough to support
biomedical specialists’ complex exploratory analyses. Tools need to accommodate the
workflows that scientists actually perform for specific translational research questions. To
understand and model one of these workflows, we conducted a case-based, cognitive task
analysis of a biomedical specialist’s exploratory workflow for the question: What functional
interactions among gene products of high throughput expression data suggest previously
unknown mechanisms of a disease?

Results: From our cognitive task analysis four complementary representations of the targeted
workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task
taxonomy, and a mapping between cognitive tasks and user-centered visualization
requirements. The representations capture the flows of cognitive tasks that led a biomedical
specialist to inferences critical to hypothesizing. We created representations at levels of detail
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that could strategically guide visualization development, and we confirmed this by making a
trial prototype based on user requirements for a small portion of the workflow.

Conclusions: Our results imply that visualizations should make available to scientific users
“bundles of features” consonant with the compositional cognitive tasks purposefully enacted at
specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need
more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for
essential metacognitive support.

Keywords: Systems biology; usability; cognition; molecular interaction networks; visualization;
human-computer interaction; translational medicine

1. Background

In bioinformatics the development of sufficiently robust and useful tools for exploratory
analysis is in its infancy. Payne et al. argue that despite a general availability of applications the
“absence of sufficiently robust analytical tools capable of addressing the requirements of
specific research questions” significantly impedes translational research (1, 137). One reason
for this problem is a paucity of knowledge about “the requirements of specific research
guestions” from the analytical perspectives of biomedical specialists. As requirements
engineering experts emphasize, to be useful and sufficiently robust applications must fit
domain specialists’ actual investigative approaches for specific research questions and goals (2).
Our study assumes the perspective of a domain specialist and focuses on one common class of
exploratory analysis in translational research with visualization tools. Specifically, we conducted
a case-based, cognitive task analysis of a specialist’s workflow for functionally analyzing
expression data in molecular interaction networks for hypothesizing purposes. The workflow
also includes drawing relationships between molecular-based insights from network analysis
and phenotype data.

We constructed representations of the biomedical specialist’s ways of knowing and reasoning
while visually analyzing graphics such as heat maps, interactive networks, and data tables. We
also validated that our representations are at levels of detail appropriate for guiding
development. Our study takes an initial step toward the long term bioinformatics goal of
establishing cognitive-oriented user models to guide tool development for this workflow.

From our analysis, we specify discernible inferences that mark progress toward generating a
hypothesis, what we call milestone inferences. We identify these milestone inferences and
trace them to the cognitive tasks leading up to them. We capture this workflow in
complementary representations, which break new ground in the semantic specificity they
provide for cognitive tasks in this complex analysis. Additionally, we demonstrate that the
levels of detail in our representations can be applied to tool development and lead to a working
prototype sensitive to scientists’ actual flow of cognitive tasks.
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Findings from our case provide initial steps toward modeling this workflow for the purpose of
guiding development. As such they have preliminary implications for tool development. We
propose several implications, including the need to develop features and functions in bundles
that correspond to the individual and combined cognitive tasks that specialists enact during
specific components (patterns) of their analysis. We also suggest certain priorities for visual
analytic support that could help achieve sufficient robustness and usefulness.

2. Relevant Research

Our study tackles two perennial challenges: (1) Achieving sufficient robustness and usefulness
in tools for scientists’ exploratory analyses; and (2) representing analytical workflows at levels
of detail that “speak to developers” for tool implementation. Currently, two fields of study are
increasingly addressing these challenges — cognitively-oriented science studies and information
visualization/visual analytics. In both fields researchers agree on broad terms to define
processes of discovery, terms such as information foraging, sensemaking, knowledge
construction, interpretation, inference, insight, and hypothesizing (4; 5). They also commonly
study discovery processes from a distributed cognition perspective. Based on this perspective,
cognition for software-supported discovery is distributed between human thinking and
electronic workspaces in a dynamic system. That is, workspace affordances constrain scientists’
tasks and reasoning; and scientists’ goals, objectives, ways of knowing, reasoning, and time
pressures constrain both the value scientists give to workspace features and functions and the
actual use they make of them. Distributed cognition grounds our study, as well.

Shared perspectives across science studies and information visualization are important but they
alone cannot overcome the first challenge mentioned previously —i.e., developing sufficiently
useful tools for discovery-driven analysis. In both fields, more research is needed at a concrete,
application level in terms of support that can adequately “connect user objectives with the
[tool] interaction techniques that help accomplish them” (6, 1225). This application level of
understanding is required for mapping scientists’ complex analysis processes to tool
requirements.

In science studies, researchers get somewhat concrete by defining the higher order thinking
implicit in discovery-driven analysis. They define it as a mix of reasoning modes, including
classification, comparison, mental modeling, story-telling, validation, and metacognition (i.e.
reasoning to monitor and manage inquiry) (7). These investigators highlight, as well, that
throughout analysis scientists recursively construct and apply certain patterns of multi-modal
reasoning (7). For their part, information visualization researchers concretely characterize
discovery-driven reasoning as interactions called “thinking tasks” that can be tied to users’
analytical intentions (8). An example is “find items with a given attribute.” These task types are
generic and serve the purpose of populating taxonomies (9; 10). Despite the beginnings of
concrete characterizations by investigators in both fields, representations of discovery-driven
reasoning and tasks are still too generic to guide development. Moreover, they often are
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piecemeal - separated from a full coherent flow of analysis; and for our targeted workflow, they
are far too incomplete.

Fortunately, some general patterns have been uncovered in bioinformatics for this targeted
workflow. They include scientists’ ways of arranging and rearranging data and relationships to
classify by biological traits, and scientists’ processes of overlaying differential expression values
onto pathways associated with molecular interactions of interest (11-15). Bioinformatics
studies also reveal that for the workflow we target scientists often use separate tools for
different parts of the workflow but still consider it one unified flow (16). Our cognitive task
analysis shows this flow performed in different tools, but our findings suggest that visualization
tools could be designed to include affordances for more parts of the flow or to better integrate
work across tools if they were more attuned to scientists’ actual compositional reasoning and
actions.

The second challenge that our study tackles - representing analytical workflows at levels of
detail that “speak to developers” —is confounding because researchers within and across fields
do not share common meanings of complex discovery processes or define them at the same
level of detail. For example, Chang et al. keep the conversation broad by defining “insight” as
“knowledge building” (17). Saraiya et al. seem to get more precise by defining insight as “an
individual observation about the data by a participant, a unit of discovery” (15, 444). Yet they
leave vague what “data observation” and “discovery” are. For example, do these processes
involve literally reading data off a display, interpreting, inferring, or all three?

In cognitively-oriented science studies, Trickett and Trafton help clarify what is meant by deep
insight and the types of human knowledge processing it demands (18). They argue that literally
reading explicit information off displays - e.g. values, patterns, or labels - is not enough to
generate the deep insights that lead to hypotheses. In addition to read-offs, scientists have to
be able to spatially transform explicitly displayed data and views into implicit information and
relevant meanings. In these transformations, scientists modify data in external views and
spatially manipulate the views and relationships both externally and mentally to gain a different
understanding. Trickett and Trafton underscore that scientists must combine reasoning and
transformative actions to gain insights and inferences.

To summarize, this review shows that the current research relevant to modeling analysts’
workflows for the translational research that we target is broad and generically concrete but
not domain- or problem-specific enough for development purposes. Largely, it provides just an
outline of discovery-driven workflows. We contend that this outline needs to be filled out by
addressing the following questions:

e What analytical objectives structure this flow of knowledge work?

e What components of core knowledge work — as scientists define these components —

combine to achieve each objective?
e What interwoven cognitive tasks make up each component of core knowledge work?
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e What (milestone) inferences are derived from goal-specific components and their
constituent cognitive tasks that are critical to moving closer to generating a hypothesis?
e What mappings might be made between cognitive tasks associated with milestone
inferences and visualization requirements that could improve fitness to purpose in
tools?
Our case-based, cognitive task analysis is designed to address these questions. As the
background literature suggests, addressing them involves engaging discovery-related concepts
that in themselves are differently understood within and across fields. We explicate our terms
as they apply to the workflow we target in the Methods section, Figure 1.

3. Methods

To address the questions above amid sparse prior research, we conducted a case-based,
cognitive task analysis as an appropriate initial step (19). As qualitative methodologists advise,
we grounded our methods in an empirically-based understanding of scientists’ situated
patterns of cognitive and behavioral discovery-driven analysis for similar systems biology
problems drawn from the research literature (20). For our case study, we focused on the work
conducted by one of the co-authors (FE), a biomedical specialist with extensive experience in
the translational research workflow that we target. We refer to him throughout as the
“biomedical specialist.” In this section we describe the workflow site and research problem and
then detail the methods of our four-phase cognitive task analysis.

3.1. Study site

The biomedical specialist in the case has many years of experience and success working in an
internationally renowned renal disease laboratory that has made considerable progress in Type
1 (T1) translational research. T1 research - “bench to bedside” - aims to move basic research
discoveries from the laboratory to clinical practice by taking a systems approach to analyzing
molecular and clinical data. This laboratory is a model of trans-disciplinary teamwork for
translational research. Specialists from multiple disciplines sit side-by-side — bench scientists,
statisticians, informatics experts, and clinical researchers — and collaborate on research project
teams. Clinicians also actively participate in research teams. As an effective means for bridging
bench findings (e.g. on disease versus healthy tissue samples and high throughput analyses) to
clinical (phenotype) data and clinical implications (e.g. treatments), multidisciplinary research
processes in the laboratory are modular. That is, specialists in each project have prime
responsibility for delving into their respective areas of expertise, and they collaboratively
discuss and review their work continuously with their teammates from other specializations.

The biomedical specialist in our case is an informatics expert who explores biological not
computational problems for translational renal disease research. He conducts the software-
mediated workflow we study with a variety of tools and numerous collaborations. He
collaborates with bench scientists and biostatisticians on his project team as they process,
format, and group experimental data for his investigation. He then delves into the targeted
workflow with visualization applications. He is an expert in inferring meaning from graphic
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structures such as heat maps and networks. As he notes, visual analytics parade his perception,
higher order cognition, and cognitive task flows. He remarks that he is “agnostic to the genes
that biological researchers love;” and he turns to his collaborators for domain content at
various points in his analysis.

As findings emerge from his visual analytics he collaborates mainly with two clinical
researchers, one of whom is co-author MK, the laboratory director. Together, they share
insights, test them against biological and clinical expertise, and determine next investigative
steps. Overall, the processes structuring this workflow exemplify translational research
processes advocated in the research literature (21).

3.2. Translational research problem and workspaces

The workflow in the case is part of a larger translational research project in this renal disease
laboratory, a project aimed at uncovering molecular influences that suggest ways to classify
renal sub-diseases genotypically. Ultimately, the research will lead to more precise, mechanistic
definitions that can improve screening, diagnosis, and treatment. Data in the case come from
biopsy samples from 250 renal disease patients for 13 clinically-defined sub-diseases and
samples from a control (healthy) group of live donors. In the workflow that we study the
biomedical specialist starts with 12,000 genes from microarray analysis. His laboratory team
shares some initial mental models of possible molecular mechanisms of sub-diseases. However,
the biomedical specialist’s data-driven, structural analysis of molecular interaction networks
will push the team’s understanding farther.

The workspaces afforded by visualization software also shape how the biomedical specialist
performs this workflow. The software helps the biomedical specialist functionally analyze
differentially expressed genes by bringing in information from publicly available databases on
gene attributes, protein-protein interactions, pathways, and knowledge derived from text
mining and statistical analysis. The biomedical specialist uses different tools for distinct parts of
the workflow. He has attempted at times to conduct this workflow in a single network
visualization tool but has had to undertake a lot of scripting and workarounds without achieving
adequate analytical success. He has not yet found a single tool robust enough for his
hypothesizing objectives and analytical practices.

3.3. Cognitive task analysis

The cognitive task analysis was conducted by BM, the lead author and a visualization and
human-computer interaction specialist. The cognitive task analysis includes iterative
participatory feedback from the biomedical specialist. This analysis had four phases, as follows.

Phase 1: Analysis of preliminary knowledge

In the first phase, the co-author BK, a researcher in computer science and software engineering,
collaborated with BM to review data from Mirel’s prior field study of the same biomedical
research problem and other relevant research (11; 23; 24). The aim was to identify issues that
the cognitive task analysis needed to address. The review showed the paucity of application-
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level knowledge for representing a coherent and complete workflow in exploratory analysis of
molecular networks. Also, the review demonstrated that in conducting this workflow scientists
commonly falter due to mismatches between their needs and tool capabilities when moving
from characterizing molecular relationships descriptively to explaining their possible functional
roles contextually in a disease. We, therefore, decided to focus our case on a biomedical
specialist’s incremental processes of moving toward explanatory inferences during the targeted
workflow so that our study would address a salient aspect of complex analysis in need of better
tool support.

We determined that the scope of the workflow would span from a biomedical specialist’s initial
inquiry into functional relationships associated with differentially expressed genes to the point
at which the specialist had drawn sufficient inferences about potentially influential molecular
relationships in disease mechanisms. At this point, the specialist’s would be ready to advance to
the next phase of analysis. The next phase, a different workflow, involves investigating in more
depth causal and conditional explanations. Prior research by Mirel and others reveals that after
specialists develop initial inferences about promising molecular relationships they advance to
this next phase (11; 13; 25; 26). In this next phase, scientists examine subsystems of functional
relationships in biological contexts, inquire into biological events, and engage in computational
modeling and/or predictive analysis. The endpoint of the workflow we study occurs when the
specialist is confident enough in his provisional explanatory inferences to move to this next
workflow.

Phase 2: Focused knowledge elicitation

To elicit knowledge from the biomedical specialist, interview probes inquired into his
underlying analytical questions, strategies, objectives, rationales for various analytical choices,
and ways of thinking and knowing. Interview questions also elicited details about analytical
processes and interactions while collaborating with clinical colleagues to explore relevant
biological meanings.

Phase 3: Iterative construction of representations.

BM cross-referenced interview findings to the research literature to assure that issues found in
the interviews corresponded with a larger population’s activities, and to highlight open
guestions in both the research literature and interview data. BM, FE, and BK collaborated at
different times and in varying degrees to determine how to represent the workflow. To our
knowledge, no current studies trace a scientist’s flows of reasoning-and-action to inferences
relevant to hypothesizing for this type of visual analytic workflow. Consequently, an established
structure does not exist for organizing and representing case-based renditions of the workflow.
In charting this new territory, one of our principal criteria was that levels of granularity and
coherence in the representations had to do justice to the complexity of the work while still
being able to speak to tool developers. That is, representations could be neither so low level
(programmatic) to elude the adaptations scientists enact in this intellectually complex analysis
nor so ethnographically thick to defy ready translation to tool requirements.
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To address this challenge, we alternately tried structuring workflow descriptions by the tools
used, by the types of data analyzed, by the types of visualizations, and by problem-solving
tasks. We settled on problem-solving tasks. To arrive at this decision BM wrote and rewrote
scenarios from different angles, each accommodating a different way of structuring our data
analysis. We found that structuring representations by problem-solving objectives was the only
option that let us trace a flow of software-mediated reasoning-and-action toward inference
with the necessary coherence, completeness, and accuracy. Moreover, a problem-solving logic
seemed to synthesize the reasoning and task orientations that investigators in science studies
and information visualization/visual analytics respectively take to characterize scientists’ tasks.

In the problem-solving orientation, we structured the flow of analysis in three tiers. (See Figure
1 for a template of these tiers and an explication of our terms.) At the top tier are the analytical
objectives that drove the biomedical specialist’s investigation into his research problem. In the
next tier, we abstracted the biomedical specialist’s conception of the core knowledge work he
enacted to perform each objective and called each core task a core knowledge work
component. In the third tier, we identified the cognitive tasks constituting the performance of
each of these components of core knowledge work for each objective.

Analytical objective

Core KW component + Core KW component + Core KW component = Milestone
Inference

CT cT CcT CT CT CcT Ccr CT CT CT CT CT

Figure 1. Template of the tiered structure of reasoning-and-action to achieve an objective.

Terms are defined as follows:

Analytical objective — An analytical objective is a sub-goal of an overall research goal. Several analytical objectives
coherently achieve an overall goal. In turn, each analytical objective is achieved by performing at an application
level many relevant combined tasks, what we call components of core knowledge work.

Inference — Inference is a provisional conclusion that a scientist draws for a research problem by going beyond
literal interpretations. For inferences, a scientist draws on an ample amount of evidence and makes connections
with other relevant knowledge and analogies.

Core knowledge work (KW) components: Knowledge work in general covers a scientist’s cumulative processes of
constructing meaning from data and views for a research purpose. A core KW component is the unit that captures
what an analyst considers to be a core task in this work. Core knowledge work components define tasks at an
application level. To underscore that tasks like these are not equivalent to lower level computer science notions of
tasks, human-computer interaction specialists often refer to them as task chunks. In our definition, core KW
components are composed of many cognitive tasks.
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Cognitive tasks (CT): Cognitive tasks are the smaller units of reasoning-and-action that in various combinations
make up a core KW component. Cognitive tasks represent application—level reasoning and action. This level is
higher than “task “primitives,” which are equivalent to program operations, and it is also higher than combined
operations (akin to “thinking tasks”). An example of a set of combined operations is the generic task “find,” which
is composed of retrieve + locate operations. Cognitive tasks as we define them comprise a certain amount of (non-
formalizable) higher order thinking intertwined with actions that cannot be fully decomposed and recompiled.

Figure 1. Application level template or describing the tiers of workflow performance.

In addition to representing the workflow in a problem-solving scenario, we also represented it
in flow diagrams that capture the actual work conducted in these tiers. We created a third type
of representation, as well - a taxonomy of higher order reasoning/cognitive tasks organized by
mode of reasoning (see Supplemental Material 1). These three forms of representation should
resonate with the development community. Scenario-based usage cases exemplify a cognitive
engineering approach that has proven successful in modeling complex work for development
purposes; workflow diagrams are a common means for depicting user tasks for tool
development (27; 28); and task taxonomies are common in information visualization (10). A
fourth representation emerged, as well, during Phase 4.

Phase 4: Validation of representations for translating to tool development

To assure that our three complementary representations of the workflow could guide tool
development toward usefulness, BM worked with FE and, in early versions with BK, to create a
trial mapping of cognitive tasks to user requirements for visual analytic support. We focused on
only a small subset of cognitive tasks —those composing the core knowledge work for one mini-
flow within this workflow. This mini-flow related to the biomedical specialist’s activity of
classifying like with like by selecting and grouping relationships based on two or more similar
traits. To map this subset of cognitive tasks to user-centered visualization requirements, we
synthesized relevant requirements from the research literature across many related disciplines.
This approach assured that any requirements we mapped had already been vetted for tasks
similar to those we selected to map - though not always implemented.

As in other compilations of visualization requirements in the research literature our methods
for identifying relevant requirements were informal yet well-grounded for our purposes (29).
We examined research from diverse relevant disciplines - visual analytics, usability, human-
computer interaction, information visualizations, and cognitive science. We chose only research
aimed at audiences concerned about designing, developing, and/or evaluating visualization
applications for usefulness and usability. Articles aimed at these audiences and purposes
offered requirements framed in a language and level of detail meaningful to tool development
purposes. Sources for our requirements were not exhaustive but were comprehensive enough
to provide numerous relevant findings for the selected cognitive tasks, and to prove feasibility
for this mapping technique. One criterion for selecting articles was that relevant articles had to
have some component of user-based evaluation or real world application. Additionally,
requirements had to target cognitively demanding work and needed to be justified according to
user/task need and/or visual theory. We did not include requirements targeting low level
operations but instead included such terms as “efficiently” or “quickly” in the requirements
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statements we composed to imply the need for optimal low level operations. Moreover, we
largely focused on research published after 2002. Most of the requirements were found in
more than one reference source. The Supplemental Material 2 presents the requirements and
their references.

We removed redundancies from the requirements we collected and clarified and assured
consistency in language. We then mapped them to the select cognitive tasks. We tested the
feasibility of using the mapping for tool development by working with a senior developer to
design and develop a prototype of a visualization plugin based on the bundles of requirements
represented in the mapping. Because our focus is proving feasibility we did not test the
mappings for reliability or generalizability.

4. Results

Results from our study fill out the current outline of biomedical researchers’ discovery-driven
exploratory analysis of molecular interaction networks. Below we narrate and diagram the
analysis, and organize it by the biomedical specialist’s three objectives online and one offline
objective (which has no diagramming). The objectives and associated flows of analysis in the
actual research were more recursive and iterative than prose can capture. This analytical
workflow extended over many separate sessions across several months. The biomedical
specialist conducted it in parallel with work on other research projects. In the last sub-section
of Results, we present our mapping of user-centered visualization requirements for cognitive
tasks in the targeted mini-flow.

4.1. Objective 1: Uncover structural relationships suggesting disease-related influences

To explore possible genotype-level profiles of renal sub-diseases, the biomedical specialist
began by reducing the 12,000 genes obtained through microarray analysis to 4,500 genes. To
do so, he compared expression values of the measured genes for each disease patient with
healthy controls, and chose only those that changed more than the estimated background.
Using the selected genes for each of the 250 disease patients, the biomedical specialist then
created protein-protein interaction networks for each patient. In order to find structural
patterns in groups of networks constructed from his dataset, the biomedical specialist used a
bioinformatics tool with capabilities for graph matching, merging, clustering, and visual
analytics.

With this tool, he first ran an estimated graph matching algorithm to merge patient networks
based on overlaps. The output of the algorithm was one large network. He then used a Markov
Cluster (MCL) algorithm to define clusters in this large network. He repeatedly ran both these
algorithms, first to assure that they were working properly and then to arrive at output with
clean enough boundaries. Parameter settings determined the tightness of the clusters. During
this cycling the biomedical specialist became increasingly familiar with different groupings
produced by distinct parameter settings in the algorithms. When satisfied with the output and

10
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parameter settings, he had identified three clusters of interest, each with a relatively small
subset of patients. The biomedical specialist disregarded other clusters from the output, all of
which had fewer than three patients.

Next the biomedical specialist ran a third algorithm on each of the three clusters. This algorithm
identified salient subnetworks in each of the patient networks that were included in a given
cluster, as exemplified in Figure 2. The specialist also opened a heat map view of each cluster.
His aim was to discern, if possible, subnetwork patterns in different patient networks within a
cluster and across clusters. If he could find certain patterns characterizing most patients in a
cluster the patterns might have biological meaning. Correspondingly, if some patterns were
unique to only one cluster this uniqueness might signal that something related to disease was
happening in this cluster.

Nodes Pattern image
* TGFB1
* FN1
* PDK2
5 /‘/ \\
* TGFB1 / N
. P \“.:L__
CD44 = -
* FNI o
* COL5A2 e
.//
Figure

2. Output on subnetwork patterns for Cluster 3.

At this point the biomedical specialist’s visual analysis mostly relied on eyeballing the heat
maps and cross-referencing them with the displays of subnetwork patterns (in Figure 2).
Through this informal analysis, he discerned that some subnetwork patterns in Cluster 3 were
possibly distinct to this cluster; but he could not manipulate the views enough to closely
compare. He nonetheless had accumulated and interpreted enough evidence combined with
his structural expertise to arrive at his first milestone inference. He inferred that the clustering
parameters were meaningful because they resulted in homogenous and distinct clusters.
Moreover, from the clusters, he inferred that Cluster 3 especially might provide insight into
sub-disease molecular traits. A flow diagram of this analytical objective is presented in Figure 3.

The biomedical specialist was not yet done. He still needed to verify the clustering and to take

additional analytical perspectives, both moves necessary for drawing defensible insights.
Therefore, he shifted to a functional perspective and to his second analytical objective.

11
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4.2. Objective 2: Uncover functional relationships to complement structural relationships

Here the biomedical specialist mixed a good amount of verification with interpretation. He
functionally analyzed gene lists via molecular interaction networks for meaningful inferences;
but he also used this functional perspective to determine if the clustering might need to be
improved — and even if the prior methodology was sound. This check was essential. Methods
that the biomedical specialist had used during the previous objective had a good deal of
uncertainty attached to them. For example, the algorithm parameter settings that he had
chosen were not based on any standard aside from his own experiential expertise. The
relationships he now investigated —i.e. functional annotations and protein-protein interactions
— were based on curation and data mining. These standards were also biased, serving as a
check, not an assurance.

To uncover relationships that might be functionally interesting the biomedical specialist started
by identifying overrepresented annotations for genes in his dataset. For genes from each
cluster, he used a tool to run enrichment analysis and visually examined groupings of
annotations that were highly significant (e.g. p < 10 *°). He found that enriched terms for
various types of inflammation response were unique to Cluster 3. His interest in this cluster
grew. Cluster 2 was interesting, too. It suggested strong functional connections to microRNAs.

Taking a related but different tack, the biomedical specialist then generated three gene lists
composed, respectively, of the genes in the subnetwork patterns in each cluster. Our workflow
scenario followed him only through the analysis of one of these gene lists — the list for Cluster 3.
He read this list into a popular network visualization tool, Cytoscape, and took advantage
analytically of several of its plug-ins (www.cytoscape.org). He sought to answer such questions
as: What similarities and complementary relationships characterize molecular interactions in
this cluster? What groupings of associated gene products suggest interesting indirect
relationships or a liaison between pathways?

The network created from the Cluster 3 gene list displayed the protein-protein interactions
between just the genes on the list, not first neighbors (see Figure 4). The protein-protein
interaction graph and the data and functionality accessed through plug-ins let the biomedical
specialist analyze traits of gene products (nodes) and traits and strengths of interactions
(edges). Strengths were based on amounts of evidence, as integrated from multiple biomedical
databases. As mentioned, the biomedical specialist conducted gene enrichment analysis earlier
in a different tool. He chose not to use a plug-in in Cytoscape for this purpose because the
workings of the plug-in algorithm were not transparent to him. Also, he had used the other tool
numerous times, and felt confident and comfortable with it. The biomedical specialist,
consequently, had to read enrichment results from the other tool into this visualization
application. The visualization application then automatically annotated the gene products in the
network with the enrichment data. In this cluster, only one term was enriched, most likely due
to the stringent p-value cut-off.

12
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The displayed network was manageable and suggested several good entry points. For the
biomedical specialist a good entry point consisted of a small grouping within the whole that he
could isolate and examine. He started with the grouping labeled (A) in Figure 4. When he
finished he repeated the same flow of analysis with other small groupings (those highlighted in
Figure 4). Grouping (A) was interesting because of its hubs, y-stars (indirect relationships) and
links to the denser cluster. In other analyses the biomedical specialist had found that these
topological structures often suggested biological meanings. Focusing on grouping (A) the
biomedical specialist spent a good amount of time iteratively exploring the subnetwork and its
data to increase his familiarity. Recursively, he classified relationships based on shared
annotations. He used color coding to bring in the traits, first looking at only one trait at a time
and then progressively looking at two or three shared traits together. He did not examine more
than three shared traits at once because the cognitive load was too great. He manually grouped
similarities as he went along. At times, he color coded by annotations provided by the tool, and
at other times he color coded by only the overrepresented annotation in this cluster, which was
MHC-Il inflammation response. The biomedical specialist cycled through many traits and
arrangements. As a heuristic strategy the cycling allowed him to better remember relevant
attributes and relationships and to become more confident if they occurred repeatedly.

Figure 4. Small groupings within the network. Interactors within the gene list for Cluster 3.Possible
groupings as entry points are colored in yellow. The biomedical specialist chooses to start with (A).
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As the biomedical specialist began to uncover some potentially interesting relationships of
similar and complementary traits, he wanted to construct them into his own groupings of
nodes based on two traits but could not do so automatically in the program. Instead he had to
arrange nodes manually, an extremely time-consuming endeavor. These manual arrangements
involved using many other program operations in conjunction with moving nodes and edges,
e.g. selection, filtering, and zooming. The biomedical specialist often interacted with a
dynamically linked data panel to sort, read, and select various details about nodes of interest.
His cognitive load grew high, and as he progressed he often saved and bookmarked views as
best he could. To better direct his selective analytical attention, he color coded some similarity
groupings of genes that seemed particularly interesting for later recall.

For the manually grouped relationships that were interesting in terms of pathways, enrichment,
and other specific biological processes, he examined their edge traits. Edge details showed the
amount and type of evidence supporting each pairwise interaction. The more sources of
evidence the biomedical specialist saw for an interaction, the greater his confidence became.
For some edge details he could infer types of interactions, as well. For example, if an edge
indicated that evidence of an interaction came from yeast 2 hybrid methods the biomedical
specialist knew it was a physical interaction, albeit with a high chance of being a false positive.
Biological information behind edge details unfortunately was incomplete; and the plug-ins did
not actually do any semantic categorizing of types of interactions. Later, in making a transition
to more contextually grounded explanations, the specialist would require more semantically
precise details about interaction types.

When the biomedical specialist had completed an analysis of grouping (A) he turned to the next
small grouping in the network (another one of the highlighted groupings in Figure 4). He
continued this analysis — small group by small group - until he knew enough to be able to
perform the same sort of analysis with a larger network composed of the first neighbors of
select genes. Based on analyzing these smaller subnetworks first he later could manageably
tackle a larger network. He could eliminate from the larger network many irrelevant
annotation-based relationships found in the subnetworks. When these rounds of analysis on
Cluster 3 were done, the biomedical specialist performed the same workflow for the other two
clusters, which are not presented here. This workflow is presented in Figure 5.

By the end of the second analytical objective the biomedical specialist had uncovered evidence
and warrants that advanced his earlier inference about Cluster 3. Thanks to functional
enrichment and network analysis, he identified specific genes and gene interactions in Cluster 3
that were tied to different responses to inflammation. MCH-Il inflammation proved to be
important in relation to other traits and interactions in the Cluster 3 network. Moreover, MCH-
Il inflammation was only an enriched term for Cluster 3. The biomedical specialist inferred that
associations connected to MCH-II inflammation were credible and could be relevant to
mechanisms of disease variations. A relationship between inflammation and epigenetics was
particularly promising for further investigation, and it was novel. At the end of this analytical
objective, the biomedical specialist also had findings on Cluster 2 that raised new questions
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about the workings of transcription events. He now turned to collaborations with his clinical
colleagues. Their expertise would help direct his further analysis.

4.3. Offline: Gain knowledge by consulting clinical colleagues and reading literature

Collaborations took place mostly offline. The biomedical specialist and his clinical research
colleagues examined the saved views and assessed notes that the biomedical specialist had
written on them. The collaborators re-composed, synthesized and interpreted across biological
scales — now reaching into clinical data, quantitative traits for phenotypes, and known insights
from the field of renal disease. They found some concordance between molecular and clinical
phenotypes but also variances. For example, for Cluster 2, they found cell lines treated with
hydrocortisone were linked with the transcription annotations. The biomedical specialist also
searched relevant research literature. This evolving analysis of structures, functions, and now
biological context gave unity to his efforts to uncover possible mechanisms of sub-diseases.
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4.4. Objective 3: Gain insight into biological events from expression values in networks

With this unified frame of reference, the specialist embarked on his third online objective. He
valued the explanatory power of overlaying expression data on richly annotated molecular
interaction networks, and he hoped this strategy would now help him infer how genes were
wired into each cluster-based network. Focusing closely on expression data at this point the
specialist’s search for meaningful interactions widened but the risk of faulty interpretation also
increased. Because of this trade-off he was particularly cautious about trusting the data, his
interpretations, and inferences.

He started with Cluster 3 again and began to examine expression level differences across the 12
patients who made up the cluster. He set up the tool’s animation capability with 12 stop
points, one for each patient. He then spent a good amount of time setting up the protein-
protein interaction network for Cluster 3 in ways that would help him discern patterns as the
expression values animated. He sized the nodes by expression value, and he manually arranged
nodes to maximize the chance of seeing meaningful animation views. He clustered expression
values and grouped together genes with similar or complementary traits.

When he finished arranging the view strategically, he clicked on each stop point, and the
expression values for each patient network highlighted. Along with the highlighting, the
biomedical specialist mentally registered other properties associated with the lit-up nodes —
e.g. the node attributes, interactors, and configurations. As best he could, he made mental
notes at each stop point about genes that might be contributing to abnormalities, and about
similarities and differences that might be important across stop points. He ran the animation
numerous times to help make these interpretations. These mental comparisons and spatial
transformations severely taxed his visual memory. The workflow is shown in Figure 6.

To relieve the cognitive load and to make a closer, side-by-side comparison, he captured each
view and saved it. After studying the captured views more closely and finding patterns, the
biomedical specialist arrived at his third milestone inference for hypothesizing. He inferred that
certain patterns among up and down regulated genes and their interactors in Cluster 3 might
be influencing a novel inflammatory response tied to epigenetics.

The biomedical specialist now consulted further with his clinical research colleagues and read
more deeply in the literature. This marked the end of the workflow that this case portrays.
After consulting with colleagues and the literature, the biomedical specialist would begin a new
workflow, one that comprised deeper causal and conditional analyses of biological events.

4.5. Mapping cognitive tasks to user requirements

With the workflow of this case concluded we now examine the ways in which the
representations of it coupled with one more workflow representation can help guide prototype
development of a visualization tool. The additional representation is our mapping of user-
centered requirements to the cognitive tasks in the workflow. To create the mapping, we
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selected a mini-flow pertaining to the second analytical objective. The mini-flow only covered
classifying gene products functionally by two or more similar traits (refer back to Figure 3). It
omitted other aspects of the second objective, such as classifying by complementary traits,
patterns, or making comparisons. In practice all these reasoning modes were interwoven but
for proof-of feasibility - our scope - we sought success with a small subset first, signaling a go-
ahead to scale up in further research.

The mini-flow involved seven cognitive tasks (specified in Table 2), which combined in various
ways for actual analysis. Twenty-nine user-centered visualization requirements (Figure 7)
mapped to these cognitive tasks. Supplemental Material 2 gives details on these requirements.
In this mapping the requirements related to selecting, color coding and filtering are designated
as “standard packages.” A standard package unifies numerous requirements that the research
literature shows to be well-established for these visualization techniques in complex analysis.

Classification by similarity

1. Classify by similarities on 1 trait.
2. Classify by similarities on 2+ traits for nodes, edges or both.

Validation

3. Assess that similarities are not by chance alone - use enrichment statistics if available

Metacognition

4. Manage and keep track of repeated cycling.

5. Manage and keep track of interesting data

6. Structure/add cues to the workspace to direct visual attention and facilitate task
switching/returns or reminders

7. Save or print to share

Table 2. Subset of cognitive tasks for mapping to user requirements

As Figure 7 shows, even a small subset of seven cognitive tasks for this mini-flow demanded
complicated support. For example, a good number of the task-to-requirement mappings
involved many-to-many relationships. Figure 7 visually shows the mappings in a way that avoids
the multi-edge crossings of many-to-many relationships. In many instances, one requirement
applied to many tasks; and a single task had more than one requirement. Additionally, a single
task often recurred in various components of core knowledge work, but combinations for each
component were distinct.
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Figure 7. Tasks to requirements. For the mini-flow of selecting and grouping genes based on two or more similar
traits seven cognitive tasks occurred. The cognitive tasks are color coded as specified in the top left legend. This
figure shows the seven tasks mapped to requirements necessary for supporting them (the labeled bars in the
figure). Striped colors in a requirement bar indicate the different cognitive tasks that the requirement addresses.
Some requirements support as many as four tasks; some support only one. Bar length in the requirements bar
graph indicates the number of tasks mapped to a requirement. If the graphing and color coding were reversed and
the bar charts were to show cognitive tasks, color coded by requirements, the task bars would show a similar
many-to-many mapping.

4.6. Implementing a prototype from a trial mapping

To develop a prototype informed by the tasks-to-requirements mapping, usage scenario, flow
diagrams, and task taxonomy, we worked with a senior developer. The aim was to create a
visualization prototype that would satisfy the bundles of requirements related to selecting and
grouping data based on multi-dimensional similarity. The senior developer had little trouble
translating the requirements into language that other developers could follow, signaling that
our levels of granularity in tasks and requirements were effective. He implemented the
requirements in a prototype Cytoscape plug-in, the interfaces of which are shown and
explained in Figure 8.
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Figure 8. Prototype mock-
up. Bar charts of attributes
are shown in (A) - in this
case classes of GO terms.
These bar charts detail all
attributes associated with
the gene products
displayed in the network
view, shown in (B). In (A),
bar length indicates the
number of times an
attribute occurs as a trait
of the gene products in the
network. When a scientist
selects 2+ attributes from
the bar chart, the
associated gene products
in the network (B) and
matrix (C) are

dynamically highlighted. Additional attributes in (A) that co-annotate the highlighted proteins also are dynamically
highlighted. The matrix cells in (C) show the attributes (rows) that annotate each gene (columns). By interacting
with the matrix, a user can filter to only certain attributes, and the views will show only the genes having those
attributes of interest. Results dynamically update across the graph, bar charts, and data table (D). A user can set
various visual codings to indicate traits of most interest and can manually group gene products in the network that
share two or more traits. The user can view the strength of interactions in potentially interesting groupings by
referring to the details on edges in the data table. These four dynamically linked views should foster a fluent and
complete flow for the objective of selecting and grouping by 2+ similarities.
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Overall, this proof of feasibility suggested that fit-to-purpose visualizations for individuals’
actual approaches to this workflow could be achieved through the interrelated representations
we constructed and present in this article.

5. Discussion

Our workflow research takes a holistic, user-centered perspective in order to uncover the
interconnections between a biomedical specialist’s analytical objectives, the core components
of knowledge work he performs to achieve each objective, and the cognitive tasks he performs
in each component. Our study implicitly shows that a great deal of expert knowledge and many
heuristic strategies underlie this cognitively-oriented workflow. For example, the biomedical
specialist’s expertise in structural analysis guided his interpretations throughout the workflow,
and especially during his first objective. This expertise is tacit and includes, for example,
knowing: (1) What counts as an acceptable structure; (2) what methods to use to generate
acceptable structures, e.g. parameter settings and diverse perspectives; (3) when and how to
cross-reference different types of structures; (4) when and how to comparatively analyze
overlapping structures and what can and cannot be compared (especially challenging in a large
network); and (5) what limits to set on the number of dimensions to analyze together so that
visual analytics is manageable. Similarly, heuristic strategies tacitly informed many of
biomedical specialist’s cognitive tasks. For example, he repeatedly cycled through the same
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data display to internalize a familiarity with the data, to reduce cognitive load, and to maintain
coherence (30). As other heuristic strategies, he limited the amount of displayed information at
any one time to avoid cognitive overload and distraction, and marked emerging relationships of
interest with cues. As detailed later, cues helped in maintaining coherence and in keeping track
of inquiry paths and progress.

Our case and representations concentrate on reasoning and action at an application level. At
this level, they reveal four interrelated propositions with implications for the development of
visualization tools. Each proposition is discussed below, and we end with implications for tools.

5.1. Higher order reasoning is multi-modal, compositional, and inseparable from a
scientist’s active manipulation of knowledge representations.

Our findings reinforce prior research in science studies that stresses the compositional nature
of higher order thinking-and-doing for complex analysis (7). In our case, the biomedical
specialist mixed many modes of reasoning — classification, comparison, validation, and
metacognition. He did not mix in predictive mental modeling or story-telling. These modes
probably come into play in the next, more in-depth workflow. For the modes of reasoning that
he applied, he enacted numerous facets for each mode. He also combined multi-faceted
cognitive tasks distinctively for each goal-driven component of core knowledge work. Our task
taxonomy identifies 35 faceted cognitive tasks that recur in this workflow. For example, when
comparing data, the biomedical specialist enacted such facets as “Compare two or more
groupings to find overlapping members” and “Compare outcomes/graphs from overlap analysis
based on different parameter settings.” For classification, he grouped genes by two or more
similar attributes (e.g. GO annotations) and by complementary attributes (e.g. pathways and
GO annotations). By capturing these multi-faceted cognitive tasks, our results provide greater
cognitive specificity than is found in other cognitive models of scientists’ discovery-based
reasoning in the current literature.

Moreover, the case demonstrates that at an application level higher order reasoning is
inseparable from manipulating knowledge representations to draw inferences. This finding
reinforces arguments from requirements engineering. These arguments claim that the degrees
of freedom that an electronic workspace gives an analyst for adaptively manipulating views and
data for discovery purposes strongly influence the success of the analyst’s investigation (31).

5.2. A cognitive task has an analytical function only in relation to a unified set of tasks.

Discrete cognitive tasks or taxonomies of tasks cannot reveal the situated analytical functions
that a scientist’s cognitive tasks serve in the flow of a complex analysis. Rather function is tied
to combination (32). At an application level our representations reveal combinations of
cognitive tasks associated with goal-driven components of core knowledge work. These
combinations are depicted in our workflow diagrams and in the tasks-to-requirements mapping
in Figure 7. Because our findings show distinct combinations of cognitive tasks for each goal-
driven component of knowledge work they reduce what would otherwise be a daunting
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number of possible combinations of cognitive tasks for tools to support. The combinations that
advance specific objectives can help developers understand what to target for tool support.

In tool development for the complex analysis presented in our case, supporting analytical
functions of cognitive tasks as they combine with other cognitive tasks is challenging. Often a
single visualization technique will have to support several different analytical functions for a
given workflow objective. For example, the biomedical specialist used color-coding to classify
similarly annotated genes; he also used color-coding metacognitively to cue salient
relationships that he wanted to recall. In the same vein, his manual grouping of nodes and
edges served several functions. It helped him classify logically; and it also helped him
metacognitively cue protein interactions that he deemed important, and assess the
completeness of the data. Put simply, numerous visualization features and techniques, when
tied to the analytical functions of cognitive tasks, must be robust, i.e. applicable to a wide range
of functions. Therefore, they have to be developed with a good deal of flexibility and
adaptability. This issue is discussed in more detail more below.

5.3. Knowledge work components focus on negotiating meaning, not just read-offs.

Our case reveals that a large part of the biomedical specialist’s combined cognitive tasks were
functionally aimed at negotiating meaning. Negotiating meaning included but far exceeded
reading off data from a display. Cumulatively, the biomedical specialist negotiated meaning by
using built-in algorithms and by actively interrogating the workspace displays and affordances.
He sought to uncover non-obvious relationships and diverse perspectives relevant to each
analytical objective. Additionally, he sought to synthesize emerging knowledge across
objectives. Within and across the flow of each analytical objective, he moved through different
modes of logical analysis (classification and comparison); reconciled uncertainty (validation);
stayed oriented, and monitored and managed progress (metacognition). He drew relevant
meanings from various structural, functional and regulatory perspectives for each separate
analysis of the three patient clusters. Moreover, he iteratively analyzed many subnetworks
within each cluster and overlaid regulatory patterns on each cluster’s network. In summary,
recalling Trickett and Trafton’s work on spatial transformations for deep insights and inferred
meanings, the biomedical specialist spatially arranged, classified and compared externally
displayed knowledge representations to construct new knowledge relevant to his research
guestions. He did so in almost every slice of time (i.e. in a single component of core knowledge
work), and cumulatively across time (across knowledge work components both within an
analytical objective and across objectives).

Progressively these manipulations led the biomedical specialist to develop emerging mental
models of credible and plausible genes and relationships possibly influencing renal disease. In
other words, the processes of negotiating meaning, filling out mental models, and interacting
with workspace affordances dynamically shaped each other. Unfortunately in bioinformatics,
our understanding about how to facilitate and enhance this dynamic interplay is a relatively
unexplored area. From an information visualization perspective, Liu and Stasko offer insight.
They explain mental models in ways they hope can help developers understand and design for
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the external-internal dynamics of sensemaking (33). Mental models, Liu and Stasko expound,
are internal explanatory representations relevant to an analyst’s research question. An analyst
progressively constructs them by interacting with external displays of data, especially with
displays of structural and functional relationships. As the case we present above shows, the
biomedical specialist paid attention externally to these structural, functional, and regulatory
relationships and mentally constructed plausible models of potential influences.

From a science studies perspective, Neressian explains mental models further. She explains that
in progressively developing problem-related mental models scientists strive to understand one
representation of knowledge — externally or internally - in terms of another (34). In fact,
scientists typically formulate several intermediary representations of knowledge from diverse
data and sources to order to move from a starting point of understanding to an inference. In
the renal disease case, these intermediary representations took the shape of the multiple
perspectives that the biomedical specialist used to conduct his three online objectives.
Explanations of mental modeling in the research literature typically stress analysts’ logical
processes. Results from our study reveal that metacognitive processes are equally important to
developing inferences and the mental modeling associated with them, as we now explain.

5.4. Metacognitive tasks are prominent in generating inferences.

Our mapping of cognitive tasks to user-centered requirements for the mini-flow used in our
prototyping shows that in our case metacognitive reasoning-and-action came into play as
frequently as logical reasoning, i.e. as classification. For example, the biomedical specialist kept
track of intermediary representations/diverse perspectives relevant to inferences he drew,
making metacognition an intrinsic part of mental modeling. Empirical research in science
studies reinforces this finding. Researchers have shown that continuous metacognitive thinking
occurs, for example, in scientists’ “explicit articulation and reflective refinement of methods,
reasoning strategies, and representational issues” (34, 7).

Additionally, metacognitive thinking is central to maintaining a coherent cumulative flow of
analytical inference within and across analytical objectives. Our case makes clear that
inferences are not self-contained actions, and tool developers should not presume to support
them as such. Rather they are the product of a progressive flow of cognitive tasks and
objectives. Metacognition helps scientists keep track of knowledge and inquiry paths in this
flow. As usability tests show, positive user experiences depend on uninterrupted flows in higher
order reasoning (35). Unfortunately, as researchers have noted, the greatest insufficiency in
applications today is support for streams of goal-driven, coherent interactions (36).

One of the biomedical specialist’s prime ways of making his workflow coherent was to repeat
earlier moves and strategies but with new content and structures. He also relied on comparing
past and present views. For such recursive analyses and comparisons he needed to maintain a
keen sense of his activity history and relevant outcomes —i.e. what we call activity provenance.
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The biomedical specialist also achieved coherence by leaving himself cues, dozens of them to
direct his visual and intellectual attention. This strategy is common to expert problem solving
(37). Cognitively, cues “jig” the informational environment to decrease its variability: “The more
completely prepared an environment is for one’s problem and purpose the easier it is to
accomplish one’s task” (38, 37). For example, cues — whether set automatically or manually —
can signal shifts in task paths, changes in the state of the problem space, confidence levels, or
missing information. Cues also may indicate important points, views, or interactions to
remember or recall. They may indicate structural or semantic patterns relevant to inferences;
competing groupings for judging relevance; or items or views to share with collaborators. Cues
enable selective attention. Dumais and Czerwinski highlight the importance of selective
attention, arguing that for exploratory analysis, “attention is a critical resource and is what
matters if [a software] system is to be usable.” (39,1362). Basically, cues direct attention
selectively to help domain experts stay oriented; formulate what they know and still need to
know; and determine the next moves, strategies, and analytical paths that will be coherent with
preceding paths.

The biomedical specialist needed this orientation, especially when he ran animations of
expression data. Without being able to set cues he had to depend on repeated runs and
unreliable visual memory. Help from a workspace for cuing as well as for seeing action trails is
vital for advancing a scientist’s internal problem solving for inferences and for sharing with
collaborators.

5.5. Implications for visualization development

As the discussion above shows, the targeted workflow presents many demands that
visualization workspaces must support effectively and efficiently. We have organized these
implications for visualization support into three types relevant to the targeted workflow: (1)
“Heavy lifting;” (2) important but underdeveloped support for finding and trusting meaningful
relationships; and (3) metacognitive structuring. For each area of support, we first propose
priorities in terms of development approaches as bulleted items points and then explain the
need for acting on these priorities.

1. Heavy-lifting. The need for visualization tools to improve what we call heavy-lifting is implied
by our first two propositions — namely, that cognitive tasks are compositional and that
analytical functions result from combined — not isolated — cognitive tasks. The development
priorities that we propose related to these propositions include:

e Design and develop the following features with a great deal of flexibility and adaptability
based on the analytical functions that they must support in flows of cognitive tasks and
components of knowledge: Color coding; techniques for arrangement (including layout,
sorting, subgroupings on two and three traits); filtering; providing multiple dynamically
linked views that can foster different perspectives; and searching and selecting.

e Design and develop bundles of features that adequately support single, application-level
cognitive tasks.
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In regard to the first priority, the case shows, as previously mentioned, that a single
visualization technique often supports two or more integrated cognitive tasks, and the tasks
often serve different functions in diverse components of core knowledge work. In the
biomedical specialist’s workflow color coding and layout /arrangement took on a large “support
burden” (heavy-lifting) to serve these different analytical functions. Thus these visualization
techniques need to be designed with a great deal of built-in flexibility and adaptability. The
other features mentioned in the first bullet point are gleaned from the scenario and the
mapping of the mini-workflow. Supplemental Material 2 describe relevant packages of
capabilities for many of the priority features.

We believe that mappings like ours can help developers identify features that need to be
flexible by showing which requirements come into play frequently, given recurrent cognitive
tasks in different components of core knowledge work. After developers have created
preliminary prototypes, our scenarios and workflow diagrams can help them get a reality check
on the choices they have made about flexibility and adaptability. The scenarios and workflow
diagrams can show if the choices accommodate the distinct combinations and functions of
cognitive tasks in a biomedical specialist’s actual analysis. For example, if development choices
automate numerous moves for efficiency’s sake, the scenario will show that moves such as
repeated cycling should not be “automated away.” A scientist needs this recycling to build
knowledge, familiarity, and confidence.

The second bulleted priority above deals with the fact that many single cognitive tasks —
outside their relation to others — need support that involves a “bundle of requirements” at
once. In the mini-flow we mapped, for example, the biomedical specialist needed nine
requirements in place to perform the metacognitive task of managing repeated cycling.
(Readers can reference these nine requirements in Figure 7 by looking at the bars
(requirements) with a yellow stripe.) Traditional feature lists do not capture this need for
multiple requirements to work together smoothly as a bundle. Neither the functional nor
bundled orientation that we propose here is common in bioinformatics development of
visualization tools. To foster this approach this study offers a first pass at defining relevant
combinations and bundles. The importance of further research into what these bundles are
cannot be overemphasized.

2. Important but underdeveloped support for negotiating meaningful relationships. In
visualization tools support is often underdeveloped for a biomedical specialist’s central activity
of negotiating meaning for his or her research questions. For our targeted research question
and workflow we propose the following top priorities for user support:
e Dynamically linked views that facilitate making comparisons and facilitate marking
important aspects within and across views
e Capabilities for making comparisons through network overlays
e Semantic content on types of interactions; and ways to analyze details on 2+ edges in
user-defined groups of protein-protein interactions
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As the case shows, a good amount of the biomedical specialist’s negotiating of meaning
involved grouping - e.g. by similarity, complementarity, structure, overlap, and user defined
sets of traits. Many of these grouping activities need to be addressed through the development
of the more flexible and adaptable support mentioned previously. The priorities in this sub-
section present additional support.

To negotiate meaning, the biomedical specialist depended strongly on making diverse
comparisons, which included mental comparisons. For example, he kept many comparisons in
visual memory as he animated expression patterns overlaid on the network. The biomedical
specialist also consistently validated and frequently returned to prior parts of the analytical
flow for checks while negotiating meaning. When he did, his cognitive load was high, partly
because necessary tool support was underdeveloped. Finally, after a certain amount of
narrowing down to interactions of interest, the biomedical specialist’s analysis of edges became
uppermost. It was essential for him to examine and compare the types and strengths of
relationships connecting groups of genes that were grouped together by several meaningful
attributes. Interrelating details on more than two edges was mentally taxing. The priorities
above target visualization techniques and content that can alleviate this cognitive load.

3. Metacognitive structuring. The need to support metacognition harks back to the earlier
discussion about the importance of action trails (activity provenance) and a scientist’s need to
set cues in the workflow. For this focus, our proposed priorities for visualization development
are:

e Functionality for tracking, querying, and re-playing activity

e Undo and bookmarking capabilities

e Functionality for scientists to actively “seed” the workspace with various subjective cues

Our case suggests that in developing activity trails to support metacognitive thinking, programs
need to automatically chunk captured activity and present it to scientists at an application level
—i.e., at the level at which biomedical specialists conceptualize their analytical actions. Our
components of knowledge work and constituent cognitive tasks can help to guide this chunking.
Additionally, cuing needs to be sensitive to complicated instances, for example the biomedical
specialist’s flow of animation-based comparisons. Liu and Stasko underscore the difficulty a
scientist faces in keeping track of such animated comparisons (40). As they note, “It is non-
trivial to identify the combination of values that actually lead to [an] abnormality;” and to keep
track of these values visual cues are essential (40, 1027).
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6. Conclusion

This study focuses on a workflow that often gives scientists difficulty due to insufficient
software support. We uncover the human constraints that need to be considered if network
visualization tools are to satisfy biomedical specialists’ actual ways of knowing and reasoning
for this class of analysis. We represent these constraints as analytical objectives and link these
objectives to their associated core components of knowledge work and the combinations of
cognitive tasks enacted for each component. Our study is an initial step in putting together
patterns of actual analysis at an application level. When such patterns are more fully
established they may help developers intelligently pre-define and build in greater flexibility,
improve support for negotiating meaning, and better facilitate metacognitive thinking.

Our study also suggests that developing robust tools will be an incremental process. Our
prototyping efforts intimate that by mapping just a mini-flow developers can construct
prototypes that fit scientists’ goal-driven cognitive tasks. We envision that by conducting user
performance evaluations on such prototypes development teams would uncover and
implement further improvements. Visualizations thus would steadily improve for the aspects of
a workflow targeted by a prototype. Scientists would then be able to better clarify and
articulate their needs for the parts of the workflow that are not yet supported. These specified
needs would lead to additional mappings and continued improvements for usefulness. Our
approach should help biomedical computing break out of the current mode in which
technology specialists build applications for bioinformatics-oriented research rather than for
the exploratory translational research that collaborating biomedical specialists want to perform
for context-rich research problems. Without adequate tools, investigators often conduct their
work across too many platforms without coherence.

The mapping and other representations that we have created hold promise for visualization
development in other ways, as well. They could help developers set priorities and select from
the start programming tools that best support scientists’ goal-driven cognitive tasks. They also
could help to reduce costs by efficiently guiding development for usefulness from inception on.
Additional cases of cognitive task analysis, field studies, mappings, and prototyping are needed
for greater understanding and generalizability. We believe that additional research will uncover
discernible patterns characterizing the fluent performance of this discovery-driven workflow.
Developing tools for these patterns is a crucial frontier to cross. Fit-to-pattern visualization
tools are necessary to assure that a broad base of biomedical specialists —and not just early
adapters - can engage in effective and efficient translational research.
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