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Wong and Tay: Vertex-multiplications of Trees with Diameter 4

Abstract

Koh and Tay proved a fundamental classification of G vertex-multiplications into
three classes 63, 61 and 45. They also showed that any vertex-multiplication of a
tree with diameter at least 3 does not belong to the class %,. Of interest, G vertex-
multiplications are extensions of complete n-partite graphs and Gutin characterised
complete bipartite graphs with orientation number 3 (or 4 resp.) via an ingenious
use of Sperner’s theorem. In this paper, we investigate vertex-multiplications of
trees with diameter 4 in %y (or 1) and exhibit its intricate connections with prob-
lems in Sperner Theory, thereby extending Gutin’s approach. Let s denote the
vertex-multiplication of the central vertex. We almost completely characterise the
case of even s and give a complete characterisation for the case of odd s > 3.

Keywords: optimal orientation, orientation number, vertex-multiplication, Sperner fam-
ilies, antichains, cross-intersecting.

MSC 2020: 05C12, 05C20, 05D05.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). In this paper, we consider
only graphs with no loops or parallel edges. For any vertices v,z € V(G), the distance
from v to z, dg(v,z), is defined as the length of a shortest path from v to z. For
v € V(Q), its eccentricity eg(v) is defined as eg(v) = max{dg(v,z) | x € V(G)}. The
diameter of G, denoted by d(G), is defined as d(G) = max{eg(v) | v € V(G)}. The
above notions are defined similarly for a digraph D; and we refer the reader to [1] for
any undefined terminology. For a digraph D, a vertex x is said to be reachable from
another vertex v if dp(v,z) < oo. The outset and inset of a vertex v € V(D) are
defined to be Op(v) = {z € V(D) | v — 2} and Ip(v) = {y € V(D) | y — v}
respectively. The outdegree degh(v) and indegree degn(v) of a vertex v € V(D) are
defined by deg},(v) = |Op(v)| and degp(v) = |Ip(v)| respectively. If there is no ambiguity,
we shall omit the subscript for the above notation.

An orientation D of a graph G is a digraph obtained from G by assigning a direction
to every edge e € E(G). An orientation D of G is said to be strong if every two vertices
in V(D) are mutually reachable. An edge e € F(G) is a bridge if G — e is disconnected.
Robbins” One-way Street Theorem [19] states that a connected graph G has a strong
orientation if and only if G is bridgeless.

Given a connected and bridgeless graph G, let Z(G) be the family of strong orienta-
tions of G.. The orientation number of G is defined as

d(G) = min{d(D) | D € 2(G))}.

Any orientation D in 2(G) with d(D) = d(G) is called an optimal orientation of G. The
general problem of finding the orientation number of a connected and bridgeless graph is
very difficult. Moreover, Chvatal and Thomassen [3] proved that it is NP-hard to deter-
mine whether a graph admits an orientation of diameter 2. Hence, it is natural to focus
on special classes of graphs. The orientation number was evaluated for various classes of
graphs, such as the complete graphs [2,15,18] and complete bipartite graphs [7,20]. Of
interest, Gutin ingeniously made use of a celebrated result in combinatorics, Sperner’s
theorem (see Theorem 2.1), to determine a characterisation of complete bipartite graphs
with orientation number 3 (or 4 resp.).
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Theorem 1.1 (Soltés [20] and Gutin [7]). For ¢ > p > 2,

) 3, ifqg< (7)),
I AR )

In 2000, Koh and Tay [11] studied the orientation numbers of a family of graphs known
as the G vertex-multiplications. They extended the results on complete n-partite graphs.
Let G be a given connected graph with vertex set V(G) = {v1,v,...,v,}. For any
sequence of n positive integers (s;), a G vertex-multiplication (also known as an eztension
of G in [1]), denoted by G(s1, s, ..., Sy), is the graph with vertex set V* = JI_, V; and
edge set E*, where V;’s are pairwise disjoint sets with |V;| = s;, fori =1,2,...,n; and for
any u,v € V*, uv € E* if and only if u € V; and v € V; for some i,j € {1,2,...,n} with
i # j such that v;v; € E(G). For instance, if G = K,,, then the graph G(s1, s2,...,5,)
is a complete n-partite graph with partite sizes sq, s9, ..., s,. Also, we say G is a parent
graph of a graph H if H = G(sy, Sa,. .., S,) for some sequence (s;) of positive integers.

For i = 1,2,...,n, we denote the z-th vertex in V; by (x,v;), i.e., V; = {(z,v;) | x =
1,2,...,s;}. Hence, two vertices (z, v;) and (y, v;) in V* are adjacent in G (s, Sa, . .., s, if
and only if i # j and v;v; € E(G). For convenience, we write G*) in place of G(s, s, . . ., )
for any positive integer s, and it is understood that the number of s’s is equal to the order
of G, n. Thus, GW is simply the graph G itself.

The G vertex-multiplications are a natural generalisation of complete multipartite
graphs. Optimal orientations minimising the diameter can also be used to solve a variant
of the Gossip Problem on a graph G. The Gossip Problem attributed to Boyd by Hajnal
et al. [9] is stated as follows:

“There are n ladies, and each one of them knows an item of scandal which is not known
to any of the others. They communicate by telephone, and whenever two ladies make a
call, they pass on to each other, as much scandal as they know at that time. How many
calls are needed before all ladies know all the scandal?”

The Problem has been the source of many papers that have studied the spread of
information by telephone calls, conference calls, letters and computer networks. One can
imagine a network of people modelled by a G vertex-multiplication where the parent
graph is G and persons within a partite set are not allowed to communicate directly with
each other, for perhaps secrecy or disease containment reasons.

The following theorem by Koh and Tay [11] provides a fundamental classification on
G vertex-multiplications.

Theorem 1.2 (Koh and Tay [11]). Let G be a connected graph of order n > 3. If s; > 2

fori=1,2,...,n, then d(G) < d(G(s1,59,...,5,)) < d(G) + 2.
In view of Theorem 1.2, all graphs of the form G(sy, $a,...,s,), with s; > 2 for all
it =1,2,...,n, can be classified into three classes €, where

€; ={G(s1,52,...,5n) | d(G(s1,89,...,5,)) = d(G) + 7},

for j = 0,1,2. Henceforth, we assume s; > 2 for ¢« = 1,2,...,n. The following lemma
was found useful in proving Theorem 1.2.

Lemma 1.3 (Koh and Tay [11]). Let s;,t; be integers such that s; <t; fori=1,2,... n.
If the graph G(s1,Sa,...,S,) admits an orientation F in which every vertex v lies on a

cycle of length not exceeding m, then d(G(ty,ts,...,t,)) < max{m,d(F)}.
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To discuss further, we need some notation. In this paper, let T (or simply 7" unless
stated otherwise) be a tree of diameter 4 with vertex set V(Ty) = {v1,va,...,v,}. We
further denote by c, the unique central vertex of Ty, i.e., er,(c) = 2, and the neighbours
of ¢ by [i], i.e., Np(c) = {[1] | i = 1,2,...,degy,(c)}. Foreachi=1,2,... degy,(c), we
further denote the neighbours of [i], excluding c, by [a, ], i.e., Np,([i]) — {c} = {[e, 1] |
a=1,2,...,degy, ([i]) — 1}. Figure 1 illustrates the use of this notation.

Figure 1: Labelling vertices in a Tj.

From here onwards, let T = Ty(s1, S2,...,S,) be a vertex-multiplication of a tree Tj.
In 7, the integer s; corresponds to the vertex v;, i@ # n, while s,, = s corresponds to
c. We will loosely use the two denotations of a vertex, for example, if v; = [j], then

s; = s Also, if X € Ny = {1,2,...,k}, where &k € Z*, and v € V(T), then set
(X,v) = {(@i,v) | i € X}. In particular, (Ng,c) = {(1,¢),(2,¢),...,(s,c)}. For any set
A C (Ny,¢), A = (Nj,c) — A denotes its complement set.

A vertex v in a graph G is a leaf if degg(v) = 1. For a given Ty, set E = {[i] | []
is an leaf in T4}. For a given T of Ty, set T(A;) = {[i] | sy = J, 1 < i < degp(c),
[i] ¢ E'}, where j is a positive integer. If there is no ambiguity, we will use A; instead of
T (A;). Similarly, A<; and A>; denote the corresponding sets, when the condition s = j
is replaced by s; < j and sp; > j respectively. For example, if T} is as given in Figure 1,
then F = {[3], [4]}; furthermore, if s;, =2 for alli = 1,2,...,n,in T, then Ay = {[1], [2]}.

Theorem 1.2 was generalised to digraphs by Gutin et al. [8]. Ng and Koh [16] and
Wong and Tay [26] investigated vertex-multiplications of cycles and Cartesian products
of graphs respectively. Koh and Tay [12] studied vertex-multiplications of trees. Since
trees with diameter at most 2 are parent graphs of complete bipartite graphs and are
completely solved, Koh and Tay considered trees of diameter at least 3. They proved
that vertex-multiplications of trees with diameter 3, 4 or 5 does not belong to the class
%, and those with diameter at least 6 belong to the class 4.

Theorem 1.4 (Koh and Tay [12]). If T is a tree of order n and d(T) = 3,4 or 5, then
T(s1,82,.-.,8,) € 6o U G-

Theorem 1.5 (Koh and Tay [12]). If T is a tree of order n and d(T) > 6, then
T(s1,82,.-.,8,) € Go.

Wong and Tay [23] proved a characterisation for vertex-multiplications of trees with
diameter 5 in %, and %.

Theorem 1.6 (Wong and Tay [23]). Let T be a tree of diameter 5 with central vertices
c1 and co, and s; corresponding to c; for v = 1,2. Furthermore for ¢ = 1,2, denote
El'={u|u € Np(c;) —{cs_i},u is not an leaf in T} and m; = min{s, |u € E!}.

(a) If s1 > 3, or so > 3, or my,mg > 4, then T(s1,S9,...,8,) € 6.

(b) Suppose s;1 = so =2 and 2 < my <3 or2 <mg <3. Then, T(s1,82...,8,) € Co if
and only if |[E}| =1 for some j = 1,2.
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Koh and Tay [12] obtained some results regarding membership in %, or &, for vertex-
multiplications of trees with diameter 4.

Theorem 1.7 (Koh and Tay [12]). For a given Ty,
(a) if degp, (c) =2, then T € 6.
(b) if degy,(c) > 3, then T\ € 6.

In this paper, we further investigate vertex-multiplications of trees with diameter 4
and almost completely classify them as %, or %;. The techniques required here exhibit
intricate connections with problems in Sperner Theory. In Section 2, we provide the main
tools, which comprise well-known results from Sperner Theory and structural properties
of optimal orientations of a 7. Section 3 focuses primarily on the case where s is even
and the findings are summarised in Theorem 1.8. In Section 4, we prove a complete char-
acterisation of vertex-multiplications of trees with odd s > 3, namely Theorem 1.9. We
point out that Propositions 3.4 and 3.5 hold for all integers s > 2 and s > 3 respectively.

Theorem 1.8. Let Ty be a tree of diameter 4 with the only central vertex c. Suppose s
is even for a T. Then,

(a) For s = 2:
|Aa U Asg| | |[Asa| | T €Co <~ --- Proposition
0 > 2 | Always true. 3.4
>1 >0 | degp(c)=2. 3.2
Table 1: Summary for Ty(sq, S, ..., S,), where s = 2.
(b) For s > 4:
|Az|| |As|| |As4l| T € Co < --- Proposition
0 0 > 2 | Always true. 3.4
0 [ 21 20 [ = () + (i) -2 59

i) [Aa] < (1,097) — 1. i | Aa] < degy(c), .

i) [Ag] < ([5821)’ if |Ay| = degp(c).

D) [As| < (o) = 2,1 [Aza] = 2 or [Azs] < degy(c),

” : | 3.10
i) |Ay| < (5/2) — 1, otherwise.

i) [A2] < (J5) — 2 if [Aso| < degy(c),

i) [ As] < () — 1, if [ Asa| = degy(c).

(
(

>1] 0 | >1 (
(
( 3.11
(
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The final case is incomplete and excludes the case [Ay] > 1, |A3| =1 and |As4] = 0.

|Az|| |Asl|| [A>4|| T € %o Propositio

(a) T € 6o = 2|As| + [A3] < (7o) + ((o/2)11)
—/i:%(k) for some k < |Ay| + |As].

(b) There exists some

>1[>1| >0 |[Af+1<k<min{|As]+ [As], (,,) — 1} such that 3.12
2’A2| + ’A3| < (8/2) + ((5/28)—%1) - Rs’%(k) -3
=T € %0-

Note: s 5(-) and k7 s (-) will be defined later.

o

Table 2: Summary for T = Ty(s1, S2, . - ., Sp), where s > 4 is even.

Theorem 1.9. Let T be a tree of diameter 4 with the only central vertex c. Suppose
s > 3 is odd for a T. Then,

|Az| | |As| | |[A>a| | T €Co < -+ Proposition
0 | 21| >0 |[Asf<2(;0y) —2 4.1
0 0 > 2 | Always true. 3.4
As| < 1, if |As| < degy(c),
> 9 0 0 (i) [Az| ([ /Q]) | As| gr(c) 35
(i) |Ag] < ( (s 21)’ if |As| = degy(c).
>1 ] 0 | >1 | |Af<()y) 1 4.8
>1 1 0 Aol < 1.
= | 2| ([ 2}) 43
(i) 2|As| + |As| <2(H21) 2, or
>1 | >2 0| (i) 2[Ao] + |A3] = 2(;,5y) — L,
42| > [51[3]) and s > 5.
>1 1 >1 Aol < 2.
= 21 1A < () = 4.10
>1 | 22| 21 | 24|+ |4 <2(;,5y) — 2

Table 3: Summary for T = Ty(s1, S, ..., Sp), where s > 3 is odd.

As we shall see in the proofs of Theorems 1.8 and 1.9, it is a key insight to partition
Nr(c) into 4 types of vertices, Ay, Az, A4 and E. Their sizes will then determine the
equivalent conditions of an optimal orientation (except possibly Proposition 3.12). We
shall consider cases dependent on these 4 sets. The lack of conformity in the equivalent
conditions across all cases gives a compelling indication that the case distinctions are
required.
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2. Preliminaries

Our overarching approach is to reduce the investigation of optimal orientations of tree
vertex-multiplication graphs to variants of problems in Sperner Theory; particularly con-
cerning cross-intersecting antichains. The change in perspective grants us leverage on the
following useful results in Sperner Theory.

For any n € ZT, let N,, = {1,2,...,n} and 2™ denote the power set of N,,. For any
integer k, 0 < k <n, (RL") denotes the collection of all k-subsets (i.e., subsets of cardinality
k) of N,,. Two families &7, % C 2% are said to be cross-intersecting if AN B # @ for
all A € o and all B € 4. Two subsets X and Y of N,, are said to be independent if
X ZY and Y € X. An antichain or Sperner family </ on N, is a collection of pairwise
independent subsets of N,,, i.e., forall XY € &/, X € Y.

Theorem 2.1 (Sperner [21]). For anyn € Z*, if & is an antichain on N,,, then |o/| <
<L /2J) Furthermore, equality holds if and only if all members in o/ have the same size,

[5] or [51.

Lih’s theorem [14] provides the maximum size of an antichain with each member
intersecting a fixed set and Griggs [6] determined all such maximum-sized antichains.

Theorem 2.2 (Lih [14]). Let n € ZT and Y C N,,. If & is an antichain on N,, such
that ANY # () for all A € <, then

< n ) B (n - |Y]>

1% (1) = (T

Theorem 2.3 (Griggs [6]). Let n € ZT and Y CN,,. If o is an antichain on N,, such
that ANY # 0 for all A € o7 and || = ([n’}ﬂ) - (TF;/‘;‘), then </ consists of exactly one
of the following:

(i) [5]-sets, or

(ii) "——sets for oddn and |Y| > 252 or

(i1 "*2 -sets for even n and |Y| = 1

Given two cross-intersecting antichains o7 and % on N,,, Ou [17], Frankl and Wong [5]
and Wong and Tay [25] independently derived an upper bound for |.«7| + |£|. Further-

more, Wong and Tay [22] determined all extremal and almost-extremal cross-intersecting
antichains for o/ and £.

Theorem 2.4 (Ou [17], Frankl and Wong [5] and Wong and Tay [25]). Let o/ and & be
two cross-intersecting antichains on N,,, where n € Z and n > 3. Then,

1+191% (o yoy) * (o s )
Furthermore, equality holds if and only if {</, B} = {( (nt1 /2J) ([( N m)}.

n+1)
Theorem 2.5 (Wong and Tay [22]). Let &7 and % be two cross-intersecting antichains
on N,,, where n > 3 is an odd integer and || > |9B|. Then, ||+ |B| = 2<[n/21) 1if

and only if o = (n/ﬂ) AB C ([S/”ﬂ) and |%B| = ((n%}) - L
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Theorem 2.6 (Wong and Tay [22]). Let &7 and A be two cross-intersecting antichains on
N,,, where n > 4 is an even integer and || > |2|. Then, ||+ |%B| = (n72)+((n/;)+1) -1
if and only if

y N"L
(i) o = (n/2) % C (n/2)+1) and [ B| = ((n/2)+1) —1, or
(ii) o C (n/2> || = (n/2) L, and % = (n/2)+1)

Kruskal-Katona Theorem (KKT) is closely related to the squashed order of the k-sets.
The squash relations <, and <, are defined as follows. For A, B € ( ) A <, B if the
largest element of the symmetric difference (A—B)U(B—A) isin B. Furthermore, denote
A<, Bif A<, B and A # B. For example, the 3-subsets of N5 in squashed order are:
123 <, 124 <, 134 <, 234 <, 125 <, 135 <, 235 <, 145 <, 245 <, 345. Here, we
omit the braces and write abe to represent the set {a,b, c}, if there is no ambiguity. We
shall denote the collections of the first m and last m k-subsets of N,, in squashed order
by F, x(m) and L, ,(m) respectively.

For a family o/ C (RL”), the shadow and shade of <7 are defined as

Ad ={XCN, || X|=k—1,X CY forsome Y € &}, if k>0, and
Vo ={XCN, | |X|=k+1,Y C X forsomeY € &}, if k <n
respectively.

Then, KKT says that the shadow of a family &7 of k-sets has size at least that of the
shadow of the first |.o/| k-sets in squashed order.

Theorem 2.7 (Kruskal [13], Katona [10] and Clements and Lindstrém [4]). Let </ be
a collection of k-sets of N,, and suppose the k-binomial representation of || is || =

(%) + () + -+ (%), where a, > ag_y > -+ > a, >t > 1. Then,

ag Ap—1 ay
> _ .

By considering the complements of sets in F,, (m), the next lemma can be proved.
Lemma 2.8. For any integer 0 < m < (1), [AF,x(m)| = |V Ly u-r(m)].

Definition 2.9 (Wong and Tay [25]). Let n,r and m be integers such that 0 < m < (7).
Define

Kne(m) = |[AF, . (m)| —m and &}, .(m) = min K,,(j).

0<j<m

We remark that r,,»(m) = [V L,z (m)| —m by Lemma 2.8. Using KKT, Wong and
Tay [25] derived an upper bound for cross-intersecting antichains with at most & disjoint
pairs.

Theorem 2.10 (Wong and Tay [25]). Let n > 4 be an even integer and </ and A be two
antichains on N,,. Suppose there exist orderings of the elements Ay, Ay, ..., Ay in &,
and By, Ba, ..., Bz in #, and some integer k < min{|<7|, |A|}, such that A; N B; =0
only if v = 5 < k. Then,

1101 1)+ (G 1) ~ s

Published by Digital Commons@Georgia Southern, 2023
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n/2
where Ky, w(k) =0 dif k <1+ (211._1) and K} (k) < 0 otherwise. Furthermore, equality
2 = )2
holds if
: W2 i N N
k<145 (), o = () and 2= (5. or

n/2
(i) k > 1+ Z; ), & = (S/’E) and B = Lyn(m) U ((n/I\;T)L-H) — VL, n(m), where

0<m<kis an integer such that K;%(/{Z> = Kp,z(m).

Lastly, we prove here some key properties of an optimal orientation of a vertex-
multiplication graph 7 in 4. Let D be an orientation of 7. If v, and v,, 1 < p,g <n
and p # ¢, are adjacent vertices in the parent graph G, then for each ¢, 1 <i <'s,, we
denote by O2((i,v)) = {(7,v,) | (istp) = (Gsvg)s1 < j < 5.} and L3((i,v)) = { (s vy) |
(4,vg) = (4,vp),1 < j < s,}. If there is no ambiguity, we shall omit the subscript D for
the above notation.

The next lemma is important but easy to verify.

Lemma 2.11. (Duality) Let D be an orientation of a graph G. Let D be the orientation
of G such that wv € A(D) if and only if vu € A(D). Then, d(D) = d(D).

Lemma 2.12. Let D be an orientation of a T where d(D) = 4. Then, dp((p, [, 1]), (g, [j]))

= dp((q,[5]), (p, [, 4])) = 3 for all 1 < d,j < degp(c), i # j, 1 < a < degp(fi]) — 1,
1 <p <5 and 1 < g < s

Proof: Note that 3 = dr([a, 1], [1]) < dp((p, |, 1]), (¢, [j])) < d(D) = 4. Since there is
no [a, ] — [j] path of even length in 7', there is no (p, [, 7]) — (g, [j]) path of even length
in 7, in particular, no path of length 4. Hence, dp((p,[«,i]),(q,[j])) = 3. Similarly,
dp((¢; [7]), (p; [, 7])) = 3 may be proved. O

Since we are going to use this fact repeatedly, we state the following obvious lemma.

Lemma 2.13. Let D be an orientation of a T where d(D) = 4. For 1 <i < degy(c),
(a) if sy = 2, then for 1 < p < s and 1 < a < degp([i]) — 1, either (2,[i]) —
(p, [, 7)) = (1, [i]) or (1, []) = (p, [ev,4]) — (2, [i]).

(b) if sy = 3, then for 1 < p < sja and 1 < a < degy([i]) — 1, either |O((p, [, d]))| =1
or [I((p, lev,i]))| = 1.

Proof: Both statements follow from the fact that O((p, [, ])) # 0 and I((p, [c,i])) # O
forallp=1,2,..., 5[, so that D is a strong orientation. O

Example 2.14. To help the reader understand the following lemmas and the proof of
Proposition 3.9, we use the orientation D shown in Figures 5 and 6 for this example. It
will be shown later that d(D) = 4.

(a) Observe that O((1, [1,4])) = {(3,[i]) } for i = 5,6, and O°((3, [5])) = {(1,¢c),(2,¢),(3,¢)}
and O°((3,[6])) = {(2,¢),(3,¢), (4, c)} are independent.

(b) Note that O((lv [17 1])) = {(1’ [1])7 (27 [1])}v OC((L [1])) = {(17 C)v (2’ C)}7 OC((27 [1]))
{(3,¢),(4,¢c)}. It is easy to check that O°((3,[5])) € O°((p,[1])) for p = 1,2, an
O°((1,[1])) L O=((2, [1])) € O°((3, [5]))-

In Lemmas 2.15 and 2.16, we prove that these observations hold generally.

[o
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Lemma 2.15. Let D be an orientation of a T where d(D) =4 and 1 <4,j < degp(c),
i#j, 1 <a<degp([i]) —1, 1 <8 <degp(lj]) — 1. Suppose O%(u;) = O°(v;) for any
u;, v; € O((1, [, 4])) and O°(u;) = O%(v;) for any uj,v; € O((1,[B,7])), then O°(w;) and
O°(w;) are independent for any w; € O((1, [a,4])) and w; € O((1, B, 5]))-

Proof: By Lemma 2.12, dp((1, [o, i]), w;) = 3. Hence, it follows that dp(w;, w;) = 2 and
O°%(w;) € O%(w;). A similar argument shows O°(w,) € O°(w;).

U

Lemma 2.16. Let D be an orientation of a T where d(D) = 4. Suppose O((1, [a,i]))
{(L[D)} and O((L,[8,5])) = {(L,[5]), (2, [5])} for 1 <i,j < degp(c), @ # j, 1 < a
degT([ ) —1,and 1 <8 < degT([ ]) — 1. Then, for each p=1,2,..., 5,

(a) O%((1,[1))) Z O=((p. i),

(b) O°((1, [)) L O=((2,[j])) € O°((1, [4]))-

Proof: (a) can be proved similarly to Lemma 2.15. By Lemma 2.12, dp((1, |8, j]), (1, [i])) =
3, which implies dp((p, [j]), (1, [i])) = 2 for some p = 1,2. Hence, (b) follows. O

IA

In view of the Duality Lemma, we remark that Lemmas 2.15 and 2.16 have their
respective dual analogues in which the notion of ‘out-sets’ is replaced by ‘in-sets’.

Lemma 2.17. Let D be an orientation of a complete bipartite graph K (p,q) with partite
sets Vi = {11,1a,...,1,} and Vo = {21,29,...,2,}, ¢ > p > 3. Suppose further for
1< < p that )\z — 2; > 5\,’, where )\z = {11, 1i+17 ceey 1i+"g‘|_1}. Then, dD(lia 1J) =2 fO’f’
any 1<1,j <p,i#J.

Proof: Let t € Ny, such that t =i —[£] 41 (mod p). Since 1; — {2;,2,} and Vi — {1;} C
0(2;,) U0(2), it follows that dp(1;,1;) = 2 for i # j. O

3. Proof of Theorem 1.8

In proving the “only if” direction of the following propositions, we shall use a common
setup forged with the following notions. For a 7, let D be an orientation of 7 with
d(D) = 4. If Ay # 0, then by Lemma 2.13(a), we may assume without loss of generality
in D that

(2,[7]) — (1,[1,4]) — (1, [¢]) for any [i] € As. (3.1)
Also, we let
BY = {O°((1,[i))) | [i] € A2} and By = {I°((2,[i])) | [i] € As}. (3.2)

Note that (1, [i]) ((2,[z]) resp.) is effectively the only ‘outlet’ (‘inlet’ resp.) for the vertex
(1, [1, 1)) i 1] € Ay,

Analogously, if A3 # 0, then by Lemma 2.13(b), we can partition Az into A and AZ,
where

A9 = {[i] | Ya,1 < a < degy([i]) — 1,Yp,1 < p < sja, [O((p, [0, ]))] = 1},} (33)
AL ={[i] | 3,1 < o < degy([i]) = 1,3p. 1 < p < sja), [O((p, [, 1)) ] = 2} -

Without loss of generality, we assume in D that

{(L 1), 2, 1)} — (1, [1,4]) — (3, []

(3,1]) if [i] € AS.
and (3, [i]) - (L, [L,d]) = {(L, [}, @ [} if [i } (3.4)
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We also let
By ={0%((3,[i])) | li] € AF} and By = {I°((3,[i])) | [i] € A3}. (3.5)

Note that (3,[i]) is effectively the only ‘outlet’ (‘inlet’ resp.) for the vertex (1,[1,4]) if
[i] € AY (AL resp.). Furthermore, both BY U BY and B U Bl are antichains on (N, c)
by Lemma 2.15 and its dual respectively.

Example 3.1. Let D be the orientation shown in Figures 5 and 6. Then, Al =
{[1], 20, [3], [41}, AF = {[5], [6]}, Bf = {{(2,¢), (3,¢)},{(1,¢), (4,¢)},{(L, ), (3,0)}, {(2,¢),
(4,¢)}}, and BY = {{(1,¢),(2,¢),(3,¢)},{(2,¢).(3,¢), (4,¢)}}.

As the problem differs for s = 2 from s > 4, we consider them separately.

Proposition 3.2. Suppose s =2 and Ay U Az # () for a T. Then, T € ¢ if and only if
degr(c) = 2.

Proof: (=) Since T € %y, there exists an orientation D of T, where d(D) =
Ay U Az # 0, we assume (3.1)-(3.5) here. From d(T) = 4, it follows that [Aso| >
shall consider two cases to show |Ass| =2 and E = 0.

4. As
2. We

Case 1. |4, U A9| > 0.
Let [i*] € Ay U AS and § = 1if [i*] € Ay, and § = 3 if [i*] € AS. For all [i] € Np(c)

thus, |Ass| = 2. If E # (), then a similar argument follows for [i] € Asy — {[¢*]} and
j] € E.

Case 2. [A; U AY| = 0 and |Af] > 0.
Then, AL behaves like A in D. The result follows from Case 1 by the Duality Lemma.

Remark 3.3. We note the difference in the definition (3.3) of AS and Af respectively.
For the argument, we actually needed only a partition A and AL of Aj satisfying

[Z] € ASO = do,1 <a< degT([i]) —1,dp,1<p< Sla,i]s |O((p, [a,z]))] =1,
and [1] € Ag — Ja,1 < a <degp(fi]) —1,3p,1 < p < s |[L((p, [, 7)) = 1.

If AS and AL were each defined using existential quantifiers instead, their intersection
may be nonempty. We may arbitrarily include these elements in A or A% (but not both)
to get a partition. However, for the sake of a well-defined partition, we used (3.3). We
emphasize that this does not affect the duality effect in the argument and shall repeatedly
apply this.

(<) This follows from Theorem 1.7(a). O

For the following, note that Proposition 3.4 holds for all integers s > 2 while Propo-
sition 3.5 and Corollary 3.8 hold for all integers s > 3.
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Proposition 3.4. If s > 2 and Ay = A3 =0 for a T, then T € %,.

Proof: Let H =T (t1,t2,...,t,) be the subgraph of T, where t; = 4 for all [i] € T (A>4)
and ¢, = 2 otherwise. We will use A; for H(A;) for the remainder of this proof. Note
that A; # 0 if and only if j = 4. Define an orientation D for H as follows.

{2, 01), B, 1)} = (1, [ad]) = {(L [2]), (4, [i))} — (2, e a]) = (2, [i]), (3, [iD)},
and {(L,[i]), (2, [)} = (L, ¢) = {B, [i]), (4, )} = (2,¢) = {(1, [d]), (2, [d])}

for all [i] € Ay and 1 < o < degp([i]) — 1.

(2,¢) = {(L LD, (26D} = (1,¢)

for all [j] € E. (See Figure 2 for D when s = 2.)
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we
refer the interested reader to [24] for details. Since every vertex lies in a directed Cy for

D and d(D) =4, d(T) < max{4,d(D)} by Lemma 1.3. With d(7) > d(T') = 4, it follows
that d(7) =4 . O

Figure 2: Orientation D, where Ay = {[1], [2]}, E = {[3], [4]}.
Note that the parent graph is the tree in Figure 1.

Note: For clarity, the arcs directed from (p,c) to (g,[i]) are omitted, while the arcs
directed from (q, [i]) to (r, [«, 1]) are represented by dashed (---) lines. The same simpli-
fication is used for Figures 3 to 10.

Proposition 3.5. Suppose s >3 and A>3 =0 for a T. Then,

|As| < (1597) — 1, if |As| < degyp(c),
T €6 — [5/2] :
0 {\A2| < ((3/21)’ if |As| = degp(c).

Proof: (=) Since T € %y, there exists an orientation D of T, where d(D) = 4. As
Ay # ), we assume (3.1)-(3.2) here. By Sperner’s theorem, |A;| = |BY| < (]—sjﬂ)' 0, we
are done if |Ay| = deg,(c).
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Now, assume |Ay| < degp(c) and let [*] € E. If|O°((1, [i*]))| > [5], then dp((1,[1,1]),
(1,[2*])) = 3 implies O°((1,[¢])) N I°((1, [@*;C))l # () for all [i] € As. 12’5 follows from Lih’s
theorem that [A,| = ‘B | < ([552) (S 22[2 D)‘) < ([5;21) (EM) - ([5/21) LIt
[O°((L ["])| < [5], then dp((1, []), (1, [1, ])) = 3 implies I°((2,[i])) N O°((L, [i*])) # 0
for all [i] € Ay. Tt follows from Lih’s theorem that |Ay| = |Bi| < ([5/2]) (sTIOTLEEINN <

2] [s/2]

((5/21) - ([5/21) - ((5/2}) - L

Remark 3.6. On account of the above part, it is intuitive to let O°((1, [i])) = O°((2, [i]))
and |O°((1,[4]))| = [5] in constructing an optimal orientation D of 7. Indeed, this is our
plan if |Ay| is big enough (i.e., |A2| > s). However, there are some potential drawbacks of
this approach if |As| is small (i.e., |As| < s). For instance, consider s = 5 and deg,(c) =
| Ag] = 2. 1t we assigned O%((p, 1])) = {(1, <), (2, )} and O%((p, 2])) = {(1, <), (3,c)} for
p = 1,2, then deg®((1,c)) = 0 and deg ((j,c)) = 0 for j = 4,5. Consequently, D will
not be a strong orientation. Hence, we consider cases dependent on |As| to circumvent

this problem; namely, they are Cases 1 and 2 for small |A,|, and Cases 3 and 4 for large
| As.

(<) Without loss of generality, assume Ay = {[i] | i € Nja,}. Thus, it is taken that

= {[i] | © € Naegp(c) — Njay(} if [Ag] < degp(c). Let H = T(ty,t,...,t,) be the
subgraph of T, where t. = s and ¢, = 2 for all v # c. We will use A; for H(A;) for the
remainder of this proof.

Case 1. |As| = degy(c) (ie., E=0) and |Ay] < s.
Define an orientation D; for H as follows.

(2, [i]) = (L [ 4]) = (L [i]) = (2, e d]) — (2, [2]) (3.6)
for all [i] € Ay and 1 < o < deg,([i]) — 1.

(N, ¢) = {(6;e)} = {(1, 1), 2, [i))} = (4, ¢) (3.7)

for all 1 <i < |As] — 1.

(N, ¢) = {(k,c) | [A] <k < s} — {(1,[|42]]), (2, [|A2]])}
= {(k,c) | [A2] <k < s}. (3.8)

Claim 1: For all v,w € V(Dy), dp, (v, w) < 4.

Case 1.1. v,w € {(1,[a,1]), (2, |e,1]), (1, [i]), (2,[i])} for each [i]] € Ay and 1 < a <

degr([i]) — 1.
This is clear since (3.6) is a directed Cj.

Case 1.2. For each [i],[j] € Aa, i # j, each 1 < o < degy([i]) — 1, and each 1 <
B < degr([j]) — 1,
() v=(p.[a,1]),w=(q[B,]) for p,q=1,2, or
(i) v = (p, [, 1]),w = (q, [i]) for p,q = 1,2, or
(i) v = (p, [i]),w = (¢, [8,]) for p,q = 1,2.

If i # j, then, by (3.6)-(3.8), (p, [a,1]) = (p,[i]) = (i,¢) = (L,[j]) = (2,[8,J]) and
(p. o)) = (p.[i]) = (i) = (2,[j]) = (L, [8,]).

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss1/6
DOI: 10.20429/tag.2023.10106



Wong and Tay: Vertex-multiplications of Trees with Diameter 4

Case 1.3. v = (x1,c) and w = (9, ¢) for z1 # x5 and 1 < x1, 29 < s.

If 29 < |Ag|, then (z1,c) — (1,[x2]) — (22,¢) by (3.7). If 2y < |Ag| < 29 < s,
then (x1,¢) — (1,[|Az2]]) — (z2,¢) by (3.7)-(3.8). If |As| < z1,25 < s, then (z1,¢c) —
(1, 11]) = (1,¢) = (1, [[Aa]]) = (22, ) by (3.7)-(3.8).

Case 1.4. v € {(1,[1]), (2, [d]), (1, [, 7)), (2, [ev, 7]) } for each [i] € Ag, 1 < o < degp([i]) — 1,
and w = (j,c) for 1 < j <s.

If j =4, ori=|Ay <j <s, then (p,|a,i]) — (p,[i]) = (j,c) for p = 1,2, by
(3.6)-(3.8). 1 j # i and j < |Asf, then (p. [0 1)) — (p.[i]) = (i.€) = (L)) = (i.0)
for p = 1,2, by (3.6)-(3.7). If i < |Ay] < j < s, then (p,[a,i]) — (p,[i]) = (i,¢) —

(1,[|A2]]) — (j, ) for p=1,2, by (3.6)-(3.8).

Case 1.5. v = (j,c) for each 1 < j < s, and w € {(1,[7]), (2, [7]), (1, [, 1]), (2, [, 7]) }
for each [i] € Ay and 1 < o < degp([1]) — 1.

If j < |As] and j # i, ori < |Ay] < j <'s, then (j,¢) — (p,[i]) — (3 — p,[a,1]) for
p= 1.2, by (3.6)-(3.8). It i = j < |As], then (j,) > (1, [As]]) = (|Aal, <) > (p. 1)) =
(3 — p,[a,i]) for p = 1,2, by (3.6)-(3.8). If i = |As| < j < s, then (j,c) — (1,[1]) —
(1.6) = (p.[[Aa]) = (3~ p. o | o]} for p = 1.2, by (3.6)-(3.5).

Case 1.6. v = (p,[i]) and w = (q, [j]), where 1 < p,q < 2, i # j, and [i], [j] € As.
This follows from the fact that |O¢((p, [7]))| > 0, [I°((q, [j]))| > 0, and dp, ((r1, c), (rs, c))
=2 for any r; # o and 1 < ry,ry < |As| by Case 1.3.

Case 2. |As| < degy(c) (ie., E #0) and |Ay] < s.
Define an orientation D, for H as follows.

(2,0d) = (L[, d]) = (L [i]) = (2, [a,d]) = (2,[i]) (3.9)
for all [i] € Ay and 1 < o < deg,([i]) — 1.

(N, ¢) = {(6,e)} = {(1, 1), 2, [i))} = (i, ¢) (3.10)

for all 1 < i < |As|.

(N, €) = {(p, li]) | p = 1,2;[i] € E}
= {(k,0) [ [As| <k < s} = {(q, 1) | ¢ = 1,2 [j] € Az} (3.11)

(See Figure 3 for Dy when s = 5.)

Claim 2: For all v,w € V(Ds), dp,(v,w) < 4.
In view of the similarity between D; and D,, it suffices to check the following.

Case 2.1. For each [i] € Ag, each [j] € E, and each 1 < o < degy([i]) — 1,
() v = (p, [a, i]),w = (g, [5]) for p,q = 1,2, or
(i) v = (p, [i]), w = (g, [j]) for p,q = 1,2, or
(ii) v = (g, [j]), w = (p, v, 7]) for p, g =1,2.
By (3.9)-(3.11), (i) and (ii) follow from (p,|,i]) — (p,[i]) — (i,¢) — {(1,[j]),
2, 7))} Similarly for (i), {(L,[1). (2, 1))} — (5,6) = (3 — p. i) > (p, [, ).
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Case 2.2. v = (x1,¢c) and w = (9, ¢) for x1 # x5 and 1 < x1, 29 < s.

If 25 < |As|, then (z1,c) — (1, [z2]) = (22, ¢c) by (3.10). If 1 < |Ay] and |Ay| +1 <
x9 < s, then (z1,c) — (1,[j]) = (x2,c) for any [j] € E by (3.11). If |As|+1 <z, 29 < s,
then (xl, c)— (L, [1]) = (1,¢) = (1,[j]) = (22, c) for any [j] € E by (3.10) and (3.11).

Case 2.3. v € {(1,[7]), (2,[z])} for each [i] € E, and w = (j,c) for 1 < j <s.
For 1 <j < ]Ag], {(1,[2]), (2,[i])} — (s,¢) — (1,[4]) = (4,¢) by (3.10) and (3.11).
For [A| +1 <7 <'s, {(1,[), (2, [i))} = (j, ¢) by (3.11).

Case 2.4. v = (j,c) foreach 1 < j <s, and w € {(1,[i]), (2, [i])} for each [i] € E.
By (3.11), for any 1 < j < |As], (4,¢c) — {(1, H ,(2,[7)}. For |[As] +1 < j < s,
(€)= (L) = (1,€) = {(L [i]), (2. i)} by (3.10) and (3.11).

Case 2.5. v = (p,[i]) and w = (g, [j]), where 1 < p,q <2, and [i], [j] € E.
Here, it is possible that ¢ = j. Note that {(1,[i]),(2,[i]))} — (s,c) — (1,[1]) —

(1,¢) = {(L,[5]), (2, 1)} by (3.10) and (3.11).

Figure 3: Orientation Dy for H, Case 2. s =5, degy(c) = 6,

Ay = {[1], 2], [3], [4]}, £ = {[5], [6]}-

To settle Cases 3 and 4 (and forthcoming propositions), we require the following
notation.
Definition 3.7. Set {\1, Ao, .. ., )\([ ; w)} = (((NS‘;’Q?), i.e., the set containing all [3]-subsets
s5/2
of (Ny,c). In particular, for 1 < i < s, let A\; = {(i,c),(i+ 1,¢),...,(i + [5] — 1,¢)},
the sets containing [J] vertices in consecutive (cyclic) order starting from (i,c). For
example, Xy = {(2,¢),(3,¢c),...,([5] +1,¢)}. The denotation of the remaining A;’s can
be arbitrary.
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Case 3. |Ay| = degyp(c) (ie., E=0) and s < |Ay| < ([sjﬂ). (If s = 3, this case does not
apply, and we refer to Case 1 instead.)

Define an orientation D5 for H as follows.

(2,[1]) = (L, [ a]) = (L, ) = (2, e ]) — (2. [2]), (3.12)

and A\; — {(L,[1]), (2,[]))} = \i (3.13)
for all [i] € Az and 1 < a < degy([i]) — 1. We point out that the [5]-sets A1, Mg, ..., Ajay
(L3]-sets A1, Ao, ..., A4y Tesp.) are used as ‘in-sets’ (‘out-sets’ resp.) to construct Bj
(BY resp.).

Claim 3: For all v,w € V(Dj), dp,(v,w) < 4.
Case 3.1. v,w € {(1,[a,1]), (2, [a,d]), (1, [:]), (2,[i])} for each [i{] € Ay and 1 < a <

degy([7]) — 1.
This is clear since (3.12) is a directed Cj.

Case 3.2. For each [i],[j] € Aa, @ # j, each 1 < a < degy([i]) — 1, and each 1 <
B < degr(j]) — 1,
() v = (p, [o,i]), w = (g, [, j]) for p,q = 1,2, or
(i) v = (p, [o,4]), w = (g, [5]) for p,g = 1,2, or
(iti) v = (p, [i]),w = (¢, [B,4]) for p,q = 1,2.

By (3.12)-(3.13), since O°((p,[i])) = A\i € Aj = O°((q,[j])), there exists a vertex
(z,c) € Ay N A; such that (p, [a,1]) = (p, [i]) = (z,¢) = (3 —q,[j]) = (q,[8,])-

Case 3.3. v = (r1,¢) and w = (ry,¢c) for r; Zry and 1 < ry, 7y < s.

Here, we want to prove a stronger claim, dp,((r1,c), (re,c)) = 2. For 1 < k <'s, let
7 = (1,[k]) and observe from (3.13) that A\, — 2, — Ar. The subgraph induced by
Vi = (Ng,c) and Vo = {z}, | 1 < k < s} is a complete bipartite graph K(V3,V5). By
Lemma 2.17, dp,((r1, ¢), (12, ¢)) = 2.

Case 3.4. v € {(1,[i]), (2,[i]), (1, [a,1]), (2, [a,i])} for each [i]] € Ay and 1 < a <
degr([7]) — 1, and w = (r,c) for 1 <r < s.

Note that there exists some 1 < k < s such that dp, (v, (k,c)) < 2 by (3.12)-(3.13).
If k =r, we are done. If k # r, then dp,((k,c), (r,c)) = 2 by Case 3.3. Hence, it follows
that dp,(v,w) < dp,(v, (k,c)) + dp,((k,c),w) = 4.

each [i] € Ay and 1 < o < degyp([i]) — 1.

Note that there exists some 1 < k < s such that dp,((k,c),w) < 2 by (3.12)-(3.13).
If k =r, we are done. If k # r, then dp,((r, c), (k,c)) = 2 by Case 3.3. Hence, it follows
that dp, (v, w) < dp,(v, (k,c)) +dp,((k,c),w) = 4.

Case 3.5. v = (r,c) for 1 < r < s and w € {(1,[7]),(2,[7]), (1, [, 1]), (2, [e,7]) } for

Case 3.6. v = (p, [i]) and w = (g, [j]), where 1 < p,q < 2 and [i], [j] € As.
This follows from the fact that |O¢((p, [1]))] > 0, |1°((¢, [j]))| > 0, and dp,((r1, ), (9, €))
= 2 for any r; # ry and 1 < 17,79 < s by Case 3.3.
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Case 4. |Ay| < degp(c) (ie., E#0) and s < |Ay] < ((sjﬂ) — 1. (If s = 3, this case does
not apply and we refer to Case 2 instead.)
We define an orientation D, for H by making a slight enchancement to Dj3. Noting

that |As| < ( [5521) — 1, we include in Dy these extra arcs:

/\( s ) — {(17 []D? (27 []D} — /\(

[s/2] roj21)

for all [j] € E. (See Figure 4 for Dy when s = 5.)

(2,[10) @ ® (2,[11])

Figure 4: Orientation D, for H, Case 4. s =5, deg,(c) = 11,
Ay = {[1],[2), -, 91}, B = {[10],[11]}. Here, we assume A . 1 = {(1,¢), (3,¢), (5.0}

For clarity, we only show the vertices [a, ] and [i] for i = 1,2,3,10, 11.

Note: In addition to the simplification noted in Figure 2, in Figures 4 to 10, we use
densely dotted () (densely dashdotdotted (----) resp.) lines to elucidate the ‘out-sets’
BY and BY (complements of the ‘in-sets’ B and B! resp.); and in cases where both
coincide, the densely dotted lines take precedent.

Claim 4: For all v,w € V(Dy), dp,(v,w) < 4.
In view of the similarity between D3 and Dy, it suffices to check the following.

Case 4.1. v € {(1,[i]), (2,[i])} for each [i] € E and 1 < a < degy([i]) — 1, and w = (r, c)
forl <r <s.

This follows from the fact that |O°((p, [i]))| > 0 for p = 1,2, and dp,((r1, c), (12, ¢)) =
2 for any r; # ro and 1 < 1,17 < s by Case 3.3.

Case 4.2. v = (r,c) for 1 < r < s and w € {(1,[i]),(2,[¢])} for each [;] € E and
1 < a <degp([i]) — 1.

This follows from the fact that [1°((p, [1]))| > 0 for p = 1,2, and dp,((r1, ), (re,c)) = 2
for any 1 # 1 and 1 < 7,7y < s by Case 3.3.
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Case 4.3. v = (p,[i]) and w = (q, [j]), where 1 < p,q < 2 and [1], [j] € F.

This follows from the fact that |O°((p, []))| > 0, [I°((q, [j]))| > 0, and dp,((r1, c), (12, c))
=2 for any r; # ry and 1 < ry,ry < s by Case 3.3.

Hence, d(D;) = 4 for i = 1,2,3,4. Since every vertex lies in a directed Cy for D; and
d(D;) = 4, d(T) < max{4,d(D;)} by Lemma 1.3, and thus d(7) = 4 . O

Corollary 3.8. Suppose s > 3 for a T. If
(Z) |A22’ S (ijQ]) — 1, or

(i) |As2] < ((,y)) and [Azs| = degy(c),
then T € %.

Proof: Note in the proof of Proposition 3.5 that every vertex lies in a directed C} for each
orientation D; and d(D;) < 4, for i = 1,2,3,4. By Lemma 1.3, d(T) < max{4,d(D;)}
for i =1,2,3,4, and thus d(T) = 4. H

For the remaining propositions of this section, we consider even s > 4. The proof of
Proposition 3.9 is centered on a reduction to cross-intersecting antichains and Theorems
2.4 and 2.6.

Proposition 3.9. Suppose s > 4 is even, Ay = () and A3 # 0 for a T. Then, T € 6 if
and only if |Az| < (3/2) + ((5/25)+1) — 2.

Proof: (=) Since T € %, there exists an orientation D of T, where d(D) = 4. As
Az # 0, we assume (3.3)-(3.5) here. By Sperner’s theorem, |BY| < (Sj ) and |Bj| < (5/2)
If |BY| = 0 or |BL| = 0, then |A3] = |BY| + |Bi| < (;2). Therefore, we assume |BY| > 0
and |Bi| > 0.

Observe also that for each [i] € A and each [j] € AL, dp((1,]i]), (1,[5])) = 4 implies
XNY # 0 forall X € BY and all Y € Bi. By Theorem 2.4, |A3| = |BY| + |Bi| <
(5;2) + ((S/2 +1) Suppose \Ag\ > (8/2) + ((s/§)+1) — 2 for a contradiction. It follows from

Theorems 2.4 and 2.6 that {BY, Bl} = {&/, #}, where

(1) o = (), # = ((Sfégi)l) or

(2) & = (1}2;) (( /2)11) and |#| = (s/z +1) — L or
(3) & C ( s/2 )’ || = ( ,) — 1 and Z = ((5/2)331)
Case 1. BY = ((3/2 ).

Let [{] € AL For all [j] € A and p = 1,2, dp((1,[1,4]),(p,[i])) = 3 implies
XNI((p,[i])) 7& 0 for all X € BY. It follows that \Ic((p, [i]))] > 5+1forallp=1,2. Asa
result, OC(( [i])) and O°((2, [z ])) are independent. Otherwise, OC(( [i])UOc((2,[i])) C
X for some X € BY, which contradicts Lemma 2.16(b).

Subcase 1.1. B] = ((95)21)

Let [*] € AL. For all [i] € AL — {[i*]} and p = 1,2, dp((p, [¢*]), (1,[1,4])) = 3 implies
X NO((p, i ])) # ( for all X € Bf — {I°((3,[i*]))}. Consequently, we have either
O%((p [P 2 5, or O%((p, [i"])) = O°((3,[i"])) for each p = 1,2. Since [I*((p, [i"]))] >
5+1,10°((p, [*]))] < 5. Hence, O°((1,[i*])) = O°((3,[#*])) = O°((2,[*])), a contradiction
to O°((1,[i*])) and O°((2, [¢*])) being independent.
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Subcase 1.2. Bl C (((%)’21) and |Bi| = ((5/2)+1) —1.
Let ((872)1)1) = {v}. I |O%((p, [i]))| < £ —2 for some [i] € A and some p = 1,2,
then there are (‘I(s(/(z)@)‘) > (Ez@ﬁ) = 5+ 2 > 4 > 2 (5 + 1)-subsets of I°((p, [1])),

ie., X C I°((p,[i])) for some X € BI — {I°((3,]i]))}, a contradiction to the dual of
Lemma 2.16(a). So, for each [i] € Al and each p = 1,2, we have either |O°((p, [7]))| >
5, or O°((p, [i])) = O°((3,[4])), or OC(( [i])) = . Since [I°((p,[i]))| > 5+ 1 and
O°((1,[7])) and O°((2,]i])) are independent, we may assume without loss of generahty
that O°((1,[i])) = ¥ and O°((2,[i])) = O°((3,[i])) for each [i] € AL.

Now, we claim that there exists some [j] € Al such that |w U os(3, 1)) = 3
Note that [ U O°((3,[j]))] = 5 if and only if [¢» N O°((3,[j]))] = 5 — 2 if and only
100 O LN = 1 Sinee (SL)(5) = (DO =5~ 1> 8 ana
|Bi| = ( ) — 1, the claim follows. Hence, O%((1, [])) U O°((2, [5])) = O°((1, [5])) U

(s/2)+1
O°((3,[1])) = ¥ U O%((3,[j])) = O%((3, [k])) for some [k] € AY. This contradicts Lemma
2.16(b).
Case 2. Bl = ((NS;’;)).
If BY = ((912)1)1) (BY C ((SI;HI) and |BY| = (S/;)H) — 1 resp.), then the result

follows from Subcase 1.1 (Subcase 1.2 resp.) by the Duality Lemma.

Case 3. BY = ((95)’1)1), Bl c ((1113/,;)) and |B§| = (5;2) —1

Let [i{] € AL For all [j] € A and p = 1,2, dp((1,[1,4]),(p,[i])) = 3 implies
XNI¢((p,[i])) # (Dfor all X € BY. Tt follows that |IC((107 [i]))| > 5 forall p = 1,2. Further-
more, Oc(( [i])) and O°((2, [])) are independent. Otherwise, OC(( 4])) UOC(( [i])) C
X for some X € BY, which contradicts Lemma 2.16(b).

Let ((NS’C)) — Bf = {\}. If |O%((p,[1]))| < 5 —1 for some p = 1,2, and some [i] €

s/2

AL, then there are (\Ic(gz;é[z‘]m) > ((SQQ/)QH) = 541 > 3 S-subsets of I°((p,[i])), ie.,

X c I¢((p, [i])) for some X € B — {I°((3,[i]))}, a contradiction to the dual of Lemma
2.16(a). Consequently, we have for each p = 1,2, |O°((p, [i]))| > 5 + 1, or O°((p,[1])) =

O=((3,1)), or O%((p. [i))) = A. Since |I=((p,[1))] > 5 and O°((1, [i])) and O°((2,[i]))

are independent, we may assume without loss of generality that O°((1,[i])) = A and

O°((2,[i])) = O°((3,[d])) for each [i] € Aj. .
Now, we claim that there exists some [j] € AL such that |A U OC((S, UD) =35+ L

Note that |\ U O°((3,[5]))| = 5 +1if and only if AN OC(( 7)) = ¢ — 1 if and only if
AROS(B. ) = 1. Since (8 ) (%) = (57, (1) = 5 = dand [B] = (,5.) 1

the claim follows. Hence, O°((1,[j])) U O°((2,[j])) = AU O ((3,[7])) = O°((3,[k])) for
some [k] € AY. This contradicts Lemma 2.16(b).

Case 4. BI ( (Ns.c) ) BO <(N;2C)) and |BO‘ = (3/2)

— 1.
This follows t/rom Case 3 by the Duality Lemma.

(<) If|Ass| < ( %,) —1, then by Corollary 3.8(i), T € 6y. Hence, we assume |As3| > (| /2)
hereafter, on top of the hypothesis that |A3] < (5/2) + ((5/2)+1) 2. If |As] > (5/2) -2,
define A5 = Aj. Otherwise, let A5 = A3 U A*, where A* is an arbitrary subset of A,
such that |AS| = ( ,) — 2. Then, let A = As4 — AS. Furthermore, assume without loss
of generality that A° = {[i] | 1 € Njag} and A = {[i] | i € Njagjja3) — Njag }-
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Let H = T'(t1,ts,...,t,) be the subgraph of T, where t. = s, tj;) = 3 for all [1] € T(AS),
t;) = 4 for all [j] € T(A]) and t, = 2 otherwise We will use A; for H(A;) for the

remainder of this proof. Let (( /2)+1) ={ |i= . (( /2) +1)} and recall \; from
Definition 3.7. Define an orientation D of H as follows

(3, [d]) = {(L, [, 4]), (2, fev, i)} = {(1, [d]), (2, [i]) }, and

s = (L) = A = @ [1]) = Asn

>~
I
>

forall 1 <i< (;2) —2and all 1 < a <degp([i]) — 1.
Aig = (3, [1) = At

foralllgigg—l.

Aiga = (3,[i]) — Aisa

for all § <14 < (;2) — 2, i.e., excluding \; and )\§+1, the $-sets \;’s are used as ‘in-sets’
to construct Bi.

{(L D, @, D} = AL 18,4D), (2,[8,5D)} = 3, 15]),
M= (L [5]) = Aspr = (2, [5]) = Ay, and
7%4-2—(5;2) - (37[ ]) - wj+2—<sj2)

for all (/2) —1 < j < |As] and all 1 < 3 < degp([j]) — 1, ie., the (
1, g, ... ’¢\A3I+2—( 2) are used as ‘out-sets’ to construct BY.

5 + 1)-sets

(2, [, K) = {2, TH), (4, TRDY = (L [ K]) = {(L TR, (3, [RD)} = (2, 17, k),
and As1 = {(L,[k]), (4, [K])} = A — {(2 [k]), (3, (D)} = As 1o

for all [k] € Ay and all 1 <~ < deg,([k]) — 1.

A= LD, (2,1DF = Agn

for any [[| € E. (See Figures 5 and 6 when s = 4.)

It can be verified that d(D) = 4 and every vertex lies in a directed Cy; this part of the
proof is omitted for brevity and we refer the interested reader to [24] for details. Hence,
d(T) < max{4,d(D)} by Lemma 1.3 and we have d(T) = 4. O
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Figure 5: Partial orientation D for H for s = 4,

Ay = {1 [, . [6]}, As = {[7).[8]}, £ = {[9).[10]}; showing [i] for 1 <i < (%) — 2.

Figure 6: Partial orientation D for H for s = 4;
showing [i] for (;2) —1<i<|As|or[i] € Ayor[i] € E.

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss1/6
DOI: 10.20429/tag.2023.10106



Wong and Tay: Vertex-multiplications of Trees with Diameter 4

Using similar ideas to Propositions 3.5 and 3.9, and Lih’s and Griggs’ theorems, we
can prove Propositions 3.10 and 3.11. Hence, their proofs are omitted for brevity and
can be found in [24].

Proposition 3.10. Suppose s > 4 is even, Ay # 0, A3 =0 and As4 # 0 for a T. Then,

[Aa| < (,5) =2, if [Aza] =2 or [Ass] < degr(c),
Te% — {|A2| < (;2) — 1, otherwise.

Proposition 3.11. Suppose s > 4 is even, Ay # 0, |As| = 1, and Asy = 0 for a T.
Then,

T et e {\A2| < () =20 if [Ase| < degr(c),

[ A < (o) — 1. if [Aso| = degy(c).

Proposition 3.12. Suppose s > 4 is even, Ay # 0 and either |As| > 2 or |As| = 1 and
Asy £ 0 fora T.

(a) If T € 6, then 2|Ay| + |A;] < (;2) + ((5/28)+1) — r; 2 (k) for some k < [Ap| + [ A3,
(b) If there exists some |As|+1 < k < min{|As|+ |As], (;2) — 1} such that 2| As|+ | As| <
Proof: (a) Since T € %, there exists an orientation D of T, where d(D) = 4. As Ay # ()
and Az # 0, we assume (3.1)-(3.5) here. Partition A (A% resp.) into AS™) and A
(AP and AL®) resp) where

= {li] € AF | O°((1, [4]
{[i] € A | O°((1, [4]
{[i] € A5 ] O°((L,[i])
{li] € A3 [ O°((1,[1])

Note that O°((1,[i])) and O°¢((2,[i])) are Different (Same resp.) for A3O(D) and A?I)(D)
(A3O(S) and Aé(s) resp.).

Both BY UBY U{O°((1,[1)) | [I] € A3®} and BJUBSU{I°((2, (1)) | [I] € AT} are
antichains by Lemma 2.15 and its dual respectively. Furthermore, dp((1, [1,14]), (1,[1,7])) =
4 for each [i] € Ay U AJ U AI(S and [j] € A, U ALU AO(S , i # j, implies O°((01,[d])) N
1¢((02, [7])) # 0 where

0 = {1’ i) € AUy, s, {2’ if [j] € Ay U A7,
3, if [i] € A9, 3, if [j] € AL

Equivalently, for any O°((4y, [i])) € BOUBSU{O((1,[])) | [1] € ALX®} and I¢((62, [5])) €
BIUBLU{IS((2,[]) | [) € AP}, O°((61, [i])) N I°((8, [j])) = @ omly if [i] = [5] €
Ay U A9 U ALY Then,
2| A| + | As]
= 2| 45| + |AD| + | Af]
<(|Aa| + [AD] + |A5]) + (| A2| + \Af| +149¢)))

’ (3.14)

\_/v\_/v

and A S)

= [BYU B U{O((1,[0)) | 1] € A3¥} + |BYUBFU{I((2,[1)) | [I] € AT™Y]
y > Kg s 2 s eorem 2.
<(02)+ (man) - §<|Ar+|A )+ |AXS)) by Theorem 2.10,
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where k = |Ay| + [AD)| + |ALY)) < |Ay| + | A3 is as required.

(b) Let the 3-subsets of Ny in squashed order be X, Xy, ... ,X( )" Note that X; =

s/2
X(S;2)_i for i = 1,2,..., (3/2) and Lsé(k;) = {X(;J,X( )1 ,X( /2) k—i—l} Fur-
thermore, let p; = (X;,¢c) for i = 1,2,..., (;2). We also use the previous notation,

((5/2 +1) ={¢|i=1,2,. ((5/;)+1)}, and further assume {¢; | i =1,2,..., ((8/25)+1) -
VLs (B} = {(Y,c) |V € () — VLo (8).

If [Aso] < (5;2) —1, then by Corollary 3.8(i), T € %,. Hence, we assume |Asq| > (5/2)
Let AS = Ay U A*, where A* is an arbitrary subset of Aj such that |43 = k — 1;
A* = () if |Ay] = k — 1. Then, let A = A3 — A*. Furthermore, assume without
loss of generality that A5 = {[i] | i € Nyag}, A3 = {[i] | i € Nyagrjag — Njag } and
Af = {ld] 17 € Nyagiragiriag — Niagi+ag }-

Let H = T'(t1,ts,...,t,) be the subgraph of T, where t. = s, tj;; = 3 for all [1] € T(Aj),
ty) = 4 for all [j] € T(A]) and ¢, = 2 otherwise. We will use A; for H(A;) for the
remainder of this proof. Define an orientation D of H as follows.

@0 = (o) = (L) = 2. [asi) = (210, and
pivr = {1 [4), (2, [} = A
forall 1 <i <[Ayl =k —1,and 1 < o < degp([i]) — 1, ie., the 5-sets o, s, ..., fix
(fia, i3, - - . , iy Tesp.) are used as ‘in-sets’ (‘out-sets’ resp.) to construct Bl (B resp.).
. = 101,15, 2. 1390} > (L1, 2. 7))

= p sy = (LD = = (2,0]) = g 5, and
firr = (3, [5]) = Ajna

for all |4yl +1 < 5 < (;2) —2and all 1 < a < degp([j]) — 1, ie., the 3-sets

Pty e - (s )y ATe used as ‘in-sets’ to construct Bi.

{(17[])7( AN =A@ 1) 2 [ 1) = (3.10),
— (L, [1]) — Py ™ (2,[1]) = p1, and

%2*(;2) = B = Yoy

for all (/2) —1 <[ <|Ay+|As] and all 1 < v < degp([l]) — 1, i.e., the (§ + 1)-sets

Y1, . ’¢((s/§)+1)*

2, [ra]) = {2, 1), (4 )} = (4, [r,2]) = {(L [2]), 3, 1)} = (2, 7, ),
and iy = (L [o]), (4, D)} = = {26, B LD} = g

for all [z] € Ay and all 1 <7 < deg,([z]) — 1.
M1 — {(17 [y])7 (27 [y])} - M(SjZ)

s 4

2
are used as ‘out-sets’ to construct B.

IVL, s (k)] 3

for any [y] € E. (See Figures 7 and 8 when s =6, k = 13.)

It can be verified that d(D) = 4 and every vertex lies in a directed Cy; this part of the
proof is omitted for brevity and we refer the interested reader to [24] for details. Hence,
d(T) < max{4,d(D)} by Lemma 1.3 and thus d(7) =4 . O
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Figure 7: Partial orientation D for H for s =6, k = 13;
Ay ={[1],12],...,[12]}, A3 = {[13],[14],...,[20]}, Ay = {[21],[22]}, E = {[23], [24]}.

Note that 123 <, 124 <, 134 <, 234 <, 125 <, 135 <, 235 <, 145 <, 245 <,
345 <, 126 <, 136 <, 236 <, 146 <, 246 <, 346 <, 156 <, 256 <, 356 <, 456. So,
Ls3(13) = {145,245, ...,456}, (') — VLs3(13) = {1234,1235} and rg3(13) = 0.
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Figure 8: Partial orientation D for H for s =6, k = 13;
Ay ={[1],[2],...,[12]}, A3 = {[13],[14],...,[20]}, Ay = {[21],[22]}, E = {[23], [24]}.

This concludes the proof of Theorem 1.8. Unfortunately, we were not able to give
a complete characterisation for Proposition 3.12. Our core idea is the consideration of
cross-intersecting antichains with at most & disjoint pairs, thus, invoking Theorem 2.10.
We believe the gap between the necessary and sufficient conditions (FL:E() and £ 5 (°)
resp.) may be further tightened if there is an analogue of Theorem 2.10 on ezactly k
disjoint pairs; more discussion may be found in the last section of [25].

4. Proof of Theorem 1.9

Similar to the previous section, we prove Theorem 1.9 by collating several propositions.

Proposition 4.1. Suppose s > 3 is odd, Ay = 0 and As # () for a T. Then, T € 6o if
and only if |As| < 2([;21) -2

Proof: (=) Since T € %y, there exists an orientation D of T, where d(D) = 4. As Az # 0,

we assume (3.3)-(3.5) here. By Sperner’s theorem, |BS| < (sz%) and |Bi| < (szzj)' So,
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if |BY| =0 or |Bf| =0, then |A3| = |BY| + |Bi| < (L /2J) < 2([ /2]) — 2. Therefore, we
assume |BS| > 0 and | BE| > 0.

In what follows, we first show that for any [i] € A3 and any p = 1,2, 3, if |O°((p, [i]))|
is too big (> [5]) or too small (< [5]), then |As] < 2( /2]) 2.

Case 1. There exists some [i] € A3 such that |O°((p, [i]))| > [5] for some p = 1,2, 3.
For any [j] € A9 —{[il}, do((L, [1, ). (p. 1)) = 3 implies O%((3, ) ]))ﬂfc H)) 7&@

By Lih’s theorem, |BY| — 1 < \Bg —{O(B N < (1) = “FS/%M ) < e
((S[/SQ/L?) = ((JQ}) - ([51+1) < ((5}921) — 3. Tt follows that |BY| < ( j ) — 2 and

[ As] = [BS |+ B3] < [(4)7) = 2+ (1)) = 2(ja)m) — 2

Case 2. There exists some [i] € A3 such that |O°((p, [i]))| < |5] for some p = 1,2, 3.
In other words, [I°((p, [i]))| > [5]. Hence, this case follows from Case 1 by the Duality
Lemma.

Case 3. For all [i] € Az and all p=1,2,3, [5| < |O°((p, [7]))| < 5]
Note that for all [i] € A and [j] € Aé, dD(( [1,1]), (1,[1,7])) = 4 implies X NY # ()

forall X € BY and Y € BZ. Now, it suffices to consider the case where BYUBI C (((st’z?).

For otherwise, |A3| = |BY| + |Bi| < 2({ /2]) — 2 by Theorems 2.4 and 2.5. Partition AY
(AZ resp.) into A3 ) and Ago(s (Aé and Aé(s) resp.) as in (3.14).

Remark 4.2. Now, we shall make a series of assumptions on the structure of D, on
which we will derive |A3| < 2([3 /2]) — 2 if any one fails to hold. We will then show that
under all these assumptions, we still arrive at the same required conclusion.

Assumption 1: |A3O(D)| > 2 and |A§(D)| > 2.
Suppose [AS®)| < 1. By the dual of Lemma 2.15, {I°((1,[])) | [j] € AS*)} U B! is
an antichain. By Sperner’s theorem, |As| = |BY| + |Bl| = |AY®)| + [{I°((1, [j]) | [j] €
AN + B <1+ (L /QJ) < 2({ /ﬂ) 2. A similar argument follows if [AL”)] < 1.

Subcase 3.1. |O°((1, [z]))| = |O°((2, [1]))| = 5] for some [i] € AO D)
For any [j] € A% and p = 1.2, dp((p, [1]), (1, [1,1)) = 3 implies O=((p, [1))NI=((3, [])) #
0, ie., I¢((3,[1])) # I°((p, [])) It follows that |Bf| < ((sjz]) 2. Hence, |A3] =

|BY| + | B3| < ((5/21) + [([5/21) -2 = 2([;21) -2

Subcase 3.2. |0°((1, [i]))| = |O°((2,[z]))| = [5] for some [i] € A
This follows from Subcase 3.1 by the Duahty Lemma.

Subcase 3.3. |O°((1,[2*]))| = |5] and |O°((2, [i*]))| = [5] for some [i*] € AO

(x) For any [j] € A and p = 1,2, dp((L, (i), (1,1,4])) = 3 implies fc((3 ) #
I°((1,[7*])). Tt follows that |Bi| < ((sjﬂ) 1. Now, we are going to establish some
assumptions regarding Ag(D) and Aé(D), and provide justifications accordingly.

Assumption 2A: [O°((1,[i]))| = [5] and |OC((2, [i]))] = [5] for all [i] € A

Suppose there exists some [ ] E A —{[#*]} such that |O°((1, [z]))| = ]OC(( [i])| =
[5]. Note by definition of A ) that OC(( [i])) is equal to at most one of O°((1,[i]))
and O°((2, [i])), say O°((3, H)) # O°((1,[i])). Also, for any [5] € A —{[i]}, dp((1,[L, ]),
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(1,[i])) = 3 implies O°%((3,[4])) # O°((1,[i])). It follows that |BY| < ((sjﬂ) — 1. Hence,
|As| = |BY| + |Bj| < 2[([3/21) 1]
| =

we may now assume |O°((1, [i]))

[3] and |O°((2, ()] = T3] for all []] € 47,
Assumption 3A: O%((1, [i])) = O((1,[i*])) for all [i] € AS™P).

Suppose there exists some [] € A3O D) — {[i*]} such that O°((1,[i])) # O°((1,[i*])).
For any [j] € A3 and « = i,i*, dp((1, [2]), (1, [L, j])) = 3 implies 1°((3, [5])) # I°((1, [«]

T
It follows that |BI| < ([S‘;ﬂ) 2. Hence, \A3| = |BY| +|Bj| < ([5/2]) ( o) — 2]

2(1,5) — 2. Thus, we may assume O°((1,[i])) = O°((1, [i*])) for all [i] € AT,

2([3 /2W) 2. Therefore, and in view of Subcase 3.1,
5

Assumption 4A: O°((2,[i])) = O°((3,]

Suppose there exists some [i] € AS®) such that O°((2 ,[])) +
any [j] € A9 —{[i]}, dp((1, [L, 7]), (2, [i])) = 3 implies O((3, [j])) #
that |BY| < (;,j,7) — 1, and |A3\ = |BY|+|Bj| < 2[((,)y) — 1] =2
the assumption follows

) for all [i] € AS"

W Q. =

3,[i])). Also, for
2,[i])). It follows
)

\_.

— 2. Therefore,

Ds.
&
)

Assumption 5A: |O°((L, [i]))| = |O°((2, [1]))| = |5] for all [i] €
Suppose there exists some [i] € AL such that |O°((1, [{] nd |0°((2, [2]))| =

)| an
[5]. For any [j] € AT, dp((L,[1,5]), (2, [i])) = 3 implies O((3, [j])) # O°((2, i1)). So,
1BY| < ( /21) 1. Hence, |A3| = |BY| + |Bi| < 2[(fs/2l) -1 : W> — 2. Therefore,

5/2
and in view of Subcase 3.2, we may now assume [O°((1, [i]))| = |O°((2,[z]))| = | 5] for all
[i] € AP

~

Assumption 6A: O%((1,[i])) = O°((1, [z*])) and O°((2,[i])) = 0%((3,[i])) for all [i] € AL
Suppose there exists some [i| € ?I) and some p = 1,2, such that O°

]
O<((1, [i1))) and O<((p, [i])) # O°((3, [i])). Also, for any [j] € A3—{[i]}, dp((p, [i]),
= 3 implies I°((3, [])) # I°((p,[i])). Therefore, for all X € Bi X # I°
1

and recall from (*) that X # I°((1,[i ])). It follows that [Bj| < (,}y) —
Therefore7 for each [i] € Aé(D) and each p = 1,2, either O°((p, [1])) = O°((3,[i])) or

O<((p,[7])) = O°((1,[¢*])). By the definition of Aé(D), we may assume without loss of

generality that O°((1,]i])) = O°((1,[i*])) and O°((2,[i])) = O%((3, [i])) for all [i] € AL?.

‘_,/-\
\//‘\
i)
—
o~

Now, with Assumptions 1, 2A-6A in place, consider [j| € AI(D) . For any [k] €
AP O0((1,[K])) = O%((1,[i*])) = O°%((1,[j])) and dD(( [7]), (1,[1,k])) = 3 imply

O%((1, i) NIE((2,[k])) # 0. Eauivalently, O((1, ["])) = O((1, [j])) Z O%((2, [K))). Note
also that there are [ 5] number of [5]-supersets of O°((1, [#*])). Recall that OC(( [k])) =

O°((3, ch)), so that {0°((2,[k])) | [K] € AF”} = {0°((3,[K))) | [K] € A5} < (W),
So, |A )| < ((3/2]) (5] < ([3/2) —2. Since {I°((1,[2])) | [i] € Ag(s)}UBl is an antichain
by the dual of Lemma 2.15, |AS")| 4 |AL] = [{I¢((1,[i])) | [{] € AO(S)} UBl < (L /2J) by
Sperner’s theorem. Hence, |As| = [A9| + [A§]| = [A§"”)| + (|AF| + |A5]) < [(1)5) —
2]+ (sz2j) 2([3/21) 2.
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Subcase 3.4. |0°((1, [i*]))] = [5] and |O°((2, [i*]))| = [5] for some [i*] € A
This follows from Subcase 3.3 by the Duality Lemma.

Subcase 3.5. IOC(( i)l = |O°(( D) = 131 and JO°((L, [5])] = 10°((2, G| = 3]
forsome[]EA and[]EA
Note by definition of A ®) that O°((3, [i])) is equal to at most one of O°((1, [i

O%((2. 1)) say O%((3,[i])) # OX((L, [i])). Also, for any [k] & AP—{[il}, dp((L. [L, ¥}, (L [
= 3 implies O°((3, [k ])) # 0°((1,]i])). Tt follows that |BY| < (]'sj?\) -1

Similarly, by definition of AI D) , 1°((3,[7])) is equal to at most one of I°((1, [j])) and

I°((2, [47])), say I°((3, [5])) #TC(( j]))- Also, for any [k] € AI—{[j]}, do((, [j]). (1, [1, k]
= 3 implies I°((3, [k ])) # 1°((1, ['])). It follows that |Bj| < (;,j,;) — 1. Hence, yAgy =
|BS| + B3] < 2[(},7) — 1] = 2([ /21) 2

In view of the above, it is intuitive to construct an optimal orientation D of T with

BY U B! C ((gj;])). To this end, we recall Definition 3.7.

4

)

(<) If |[Ass| < ([;2]) — 1, then by Corollary 3.8(i), 7 € %,. Hence, we assume

|Ass| > (( % ) hereafter, on top of the hypothesis that | A3| < 2( /21) —2. If |A3] > ( /21)
define A5 = Aj. Otherwise, let A = A3 U A*, where A* is an arbitrary subset of Asy
such that |AS| = ( a2 ]) Then, let A = Az U A24 — Aj. Furthermore, assume without
loss of generality that A3 = {[i] | i € Nj45} and A = {[i] | i € Njag|4ja3 — Njag|}-

Let H = T'(t1,ts,. .., t,) be the subgraph of T, where t. = s, tj; = 3 for all [i] € T (A3),
ty) = 4 for all [j] € T(A]) and ¢, = 2 otherwise. We will use A; for H(A;) for the
remainder of this proof. Define an orientation D of H as follows.

(3, 1) = AL e, 1)), (2 e 2]) } = {1, [a), (2, D)}

A= (1, [d]) = A = (2,[i]) — A1, and

Aivr = (3,[i]) = A
forall 1 <i < (( /21) —1land all 1 < a < degy([i]) — 1, ie., excluding Ay, the [5]-sets
\;’s are used as ‘in-sets’ to construct Bi.

{1, 15, 2, 1D} =A@, 18,5]), (2, 18,51} = 3, [4]),

A= (L [5]) = A — (2,[]) = A1, and

5\]4'2 (i) (81D = )\j+2_<“;ﬂ)

for all ([ /21) <j<|Aslandall 1 < 8 < degp([j])—1,i.e., the [J]-sets Ay, Az, ..., A
are used as ‘out-sets’ to construct BY.
(2, [y K1) = A2, kD), (4, [R]) = (1 [, K]) = {(L [R]), 3, [} = (2, [, K]),
and Ay — {(1, [K]), (4, [ED)} = Av = {2, [K]), (3, [K])} = M
for all [k] € Ay and all 1 <~ < deg,([k]) — 1.

A= (L), (2, 1)} = &

for all [I] € E. (See Figure 9 for D when s = 3.)
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we
refer the interested reader to [24] for details. Since every vertex lies in a directed Cy for

D and d(D) = 4, d(T) < max{4,d(D)} by Lemma 1.3, and thus d(7) =4 . O

|As|+2(f,721)
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Figure 9: Orientation D for H for s = 3,

As = {[1], [2], [3], 4]}, As = {[5], [6]}, E={[7].[8]}-

Proposition 4.3. Suppose s > 3 is odd, As # 0, A3 # 0, and A>y =0 for a T. Then,
T € 6 if and only if

| Ag| < ([332}) -1 FlAsl =1,
(i) 24| + [As] < 2(},75) — 2, or
(i) 2/ o] + | Aa] = 2(7,1y) — 1 |Ao| = [3113) and s 2 5, if | 4g] > 2.

Proof: (=) Since T € %, there exists an orientation D of T, where d(D) = 4. As Ay # ()
and Aj # (), we assume (3.1)-(3.5) here, unless stated otherwise.

Case 1: |A3] = 1.
Let A3 = {[j]}. By Lemma 2.13(b), either |O((1,[j]))| = 1 or [I((1,[j]))] = 1. If
|O((1,[1,7]))| = 1, say O((1,[1,5])) = {(1,[4])} (instead of (3.4)), then by Lemma 2.15,
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{OC(( [i])) | [i] € A2UA3} is an antichain. So, |As|+|As] < (Ls;2J) by Sperner’s theorem,
5 |As] < (L /2j) — 1. If [I((1,[j]))] = 1, then this case follows by the Duality Lemma.

Remark 4.4. The outline of Case 2 is largely similar to Proposition 4.1; we shall skip
most of the similar parts. Note that Remark 3.3 applies here. We first show that for any
[i] € Ay U A3 and any p = 1,2,3 (wherever applicable), if |O°((p, [1]))| is too big (> [5])
or too small (< [£]), then 2]A2] + 43| < 2(( /21) — 2. Here, observe that BY U BY

(B U BI resp.) plays an analogous role of BY (B resp.) in Proposition 4.1.

Case 2: |A3] > 2.

Note that BSUBY and BiUB! are antichains by Lemma 2.15 and its dual respectively.
With some modifications to the argument in Proposition 4.1, we may assume |BY| > 0
and |BS| > 0, otherwise 2|Ay| + |A3] < 2([ /21) — 2 and we are done. Furthermore, by
proceeding similarly to Cases 1 and 2 of Proposition 4.1, it suffices to consider the case
where [£] < ]OC((p, [ 1)) < [2] for all 1 <4 < degp(c) and all p=1,2,3. Partition AS

(AL resp.) into A3 and Ag(s (Aé(D) and Aé(s) resp.) as in (3.14).

Assumption 1: ]A?(D)\ > 1 and |A§(D)] > 1.

Suppose Ago(D) = 0, ie., O((1,[i])) = O°((2,[i])) for all [i] € A. By the dual of
Lemma 2.15, {I°((1,[i])) | [i] € A} U B U Bl is an antichain. By Sperner’s theorem,
|[Ao| + |As| = |B| + | B3| + | B5| = [{I°((L [i]) | [i] € AF} U B3 U Bs| < () Since
|Az| > 2, this implies |As] < (L /QJ) 2. Therefore, 2|Ay| + |A3| < (Ls/zj) + [(Ls/2J) 2] =
2([5 /2]) — 2. A similar argument follows if AZ?) = (.

Remark 4.5. At this stage of Proposition 4.1, we invoked Theorems 2.4 and 2.5 to
conclude B U B C ((gj’;])). However, the two theorems cannot apply here because for
[i] € Ay, and dp((1,[i]), (2,[i])) < 4, it is not necessary that O¢((1, [:])) N I°((2,[4])) # 0.
Consequently, BY U BY and BJ U B! may not be cross-intersecting. Fortunately, by
exhausting all possibilites through some easy but tedious computations that we omitted
(see [24]), it remains to consider BY U BS U B U BL C ((5;’;1)) as desired.

We shall establish a series of claims on the structure of D, from which we will derive
2| Ag|+1]A3] < 2( /2]) 2 if any one fails to hold. In other words, 2| As|+|As| = 2([5/21) 1

is only possible in the last scenario where all these claims hold (see Remark 4.2).

Subcase 2.1. [0%((1,[i]))| = |0°((2, [i]))| = |£] for some [i] € A"
This is similar to Subcase 3.1 in Proposition 4.1.

Subcase 2.2. |0°((1, [i]))| = |O°((2,[z]))| = [5] for some [i] € Aé(D)
This subcase follows from the Duality Lemma and Subcase 2.1.

Subcase 2.3. |0°((1, [i*]))| = 5] and |O°((2, [i*]))| = [5] for some [i*] € A
For any [j] € A U AL, dp((1[7]), (1, 1)) = 3 implies X # I(1, [ ]>> for all
X € BIUBE. Tt follows that |Ay|+|AL| = |BIUBI| 1) 1. Therefore, 2|A2|+|A3| =

<
(IBS| +1B91) + (1 B3| + |B5]) < [(|—s/2-\) 1]+ ([ 7o ((3/21) L.
Subcase 2.3 is done for 2|As| + |A3] < 2({ /2]) . Now, our aim is to prove |Ay| >

[5115]) and s > 5 in the event that 2|Ay| 4 |As| = 2(( /2]) 1. The following claims will

help us to achieve the said aim.

(172
=2
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Suppose 2|As| + |A3| = 2((;21) — 1. Equivalently,

|BY| +|BY| = (@21) and | B[ + |Bl| = Q;QO ~ 1 (4.1)

Then, Claims 2A-6A can be proved similarly to Assumptions 2A- 6A
Claim 2A: [0%((1, [i]))| = 3] and [0%((2, i]))| = [4] for all [i] € A3

) ]
Claim 3A: O°((1,[i])) = O°((1,[i])) for all [i] € AO D>.
Claim 4A: O%((2,[i])) = 0%((3, [i])) for all [i] AO
Claim 5A: [0°((1,[i]))] = |0°((2, [i]))| = 2] for all [] e Al®P
Claim 6A: O°((1, [1])) = O°((1, [i"])) and O°((2, [1])) = O°((3, [ 1)) for all [i] € A3"”

Suppose s = 3. By Claims 5A-6A, |0°((1, [j]))UO°((2, [1]))] < [£] for any [j] € A3
Since B U BY = ((272?), we have O°((1,[4])) UO°((2,[4])) € X for some X € B U BY,
a contradiction to Lemma 2.16(b). Hence, s > 5.

Let [j] € AXP) [i] € AyUAQ and 6 = 1,if [i] € Ay; 6 = 3, if [i] € AS. Then, Claim 6A
and dp((1,[1 J]) (5 [1])) = 3 imply O°((1, [i"])) UO=((2, [5])) = O°((1, [i]))VO°((2, [])) #
O°((9, [z])), i.e., O°((2,[j])) cannot be a [5]-set whose union with O°((1, [i*])) forms a
[51-set. So, {0°((3,1]) | 1] € AP YN R ={0°(2.[7]) | 1] € 45} N R = 0, where
R={X € (L ) | [ X UO((1,[#*]))] = [51]} It is easy to see that |R| = [5]|5].

Furthermore dp((1,[*]), (1,[1,7])) = 3 and the definition of R imply O°¢((1, [i*])) &
(O3 | ) € AP} U R It follows that {O((3, 1)) | U € A{”}U R C
(o)) = foe((, [*D)}- So, |44 < (1) =1 IRl = (15) — 1 = [$]13). Since
{0°((1,[2])) | [i] € }UBOUB?)O is an antichain by Lemma 2.15, |AI(S)|+|BQO|+|B3O| <
(). S0, 4]+ VAT 5 (AL s 159+ 159 < 2(.2) — 1= [$113). Using
2|A2| + |As] = 2(L /2J) 1, we derive |As| > [57]5].

Remark 4.6. In addition to Claims 2A to 6A, the following claim can be shown too
(see [24] for details).

Claim 7A: A9 = A9") and AL = ALP)

Subcase 2.4. |O°((1,[2*]))| = [5] and |O°((2, [i*]))| = [5] for some [i*] € A
This follows from Subcase 2.3 by the Duality Lemma.

Subcase 2.5. [O°((1, [i]))| = |O°(( ) = [5] and [O°((L, D) = [0°((2,G])] = 5]
for some [i] € Ag( and [j] € A
This is similar to Subcase 3. 5 in Proposition 4.1.

<) By Corollary 3.8, T € % if |As| < ([5;2]) — 2 and |A3] = 1, or |As| + |43] <

(

([3521) — 1 and |A3| > 2. Hence, it suffices to consider the following three cases. Let
H = T(t1,ta,...,t,) be the subgraph of T, where t. = s, tj;) = 3 for all [i] € T(A3) and
t, = 2 otherwise. We will use A; for H(A;) for the remainder of this proof.

Case 1. |As| = ((sjz]) — 1 and |43 = 1.

Assume without loss of generality that A3 = {[1]} and Ay = {[i] | i € N( )} — As.

[s/2]
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Define an orientation D; of H as follows.

(2, [i]) = { (1, [, ]), (2, [ev, i)} — (1, [i]), and

i — (L [1]) = N — (2,[1]) — N

for all [i] € Ay and all 1 < a < degy([i]) — 1, i.e., excluding Ay, the [
as ‘in-sets’ (‘out-sets’ resp.) to construct Bl (B resp.).

{(L[]), (2, 1)} — (L[5, 1]) = 3, [1]),
{(L 1), 3, 1)) = (2,[8,1]) — (2,[1]), and
A= {2, 1), (3,1} = A = (L [A]) = A

5 1-sets A;’s are used

for all 1 < 8 <degp([1]) — 1. Furthermore,

>\1 — {(17 []])v (27 []])} — 5\1
for all [j] € E.

Case 2. |A3] > 2 and 2|4;| + [As] < 2(;,7y) — 2.

By Corollary 3.8, we may assume |Ay| + |As| > ([sjﬂ)' Furthermore, assume without
loss of generality that Ay, = {[i] | ¢ € Ny, }, and Az = {[4] | © € Nja,|445) — Njay(}. Define
an orientation Dy of ‘H as follows.

(2, [d]) = {1, [, ]), (2, [ev,2]) } = (1, [i]), and

Ao = (L [i) = At = (2, i) = Ausn,

for all 1 <7 < [Ay| and all 1 < o < degy([1]) — 1, i.e., the [5]-sets Ao, Az, ..., Ajay41 are
used as ‘in-sets’ (‘out-sets’ resp.) to construct Bl (BY resp.).

(3, U]) = AL [8,4]), (2, 18, 7D} = (L, D), (2, 1)}
A= (L []) = M = (2,[5]) = A, and

b
A1 — (3,[7]) — )‘j+1

for all |[As] +1 < j < ([si?\) —1landall 1 < 8 < degp([j]) — 1, ie., the [J]-sets

AlAg|+25 A Ag| 435 - -+ )\((S;ﬂ) are used as ‘in-sets’ to construct Bi.

(2, 1K)} — (1, [, K, (2 1 D)} — (3, K)),
[K]) = A1 — (2,[k]) = A1, and
— (3, [k]) = A

{(1, [K]),
)\1—><1

)\’f‘(rs/zw)ﬂf‘?“r2 k= (fy)o) A2l +2

for all (”21) < k < |Ay] + [As| and all 1 < v < degp([k]) — 1, ie., the [5]-sets

¢ ) O
Al As|+2> A|Ag| 435 - - - 5 )\2|A2\+|A3|+2—(rsfzw) are used as ‘out-sets’ to construct By .

A= (L), (2, 1)} = A
for all [I] € E.
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Case 3. |A3] > 2, |As] > [5]15], 2|A2| + |As| = 2( /21) —1,and s > 5.
Let ¢ = (Njsj,c) and I, = {\ € ((NS ) | ANy = 1} Tt is easy to check

4 [s/2]
Iy = [5115) and ¢ & I,. Let Oy = {)\ € (((NS“/”Q?) | ¥ C A} and observe that
|Oy| = [5]. Our aim is to design an orientation in which the elements of I, and

O, are used as I°((2,[i])) and O°((1,[i])) respectively, where [i] € Ay, ie., I, C B}
and Oy C BY. To achieve this, we introduce two new listings of the elements in
(([5/2])) Let <([s/21) = {7,72,.-- ,7((5;20} = {1, po, - - . ,u( )} such that 1 = gl s/zw)
Iy = {72,115t and Oy = {pa, pa, . prsn t- The denotatlon of the remain-

ing 7;’s and p;’s can be arbitrary. Assume further that Ay = {[i] | i € Ny} and
As = {[i] | i € Njayj4ja5] — Njay}. Define an orientation Dz of H as follows.

(2, [i]) = {1, [a,2]), (2, [a,i])} — (L, [4]),
i — (17 M) — i, and Vi — (27 [Z]) — Y,

for all 1 <7 < [Ay] and all 1 < o < degy([7]) — 1, ie., the [5]-sets v1,72,. .., 7|4y
(15 fh2, - - -, Jta,) Tesp.) are used as ‘in-sets’ (‘out-sets’ resp. ) to construct Bl (BY resp.).

{41, @, DY = (1,18, 5]) — 3,17,
{( D), B D)} = (2,18,4]) = (2, [7]),
= (L []) = ¢, and

uj—>{2,[] SCHVI S

for all |Ay|+1 < j < ([ a1 ) and all 1 < 3 < degy([j]) —1, i.e., the [5]-sets f1a,)41, 1|Az|+25

S B( s,) BTE used as ‘out-sets’ to construct BY.
/2]

(3, [k]) = (1,0, k]) — {(1, [K]), (2, [K])},
( [k]) = (2,0, k]) — {(L, [k]), (3, [K]) },
— (1, [k]) — ¢, and

ka((sjﬂ)HAQ\ - {( ) [ ])7 (37 [k])} - 7’“*([5521)+‘A2|

_>
_>

for all ((sjﬂ) +1 <k < Ayl + |As| and all 1 < 0 < degp([k]) — 1, ie., the [5]-sets
V| Azl 415 V| As|+25 - - - ,7(( )1 are used as ‘in-sets’ to construct Bg.
s/2

Y= {0, (2, 1)} = v

for all [l] € E.

It can be verified for i = 1,2, 3, that d(D;) = 4 and every vertex lies in a directed C} for
D;; this part of the proof is omitted for brevity and we refer the interested reader to [24]
for details. Hence, d(7) < max{4,d(D;)} by Lemma 1.3, and we have d(7T) = 4. O
Corollary 4.7. Suppose s > 5 is odd, A>y = 0, |As| > [5]115]), |As] > 2, and 2|As| +
|As| = ([8/2) 1 for a T. If D is an optimal orientation of T, then either D or D
fulfills the fo)lowmg, after a suitable relabelling of vertices and with As partitioned into
A9 and AL
(1) 10((L, )| = 1102, i) = [3] for all [i] € As,

(1) 10%((3, )] = [75((3, [K))] = T3] for all [j] € A9, [k] € AL, and
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(I1II) (2,[i]) — (p,[a,i]) — (1,[d]) for all [i] € Ag, all 1 < a < degp([i]) — 1 and
1<p< S
(1A) \AQUA \—( jﬂ) and |Ay U Al :( jﬂ) 1;
_
l €

(24) |0°((1, [))] = [5] and |O°((2, H[) | = [5] for all [i] € AF;

(34) O°((1,[i])) = O°((1,[j])) for all [i], [j] € AF;

(4A) O°((2,[i])) = O°((3,[i])) for all [i] € AF;

(5A) 10°((1, )] = [0°((2, 5])| = [3] for all [ ] € Ay

(64) O=((1,[j))) = O%(1. 1)) and O((2, [j])) = O=((3. i])) for all [i] € AS, [j] € AL,

Except for (I1T), the proof of Corollary 4.7 largely follows from the proof of Proposition
4.3; we refer the interested reader to [24] for details. The optimal orientation(s) described
in Corollary 4.7 was extended to the construction D3 in Case 3 of the proof of Proposition
4.3.

Proposition 4.8. Suppose s > 3 is odd, Ay # 0, A3 = 0 and Asy # 0 for a T. Then,
T € 6o if and only if |As| < <[s/21) 1.

Proof: (=) Since T € %, there exists an orientation D of T, where d(D) = 4. As
Ay # 0, we assume (3.1)-(3.2) here. Let [j] € As4. If [O°((1,[5]))] = [5], then for any
i] € Ay, dp((L[L,4]). (1,[j])) = 8 implies O=((1, 1)) N 1=((1,[j))) # 0. Hence, by Lil’s
theorem, |As| = |BO| < ((5/21) (° _UES(/(;H))') ([ /2]) 1. Suppose |O°((1, [J ]))\ <13l

Equivalently, [I°((1,[j]))| > [5]. So, this case follows from the previous case by the
Duality Lemma.

(<) If |Ag| + |As4| < ( jﬂ) — 1, then by Corollary 3.8(i), 7 € %,. Hence, we as-
sume [As| + [Asq| > ([5;21) hereafter, on top of the hypothesis that |As| < ([ /21) 1. If
|As| > s—1, define AS = Ay. Otherwise, A5 = AsUA*, where A* is an arbitrary subset of
As g4 such that |AS| = s—1. Then, let A = AU Ay — AS. Furthermore, assume without
loss of generality that A5 = {[i] | i € N5} and A = {[i] | i € Njag|yja3 — Njag|}-

Let H = T'(t1,t,...,t,) be the subgraph of T, where t. = s, tj; = 4 for all [i] € T(A})
and t, = 2 otherwise. We will use A; for H(A;) for the remainder of this proof. Define
an orientation D of H as follows.

(2,[1]) = {(1,[a,d]), (2, [a,i]) } — (1, [i]), and
Aiv1 = (L [i]) = A = (2, [1]) = A

for all 1 <7 < [Ay| and all 1 < o < degy([]) — 1, i.e., the [5]-sets Ao, Az, ..., Ajay41 are
used as ‘in-sets’ (‘out-sets’ resp.) to construct Bl (BY resp.).

(2,[6,7]) = 12, 5D, (4, 1D}y = (L8, 5]) = A, D), 3, UD} — (2,18, 5,
and Ay — {(L, []), (4, U} = M = {2, [7), B, UD} = M

for all [j] € Ay and all 1 < 8 < degp([j]) — 1.

M= {(L[R), (2, (KD} = M

for all [k] € E.
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we

refer the interested reader to [24] for details. Since every vertex lies in a directed Cj for
D and d(D) =4, d(T) < max{4,d(D)} by Lemma 1.3, and thus d(7") = 4. O
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Corollary 4.9. If s > 3 is odd and |A<3| < (fsjﬂ) —1 for aT, then T € 6.

Proof: Note that every vertex lies in a directed Cy for the orientation D defined in
Proposition 4.8, d(7) < max{4,d(D)} by Lemma 1.3. This implies d(7) = 4. O

Corollary 4.9 is an improvement of Corollary 3.8(i) for odd s as the count |A<3| now
excludes |As4|, compared to the previous |Ass|.

Proposition 4.10. Suppose s > 3 is odd, Ay # 0, A3 # 0 and Asy # 0 for a T. Then,

| Ao| < (1,001) — 2, if |As| =1,
T €6 — [5/2] :
0 {Q‘AQ‘ -+ ‘Ag‘ < 2([5/2-') 2, Zf ‘Agl Z 2.

Proof: (=) Since T € %y, there exists an orientation D of T, where d(D) = 4. As Ay # ()
and Az # (), we assume (3.1)-(3.5) here.

Case 1. |A3] = 1.

Partition A>, into AY,, AL,, and ALY, as follows. Let AY, = {[i] € A>4 | |O((p, [, ]))| >
2 and |I((p,[a,]))] > 2 for all 1 < a < degp([i]) — 1 and all 1 <p <y}, and A, =
{[i] € As4 | |O((p, [, ]))| = 1 for some 1 < a < degy([i]) — 1 and some 1 < p < s}
Furthermore, let AL, = A>y — A9, U ALY, ie., for every [i] € AL,, there exist some
1<a< degT([ ) — 1 and some 1 < p < s such that |I((p, [o,1]))] = 1.

Without loss of generality, we assume

(N, [i) = {4, 1)} = (1, [1,d]) — (4,[1]) if [i] € AZ,,
(4, [i]) = (L, [1,4]) = (Nyy, [i]) — {(4, [iD)} if [1] € A,
and {(1, [i]), (2, li)} —(1, [1,d]) = {(3, li]), (4, [N} if [i] € A2,

Also, we let

BS, = {0°((4,[i])) | li] € AZ;} and BL, = {I°((4, [1])) | [1] € AL,}.

Note that each of BY U B U BQ4 and Bl U B! U B>4 is an antichain by Lemma 2.15
and its dual respectively. Hence, |Ay| + ]AO] + 149, = |B§ UBY UBY,| < (sz%) and
| Ao| + [AS] + |AL,[ = [B3 U BS U BL,| < (),

We will only consider the case when |A$| = 1 since the case when |AL] =1 can be ar-
gued analogously. If [AZ,] > 0, then |Ay|+|AF|+]AS,| < (sz%) implies | Ay| < (sz%) —2.
Hence, suppose |AY,| = 0. Note that [As] = 1 implies |A§| = |Bi| = 0.

) by Sperner’s theorem.

Subcase 1.1. |O°((q, [4]))| > [%] for some [j] € AL, U AY, and some 1 < ¢ < s(;).
For any [i] € Ay U A9, dD(( [1,4]), (q,[4])) = 3 implies X N I¢((q,[j])) # O for all

X € BYUBY. Hence, by Lih’s theorem, |A2|+|AO| = |BYUB?| < ([ /21) (°- I[(/( 11]))|)

5/2
((3/21) - GSM) < <[s/21) 1. Since |A9| = 1, it follows that |A,| < (Ls/2J> 2.
Subcase 1.2. |0°((q, [5]))] < [2] for some [j] € AL, U AY, and some 1 < ¢ < sp;1.

For any [i] € As, dp((g,[J ]), (1,]1,4])) = 3 implies OC((q, { J))NX £ for all X € Bi.
Hence, by Lib’s theorem, |As| = |Bi| < (;,7n) = (705" < (1) = (V1) =

[s/2]
((sjz]) B (( W+ ) ([/2]) 3.
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Subcase 1.3. |0°((q,[j]))| = [2] for all [j] € AL, U AY, and all 1 < ¢ < sy

For any [i| € Ay, dp((q, [j ]), (1,[1,4]) =3 1mplies XNO((q,[4])) # 0 for all X € Bl
Hence, by Lih’s theorem, |Ay| = |Bj| < ([5;2]) — (S_|O(s(/(g1’m))|) = ([5;21) — (Egb =
((sjﬂ) — 1. By Griggs’ theorem, |As| = ([sjﬂ) — 1 if and only if BI consists of only
[5]-sets.

If |As] = ((5?21) — 1, then it must follow that O°((p, [j])) = O°((q, [j])) for all [j] €
AL U AY, and all 1 < p,q < spj. Otherwise, dp((r,[]), (1,[1,4])) = 3 for all 1 <
r < s and all [i] € Ay implies X # O°((r,[])) for all X € Bl ie., Bl C ((F\IS/%)) -
{0°((p, [5])),0%((q, [4]))}. Hence, |As| = |BE| < (8/21) -2, a contradlctlon

Now, BY U B U{0%((3,[4])) | lj] € AL, U AY,} is an antichain by Lemma 2.15. So,
| Ag| + |As] + |A4| = | BS| + |BO| + |AL,| + |ATY < ( (/2] ) Since |A3] =1 and |A4] > 1,
it follows that |Ay| < (( /21) 2.

Case 2. |A3] > 2.

For any [i], [j] € AsUAs, i # j, [k] € Asy, 1 < a < degp([i])—1,1 < v < degy([k]) -1,
I <2 < sy, and 1 < 2 < spyp, 1 < g < 3 (where applicable), 1 <7 < 4, observe in D
that the vertices (r, [k]) and (z, [y, k]) do not lie on any shortest path between (z, [, i])
and (g, [7]). By the proof in Proposition 4.3, we have 2|Ay| + |A3] < 2([5/21) — 1, where
equality is possible only as in Subcases 2.3 and 2.4.

Suppose 2|Ay| + |As| = 2([5;21) — 1 holds, as in Subcase 2.3 with [i*] as given, and

recall (4.1). In particular, B U B = ((gj’;])) {I°((1,[¢*]))} by Claims 6A and TA.

Let [i] € As4. If there exists some 1 < p < s such that [O°((p, [i]))] > [£], then X C
O°((p, [i])) for some X € BY U BY. This implies that dp((1,[1,7]), (p,[i])) > 4 for some
] € A2 U A, a contradiction. If there exists some 1 < p < s} such that |O°((p, [i]))] <
[5), or [O°((p,[i]))] = [3] and O°((p,[i])) # O°((1,[i"])), then O°((p,[i])) € X for
some X € BJ U BL. Tt follows that dp((p, [i]),(1,[1,7])) > 4 for some [j] € Ay U AL
a contradiction. Thus, it remains that O°((p,[i])) = O°((1,[i*])) for all [i] € As4 and
all 1 < p < sp. By Lemma 215, Q = {O0°((4,[1])) | [i] € A2,y U{O°((3,[4d])) | [i] €
AL, U ALY} U BY U BY is an antichain. However, this contradicts Sperner’s theorem as
Q] > |BO| + |BO| = ( 3/2})

A similar argument shows 2|As| + |A3| = 2((3‘;2]) — 1 does not hold as in Subcase 2.4.
Hence, 2|A;| + |As] < 2( 8/21) — 2.

(<) By Corollary 4.9, T € % if | Ay| < ([siﬂ) —2and |As] =1, or |Ag|+]A3| < ([5/21) 1
and |As| > 2. Hence, we assume |Ag| + |As| > ([5;2])7 on top of the hypothesis that
2| Ag] + |As| < 2((3 /21) — 2 and |A3| > 2. Furthermore, assume without loss of generality
that Ay = {[1] | 7 € Nja, }, and Az = {[i] | © € Njay41a5] — Njay }-

Let H = T'(t1,ts,...,t,) be the subgraph of T, where t. = s, tj;; = 3 for all [1] € T (Aj3),
t;) = 4 for all [j] € T(A>4) and t, = 2 otherwise. We will use A; for H(A;) for the
remainder of this proof. Define an orientation D of H as follows.

1) = {(L [ 2]), (2, [ d])} — (1, [i]), and

(2, :
A1 = (L [I]) = X = (2,[i]) = Aip

for all 1 <7 < [Ay| and all 1 < o < degy([1]) — 1, i.e., the [5]-sets Ao, Az, ..., Ajay)41 are
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used as ‘in-sets’ (‘out-sets’ resp.) to construct B (BS resp.).

(3,13 = {1, 8,4, (2, (8,4} — {1, [5). (2, 1)}
A= (L [5]) = A — (2,[]) — A, and

N — (3, 1) — )‘j+1

for all |4 +1 < j < ([Sjﬂ) —1land all 1 < B < degp([j]) — 1, ie., the [5]-sets

Al Aa|+2> A|Ag|+35 - - - 5 /\(rsjm) are used as ‘in-sets’ to construct B?{.

{(L K], (2, (KD} = {(L [, kD), (2, [, KD} = (3, [K]),
)\1 — ( [k?]) — )\1 — (2, [k’]) — )\1, and

— (3,[k]) = A

)‘k—([sjﬂ)—i-lAzl-&Q k—((sjﬂ)-i-lAzH-Z

for all ((/21) < k < A +]As| and all 1 < v < degp([k]) — 1, ie., the [5]-sets

¢ ) O
A|Ag|+2> A[Ag| 435 -+ - 5 )\2|A2‘+|A3|+2_([5;ﬂ) are used as ‘out-sets’ to construct By .

(2, [, 1) = (2, []), (4, 1)} = (L [71]) = {8 1), (3, 1)} = (2, [, 1]), and
A= {(L ), (4} = M = {2 1), B 1D} = A

for all [I] € Ay and all 1 <7 <deg,([l]) — 1.

A= (1, [m]), (2, [m])} = M\

for all [m] € E. (See Figure 10 for D when s = 3.)

It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we
refer the interested reader to [24] for details. Since every vertex lies in a directed Cy for
D and d(D) = 4, d(T) < max{4,d(D)} by Lemma 1.3, and thus d(7) = 4. O

This concludes the proof of Theorem 1.9.

5. Conclusion

In this paper, we almost completely characterise the case of even s and give a complete
characterisation for the case of odd s > 3. With the current approach of searching
for optimal orientation(s) in tree vertex-multiplications, the complexity and quantity of
the subcases increase sharply when the subsets O°((p, [1])) are of ‘middle’ size ([5] or
[51]). For instance in Proposition 4.3, it is relatively easy to settle Subcases 2.1 and 2.2
but Subcase 2.3 is rather involved. Furthermore, the even case (see Proposition 3.12)
illustrates a similar yet more complicated situation. It seems that a new approach may
be needed to cut through this entanglement. Since this paper focuses on trees of diameter

4, we end off by proposing the following problem.

Problem 5.1. For trees T' with d(7T") = 3, characterise the tree vertex-multiplications
T(s1,82,...,5,) that belong to 6.
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DOI: 10.20429/tag.2023.10106



Wong and Tay: Vertex-multiplications of Trees with Diameter 4

Figure 10: Orientation D for H for s = 3,

Ay = {[1]}, As = {[2], 3]}, As = {[4], [5]}, £ = {[6], [7]}-
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