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Abstract

Koh and Tay proved a fundamental classification of G vertex-multiplications into
three classes C0,C1 and C2. They also showed that any vertex-multiplication of a
tree with diameter at least 3 does not belong to the class C2. Of interest, G vertex-
multiplications are extensions of complete n-partite graphs and Gutin characterised
complete bipartite graphs with orientation number 3 (or 4 resp.) via an ingenious
use of Sperner’s theorem. In this paper, we investigate vertex-multiplications of
trees with diameter 4 in C0 (or C1) and exhibit its intricate connections with prob-
lems in Sperner Theory, thereby extending Gutin’s approach. Let s denote the
vertex-multiplication of the central vertex. We almost completely characterise the
case of even s and give a complete characterisation for the case of odd s ≥ 3.

Keywords: optimal orientation, orientation number, vertex-multiplication, Sperner fam-
ilies, antichains, cross-intersecting.
MSC 2020: 05C12, 05C20, 05D05.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). In this paper, we consider
only graphs with no loops or parallel edges. For any vertices v, x ∈ V (G), the distance
from v to x, dG(v, x), is defined as the length of a shortest path from v to x. For
v ∈ V (G), its eccentricity eG(v) is defined as eG(v) = max{dG(v, x) | x ∈ V (G)}. The
diameter of G, denoted by d(G), is defined as d(G) = max{eG(v) | v ∈ V (G)}. The
above notions are defined similarly for a digraph D; and we refer the reader to [1] for
any undefined terminology. For a digraph D, a vertex x is said to be reachable from
another vertex v if dD(v, x) < ∞. The outset and inset of a vertex v ∈ V (D) are
defined to be OD(v) = {x ∈ V (D) | v → x} and ID(v) = {y ∈ V (D) | y → v}
respectively. The outdegree deg+

D(v) and indegree deg−D(v) of a vertex v ∈ V (D) are
defined by deg+

D(v) = |OD(v)| and deg−D(v) = |ID(v)| respectively. If there is no ambiguity,
we shall omit the subscript for the above notation.

An orientation D of a graph G is a digraph obtained from G by assigning a direction
to every edge e ∈ E(G). An orientation D of G is said to be strong if every two vertices
in V (D) are mutually reachable. An edge e ∈ E(G) is a bridge if G− e is disconnected.
Robbins’ One-way Street Theorem [19] states that a connected graph G has a strong
orientation if and only if G is bridgeless.

Given a connected and bridgeless graph G, let D(G) be the family of strong orienta-
tions of G. The orientation number of G is defined as

d̄(G) = min{d(D) | D ∈ D(G)}.

Any orientation D in D(G) with d(D) = d̄(G) is called an optimal orientation of G. The
general problem of finding the orientation number of a connected and bridgeless graph is
very difficult. Moreover, Chvátal and Thomassen [3] proved that it is NP-hard to deter-
mine whether a graph admits an orientation of diameter 2. Hence, it is natural to focus
on special classes of graphs. The orientation number was evaluated for various classes of
graphs, such as the complete graphs [2, 15, 18] and complete bipartite graphs [7, 20]. Of
interest, Gutin ingeniously made use of a celebrated result in combinatorics, Sperner’s
theorem (see Theorem 2.1), to determine a characterisation of complete bipartite graphs
with orientation number 3 (or 4 resp.).
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Theorem 1.1 (Šoltés [20] and Gutin [7]). For q ≥ p ≥ 2,

d̄(K(p, q)) =

{
3, if q ≤

(
p
bp/2c

)
,

4, if q >
(

p
bp/2c

)
.

In 2000, Koh and Tay [11] studied the orientation numbers of a family of graphs known
as the G vertex-multiplications. They extended the results on complete n-partite graphs.
Let G be a given connected graph with vertex set V (G) = {v1, v2, . . . , vn}. For any
sequence of n positive integers (si), a G vertex-multiplication (also known as an extension
of G in [1]), denoted by G(s1, s2, . . . , sn), is the graph with vertex set V ∗ =

⋃n
i=1 Vi and

edge set E∗, where Vi’s are pairwise disjoint sets with |Vi| = si, for i = 1, 2, . . . , n; and for
any u, v ∈ V ∗, uv ∈ E∗ if and only if u ∈ Vi and v ∈ Vj for some i, j ∈ {1, 2, . . . , n} with
i 6= j such that vivj ∈ E(G). For instance, if G ∼= Kn, then the graph G(s1, s2, . . . , sn)
is a complete n-partite graph with partite sizes s1, s2, . . . , sn. Also, we say G is a parent
graph of a graph H if H ∼= G(s1, s2, . . . , sn) for some sequence (si) of positive integers.

For i = 1, 2, . . . , n, we denote the x-th vertex in Vi by (x, vi), i.e., Vi = {(x, vi) | x =
1, 2, . . . , si}. Hence, two vertices (x, vi) and (y, vj) in V ∗ are adjacent in G(s1, s2, . . . , sn) if
and only if i 6= j and vivj ∈ E(G). For convenience, we write G(s) in place of G(s, s, . . . , s)
for any positive integer s, and it is understood that the number of s’s is equal to the order
of G, n. Thus, G(1) is simply the graph G itself.

The G vertex-multiplications are a natural generalisation of complete multipartite
graphs. Optimal orientations minimising the diameter can also be used to solve a variant
of the Gossip Problem on a graph G. The Gossip Problem attributed to Boyd by Hajnal
et al. [9] is stated as follows:

“There are n ladies, and each one of them knows an item of scandal which is not known
to any of the others. They communicate by telephone, and whenever two ladies make a
call, they pass on to each other, as much scandal as they know at that time. How many
calls are needed before all ladies know all the scandal?”

The Problem has been the source of many papers that have studied the spread of
information by telephone calls, conference calls, letters and computer networks. One can
imagine a network of people modelled by a G vertex-multiplication where the parent
graph is G and persons within a partite set are not allowed to communicate directly with
each other, for perhaps secrecy or disease containment reasons.

The following theorem by Koh and Tay [11] provides a fundamental classification on
G vertex-multiplications.

Theorem 1.2 (Koh and Tay [11]). Let G be a connected graph of order n ≥ 3. If si ≥ 2
for i = 1, 2, . . . , n, then d(G) ≤ d̄(G(s1, s2, . . . , sn)) ≤ d(G) + 2.

In view of Theorem 1.2, all graphs of the form G(s1, s2, . . . , sn), with si ≥ 2 for all
i = 1, 2, . . . , n, can be classified into three classes Cj, where

Cj = {G(s1, s2, . . . , sn) | d̄(G(s1, s2, . . . , sn)) = d(G) + j},

for j = 0, 1, 2. Henceforth, we assume si ≥ 2 for i = 1, 2, . . . , n. The following lemma
was found useful in proving Theorem 1.2.

Lemma 1.3 (Koh and Tay [11]). Let si, ti be integers such that si ≤ ti for i = 1, 2, . . . , n.
If the graph G(s1, s2, . . . , sn) admits an orientation F in which every vertex v lies on a
cycle of length not exceeding m, then d̄(G(t1, t2, . . . , tn)) ≤ max{m, d(F )}.
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To discuss further, we need some notation. In this paper, let T4 (or simply T unless
stated otherwise) be a tree of diameter 4 with vertex set V (T4) = {v1, v2, . . . , vn}. We
further denote by c, the unique central vertex of T4, i.e., eT4(c) = 2, and the neighbours
of c by [i], i.e., NT4(c) = {[i] | i = 1, 2, . . . , degT4(c)}. For each i = 1, 2, . . . , degT4(c), we
further denote the neighbours of [i], excluding c, by [α, i], i.e., NT4([i]) − {c} = {[α, i] |
α = 1, 2, . . . , degT4([i])− 1}. Figure 1 illustrates the use of this notation.

c

[1, 1]

[2, 1]

[1, 2]

[1]

[3]

[2]

[4]

Figure 1: Labelling vertices in a T4.

From here onwards, let T = T4(s1, s2, . . . , sn) be a vertex-multiplication of a tree T4.
In T , the integer si corresponds to the vertex vi, i 6= n, while sn = s corresponds to
c. We will loosely use the two denotations of a vertex, for example, if vi = [j], then
si = s[j]. Also, if X ⊆ Nk = {1, 2, . . . , k}, where k ∈ Z+, and v ∈ V (T ), then set
(X, v) = {(i, v) | i ∈ X}. In particular, (Ns, c) = {(1, c), (2, c), . . . , (s, c)}. For any set
λ ⊆ (Ns, c), λ̄ = (Ns, c)− λ denotes its complement set.

A vertex v in a graph G is a leaf if degG(v) = 1. For a given T4, set E = {[i] | [i]
is an leaf in T4}. For a given T of T4, set T (Aj) = {[i] | s[i] = j, 1 ≤ i ≤ degT (c),
[i] 6∈ E}, where j is a positive integer. If there is no ambiguity, we will use Aj instead of
T (Aj). Similarly, A≤j and A≥j denote the corresponding sets, when the condition s[i] = j
is replaced by s[i] ≤ j and s[i] ≥ j respectively. For example, if T4 is as given in Figure 1,
then E = {[3], [4]}; furthermore, if si = 2 for all i = 1, 2, . . . , n, in T , then A2 = {[1], [2]}.

Theorem 1.2 was generalised to digraphs by Gutin et al. [8]. Ng and Koh [16] and
Wong and Tay [26] investigated vertex-multiplications of cycles and Cartesian products
of graphs respectively. Koh and Tay [12] studied vertex-multiplications of trees. Since
trees with diameter at most 2 are parent graphs of complete bipartite graphs and are
completely solved, Koh and Tay considered trees of diameter at least 3. They proved
that vertex-multiplications of trees with diameter 3, 4 or 5 does not belong to the class
C2 and those with diameter at least 6 belong to the class C0.

Theorem 1.4 (Koh and Tay [12]). If T is a tree of order n and d(T ) = 3, 4 or 5, then
T (s1, s2, . . . , sn) ∈ C0 ∪ C1.

Theorem 1.5 (Koh and Tay [12]). If T is a tree of order n and d(T ) ≥ 6, then
T (s1, s2, . . . , sn) ∈ C0.

Wong and Tay [23] proved a characterisation for vertex-multiplications of trees with
diameter 5 in C0 and C1.

Theorem 1.6 (Wong and Tay [23]). Let T be a tree of diameter 5 with central vertices
c1 and c2, and si corresponding to ci for i = 1, 2. Furthermore for i = 1, 2, denote
E ′i = {u | u ∈ NT (ci)− {c3−i}, u is not an leaf in T} and mi = min{su | u ∈ E ′i}.
(a) If s1 ≥ 3, or s2 ≥ 3, or m1,m2 ≥ 4, then T (s1, s2, . . . , sn) ∈ C0.
(b) Suppose s1 = s2 = 2 and 2 ≤ m1 ≤ 3 or 2 ≤ m2 ≤ 3. Then, T (s1, s2 . . . , sn) ∈ C0 if
and only if |E ′j| = 1 for some j = 1, 2.
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Koh and Tay [12] obtained some results regarding membership in C0 or C1 for vertex-
multiplications of trees with diameter 4.

Theorem 1.7 (Koh and Tay [12]). For a given T4,
(a) if degT4(c) = 2, then T ∈ C0.

(b) if degT4(c) ≥ 3, then T
(2)
4 ∈ C1.

In this paper, we further investigate vertex-multiplications of trees with diameter 4
and almost completely classify them as C0 or C1. The techniques required here exhibit
intricate connections with problems in Sperner Theory. In Section 2, we provide the main
tools, which comprise well-known results from Sperner Theory and structural properties
of optimal orientations of a T . Section 3 focuses primarily on the case where s is even
and the findings are summarised in Theorem 1.8. In Section 4, we prove a complete char-
acterisation of vertex-multiplications of trees with odd s ≥ 3, namely Theorem 1.9. We
point out that Propositions 3.4 and 3.5 hold for all integers s ≥ 2 and s ≥ 3 respectively.

Theorem 1.8. Let T4 be a tree of diameter 4 with the only central vertex c. Suppose s
is even for a T . Then,

(a) For s = 2:

|A2 ∪A3| |A≥4| T ∈ C 0 ⇐⇒ · · · Proposition

0 ≥ 2 Always true. 3.4

≥ 1 ≥ 0 degT (c) = 2. 3.2

Table 1: Summary for T4(s1, s2, . . . , sn), where s = 2.

(b) For s ≥ 4:

|A2| |A3| |A≥4| T ∈ C 0 ⇐⇒ · · · Proposition

0 0 ≥ 2 Always true. 3.4

0 ≥ 1 ≥ 0 |A3| ≤
(
s
s/2

)
+
(

s
(s/2)+1

)
− 2. 3.9

≥ 2 0 0
(i) |A2| ≤

(
s
ds/2e

)
− 1, if |A2| < degT (c),

(ii) |A2| ≤
(

s
ds/2e

)
, if |A2| = degT (c).

3.5

≥ 1 0 ≥ 1
(i) |A2| ≤

(
s
s/2

)
− 2, if |A≥4| ≥ 2 or |A≥2| < degT (c),

(ii) |A2| ≤
(
s
s/2

)
− 1, otherwise.

3.10

≥ 1 1 0
(i) |A2| ≤

(
s
s/2

)
− 2 if |A≥2| < degT (c),

(ii) |A2| ≤
(
s
s/2

)
− 1, if |A≥2| = degT (c).

3.11
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The final case is incomplete and excludes the case |A2| ≥ 1, |A3| = 1 and |A≥4| = 0.

|A2| |A3| |A≥4| T ∈ C 0 Proposition

≥ 1 ≥ 1 ≥ 0

(a) T ∈ C0 ⇒ 2|A2|+ |A3| ≤
(
s
s/2

)
+
(

s
(s/2)+1

)
−κ∗s, s

2
(k) for some k ≤ |A2|+ |A3|.

(b) There exists some

|A2|+ 1 ≤ k ≤ min{|A2|+ |A3|,
(
s
s/2

)
− 1} such that

2|A2|+ |A3| ≤
(
s
s/2

)
+
(

s
(s/2)+1

)
− κs, s

2
(k)− 3

⇒ T ∈ C0.

Note: κs, s
2
(·) and κ∗s, s

2
(·) will be defined later.

3.12

Table 2: Summary for T = T4(s1, s2, . . . , sn), where s ≥ 4 is even.

Theorem 1.9. Let T4 be a tree of diameter 4 with the only central vertex c. Suppose
s ≥ 3 is odd for a T . Then,

|A2| |A3| |A≥4| T ∈ C 0 ⇐⇒ · · · Proposition

0 ≥ 1 ≥ 0 |A3| ≤ 2
(

s
ds/2e

)
− 2. 4.1

0 0 ≥ 2 Always true. 3.4

≥ 2 0 0
(i) |A2| ≤

(
s
ds/2e

)
− 1, if |A2| < degT (c),

(ii) |A2| ≤
(

s
ds/2e

)
, if |A2| = degT (c).

3.5

≥ 1 0 ≥ 1 |A2| ≤
(

s
ds/2e

)
− 1. 4.8

≥ 1 1 0 |A2| ≤
(

s
ds/2e

)
− 1.

4.3

≥ 1 ≥ 2 0

(i) 2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2, or

(ii) 2|A2|+ |A3| = 2
(

s
ds/2e

)
− 1,

|A2| ≥ d s2eb
s
2
c and s ≥ 5.

≥ 1 1 ≥ 1 |A2| ≤
(

s
ds/2e

)
− 2.

4.10
≥ 1 ≥ 2 ≥ 1 2|A2|+ |A3| ≤ 2

(
s
ds/2e

)
− 2.

Table 3: Summary for T = T4(s1, s2, . . . , sn), where s ≥ 3 is odd.

As we shall see in the proofs of Theorems 1.8 and 1.9, it is a key insight to partition
NT (c) into 4 types of vertices, A2, A3, A≥4 and E. Their sizes will then determine the
equivalent conditions of an optimal orientation (except possibly Proposition 3.12). We
shall consider cases dependent on these 4 sets. The lack of conformity in the equivalent
conditions across all cases gives a compelling indication that the case distinctions are
required.
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2. Preliminaries

Our overarching approach is to reduce the investigation of optimal orientations of tree
vertex-multiplication graphs to variants of problems in Sperner Theory; particularly con-
cerning cross-intersecting antichains. The change in perspective grants us leverage on the
following useful results in Sperner Theory.

For any n ∈ Z+, let Nn = {1, 2, . . . , n} and 2Nn denote the power set of Nn. For any
integer k, 0 ≤ k ≤ n,

(Nn

k

)
denotes the collection of all k-subsets (i.e., subsets of cardinality

k) of Nn. Two families A ,B ⊆ 2Nn are said to be cross-intersecting if A ∩ B 6= ∅ for
all A ∈ A and all B ∈ B. Two subsets X and Y of Nn are said to be independent if
X 6⊆ Y and Y 6⊆ X. An antichain or Sperner family A on Nn is a collection of pairwise
independent subsets of Nn, i.e., for all X, Y ∈ A , X 6⊆ Y .

Theorem 2.1 (Sperner [21]). For any n ∈ Z+, if A is an antichain on Nn, then |A | ≤(
n
bn/2c

)
. Furthermore, equality holds if and only if all members in A have the same size,

bn
2
c or dn

2
e.

Lih’s theorem [14] provides the maximum size of an antichain with each member
intersecting a fixed set and Griggs [6] determined all such maximum-sized antichains.

Theorem 2.2 (Lih [14]). Let n ∈ Z+ and Y ⊆ Nn. If A is an antichain on Nn such
that A ∩ Y 6= ∅ for all A ∈ A , then

|A | ≤
(

n

dn/2e

)
−
(
n− |Y |
dn/2e

)
.

Theorem 2.3 (Griggs [6]). Let n ∈ Z+ and Y ⊆ Nn. If A is an antichain on Nn such
that A∩Y 6= ∅ for all A ∈ A and |A | =

(
n
dn/2e

)
−
(
n−|Y |
dn/2e

)
, then A consists of exactly one

of the following:
(i) dn

2
e-sets, or

(ii) n−1
2

-sets for odd n and |Y | ≥ n+3
2

, or
(iii) n+2

2
-sets for even n and |Y | = 1.

Given two cross-intersecting antichains A and B on Nn, Ou [17], Frankl and Wong [5]
and Wong and Tay [25] independently derived an upper bound for |A | + |B|. Further-
more, Wong and Tay [22] determined all extremal and almost-extremal cross-intersecting
antichains for A and B.

Theorem 2.4 (Ou [17], Frankl and Wong [5] and Wong and Tay [25]). Let A and B be
two cross-intersecting antichains on Nn, where n ∈ Z+ and n ≥ 3. Then,

|A |+ |B| ≤
(

n

b(n+ 1)/2c

)
+

(
n

d(n+ 1)/2e

)
Furthermore, equality holds if and only if {A ,B} = {

( Nn

b(n+1)/2c

)
,
( Nn

d(n+1)/2e

)
}.

Theorem 2.5 (Wong and Tay [22]). Let A and B be two cross-intersecting antichains
on Nn, where n ≥ 3 is an odd integer and |A | ≥ |B|. Then, |A |+ |B| = 2

(
n
dn/2e

)
− 1 if

and only if A =
( Nn

dn/2e

)
, B ⊂

( Nn

dn/2e

)
and |B| =

(
n
dn/2e

)
− 1.
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Theorem 2.6 (Wong and Tay [22]). Let A and B be two cross-intersecting antichains on
Nn, where n ≥ 4 is an even integer and |A | ≥ |B|. Then, |A |+|B| =

(
n
n/2

)
+
(

n
(n/2)+1

)
−1

if and only if
(i) A =

(Nn

n/2

)
, B ⊂

( Nn

(n/2)+1

)
and |B| =

(
n

(n/2)+1

)
− 1, or

(ii) A ⊂
(Nn

n/2

)
, |A | =

(
n
n/2

)
− 1, and B =

( Nn

(n/2)+1

)
.

Kruskal-Katona Theorem (KKT) is closely related to the squashed order of the k-sets.
The squash relations ≤s and <s are defined as follows. For A,B ∈

(Nn

k

)
, A ≤s B if the

largest element of the symmetric difference (A−B)∪(B−A) is in B. Furthermore, denote
A <s B if A ≤s B and A 6= B. For example, the 3-subsets of N5 in squashed order are:
123 <s 124 <s 134 <s 234 <s 125 <s 135 <s 235 <s 145 <s 245 <s 345. Here, we
omit the braces and write abc to represent the set {a, b, c}, if there is no ambiguity. We
shall denote the collections of the first m and last m k-subsets of Nn in squashed order
by Fn,k(m) and Ln,k(m) respectively.

For a family A ⊆
(Nn

k

)
, the shadow and shade of A are defined as

∆A = {X ⊆ Nn | |X| = k − 1, X ⊂ Y for some Y ∈ A }, if k > 0, and

∇A = {X ⊆ Nn | |X| = k + 1, Y ⊂ X for some Y ∈ A }, if k < n

respectively.
Then, KKT says that the shadow of a family A of k-sets has size at least that of the

shadow of the first |A | k-sets in squashed order.

Theorem 2.7 (Kruskal [13], Katona [10] and Clements and Lindström [4]). Let A be
a collection of k-sets of Nn and suppose the k-binomial representation of |A | is |A | =(
ak
k

)
+
(
ak−1

k−1

)
+ · · ·+

(
at
t

)
, where ak > ak−1 > · · · > at ≥ t ≥ 1. Then,

|∆A | ≥ |∆Fn,k(|A |)| =
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
at
t− 1

)
.

By considering the complements of sets in Fn,k(m), the next lemma can be proved.

Lemma 2.8. For any integer 0 ≤ m ≤
(
n
k

)
, |∆Fn,k(m)| = |∇Ln,n−k(m)|.

Definition 2.9 (Wong and Tay [25]). Let n, r and m be integers such that 0 ≤ m ≤
(
n
r

)
.

Define

κn,r(m) = |∆Fn,r(m)| −m and κ∗n,r(m) = min
0≤j≤m

κn,r(j).

We remark that κn,n
2
(m) = |∇Ln,n

2
(m)| −m by Lemma 2.8. Using KKT, Wong and

Tay [25] derived an upper bound for cross-intersecting antichains with at most k disjoint
pairs.

Theorem 2.10 (Wong and Tay [25]). Let n ≥ 4 be an even integer and A and B be two
antichains on Nn. Suppose there exist orderings of the elements A1, A2, . . . , A|A | in A ,
and B1, B2, . . . , B|B| in B, and some integer k ≤ min{|A |, |B|}, such that Ai ∩ Bj = ∅
only if i = j ≤ k. Then,

|A |+ |B| ≤
(
n

n/2

)
+

(
n

(n/2) + 1

)
− κ∗n,n

2
(k),
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where κ∗n,n
2
(k) = 0 if k < 1 +

n/2∑
i=1

(
2i−1
i

)
and κ∗n,n

2
(k) < 0 otherwise. Furthermore, equality

holds if

(i) k < 1 +
n/2∑
i=1

(
2i−1
i

)
, A =

(Nn

n/2

)
and B =

( Nn

(n/2)+1

)
, or

(ii) k ≥ 1 +
n/2∑
i=1

(
2i−1
i

)
, A =

(Nn

n/2

)
and B = Ln,n

2
(m) ∪

( Nn

(n/2)+1

)
− ∇Ln,n

2
(m), where

0 < m ≤ k is an integer such that κ∗n,n
2
(k) = κn,n

2
(m).

Lastly, we prove here some key properties of an optimal orientation of a vertex-
multiplication graph T in C0. Let D be an orientation of T . If vp and vq, 1 ≤ p, q ≤ n
and p 6= q, are adjacent vertices in the parent graph G, then for each i, 1 ≤ i ≤ sp, we
denote by O

vq
D ((i, vp)) = {(j, vq) | (i, vp)→ (j, vq), 1 ≤ j ≤ sq} and I

vq
D ((i, vp)) = {(j, vq) |

(j, vq) → (i, vp), 1 ≤ j ≤ sq}. If there is no ambiguity, we shall omit the subscript D for
the above notation.

The next lemma is important but easy to verify.

Lemma 2.11. (Duality) Let D be an orientation of a graph G. Let D̃ be the orientation
of G such that uv ∈ A(D̃) if and only if vu ∈ A(D). Then, d(D̃) = d(D).

Lemma 2.12. Let D be an orientation of a T where d(D) = 4. Then, dD((p, [α, i]), (q, [j]))
= dD((q, [j]), (p, [α, i])) = 3 for all 1 ≤ i, j ≤ degT (c), i 6= j, 1 ≤ α ≤ degT ([i]) − 1,
1 ≤ p ≤ s[α,i] and 1 ≤ q ≤ s[j].

Proof : Note that 3 = dT ([α, i], [j]) ≤ dD((p, [α, i]), (q, [j])) ≤ d(D) = 4. Since there is
no [α, i]− [j] path of even length in T , there is no (p, [α, i])− (q, [j]) path of even length
in T , in particular, no path of length 4. Hence, dD((p, [α, i]), (q, [j])) = 3. Similarly,
dD((q, [j]), (p, [α, i])) = 3 may be proved.

Since we are going to use this fact repeatedly, we state the following obvious lemma.

Lemma 2.13. Let D be an orientation of a T where d(D) = 4. For 1 ≤ i ≤ degT (c),
(a) if s[i] = 2, then for 1 ≤ p ≤ s[α,i] and 1 ≤ α ≤ degT ([i]) − 1, either (2, [i]) →
(p, [α, i])→ (1, [i]) or (1, [i])→ (p, [α, i])→ (2, [i]).
(b) if s[i] = 3, then for 1 ≤ p ≤ s[α,i] and 1 ≤ α ≤ degT ([i])− 1, either |O((p, [α, i]))| = 1
or |I((p, [α, i]))| = 1.

Proof : Both statements follow from the fact that O((p, [α, i])) 6= ∅ and I((p, [α, i])) 6= ∅
for all p = 1, 2, . . . , s[α,i] so that D is a strong orientation.

Example 2.14. To help the reader understand the following lemmas and the proof of
Proposition 3.9, we use the orientation D shown in Figures 5 and 6 for this example. It
will be shown later that d(D) = 4.
(a) Observe thatO((1, [1, i])) = {(3, [i])} for i = 5, 6, andOc((3, [5])) = {(1, c), (2, c), (3, c)}
and Oc((3, [6])) = {(2, c), (3, c), (4, c)} are independent.
(b) Note thatO((1, [1, 1])) = {(1, [1]), (2, [1])}, Oc((1, [1])) = {(1, c), (2, c)}, Oc((2, [1])) =
{(3, c), (4, c)}. It is easy to check that Oc((3, [5])) 6⊆ Oc((p, [1])) for p = 1, 2, and
Oc((1, [1])) ∪Oc((2, [1])) 6⊆ Oc((3, [5])).
In Lemmas 2.15 and 2.16, we prove that these observations hold generally.
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Lemma 2.15. Let D be an orientation of a T where d(D) = 4 and 1 ≤ i, j ≤ degT (c),
i 6= j, 1 ≤ α ≤ degT ([i]) − 1, 1 ≤ β ≤ degT ([j]) − 1. Suppose Oc(ui) = Oc(vi) for any
ui, vi ∈ O((1, [α, i])) and Oc(uj) = Oc(vj) for any uj, vj ∈ O((1, [β, j])), then Oc(wi) and
Oc(wj) are independent for any wi ∈ O((1, [α, i])) and wj ∈ O((1, [β, j])).

Proof : By Lemma 2.12, dD((1, [α, i]), wj) = 3. Hence, it follows that dD(wi, wj) = 2 and
Oc(wi) 6⊆ Oc(wj). A similar argument shows Oc(wj) 6⊆ Oc(wi).

Lemma 2.16. Let D be an orientation of a T where d(D) = 4. Suppose O((1, [α, i])) =
{(1, [i])} and O((1, [β, j])) = {(1, [j]), (2, [j])} for 1 ≤ i, j ≤ degT (c), i 6= j, 1 ≤ α ≤
degT ([i])− 1, and 1 ≤ β ≤ degT ([j])− 1. Then, for each p = 1, 2, . . . , s[j],
(a) Oc((1, [i])) 6⊆ Oc((p, [j])),
(b) Oc((1, [j])) ∪Oc((2, [j])) 6⊆ Oc((1, [i])).

Proof : (a) can be proved similarly to Lemma 2.15. By Lemma 2.12, dD((1, [β, j]), (1, [i])) =
3, which implies dD((p, [j]), (1, [i])) = 2 for some p = 1, 2. Hence, (b) follows.

In view of the Duality Lemma, we remark that Lemmas 2.15 and 2.16 have their
respective dual analogues in which the notion of ‘out-sets’ is replaced by ‘in-sets’.

Lemma 2.17. Let D be an orientation of a complete bipartite graph K(p, q) with partite
sets V1 = {11, 12, . . . , 1p} and V2 = {21, 22, . . . , 2q}, q ≥ p ≥ 3. Suppose further for
1 ≤ i ≤ p that λi → 2i → λ̄i, where λi = {1i, 1i+1, . . . , 1i+d p

2
e−1}. Then, dD(1i, 1j) = 2 for

any 1 ≤ i, j ≤ p, i 6= j.

Proof : Let t ∈ Np such that t ≡ i−dp
2
e+ 1 (mod p). Since 1i → {2i, 2t} and V1−{1i} ⊆

O(2i) ∪O(2t), it follows that dD(1i, 1j) = 2 for i 6= j.

3. Proof of Theorem 1.8

In proving the “only if” direction of the following propositions, we shall use a common
setup forged with the following notions. For a T , let D be an orientation of T with
d(D) = 4. If A2 6= ∅, then by Lemma 2.13(a), we may assume without loss of generality
in D that

(2, [i])→ (1, [1, i])→ (1, [i]) for any [i] ∈ A2. (3.1)

Also, we let

BO
2 = {Oc((1, [i])) | [i] ∈ A2} and BI

2 = {Ic((2, [i])) | [i] ∈ A2}. (3.2)

Note that (1, [i]) ((2, [i]) resp.) is effectively the only ‘outlet’ (‘inlet’ resp.) for the vertex
(1, [1, i]) if [i] ∈ A2.

Analogously, if A3 6= ∅, then by Lemma 2.13(b), we can partition A3 into AO3 and AI3,
where

AO3 = {[i] | ∀α, 1 ≤ α ≤ degT ([i])− 1,∀p, 1 ≤ p ≤ s[α,i], |O((p, [α, i]))| = 1},
AI3 = {[i] | ∃α, 1 ≤ α ≤ degT ([i])− 1,∃p, 1 ≤ p ≤ s[α,i], |O((p, [α, i]))| = 2}.

}
(3.3)

Without loss of generality, we assume in D that

{(1, [i]), (2, [i])} → (1, [1, i])→ (3, [i]) if [i] ∈ AO3 ,
and (3, [i])→ (1, [1, i])→ {(1, [i]), (2, [i])} if [i] ∈ AI3.

}
(3.4)
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We also let

BO
3 = {Oc((3, [i])) | [i] ∈ AO3 } and BI

3 = {Ic((3, [i])) | [i] ∈ AI3}. (3.5)

Note that (3, [i]) is effectively the only ‘outlet’ (‘inlet’ resp.) for the vertex (1, [1, i]) if
[i] ∈ AO3 (AI3 resp.). Furthermore, both BO

2 ∪ BO
3 and BI

2 ∪ BI
3 are antichains on (Ns, c)

by Lemma 2.15 and its dual respectively.

Example 3.1. Let D be the orientation shown in Figures 5 and 6. Then, AI3 =
{[1], [2], [3], [4]}, AO3 = {[5], [6]}, BI

3 = {{(2, c), (3, c)}, {(1, c), (4, c)}, {(1, c), (3, c)}, {(2, c),
(4, c)}}, and BO

3 = {{(1, c), (2, c), (3, c)}, {(2, c), (3, c), (4, c)}}.

As the problem differs for s = 2 from s ≥ 4, we consider them separately.

Proposition 3.2. Suppose s = 2 and A2 ∪A3 6= ∅ for a T . Then, T ∈ C0 if and only if
degT (c) = 2.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As
A2 ∪ A3 6= ∅, we assume (3.1)-(3.5) here. From d(T ) = 4, it follows that |A≥2| ≥ 2. We
shall consider two cases to show |A≥2| = 2 and E = ∅.

Case 1. |A2 ∪ AO3 | > 0.
Let [i∗] ∈ A2 ∪AO3 and δ = 1 if [i∗] ∈ A2, and δ = 3 if [i∗] ∈ AO3 . For all [i] ∈ NT (c)−

{[i∗]} and all p = 1, 2, . . . , s[i], since dD((1, [1, i∗]), (p, [i])) = 3 = dD((1, [1, i]), (δ, [i∗]))
by Lemma 2.12, we may assume without loss of generality that (2, c) → (δ, [i∗]) →
(1, c), which implies (1, c) → (p, [i]) → (2, c). Now, if [i], [j] ∈ A≥2 − {[i∗]}, then
dD((1, [1, i]), (1, [j])) > 3, a contradiction to Lemma 2.12. Hence, |A≥2 − {[i∗]}| ≤ 1 and
thus, |A≥2| = 2. If E 6= ∅, then a similar argument follows for [i] ∈ A≥2 − {[i∗]} and
[j] ∈ E.

Case 2. |A2 ∪ AO3 | = 0 and |AI3| > 0.
Then, AI3 behaves like AO3 in D̃. The result follows from Case 1 by the Duality Lemma.

Remark 3.3. We note the difference in the definition (3.3) of AO3 and AI3 respectively.
For the argument, we actually needed only a partition AO3 and AI3 of A3 satisfying

[i] ∈ AO3 =⇒ ∃α, 1 ≤ α ≤ degT ([i])− 1,∃p, 1 ≤ p ≤ s[α,i], |O((p, [α, i]))| = 1,

and [i] ∈ AI3 =⇒ ∃α, 1 ≤ α ≤ degT ([i])− 1,∃p, 1 ≤ p ≤ s[α,i], |I((p, [α, i]))| = 1.

If AO3 and AI3 were each defined using existential quantifiers instead, their intersection
may be nonempty. We may arbitrarily include these elements in AO3 or AI3 (but not both)
to get a partition. However, for the sake of a well-defined partition, we used (3.3). We
emphasize that this does not affect the duality effect in the argument and shall repeatedly
apply this.

(⇐) This follows from Theorem 1.7(a).

For the following, note that Proposition 3.4 holds for all integers s ≥ 2 while Propo-
sition 3.5 and Corollary 3.8 hold for all integers s ≥ 3.
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Proposition 3.4. If s ≥ 2 and A2 = A3 = ∅ for a T , then T ∈ C0.

Proof : Let H = T (t1, t2, . . . , tn) be the subgraph of T , where t[i] = 4 for all [i] ∈ T (A≥4)
and tv = 2 otherwise. We will use Aj for H(Aj) for the remainder of this proof. Note
that Aj 6= ∅ if and only if j = 4. Define an orientation D for H as follows.

{(2, [i]), (3, [i])} → (1, [α, i])→ {(1, [i]), (4, [i])} → (2, [α, i])→ {(2, [i]), (3, [i])},
and {(1, [i]), (2, [i])} → (1, c)→ {(3, [i]), (4, [i])} → (2, c)→ {(1, [i]), (2, [i])}

for all [i] ∈ A4 and 1 ≤ α ≤ degT ([i])− 1.

(2, c)→ {(1, [j]), (2, [j])} → (1, c)

for all [j] ∈ E. (See Figure 2 for D when s = 2.)
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we

refer the interested reader to [24] for details. Since every vertex lies in a directed C4 for
D and d(D) = 4, d̄(T ) ≤ max{4, d(D)} by Lemma 1.3. With d̄(T ) ≥ d(T ) = 4, it follows
that d̄(T ) = 4 .

(1, [1, 1])

(2, [1, 1])

(1, [2, 1])

(2, [2, 1])

(1, [1])

(2, [1])

(3, [1])

(4, [1])

(1, c)

(2, c)

(1, [2])

(2, [2])

(3, [2])

(4, [2])

(1, [1, 2])

(2, [1, 2])

(1, [3])

(2, [3])

(1, [4])

(2, [4])

Figure 2: Orientation D, where A4 = {[1], [2]}, E = {[3], [4]}.
Note that the parent graph is the tree in Figure 1.

Note: For clarity, the arcs directed from (p, c) to (q, [i]) are omitted, while the arcs
directed from (q, [i]) to (r, [α, i]) are represented by dashed ( ) lines. The same simpli-
fication is used for Figures 3 to 10.

Proposition 3.5. Suppose s ≥ 3 and A≥3 = ∅ for a T . Then,

T ∈ C0 ⇐⇒

{
|A2| ≤

(
s
ds/2e

)
− 1, if |A2| < degT (c),

|A2| ≤
(

s
ds/2e

)
, if |A2| = degT (c).

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As
A2 6= ∅, we assume (3.1)-(3.2) here. By Sperner’s theorem, |A2| = |BO

2 | ≤
(

s
ds/2e

)
. So, we

are done if |A2| = degT (c).
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Now, assume |A2| < degT (c) and let [i∗] ∈ E. If |Oc((1, [i∗]))| ≥ d s
2
e, then dD((1, [1, i]),

(1, [i∗])) = 3 implies Oc((1, [i])) ∩ Ic((1, [i∗])) 6= ∅ for all [i] ∈ A2. It follows from Lih’s
theorem that |A2| = |BO

2 | ≤
(

s
ds/2e

)
−
(
s−|Ic((1,[i∗]))|

ds/2e

)
≤
(

s
ds/2e

)
−
(ds/2e
ds/2e

)
=
(

s
ds/2e

)
− 1. If

|Oc((1, [i∗]))| ≤ b s
2
c, then dD((1, [i∗]), (1, [1, i])) = 3 implies Ic((2, [i])) ∩ Oc((1, [i∗])) 6= ∅

for all [i] ∈ A2. It follows from Lih’s theorem that |A2| = |BI
2 | ≤

(
s
ds/2e

)
−
(
s−|Oc((1,[i∗]))|

ds/2e

)
≤(

s
ds/2e

)
−
(ds/2e
ds/2e

)
=
(

s
ds/2e

)
− 1.

Remark 3.6. On account of the above part, it is intuitive to let Oc((1, [i])) = Oc((2, [i]))
and |Oc((1, [i]))| = b s

2
c in constructing an optimal orientation D of T . Indeed, this is our

plan if |A2| is big enough (i.e., |A2| ≥ s). However, there are some potential drawbacks of
this approach if |A2| is small (i.e., |A2| < s). For instance, consider s = 5 and degT (c) =
|A2| = 2. If we assigned Oc((p, [1])) = {(1, c), (2, c)} and Oc((p, [2])) = {(1, c), (3, c)} for
p = 1, 2, then deg+((1, c)) = 0 and deg−((j, c)) = 0 for j = 4, 5. Consequently, D will
not be a strong orientation. Hence, we consider cases dependent on |A2| to circumvent
this problem; namely, they are Cases 1 and 2 for small |A2|, and Cases 3 and 4 for large
|A2|.

(⇐) Without loss of generality, assume A2 = {[i] | i ∈ N|A2|}. Thus, it is taken that
E = {[i] | i ∈ NdegT (c) − N|A2|} if |A2| < degT (c). Let H = T (t1, t2, . . . , tn) be the
subgraph of T , where tc = s and tv = 2 for all v 6= c. We will use Aj for H(Aj) for the
remainder of this proof.

Case 1. |A2| = degT (c) (i.e., E = ∅) and |A2| ≤ s.
Define an orientation D1 for H as follows.

(2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]) (3.6)

for all [i] ∈ A2 and 1 ≤ α ≤ degT ([i])− 1.

(Ns, c)− {(i, c)} → {(1, [i]), (2, [i])} → (i, c) (3.7)

for all 1 ≤ i ≤ |A2| − 1.

(Ns, c)− {(k, c) | |A2| ≤ k ≤ s} → {(1, [|A2|]), (2, [|A2|])}
→ {(k, c) | |A2| ≤ k ≤ s}. (3.8)

Claim 1: For all v, w ∈ V (D1), dD1(v, w) ≤ 4.

Case 1.1. v, w ∈ {(1, [α, i]), (2, [α, i]), (1, [i]), (2, [i])} for each [i] ∈ A2 and 1 ≤ α ≤
degT ([i])− 1.

This is clear since (3.6) is a directed C4.

Case 1.2. For each [i], [j] ∈ A2, i 6= j, each 1 ≤ α ≤ degT ([i]) − 1, and each 1 ≤
β ≤ degT ([j])− 1,
(i) v = (p, [α, i]), w = (q, [β, j]) for p, q = 1, 2, or
(ii) v = (p, [α, i]), w = (q, [i]) for p, q = 1, 2, or
(iii) v = (p, [i]), w = (q, [β, j]) for p, q = 1, 2.

If i 6= j, then, by (3.6)-(3.8), (p, [α, i]) → (p, [i]) → (i, c) → (1, [j]) → (2, [β, j]) and
(p, [α, i])→ (p, [i])→ (i, c)→ (2, [j])→ (1, [β, j]).
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Case 1.3. v = (x1, c) and w = (x2, c) for x1 6= x2 and 1 ≤ x1, x2 ≤ s.
If x2 < |A2|, then (x1, c) → (1, [x2]) → (x2, c) by (3.7). If x1 < |A2| ≤ x2 ≤ s,

then (x1, c) → (1, [|A2|]) → (x2, c) by (3.7)-(3.8). If |A2| ≤ x1, x2 ≤ s, then (x1, c) →
(1, [1])→ (1, c)→ (1, [|A2|])→ (x2, c) by (3.7)-(3.8).

Case 1.4. v ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for each [i] ∈ A2, 1 ≤ α ≤ degT ([i])− 1,
and w = (j, c) for 1 ≤ j ≤ s.

If j = i, or i = |A2| ≤ j ≤ s, then (p, [α, i]) → (p, [i]) → (j, c) for p = 1, 2, by
(3.6)-(3.8). If j 6= i and j < |A2|, then (p, [α, i]) → (p, [i]) → (i, c) → (1, [j]) → (j, c)
for p = 1, 2, by (3.6)-(3.7). If i < |A2| ≤ j ≤ s, then (p, [α, i]) → (p, [i]) → (i, c) →
(1, [|A2|])→ (j, c) for p = 1, 2, by (3.6)-(3.8).

Case 1.5. v = (j, c) for each 1 ≤ j ≤ s, and w ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])}
for each [i] ∈ A2 and 1 ≤ α ≤ degT ([i])− 1.

If j < |A2| and j 6= i, or i < |A2| ≤ j ≤ s, then (j, c) → (p, [i]) → (3 − p, [α, i]) for
p = 1, 2, by (3.6)-(3.8). If i = j < |A2|, then (j, c) → (1, [|A2|]) → (|A2|, c) → (p, [i]) →
(3 − p, [α, i]) for p = 1, 2, by (3.6)-(3.8). If i = |A2| ≤ j ≤ s, then (j, c) → (1, [1]) →
(1, c)→ (p, [|A2|])→ (3− p, [α, |A2|]), for p = 1, 2, by (3.6)-(3.8).

Case 1.6. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2, i 6= j, and [i], [j] ∈ A2.
This follows from the fact that |Oc((p, [i]))| > 0, |Ic((q, [j]))| > 0, and dD1((r1, c), (r2, c))

= 2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ |A2| by Case 1.3.

Case 2. |A2| < degT (c) (i.e., E 6= ∅) and |A2| < s.
Define an orientation D2 for H as follows.

(2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]) (3.9)

for all [i] ∈ A2 and 1 ≤ α ≤ degT ([i])− 1.

(Ns, c)− {(i, c)} → {(1, [i]), (2, [i])} → (i, c) (3.10)

for all 1 ≤ i ≤ |A2|.

(N|A2|, c)→ {(p, [i]) | p = 1, 2; [i] ∈ E}
→ {(k, c) | |A2| < k ≤ s} → {(q, [j]) | q = 1, 2; [j] ∈ A2}. (3.11)

(See Figure 3 for D2 when s = 5.)

Claim 2: For all v, w ∈ V (D2), dD2(v, w) ≤ 4.
In view of the similarity between D1 and D2, it suffices to check the following.

Case 2.1. For each [i] ∈ A2, each [j] ∈ E, and each 1 ≤ α ≤ degT ([i])− 1,
(i) v = (p, [α, i]), w = (q, [j]) for p, q = 1, 2, or
(ii) v = (p, [i]), w = (q, [j]) for p, q = 1, 2, or
(iii) v = (q, [j]), w = (p, [α, i]) for p, q = 1, 2.

By (3.9)-(3.11), (i) and (ii) follow from (p, [α, i]) → (p, [i]) → (i, c) → {(1, [j]),
(2, [j])}. Similarly for (iii), {(1, [j]), (2, [j])} → (s, c)→ (3− p, [i])→ (p, [α, i]).
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Case 2.2. v = (x1, c) and w = (x2, c) for x1 6= x2 and 1 ≤ x1, x2 ≤ s.
If x2 ≤ |A2|, then (x1, c)→ (1, [x2])→ (x2, c) by (3.10). If x1 ≤ |A2| and |A2| + 1 ≤

x2 ≤ s, then (x1, c)→ (1, [j])→ (x2, c) for any [j] ∈ E by (3.11). If |A2|+1 ≤ x1, x2 ≤ s,
then (x1, c)→ (1, [1])→ (1, c)→ (1, [j])→ (x2, c) for any [j] ∈ E by (3.10) and (3.11).

Case 2.3. v ∈ {(1, [i]), (2, [i])} for each [i] ∈ E, and w = (j, c) for 1 ≤ j ≤ s.
For 1 ≤ j ≤ |A2|, {(1, [i]), (2, [i])} → (s, c) → (1, [j]) → (j, c) by (3.10) and (3.11).

For |A2|+ 1 ≤ j ≤ s, {(1, [i]), (2, [i])} → (j, c) by (3.11).

Case 2.4. v = (j, c) for each 1 ≤ j ≤ s, and w ∈ {(1, [i]), (2, [i])} for each [i] ∈ E.
By (3.11), for any 1 ≤ j ≤ |A2|, (j, c) → {(1, [i]), (2, [i])}. For |A2| + 1 ≤ j ≤ s,

(j, c)→ (1, [1])→ (1, c)→ {(1, [i]), (2, [i])} by (3.10) and (3.11).

Case 2.5. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2, and [i], [j] ∈ E.
Here, it is possible that i = j. Note that {(1, [i]), (2, [i])} → (s, c) → (1, [1]) →

(1, c)→ {(1, [j]), (2, [j])} by (3.10) and (3.11).

(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])
(1, [2])

(2, [2])

(1, [1, 2])

(2, [1, 2])(1, [1, 3])

(2, [1, 3])

(1, [2, 3])

(2, [2, 3])

(1, [3])

(2, [3])

(1, c)

(2, c)

(3, c)

(4, c)

(5, c)

(1, [4])

(2, [4])

(1, [1, 4])

(2, [1, 4])

(1, [5])

(2, [5])

(1, [6])

(2, [6])

Figure 3: Orientation D2 for H, Case 2. s = 5, degT (c) = 6,
A2 = {[1], [2], [3], [4]}, E = {[5], [6]}.

To settle Cases 3 and 4 (and forthcoming propositions), we require the following
notation.

Definition 3.7. Set {λ1, λ2, . . . , λ( s
ds/2e)
} =

(
(Ns,c)
ds/2e

)
, i.e., the set containing all d s

2
e-subsets

of (Ns, c). In particular, for 1 ≤ i ≤ s, let λi = {(i, c), (i + 1, c), . . . , (i + d s
2
e − 1, c)},

the sets containing d s
2
e vertices in consecutive (cyclic) order starting from (i, c). For

example, λ2 = {(2, c), (3, c), . . . , (d s
2
e + 1, c)}. The denotation of the remaining λi’s can

be arbitrary.
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Case 3. |A2| = degT (c) (i.e., E = ∅) and s < |A2| ≤
(

s
ds/2e

)
. (If s = 3, this case does not

apply, and we refer to Case 1 instead.)
Define an orientation D3 for H as follows.

(2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]), (3.12)

and λi → {(1, [i]), (2, [i])} → λ̄i (3.13)

for all [i] ∈ A2 and 1 ≤ α ≤ degT ([i])− 1. We point out that the d s
2
e-sets λ1, λ2, . . . , λ|A2|

(b s
2
c-sets λ̄1, λ̄2, . . . , λ̄|A2| resp.) are used as ‘in-sets’ (‘out-sets’ resp.) to construct BI

2

(BO
2 resp.).

Claim 3: For all v, w ∈ V (D3), dD3(v, w) ≤ 4.

Case 3.1. v, w ∈ {(1, [α, i]), (2, [α, i]), (1, [i]), (2, [i])} for each [i] ∈ A2 and 1 ≤ α ≤
degT ([i])− 1.

This is clear since (3.12) is a directed C4.

Case 3.2. For each [i], [j] ∈ A2, i 6= j, each 1 ≤ α ≤ degT ([i]) − 1, and each 1 ≤
β ≤ degT ([j])− 1,
(i) v = (p, [α, i]), w = (q, [β, j]) for p, q = 1, 2, or
(ii) v = (p, [α, i]), w = (q, [j]) for p, q = 1, 2, or
(iii) v = (p, [i]), w = (q, [β, j]) for p, q = 1, 2.

By (3.12)-(3.13), since Oc((p, [i])) = λ̄i 6⊆ λ̄j = Oc((q, [j])), there exists a vertex
(x, c) ∈ λ̄i ∩ λj such that (p, [α, i])→ (p, [i])→ (x, c)→ (3− q, [j])→ (q, [β, j]).

Case 3.3. v = (r1, c) and w = (r2, c) for r1 6= r2 and 1 ≤ r1, r2 ≤ s.
Here, we want to prove a stronger claim, dD3((r1, c), (r2, c)) = 2. For 1 ≤ k ≤ s, let

xk = (1, [k]) and observe from (3.13) that λk → xk → λ̄k. The subgraph induced by
V1 = (Ns, c) and V2 = {xk | 1 ≤ k ≤ s} is a complete bipartite graph K(V1, V2). By
Lemma 2.17, dD3((r1, c), (r2, c)) = 2.

Case 3.4. v ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for each [i] ∈ A2 and 1 ≤ α ≤
degT ([i])− 1, and w = (r, c) for 1 ≤ r ≤ s.

Note that there exists some 1 ≤ k ≤ s such that dD3(v, (k, c)) ≤ 2 by (3.12)-(3.13).
If k = r, we are done. If k 6= r, then dD3((k, c), (r, c)) = 2 by Case 3.3. Hence, it follows
that dD3(v, w) ≤ dD3(v, (k, c)) + dD3((k, c), w) = 4.

Case 3.5. v = (r, c) for 1 ≤ r ≤ s and w ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for
each [i] ∈ A2 and 1 ≤ α ≤ degT ([i])− 1.

Note that there exists some 1 ≤ k ≤ s such that dD3((k, c), w) ≤ 2 by (3.12)-(3.13).
If k = r, we are done. If k 6= r, then dD3((r, c), (k, c)) = 2 by Case 3.3. Hence, it follows
that dD3(v, w) ≤ dD3(v, (k, c)) + dD3((k, c), w) = 4.

Case 3.6. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2 and [i], [j] ∈ A2.
This follows from the fact that |Oc((p, [i]))| > 0, |Ic((q, [j]))| > 0, and dD3((r1, c), (r2, c))

= 2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Case 3.3.
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Case 4. |A2| < degT (c) (i.e., E 6= ∅) and s ≤ |A2| ≤
(

s
ds/2e

)
− 1. (If s = 3, this case does

not apply and we refer to Case 2 instead.)
We define an orientation D4 for H by making a slight enchancement to D3. Noting

that |A2| ≤
(

s
ds/2e

)
− 1, we include in D4 these extra arcs:

λ( s
ds/2e)

→ {(1, [j]), (2, [j])} → λ̄( s
ds/2e)

for all [j] ∈ E. (See Figure 4 for D4 when s = 5.)

(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])

(1, [1, 2])

(2, [1, 2])

(1, [2, 2])

(2, [2, 2])

(1, [2])

(2, [2])

(1, c)

(2, c)

(3, c)

(4, c)

(5, c)

(1, [3])

(2, [3])

(1, [1, 3])

(2, [1, 3])

(1, [10])

(2, [10])

(1, [11])

(2, [11])

Figure 4: Orientation D4 for H, Case 4. s = 5, degT (c) = 11,
A2 = {[1], [2], . . . , [9]}, E = {[10], [11]}. Here, we assume λ( s

ds/2e)
= {(1, c), (3, c), (5, c)}.

For clarity, we only show the vertices [α, i] and [i] for i = 1, 2, 3, 10, 11.

Note: In addition to the simplification noted in Figure 2, in Figures 4 to 10, we use
densely dotted ( ) (densely dashdotdotted ( ) resp.) lines to elucidate the ‘out-sets’
BO

2 and BO
3 (complements of the ‘in-sets’ BI

2 and BI
3 resp.); and in cases where both

coincide, the densely dotted lines take precedent.

Claim 4: For all v, w ∈ V (D4), dD4(v, w) ≤ 4.
In view of the similarity between D3 and D4, it suffices to check the following.

Case 4.1. v ∈ {(1, [i]), (2, [i])} for each [i] ∈ E and 1 ≤ α ≤ degT ([i])− 1, and w = (r, c)
for 1 ≤ r ≤ s.

This follows from the fact that |Oc((p, [i]))| > 0 for p = 1, 2, and dD4((r1, c), (r2, c)) =
2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Case 3.3.

Case 4.2. v = (r, c) for 1 ≤ r ≤ s and w ∈ {(1, [i]), (2, [i])} for each [i] ∈ E and
1 ≤ α ≤ degT ([i])− 1.

This follows from the fact that |Ic((p, [i]))| > 0 for p = 1, 2, and dD4((r1, c), (r2, c)) = 2
for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Case 3.3.
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Case 4.3. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2 and [i], [j] ∈ E.
This follows from the fact that |Oc((p, [i]))| > 0, |Ic((q, [j]))| > 0, and dD4((r1, c), (r2, c))

= 2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Case 3.3.
Hence, d(Di) = 4 for i = 1, 2, 3, 4. Since every vertex lies in a directed C4 for Di and

d(Di) = 4, d̄(T ) ≤ max{4, d(Di)} by Lemma 1.3, and thus d̄(T ) = 4 .

Corollary 3.8. Suppose s ≥ 3 for a T . If
(i) |A≥2| ≤

(
s
ds/2e

)
− 1, or

(ii) |A≥2| ≤
(

s
ds/2e

)
and |A≥2| = degT (c),

then T ∈ C0.

Proof : Note in the proof of Proposition 3.5 that every vertex lies in a directed C4 for each
orientation Di and d(Di) ≤ 4, for i = 1, 2, 3, 4. By Lemma 1.3, d̄(T ) ≤ max{4, d(Di)}
for i = 1, 2, 3, 4, and thus d̄(T ) = 4.

For the remaining propositions of this section, we consider even s ≥ 4. The proof of
Proposition 3.9 is centered on a reduction to cross-intersecting antichains and Theorems
2.4 and 2.6.

Proposition 3.9. Suppose s ≥ 4 is even, A2 = ∅ and A3 6= ∅ for a T . Then, T ∈ C0 if
and only if |A3| ≤

(
s
s/2

)
+
(

s
(s/2)+1

)
− 2.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As
A3 6= ∅, we assume (3.3)-(3.5) here. By Sperner’s theorem, |BO

3 | ≤
(
s
s/2

)
and |BI

3 | ≤
(
s
s/2

)
.

If |BO
3 | = 0 or |BI

3 | = 0, then |A3| = |BO
3 |+ |BI

3 | ≤
(
s
s/2

)
. Therefore, we assume |BO

3 | > 0

and |BI
3 | > 0.

Observe also that for each [i] ∈ AO3 and each [j] ∈ AI3, dD((1, [i]), (1, [j])) = 4 implies
X ∩ Y 6= ∅ for all X ∈ BO

3 and all Y ∈ BI
3 . By Theorem 2.4, |A3| = |BO

3 | + |BI
3 | ≤(

s
s/2

)
+
(

s
(s/2)+1

)
. Suppose |A3| >

(
s
s/2

)
+
(

s
(s/2)+1

)
− 2 for a contradiction. It follows from

Theorems 2.4 and 2.6 that {BO
3 , B

I
3} = {A ,B}, where

(1) A =
(

(Ns,c)
s/2

)
, B =

(
(Ns,c)

(s/2)+1

)
, or

(2) A =
(

(Ns,c)
s/2

)
, B ⊂

(
(Ns,c)

(s/2)+1

)
and |B| =

(
s

(s/2)+1

)
− 1, or

(3) A ⊂
(

(Ns,c)
s/2

)
, |A | =

(
s
s/2

)
− 1, and B =

(
(Ns,c)

(s/2)+1

)
.

Case 1. BO
3 =

(
(Ns,c)
s/2

)
.

Let [i] ∈ AI3. For all [j] ∈ AO3 and p = 1, 2, dD((1, [1, j]), (p, [i])) = 3 implies
X∩Ic((p, [i])) 6= ∅ for all X ∈ BO

3 . It follows that |Ic((p, [i]))| ≥ s
2
+1 for all p = 1, 2. As a

result, Oc((1, [i])) and Oc((2, [i])) are independent. Otherwise, Oc((1, [i]))∪Oc((2, [i])) ⊂
X for some X ∈ BO

3 , which contradicts Lemma 2.16(b).

Subcase 1.1. BI
3 =

(
(Ns,c)

(s/2)+1

)
.

Let [i∗] ∈ AI3. For all [i] ∈ AI3 − {[i∗]} and p = 1, 2, dD((p, [i∗]), (1, [1, i])) = 3 implies
X ∩ Oc((p, [i∗])) 6= ∅ for all X ∈ BI

3 − {Ic((3, [i∗]))}. Consequently, we have either
|Oc((p, [i∗]))| ≥ s

2
, or Oc((p, [i∗])) = Oc((3, [i∗])) for each p = 1, 2. Since |Ic((p, [i∗]))| ≥

s
2
+1, |Oc((p, [i∗]))| < s

2
. Hence, Oc((1, [i∗])) = Oc((3, [i∗])) = Oc((2, [i∗])), a contradiction

to Oc((1, [i∗])) and Oc((2, [i∗])) being independent.
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Subcase 1.2. BI
3 ⊂

(
(Ns,c)

(s/2)+1

)
and |BI

3 | =
(

s
(s/2)+1

)
− 1.

Let
(

(Ns,c)
(s/2)+1

)
−BI

3 = {ψ}. If |Oc((p, [i]))| ≤ s
2
− 2 for some [i] ∈ AI3 and some p = 1, 2,

then there are
(|Ic((p,[i]))|

(s/2)+1

)
≥
(

(s/2)+2
(s/2)+1

)
= s

2
+ 2 ≥ 4 > 2 ( s

2
+ 1)-subsets of Ic((p, [i])),

i.e., X ⊂ Ic((p, [i])) for some X ∈ BI
3 − {Ic((3, [i]))}, a contradiction to the dual of

Lemma 2.16(a). So, for each [i] ∈ AI3 and each p = 1, 2, we have either |Oc((p, [i]))| ≥
s
2
, or Oc((p, [i])) = Oc((3, [i])), or Oc((p, [i])) = ψ̄. Since |Ic((p, [i]))| ≥ s

2
+ 1 and

Oc((1, [i])) and Oc((2, [i])) are independent, we may assume without loss of generality
that Oc((1, [i])) = ψ̄ and Oc((2, [i])) = Oc((3, [i])) for each [i] ∈ AI3.

Now, we claim that there exists some [j] ∈ AI3 such that |ψ̄ ∪ Oc((3, [j]))| = s
2
.

Note that |ψ̄ ∪ Oc((3, [j]))| = s
2

if and only if |ψ̄ ∩ Oc((3, [j]))| = s
2
− 2 if and only

if |ψ ∩ Oc((3, [j]))| = 1. Since
( |ψ̄|

(s/2)−2

)(|ψ|
1

)
=
(

(s/2)−1
(s/2)−2

)(
(s/2)+1

1

)
= s2

4
− 1 ≥ 3 and

|BI
3 | =

(
s

(s/2)+1

)
− 1, the claim follows. Hence, Oc((1, [j])) ∪ Oc((2, [j])) = Oc((1, [j])) ∪

Oc((3, [j])) = ψ̄ ∪ Oc((3, [j])) = Oc((3, [k])) for some [k] ∈ AO3 . This contradicts Lemma
2.16(b).

Case 2. BI
3 =

(
(Ns,c)
s/2

)
.

If BO
3 =

(
(Ns,c)

(s/2)+1

)
(BO

3 ⊂
(

(Ns,c)
(s/2)+1

)
and |BO

3 | =
(

s
(s/2)+1

)
− 1 resp.), then the result

follows from Subcase 1.1 (Subcase 1.2 resp.) by the Duality Lemma.

Case 3. BO
3 =

(
(Ns,c)

(s/2)+1

)
, BI

3 ⊂
(

(Ns,c)
s/2

)
and |BI

3 | =
(
s
s/2

)
− 1

Let [i] ∈ AI3. For all [j] ∈ AO3 and p = 1, 2, dD((1, [1, j]), (p, [i])) = 3 implies
X∩Ic((p, [i])) 6= ∅ for allX ∈ BO

3 . It follows that |Ic((p, [i]))| ≥ s
2

for all p = 1, 2. Further-
more, Oc((1, [i])) and Oc((2, [i])) are independent. Otherwise, Oc((1, [i]))∪Oc((2, [i])) ⊂
X for some X ∈ BO

3 , which contradicts Lemma 2.16(b).
Let

(
(Ns,c)
s/2

)
− BI

3 = {λ}. If |Oc((p, [i]))| ≤ s
2
− 1 for some p = 1, 2, and some [i] ∈

AI3, then there are
(|Ic((p,[i]))|

s/2

)
≥
(

(s/2)+1
s/2

)
= s

2
+ 1 ≥ 3 s

2
-subsets of Ic((p, [i])), i.e.,

X ⊂ Ic((p, [i])) for some X ∈ BI
3 − {Ic((3, [i]))}, a contradiction to the dual of Lemma

2.16(a). Consequently, we have for each p = 1, 2, |Oc((p, [i]))| ≥ s
2

+ 1, or Oc((p, [i])) =
Oc((3, [i])), or Oc((p, [i])) = λ̄. Since |Ic((p, [i]))| ≥ s

2
and Oc((1, [i])) and Oc((2, [i]))

are independent, we may assume without loss of generality that Oc((1, [i])) = λ̄ and
Oc((2, [i])) = Oc((3, [i])) for each [i] ∈ AI3.

Now, we claim that there exists some [j] ∈ AI3 such that |λ̄ ∪ Oc((3, [j]))| = s
2

+ 1.
Note that |λ̄ ∪ Oc((3, [j]))| = s

2
+ 1 if and only if |λ̄ ∩ Oc((3, [j]))| = s

2
− 1 if and only if

|λ∩Oc((3, [j]))| = 1. Since
( |λ̄|

(s/2)−1

)(|λ|
1

)
=
(

s/2
(s/2)−1

)(
s/2
1

)
= s2

4
≥ 4 and |BI

3 | =
(

s
(s/2)+1

)
−1,

the claim follows. Hence, Oc((1, [j])) ∪ Oc((2, [j])) = λ̄ ∪ Oc((3, [j])) = Oc((3, [k])) for
some [k] ∈ AO3 . This contradicts Lemma 2.16(b).

Case 4. BI
3 =

(
(Ns,c)

(s/2)+1

)
, BO

3 ⊂
(

(Ns,c)
s/2

)
and |BO

3 | =
(
s
s/2

)
− 1.

This follows from Case 3 by the Duality Lemma.

(⇐) If |A≥3| ≤
(
s
s/2

)
−1, then by Corollary 3.8(i), T ∈ C0. Hence, we assume |A≥3| ≥

(
s
s/2

)
hereafter, on top of the hypothesis that |A3| ≤

(
s
s/2

)
+
(

s
(s/2)+1

)
− 2. If |A3| ≥

(
s
s/2

)
− 2,

define A�3 = A3. Otherwise, let A�3 = A3 ∪ A∗, where A∗ is an arbitrary subset of A≥4

such that |A�3| =
(
s
s/2

)
− 2. Then, let A�4 = A≥4 − A�3. Furthermore, assume without loss

of generality that A�3 = {[i] | i ∈ N|A�3|} and A�4 = {[i] | i ∈ N|A�3|+|A�4| − N|A�3|}.
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LetH = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 3 for all [i] ∈ T (A�3),
t[j] = 4 for all [j] ∈ T (A�4) and tv = 2 otherwise. We will use Aj for H(Aj) for the

remainder of this proof. Let
(

(Ns,c)
(s/2)+1

)
= {ψi | i = 1, 2, . . . ,

(
s

(s/2)+1

)
} and recall λi from

Definition 3.7. Define an orientation D of H as follows.

(3, [i])→ {(1, [α, i]), (2, [α, i])} → {(1, [i]), (2, [i])}, and

λ̄1 = λ s
2

+1 → (1, [i])→ λ1 → (2, [i])→ λ s
2

+1

for all 1 ≤ i ≤
(
s
s/2

)
− 2 and all 1 ≤ α ≤ degT ([i])− 1.

λi+1 → (3, [i])→ λ̄i+1

for all 1 ≤ i ≤ s
2
− 1.

λi+2 → (3, [i])→ λ̄i+2

for all s
2
≤ i ≤

(
s
s/2

)
− 2, i.e., excluding λ1 and λ s

2
+1, the s

2
-sets λi’s are used as ‘in-sets’

to construct BI
3 .

{(1, [j]), (2, [j])} → {(1, [β, j]), (2, [β, j])} → (3, [j]),

λ1 → (1, [j])→ λ s
2

+1 → (2, [j])→ λ1, and

ψ̄j+2−( s
s/2)
→ (3, [j])→ ψj+2−( s

s/2)

for all
(
s
s/2

)
− 1 ≤ j ≤ |A3| and all 1 ≤ β ≤ degT ([j]) − 1, i.e., the ( s

2
+ 1)-sets

ψ1, ψ2, . . . , ψ|A3|+2−( s
s/2)

are used as ‘out-sets’ to construct BO
3 .

(2, [γ, k])→ {(2, [k]), (4, [k])} → (1, [γ, k])→ {(1, [k]), (3, [k])} → (2, [γ, k]),

and λ s
2

+1 → {(1, [k]), (4, [k])} → λ1 → {(2, [k]), (3, [k])} → λ s
2

+1

for all [k] ∈ A4 and all 1 ≤ γ ≤ degT ([k])− 1.

λ1 → {(1, [l]), (2, [l])} → λ s
2

+1

for any [l] ∈ E. (See Figures 5 and 6 when s = 4.)
It can be verified that d(D) = 4 and every vertex lies in a directed C4; this part of the

proof is omitted for brevity and we refer the interested reader to [24] for details. Hence,
d̄(T ) ≤ max{4, d(D)} by Lemma 1.3 and we have d̄(T ) = 4.
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(1, c)

(2, c)

(3, c)

(4, c)

(1, [1, 1])

(2, [1, 1])

(1, [1])

(2, [1])

(3, [1])

(1, [1, 2])

(2, [1, 2])

(1, [2])

(2, [2])

(3, [2])

(1, [1, 3])

(2, [1, 3])

(1, [3])

(2, [3])

(3, [3])

(1, [1, 4])

(2, [1, 4])

(1, [4])

(2, [4])

(3, [4])

Figure 5: Partial orientation D for H for s = 4,
A3 = {[1], [2], . . . , [6]}, A4 = {[7], [8]}, E = {[9], [10]}; showing [i] for 1 ≤ i ≤

(
s
s/2

)
− 2.

(1, c)

(2, c)

(3, c)

(4, c)

(1, [1, 5])

(2, [1, 5])

(1, [5])

(2, [5])

(3, [5])

(1, [1, 6])

(2, [1, 6])

(1, [6])

(2, [6])

(3, [6])

(1, [1, 7])

(2, [1, 7])

(1, [7])

(2, [7])

(3, [7])

(4, [7])

(1, [1, 8])

(2, [1, 8])

(1, [8])

(2, [8])

(3, [8])

(4, [8])

(1, [9])

(2, [9])

(1, [10])

(2, [10])

Figure 6: Partial orientation D for H for s = 4;
showing [i] for

(
s
s/2

)
− 1 ≤ i ≤ |A3| or [i] ∈ A4 or [i] ∈ E.
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Using similar ideas to Propositions 3.5 and 3.9, and Lih’s and Griggs’ theorems, we
can prove Propositions 3.10 and 3.11. Hence, their proofs are omitted for brevity and
can be found in [24].

Proposition 3.10. Suppose s ≥ 4 is even, A2 6= ∅, A3 = ∅ and A≥4 6= ∅ for a T . Then,

T ∈ C0 ⇐⇒

{
|A2| ≤

(
s
s/2

)
− 2, if |A≥4| ≥ 2 or |A≥2| < degT (c),

|A2| ≤
(
s
s/2

)
− 1, otherwise.

Proposition 3.11. Suppose s ≥ 4 is even, A2 6= ∅, |A3| = 1, and A≥4 = ∅ for a T .
Then,

T ∈ C0 ⇐⇒

{
|A2| ≤

(
s
s/2

)
− 2, if |A≥2| < degT (c),

|A2| ≤
(
s
s/2

)
− 1, if |A≥2| = degT (c).

Proposition 3.12. Suppose s ≥ 4 is even, A2 6= ∅ and either |A3| ≥ 2 or |A3| = 1 and
A≥4 6= ∅ for a T .
(a) If T ∈ C0, then 2|A2|+ |A3| ≤

(
s
s/2

)
+
(

s
(s/2)+1

)
− κ∗s, s

2
(k) for some k ≤ |A2|+ |A3|.

(b) If there exists some |A2|+1 ≤ k ≤ min{|A2|+ |A3|,
(
s
s/2

)
−1} such that 2|A2|+ |A3| ≤(

s
s/2

)
+
(

s
(s/2)+1

)
− κs, s

2
(k)− 3, then T ∈ C0.

Proof : (a) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As A2 6= ∅
and A3 6= ∅, we assume (3.1)-(3.5) here. Partition AO3 (AI3 resp.) into A

O(D)
3 and A

O(S)
3

(A
I(D)
3 and A

I(S)
3 resp.), where

A
O(D)
3 = {[i] ∈ AO3 | Oc((1, [i])) 6= Oc((2, [i]))},

A
O(S)
3 = {[i] ∈ AO3 | Oc((1, [i])) = Oc((2, [i]))},

A
I(D)
3 = {[i] ∈ AI3 | Oc((1, [i])) 6= Oc((2, [i]))},

and A
I(S)
3 = {[i] ∈ AI3 | Oc((1, [i])) = Oc((2, [i]))}.

 (3.14)

Note that Oc((1, [i])) and Oc((2, [i])) are Different (Same resp.) for A
O(D)
3 and A

I(D)
3

(A
O(S)
3 and A

I(S)
3 resp.).

Both BO
2 ∪BO

3 ∪{Oc((1, [l])) | [l] ∈ AI(S)
3 } and BI

2 ∪BI
3 ∪{Ic((2, [l])) | [l] ∈ A

O(S)
3 } are

antichains by Lemma 2.15 and its dual respectively. Furthermore, dD((1, [1, i]), (1, [1, j])) =

4 for each [i] ∈ A2 ∪ AO3 ∪ A
I(S)
3 and [j] ∈ A2 ∪ AI3 ∪ A

O(S)
3 , i 6= j, implies Oc((δ1, [i])) ∩

Ic((δ2, [j])) 6= ∅ where

δ1 =

{
1, if [i] ∈ A2 ∪ AI(S)

3 ,
3, if [i] ∈ AO3 ,

and δ2 =

{
2, if [j] ∈ A2 ∪ AO(S)

3 ,
3, if [j] ∈ AI3.

Equivalently, for any Oc((δ1, [i])) ∈ BO
2 ∪BO

3 ∪{Oc((1, [l])) | [l] ∈ AI(S)
3 } and Ic((δ2, [j])) ∈

BI
2 ∪ BI

3 ∪ {Ic((2, [l])) | [l] ∈ A
O(S)
3 }, Oc((δ1, [i])) ∩ Ic((δ2, [j])) = ∅ only if [i] = [j] ∈

A2 ∪ AO(S)
3 ∪ AI(S)

3 . Then,

2|A2|+ |A3|
= 2|A2|+ |AO3 |+ |AI3|
≤(|A2|+ |AO3 |+ |A

I(S)
3 |) + (|A2|+ |AI3|+ |A

O(S)
3 |)

= |BO
2 ∪BO

3 ∪ {Oc((1, [l])) | [l] ∈ AI(S)
3 }|+ |BI

2 ∪BI
3 ∪ {Ic((2, [l])) | [l] ∈ A

O(S)
3 }|

≤
(
s

s/2

)
+

(
s

(s/2) + 1

)
− κ∗s, s

2
(|A2|+ |AO(S)

3 |+ |AI(S)
3 |) by Theorem 2.10,
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where k = |A2|+ |AO(S)
3 |+ |AI(S)

3 | ≤ |A2|+ |A3| is as required.

(b) Let the s
2
-subsets of Ns in squashed order be X1, X2, . . . , X( s

s/2)
. Note that X̄i =

X( s
s/2)−i

for i = 1, 2, . . . ,
(
s
s/2

)
and Ls, s

2
(k) = {X( s

s/2)
, X( s

s/2)−1, . . . , X( s
s/2)−k+1}. Fur-

thermore, let µi = (Xi, c) for i = 1, 2, . . . ,
(
s
s/2

)
. We also use the previous notation,(

(Ns,c)
(s/2)+1

)
= {ψi | i = 1, 2, . . . ,

(
s

(s/2)+1

)
}, and further assume {ψi | i = 1, 2, . . . ,

(
s

(s/2)+1

)
−

|∇Ls, s
2
(k)|} = {(Y, c) | Y ∈

( Ns

(s/2)+1

)
−∇Ls, s

2
(k)}.

If |A≥2| ≤
(
s
s/2

)
−1, then by Corollary 3.8(i), T ∈ C0. Hence, we assume |A≥2| ≥

(
s
s/2

)
.

Let A�2 = A2 ∪ A∗, where A∗ is an arbitrary subset of A3 such that |A�2| = k − 1;
A∗ = ∅ if |A2| = k − 1. Then, let A�3 = A3 − A∗. Furthermore, assume without
loss of generality that A�2 = {[i] | i ∈ N|A�2|}, A

�
3 = {[i] | i ∈ N|A�2|+|A�3| − N|A�2|} and

A�4 = {[i] | i ∈ N|A�2|+|A�3|+|A�4| − N|A�2|+|A�3|}.
LetH = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 3 for all [i] ∈ T (A�3),

t[j] = 4 for all [j] ∈ T (A�4) and tv = 2 otherwise. We will use Aj for H(Aj) for the
remainder of this proof. Define an orientation D of H as follows.

(2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]), and

µi+1 → {(1, [i]), (2, [i])} → µ̄i+1

for all 1 ≤ i ≤ |A2| = k − 1, and 1 ≤ α ≤ degT ([i]) − 1, i.e., the s
2
-sets µ2, µ3, . . . , µk

(µ̄2, µ̄3, . . . , µ̄k resp.) are used as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

(3, [j])→ {(1, [β, j]), (2, [β, j])} → {(1, [j]), (2, [j])},
µ̄1 = µ( s

s/2)
→ (1, [j])→ µ1 → (2, [j])→ µ( s

s/2)
, and

µj+1 → (3, [j])→ µ̄j+1

for all |A2| + 1 ≤ j ≤
(
s
s/2

)
− 2 and all 1 ≤ α ≤ degT ([j]) − 1, i.e., the s

2
-sets

µk+1, µk+2, . . . , µ( s
s/2)−1 are used as ‘in-sets’ to construct BI

3 .

{(1, [l]), (2, [l])} → {(1, [γ, l]), (2, [γ, l])} → (3, [l]),

µ1 → (1, [l])→ µ( s
s/2)
→ (2, [l])→ µ1, and

ψ̄l+2−( s
s/2)
→ (3, [l])→ ψl+2−( s

s/2)

for all
(
s
s/2

)
− 1 ≤ l ≤ |A2| + |A3| and all 1 ≤ γ ≤ degT ([l]) − 1, i.e., the ( s

2
+ 1)-sets

ψ1, ψ2, . . . , ψ( s
(s/2)+1)−|∇Ls, s2

(k)| are used as ‘out-sets’ to construct BO
3 .

(2, [τ, x])→ {(2, [x]), (4, [x])} → (1, [τ, x])→ {(1, [x]), (3, [x])} → (2, [τ, x]),

and µ( s
s/2)
→ {(1, [x]), (4, [x])} → µ1 → {(2, [x]), (3, [x])} → µ( s

s/2)

for all [x] ∈ A4 and all 1 ≤ τ ≤ degT ([x])− 1.

µ1 → {(1, [y]), (2, [y])} → µ( s
s/2)

for any [y] ∈ E. (See Figures 7 and 8 when s = 6, k = 13.)
It can be verified that d(D) = 4 and every vertex lies in a directed C4; this part of the

proof is omitted for brevity and we refer the interested reader to [24] for details. Hence,
d̄(T ) ≤ max{4, d(D)} by Lemma 1.3 and thus d̄(T ) = 4 .
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(1, c)

(2, c)

(3, c)

(4, c)

(5, c)

(6, c)

(1, [1, 1])

(2, [1, 1])

(1, [1])

(2, [1])

(1, [1, 2])

(2, [1, 2])

(1, [2])

(2, [2])

(1, [1, 11])

(2, [1, 11])

(1, [11])

(2, [11])

(1, [1, 12])

(2, [1, 12])

(1, [12])

(2, [12])

(1, [1, 13])

(2, [1, 13])

(1, [13])

(2, [13])

(3, [13])

(1, [1, 14])

(2, [1, 14])

(1, [14])

(2, [14])

(3, [14])

Figure 7: Partial orientation D for H for s = 6, k = 13;
A2 = {[1], [2], . . . , [12]}, A3 = {[13], [14], . . . , [20]}, A4 = {[21], [22]}, E = {[23], [24]}.

Note that 123 <s 124 <s 134 <s 234 <s 125 <s 135 <s 235 <s 145 <s 245 <s

345 <s 126 <s 136 <s 236 <s 146 <s 246 <s 346 <s 156 <s 256 <s 356 <s 456. So,
L6,3(13) = {145,245, . . . ,456},

(N6

4

)
−∇L6,3(13) = {1234,1235} and κ6,3(13) = 0.
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(1, c)

(2, c)

(3, c)

(4, c)

(5, c)

(6, c)

(1, [1, 19])

(2, [1, 19])

(1, [19])

(2, [19])

(3, [19])

(1, [1, 20])

(2, [1, 20])

(1, [20])

(2, [20])

(3, [20])

(1, [1, 21])

(2, [1, 21])

(1, [21])

(2, [21])

(3, [21])

(4, [21])

(1, [1, 22])

(2, [1, 22])

(1, [22])

(2, [22])

(3, [22])

(4, [22])

(1, [23])

(2, [23])

(1, [24])

(2, [24])

Figure 8: Partial orientation D for H for s = 6, k = 13;
A2 = {[1], [2], . . . , [12]}, A3 = {[13], [14], . . . , [20]}, A4 = {[21], [22]}, E = {[23], [24]}.

This concludes the proof of Theorem 1.8. Unfortunately, we were not able to give
a complete characterisation for Proposition 3.12. Our core idea is the consideration of
cross-intersecting antichains with at most k disjoint pairs, thus, invoking Theorem 2.10.
We believe the gap between the necessary and sufficient conditions (κ∗s, s

2
(·) and κs, s

2
(·)

resp.) may be further tightened if there is an analogue of Theorem 2.10 on exactly k
disjoint pairs; more discussion may be found in the last section of [25].

4. Proof of Theorem 1.9

Similar to the previous section, we prove Theorem 1.9 by collating several propositions.

Proposition 4.1. Suppose s ≥ 3 is odd, A2 = ∅ and A3 6= ∅ for a T . Then, T ∈ C0 if
and only if |A3| ≤ 2

(
s
ds/2e

)
− 2.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As A3 6= ∅,
we assume (3.3)-(3.5) here. By Sperner’s theorem, |BO

3 | ≤
(

s
bs/2c

)
and |BI

3 | ≤
(

s
bs/2c

)
. So,
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if |BO
3 | = 0 or |BI

3 | = 0, then |A3| = |BO
3 | + |BI

3 | ≤
(

s
bs/2c

)
≤ 2

(
s
ds/2e

)
− 2. Therefore, we

assume |BO
3 | > 0 and |BI

3 | > 0.
In what follows, we first show that for any [i] ∈ A3 and any p = 1, 2, 3, if |Oc((p, [i]))|

is too big (> d s
2
e) or too small (< b s

2
c), then |A3| ≤ 2

(
s
ds/2e

)
− 2.

Case 1. There exists some [i] ∈ A3 such that |Oc((p, [i]))| > d s
2
e for some p = 1, 2, 3.

For any [j] ∈ AO3 −{[i]}, dD((1, [1, j]), (p, [i])) = 3 implies Oc((3, [j]))∩Ic((p, [i])) 6= ∅.
By Lih’s theorem, |BO

3 | − 1 ≤ |BO
3 − {Oc((3, [i]))}| ≤

(
s
ds/2e

)
−
(
s−|Ic((p,[i]))|
ds/2e

)
≤
(

s
ds/2e

)
−(ds/2e+1

ds/2e

)
=
(

s
ds/2e

)
− (d s

2
e + 1) ≤

(
s
ds/2e

)
− 3. It follows that |BO

3 | ≤
(

s
ds/2e

)
− 2 and

|A3| = |BO
3 |+ |BI

3 | ≤ [
(

s
ds/2e

)
− 2] +

(
s
bs/2c

)
= 2
(

s
ds/2e

)
− 2.

Case 2. There exists some [i] ∈ A3 such that |Oc((p, [i]))| < b s
2
c for some p = 1, 2, 3.

In other words, |Ic((p, [i]))| > d s
2
e. Hence, this case follows from Case 1 by the Duality

Lemma.

Case 3. For all [i] ∈ A3 and all p = 1, 2, 3, b s
2
c ≤ |Oc((p, [i]))| ≤ d s

2
e.

Note that for all [i] ∈ AO3 and [j] ∈ AI3, dD((1, [1, i]), (1, [1, j])) = 4 implies X ∩ Y 6= ∅
for all X ∈ BO

3 and Y ∈ BI
3 . Now, it suffices to consider the case where BO

3 ∪BI
3 ⊆

(
(Ns,c)
ds/2e

)
.

For otherwise, |A3| = |BO
3 |+ |BI

3 | ≤ 2
(

s
ds/2e

)
− 2 by Theorems 2.4 and 2.5. Partition AO3

(AI3 resp.) into A
O(D)
3 and A

O(S)
3 (A

I(D)
3 and A

I(S)
3 resp.) as in (3.14).

Remark 4.2. Now, we shall make a series of assumptions on the structure of D, on
which we will derive |A3| ≤ 2

(
s
ds/2e

)
− 2 if any one fails to hold. We will then show that

under all these assumptions, we still arrive at the same required conclusion.

Assumption 1: |AO(D)
3 | ≥ 2 and |AI(D)

3 | ≥ 2.

Suppose |AO(D)
3 | ≤ 1. By the dual of Lemma 2.15, {Ic((1, [j])) | [j] ∈ AO(S)

3 } ∪ BI
3 is

an antichain. By Sperner’s theorem, |A3| = |BO
3 | + |BI

3 | = |AO(D)
3 | + |{Ic((1, [j])) | [j] ∈

A
O(S)
3 }|+ |BI

3 | ≤ 1 +
(

s
bs/2c

)
≤ 2
(

s
ds/2e

)
− 2. A similar argument follows if |AI(D)

3 | ≤ 1.

Subcase 3.1. |Oc((1, [i]))| = |Oc((2, [i]))| = b s
2
c for some [i] ∈ AO(D)

3 .
For any [j] ∈ AI3 and p = 1, 2, dD((p, [i]), (1, [1, j])) = 3 impliesOc((p, [i]))∩Ic((3, [j])) 6=

∅, i.e., Ic((3, [j])) 6= Ic((p, [i])). It follows that |BI
3 | ≤

(
s
ds/2e

)
− 2. Hence, |A3| =

|BO
3 |+ |BI

3 | ≤
(

s
ds/2e

)
+ [
(

s
ds/2e

)
− 2] = 2

(
s
ds/2e

)
− 2.

Subcase 3.2. |Oc((1, [i]))| = |Oc((2, [i]))| = d s
2
e for some [i] ∈ AI(D)

3 .
This follows from Subcase 3.1 by the Duality Lemma.

Subcase 3.3. |Oc((1, [i∗]))| = b s
2
c and |Oc((2, [i∗]))| = d s

2
e for some [i∗] ∈ AO(D)

3 .
(?) For any [j] ∈ AI3 and p = 1, 2, dD((1, [i∗]), (1, [1, j])) = 3 implies Ic((3, [j])) 6=

Ic((1, [i∗])). It follows that |BI
3 | ≤

(
s
ds/2e

)
− 1. Now, we are going to establish some

assumptions regarding A
O(D)
3 and A

I(D)
3 , and provide justifications accordingly.

Assumption 2A: |Oc((1, [i]))| = b s
2
c and |Oc((2, [i]))| = d s

2
e for all [i] ∈ AO(D)

3 .

Suppose there exists some [i] ∈ AO(D)
3 −{[i∗]} such that |Oc((1, [i]))| = |Oc((2, [i]))| =

d s
2
e. Note by definition of A

O(D)
3 that Oc((3, [i])) is equal to at most one of Oc((1, [i]))

and Oc((2, [i])), say Oc((3, [i])) 6= Oc((1, [i])). Also, for any [j] ∈ AO3 −{[i]}, dD((1, [1, j]),
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(1, [i])) = 3 implies Oc((3, [j])) 6= Oc((1, [i])). It follows that |BO
3 | ≤

(
s
ds/2e

)
− 1. Hence,

|A3| = |BO
3 |+ |BI

3 | ≤ 2[
(

s
ds/2e

)
− 1] = 2

(
s
ds/2e

)
− 2. Therefore, and in view of Subcase 3.1,

we may now assume |Oc((1, [i]))| = b s
2
c and |Oc((2, [i]))| = d s

2
e for all [i] ∈ AO(D)

3 .

Assumption 3A: Oc((1, [i])) = Oc((1, [i∗])) for all [i] ∈ AO(D)
3 .

Suppose there exists some [i] ∈ A
O(D)
3 − {[i∗]} such that Oc((1, [i])) 6= Oc((1, [i∗])).

For any [j] ∈ AI3 and x = i, i∗, dD((1, [x]), (1, [1, j])) = 3 implies Ic((3, [j])) 6= Ic((1, [x])).
It follows that |BI

3 | ≤
(

s
ds/2e

)
− 2. Hence, |A3| = |BO

3 | + |BI
3 | ≤

(
s
ds/2e

)
+ [
(

s
ds/2e

)
− 2] =

2
(

s
ds/2e

)
− 2. Thus, we may assume Oc((1, [i])) = Oc((1, [i∗])) for all [i] ∈ AO(D)

3 .

Assumption 4A: Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AO(D)
3 .

Suppose there exists some [i] ∈ AO(D)
3 such that Oc((2, [i])) 6= Oc((3, [i])). Also, for

any [j] ∈ AO3 −{[i]}, dD((1, [1, j]), (2, [i])) = 3 implies Oc((3, [j])) 6= Oc((2, [i])). It follows
that |BO

3 | ≤
(

s
ds/2e

)
− 1, and |A3| = |BO

3 |+ |BI
3 | ≤ 2[

(
s
ds/2e

)
− 1] = 2

(
s
ds/2e

)
− 2. Therefore,

the assumption follows.

Assumption 5A: |Oc((1, [i]))| = |Oc((2, [i]))| = b s
2
c for all [i] ∈ AI(D)

3 .

Suppose there exists some [i] ∈ AI(D)
3 such that |Oc((1, [i]))| = b s

2
c and |Oc((2, [i]))| =

d s
2
e. For any [j] ∈ AO3 , dD((1, [1, j]), (2, [i])) = 3 implies Oc((3, [j])) 6= Oc((2, [i])). So,
|BO

3 | ≤
(

s
ds/2e

)
− 1. Hence, |A3| = |BO

3 | + |BI
3 | ≤ 2[

(
s
ds/2e

)
− 1] = 2

(
s
ds/2e

)
− 2. Therefore,

and in view of Subcase 3.2, we may now assume |Oc((1, [i]))| = |Oc((2, [i]))| = b s
2
c for all

[i] ∈ AI(D)
3 .

Assumption 6A: Oc((1, [i])) = Oc((1, [i∗])) and Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AI(D)
3 .

Suppose there exists some [i] ∈ A
I(D)
3 and some p = 1, 2, such that Oc((p, [i])) 6=

Oc((1, [i∗])) andOc((p, [i])) 6= Oc((3, [i])). Also, for any [j] ∈ AI3−{[i]}, dD((p, [i]), (1, [1, j]))
= 3 implies Ic((3, [j])) 6= Ic((p, [i])). Therefore, for all X ∈ BI

3 , X 6= Ic((p, [i]))
and recall from (?) that X 6= Ic((1, [i∗])). It follows that |BI

3 | ≤
(

s
ds/2e

)
− 2 and

|A3| = |BO
3 |+ |BI

3 | ≤
(

s
ds/2e

)
+ [
(

s
ds/2e

)
− 2] = 2

(
s
ds/2e

)
− 2.

Therefore, for each [i] ∈ AI(D)
3 and each p = 1, 2, either Oc((p, [i])) = Oc((3, [i])) or

Oc((p, [i])) = Oc((1, [i∗])). By the definition of A
I(D)
3 , we may assume without loss of

generality that Oc((1, [i])) = Oc((1, [i∗])) and Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AI(D)
3 .

Now, with Assumptions 1, 2A-6A in place, consider [j] ∈ A
I(D)
3 . For any [k] ∈

A
O(D)
3 , Oc((1, [k])) = Oc((1, [i∗])) = Oc((1, [j])) and dD((1, [j]), (1, [1, k])) = 3 imply

Oc((1, [j]))∩Ic((2, [k])) 6= ∅. Equivalently, Oc((1, [i∗])) = Oc((1, [j])) 6⊆ Oc((2, [k])). Note
also that there are d s

2
e number of d s

2
e-supersets of Oc((1, [i∗])). Recall that Oc((2, [k])) =

Oc((3, [k])), so that {Oc((2, [k])) | [k] ∈ AO(D)
3 } = {Oc((3, [k])) | [k] ∈ AO(D)

3 } ⊆
(

(Ns,c)
ds/2e

)
.

So, |AO(D)
3 | ≤

(
s
ds/2e

)
−d s

2
e ≤

(
s
ds/2e

)
−2. Since {Ic((1, [i])) | [i] ∈ AO(S)

3 }∪BI
3 is an antichain

by the dual of Lemma 2.15, |AO(S)
3 |+ |AI3| = |{Ic((1, [i])) | [i] ∈ A

O(S)
3 } ∪BI

3 | ≤
(

s
bs/2c

)
by

Sperner’s theorem. Hence, |A3| = |AO3 | + |AI3| = |AO(D)
3 | + (|AO(S)

3 | + |AI3|) ≤ [
(

s
ds/2e

)
−

2] +
(

s
bs/2c

)
= 2
(

s
ds/2e

)
− 2.
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Subcase 3.4. |Oc((1, [i∗]))| = d s
2
e and |Oc((2, [i∗]))| = b s

2
c for some [i∗] ∈ AI(D)

3 .
This follows from Subcase 3.3 by the Duality Lemma.

Subcase 3.5. |Oc((1, [i]))| = |Oc((2, [i]))| = d s
2
e and |Oc((1, [j]))| = |Oc((2, [j]))| = b s

2
c

for some [i] ∈ AO(D)
3 and [j] ∈ AI(D)

3 .

Note by definition of A
O(D)
3 that Oc((3, [i])) is equal to at most one of Oc((1, [i])) and

Oc((2, [i])), sayOc((3, [i])) 6= Oc((1, [i])). Also, for any [k] ∈ AO3 −{[i]}, dD((1, [1, k]), (1, [i]))
= 3 implies Oc((3, [k])) 6= Oc((1, [i])). It follows that |BO

3 | ≤
(

s
ds/2e

)
− 1.

Similarly, by definition of A
I(D)
3 , Ic((3, [j])) is equal to at most one of Ic((1, [j])) and

Ic((2, [j])), say Ic((3, [j])) 6= Ic((1, [j])). Also, for any [k] ∈ AI3−{[j]}, dD((1, [j]), (1, [1, k]))
= 3 implies Ic((3, [k])) 6= Ic((1, [j])). It follows that |BI

3 | ≤
(

s
ds/2e

)
− 1. Hence, |A3| =

|BO
3 |+ |BI

3 | ≤ 2[
(

s
ds/2e

)
− 1] = 2

(
s
ds/2e

)
− 2.

In view of the above, it is intuitive to construct an optimal orientation D of T with
BO

3 ∪BI
3 ⊆

(
(Ns,c)
ds/2e

)
. To this end, we recall Definition 3.7.

(⇐) If |A≥3| ≤
(

s
ds/2e

)
− 1, then by Corollary 3.8(i), T ∈ C0. Hence, we assume

|A≥3| ≥
(

s
ds/2e

)
hereafter, on top of the hypothesis that |A3| ≤ 2

(
s
ds/2e

)
−2. If |A3| ≥

(
s
ds/2e

)
,

define A�3 = A3. Otherwise, let A�3 = A3 ∪ A∗, where A∗ is an arbitrary subset of A≥4

such that |A�3| =
(

s
ds/2e

)
. Then, let A�4 = A3 ∪ A≥4 − A�3. Furthermore, assume without

loss of generality that A�3 = {[i] | i ∈ N|A�3|} and A�4 = {[i] | i ∈ N|A�3|+|A�4| − N|A�3|}.
LetH = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 3 for all [i] ∈ T (A�3),

t[j] = 4 for all [j] ∈ T (A�4) and tv = 2 otherwise. We will use Aj for H(Aj) for the
remainder of this proof. Define an orientation D of H as follows.

(3, [i])→ {(1, [α, i]), (2, [α, i])} → {(1, [i]), (2, [i])},
λ̄1 → (1, [i])→ λ1 → (2, [i])→ λ̄1, and

λi+1 → (3, [i])→ λ̄i+1

for all 1 ≤ i ≤
(

s
ds/2e

)
− 1 and all 1 ≤ α ≤ degT ([i]) − 1, i.e., excluding λ1, the d s

2
e-sets

λi’s are used as ‘in-sets’ to construct BI
3 .

{(1, [j]), (2, [j])} → {(1, [β, j]), (2, [β, j])} → (3, [j]),

λ1 → (1, [j])→ λ̄1 → (2, [j])→ λ1, and

λ̄j+2−( s
ds/2e)

→ (3, [j])→ λj+2−( s
ds/2e)

for all
(

s
ds/2e

)
≤ j ≤ |A3| and all 1 ≤ β ≤ degT ([j])−1, i.e., the d s

2
e-sets λ2, λ3, . . . , λ|A3|+2−( s

ds/2e)
are used as ‘out-sets’ to construct BO

3 .

(2, [γ, k])→ {(2, [k]), (4, [k])} → (1, [γ, k])→ {(1, [k]), (3, [k])} → (2, [γ, k]),

and λ̄1 → {(1, [k]), (4, [k])} → λ1 → {(2, [k]), (3, [k])} → λ̄1

for all [k] ∈ A4 and all 1 ≤ γ ≤ degT ([k])− 1.

λ1 → {(1, [l]), (2, [l])} → λ̄1

for all [l] ∈ E. (See Figure 9 for D when s = 3.)
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we

refer the interested reader to [24] for details. Since every vertex lies in a directed C4 for
D and d(D) = 4, d̄(T ) ≤ max{4, d(D)} by Lemma 1.3, and thus d̄(T ) = 4 .
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(1, c)

(2, c)

(3, c)

(1, [1, 1])

(2, [1, 1])

(1, [1])

(2, [1])

(3, [1])

(1, [1, 2])

(2, [1, 2])

(1, [2])

(2, [2])

(3, [2])

(1, [1, 3])

(2, [1, 3])

(1, [3])

(2, [3])

(3, [3])

(1, [1, 4])

(2, [1, 4])

(1, [4])

(2, [4])

(3, [4])

(1, [1, 5])

(2, [1, 5])

(1, [5])

(2, [5])

(3, [5])

(4, [5])

(1, [1, 6])

(2, [1, 6])

(1, [6])

(2, [6])

(3, [6])

(4, [6])

(1, [7])

(2, [7])

(1, [8])

(2, [8])

Figure 9: Orientation D for H for s = 3,
A3 = {[1], [2], [3], [4]}, A4 = {[5], [6]}, E={[7],[8]}.

Proposition 4.3. Suppose s ≥ 3 is odd, A2 6= ∅, A3 6= ∅, and A≥4 = ∅ for a T . Then,
T ∈ C0 if and only if

|A2| ≤
(

s
ds/2e

)
− 1, if |A3| = 1,

(i) 2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2, or

(ii) 2|A2|+ |A3| = 2
(

s
ds/2e

)
− 1, |A2| ≥ d s2eb

s
2
c and s ≥ 5, if |A3| ≥ 2.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As A2 6= ∅
and A3 6= ∅, we assume (3.1)-(3.5) here, unless stated otherwise.

Case 1: |A3| = 1.
Let A3 = {[j]}. By Lemma 2.13(b), either |O((1, [j]))| = 1 or |I((1, [j]))| = 1. If

|O((1, [1, j]))| = 1, say O((1, [1, j])) = {(1, [j])} (instead of (3.4)), then by Lemma 2.15,
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{Oc((1, [i])) | [i] ∈ A2∪A3} is an antichain. So, |A2|+|A3| ≤
(

s
bs/2c

)
by Sperner’s theorem,

i.e., |A2| ≤
(

s
bs/2c

)
− 1. If |I((1, [j]))| = 1, then this case follows by the Duality Lemma.

Remark 4.4. The outline of Case 2 is largely similar to Proposition 4.1; we shall skip
most of the similar parts. Note that Remark 3.3 applies here. We first show that for any
[i] ∈ A2 ∪ A3 and any p = 1, 2, 3 (wherever applicable), if |Oc((p, [i]))| is too big (> d s

2
e)

or too small (< b s
2
c), then 2|A2| + |A3| ≤ 2

(
s
ds/2e

)
− 2. Here, observe that BO

2 ∪ BO
3

(BI
2 ∪BI

3 resp.) plays an analogous role of BO
3 (BI

3 resp.) in Proposition 4.1.

Case 2: |A3| ≥ 2.
Note that BO

2 ∪BO
3 and BI

2∪BI
3 are antichains by Lemma 2.15 and its dual respectively.

With some modifications to the argument in Proposition 4.1, we may assume |BO
3 | > 0

and |BI
3 | > 0, otherwise 2|A2| + |A3| ≤ 2

(
s
ds/2e

)
− 2 and we are done. Furthermore, by

proceeding similarly to Cases 1 and 2 of Proposition 4.1, it suffices to consider the case
where b s

2
c ≤ |Oc((p, [i]))| ≤ d s

2
e for all 1 ≤ i ≤ degT (c) and all p = 1, 2, 3. Partition AO3

(AI3 resp.) into A
O(D)
3 and A

O(S)
3 (A

I(D)
3 and A

I(S)
3 resp.) as in (3.14).

Assumption 1: |AO(D)
3 | ≥ 1 and |AI(D)

3 | ≥ 1.

Suppose A
O(D)
3 = ∅, i.e., Oc((1, [i])) = Oc((2, [i])) for all [i] ∈ AO3 . By the dual of

Lemma 2.15, {Ic((1, [i])) | [i] ∈ AO3 } ∪ BI
2 ∪ BI

3 is an antichain. By Sperner’s theorem,
|A2| + |A3| = |BO

3 | + |BI
2 | + |BI

3 | = |{Ic((1, [i])) | [i] ∈ AO3 } ∪ BI
2 ∪ BI

3 | ≤
(

s
bs/2c

)
. Since

|A3| ≥ 2, this implies |A2| ≤
(

s
bs/2c

)
− 2. Therefore, 2|A2|+ |A3| ≤

(
s
bs/2c

)
+ [
(

s
bs/2c

)
− 2] =

2
(

s
ds/2e

)
− 2. A similar argument follows if A

I(D)
3 = ∅.

Remark 4.5. At this stage of Proposition 4.1, we invoked Theorems 2.4 and 2.5 to
conclude BO

3 ∪ BI
3 ⊆

(
(Ns,c)
ds/2e

)
. However, the two theorems cannot apply here because for

[i] ∈ A2, and dD((1, [i]), (2, [i])) ≤ 4, it is not necessary that Oc((1, [i])) ∩ Ic((2, [i])) 6= ∅.
Consequently, BO

2 ∪ BO
3 and BI

2 ∪ BI
3 may not be cross-intersecting. Fortunately, by

exhausting all possibilites through some easy but tedious computations that we omitted
(see [24]), it remains to consider BO

2 ∪BO
3 ∪BI

2 ∪BI
3 ⊆

(
(Ns,c)
ds/2e

)
as desired.

We shall establish a series of claims on the structure of D, from which we will derive
2|A2|+|A3| ≤ 2

(
s
ds/2e

)
−2 if any one fails to hold. In other words, 2|A2|+|A3| = 2

(
s
ds/2e

)
−1

is only possible in the last scenario where all these claims hold (see Remark 4.2).

Subcase 2.1. |Oc((1, [i]))| = |Oc((2, [i]))| = b s
2
c for some [i] ∈ AO(D)

3 .
This is similar to Subcase 3.1 in Proposition 4.1.

Subcase 2.2. |Oc((1, [i]))| = |Oc((2, [i]))| = d s
2
e for some [i] ∈ AI(D)

3 .
This subcase follows from the Duality Lemma and Subcase 2.1.

Subcase 2.3. |Oc((1, [i∗]))| = b s
2
c and |Oc((2, [i∗]))| = d s

2
e for some [i∗] ∈ AO(D)

3 .
For any [j] ∈ A2 ∪ AI3, dD((1, [i∗]), (1, [1, j])) = 3 implies X 6= Ic((1, [i∗])) for all

X ∈ BI
2∪BI

3 . It follows that |A2|+|AI3| = |BI
2∪BI

3 | ≤
(

s
ds/2e

)
−1. Therefore, 2|A2|+|A3| =

(|BO
2 |+ |BO

3 |) + (|BI
2 |+ |BI

3 |) ≤ [
(

s
ds/2e

)
− 1] +

(
s
ds/2e

)
= 2
(

s
ds/2e

)
− 1.

Subcase 2.3 is done for 2|A2| + |A3| ≤ 2
(

s
ds/2e

)
− 2. Now, our aim is to prove |A2| ≥

d s
2
eb s

2
c and s ≥ 5 in the event that 2|A2|+ |A3| = 2

(
s
ds/2e

)
− 1. The following claims will

help us to achieve the said aim.
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Suppose 2|A2|+ |A3| = 2
(

s
ds/2e

)
− 1. Equivalently,

|BO
2 |+ |BO

3 | =
(

s

ds/2e

)
and |BI

2 |+ |BI
3 | =

(
s

ds/2e

)
− 1. (4.1)

Then, Claims 2A-6A can be proved similarly to Assumptions 2A-6A.
Claim 2A: |Oc((1, [i]))| = b s

2
c and |Oc((2, [i]))| = d s

2
e for all [i] ∈ AO(D)

3 .

Claim 3A: Oc((1, [i])) = Oc((1, [i∗])) for all [i] ∈ AO(D)
3 .

Claim 4A: Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AO(D)
3 .

Claim 5A: |Oc((1, [i]))| = |Oc((2, [i]))| = b s
2
c for all [i] ∈ AI(D)

3 .

Claim 6A: Oc((1, [i])) = Oc((1, [i∗])) and Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AI(D)
3 .

Suppose s = 3. By Claims 5A-6A, |Oc((1, [j]))∪Oc((2, [j]))| ≤ d s
2
e for any [j] ∈ AI(D)

3 .

Since BO
2 ∪BO

3 =
(

(Ns,c)
ds/2e

)
, we have Oc((1, [j]))∪Oc((2, [j])) ⊆ X for some X ∈ BO

2 ∪BO
3 ,

a contradiction to Lemma 2.16(b). Hence, s ≥ 5.

Let [j] ∈ AI(D)
3 , [i] ∈ A2∪AO3 and δ = 1, if [i] ∈ A2; δ = 3, if [i] ∈ AO3 . Then, Claim 6A

and dD((1, [1, j]), (δ, [i])) = 3 imply Oc((1, [i∗]))∪Oc((2, [j])) = Oc((1, [j]))∪Oc((2, [j])) 6=
Oc((δ, [i])), i.e., Oc((2, [j])) cannot be a b s

2
c-set whose union with Oc((1, [i∗])) forms a

d s
2
e-set. So, {Oc((3, [j])) | [j] ∈ AI(D)

3 } ∩ R = {Oc((2, [j])) | [j] ∈ AI(D)
3 } ∩ R = ∅, where

R = {X ∈
(

(Ns,c)
bs/2c

)
| |X ∪Oc((1, [i∗]))| = d s

2
e}. It is easy to see that |R| = d s

2
eb s

2
c.

Furthermore, dD((1, [i∗]), (1, [1, j])) = 3 and the definition of R imply Oc((1, [i∗])) 6∈
{Oc((3, [j])) | [j] ∈ A

I(D)
3 } ∪ R. It follows that {Oc((3, [j])) | [j] ∈ A

I(D)
3 } ∪ R ⊆(

(Ns,c)
bs/2c

)
− {Oc((1, [i∗]))}. So, |AI(D)

3 | ≤
(

s
ds/2e

)
− 1 − |R| =

(
s
ds/2e

)
− 1 − d s

2
eb s

2
c. Since

{Oc((1, [i])) | [i] ∈ AI(S)
3 }∪BO

2 ∪BO
3 is an antichain by Lemma 2.15, |AI(S)

3 |+|BO
2 |+|BO

3 | ≤(
s
ds/2e

)
. So, |A2|+ |A3| = |AI(D)

3 |+ (|AI(S)
3 |+ |BO

3 |+ |BO
2 |) ≤ 2

(
s
ds/2e

)
− 1− d s

2
eb s

2
c. Using

2|A2|+ |A3| = 2
(

s
bs/2c

)
− 1, we derive |A2| ≥ d s2eb

s
2
c.

Remark 4.6. In addition to Claims 2A to 6A, the following claim can be shown too
(see [24] for details).

Claim 7A: AO3 = A
O(D)
3 and AI3 = A

I(D)
3 .

Subcase 2.4. |Oc((1, [i∗]))| = d s
2
e and |Oc((2, [i∗]))| = b s

2
c for some [i∗] ∈ AI(D)

3 .
This follows from Subcase 2.3 by the Duality Lemma.

Subcase 2.5. |Oc((1, [i]))| = |Oc((2, [i]))| = d s
2
e and |Oc((1, [j]))| = |Oc((2, [j]))| = b s

2
c

for some [i] ∈ AO(D)
3 and [j] ∈ AI(D)

3 .
This is similar to Subcase 3.5 in Proposition 4.1.

(⇐) By Corollary 3.8, T ∈ C0 if |A2| ≤
(

s
ds/2e

)
− 2 and |A3| = 1, or |A2| + |A3| ≤(

s
ds/2e

)
− 1 and |A3| ≥ 2. Hence, it suffices to consider the following three cases. Let

H = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 3 for all [i] ∈ T (A3) and
tv = 2 otherwise. We will use Aj for H(Aj) for the remainder of this proof.

Case 1. |A2| =
(

s
ds/2e

)
− 1 and |A3| = 1.

Assume without loss of generality that A3 = {[1]} and A2 = {[i] | i ∈ N( s
ds/2e)
} − A3.
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Define an orientation D1 of H as follows.

(2, [i])→ {(1, [α, i]), (2, [α, i])} → (1, [i]), and

λ̄i → (1, [i])→ λi → (2, [i])→ λ̄i

for all [i] ∈ A2 and all 1 ≤ α ≤ degT ([i])− 1, i.e., excluding λ1, the d s
2
e-sets λi’s are used

as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

{(1, [1]), (2, [1])} → (1, [β, 1])→ (3, [1]),

{(1, [1]), (3, [1])} → (2, [β, 1])→ (2, [1]), and

λ̄1 → {(2, [1]), (3, [1])} → λ1 → (1, [1])→ λ̄1

for all 1 ≤ β ≤ degT ([1])− 1. Furthermore,

λ1 → {(1, [j]), (2, [j])} → λ̄1

for all [j] ∈ E.

Case 2. |A3| ≥ 2 and 2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2.

By Corollary 3.8, we may assume |A2|+ |A3| ≥
(

s
ds/2e

)
. Furthermore, assume without

loss of generality that A2 = {[i] | i ∈ N|A2|}, and A3 = {[i] | i ∈ N|A2|+|A3|−N|A2|}. Define
an orientation D2 of H as follows.

(2, [i])→ {(1, [α, i]), (2, [α, i])} → (1, [i]), and

λ̄i+1 → (1, [i])→ λi+1 → (2, [i])→ λ̄i+1,

for all 1 ≤ i ≤ |A2| and all 1 ≤ α ≤ degT ([i])− 1, i.e., the d s
2
e-sets λ2, λ3, . . . , λ|A2|+1 are

used as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

(3, [j])→ {(1, [β, j]), (2, [β, j])} → {(1, [j]), (2, [j])},
λ̄1 → (1, [j])→ λ1 → (2, [j])→ λ̄1, and

λj+1 → (3, [j])→ λ̄j+1

for all |A2| + 1 ≤ j ≤
(

s
ds/2e

)
− 1 and all 1 ≤ β ≤ degT ([j]) − 1, i.e., the d s

2
e-sets

λ|A2|+2, λ|A2|+3, . . . , λ( s
ds/2e)

are used as ‘in-sets’ to construct BI
3 .

{(1, [k]), (2, [k])} → {(1, [γ, k]), (2, [γ, k])} → (3, [k]),

λ1 → (1, [k])→ λ̄1 → (2, [k])→ λ1, and

λ̄k−( s
ds/2e)+|A2|+2 → (3, [k])→ λk−( s

ds/2e)+|A2|+2

for all
(

s
ds/2e

)
≤ k ≤ |A2| + |A3| and all 1 ≤ γ ≤ degT ([k]) − 1, i.e., the d s

2
e-sets

λ|A2|+2, λ|A2|+3, . . . , λ2|A2|+|A3|+2−( s
ds/2e)

are used as ‘out-sets’ to construct BO
3 .

λ1 → {(1, [l]), (2, [l])} → λ̄1

for all [l] ∈ E.
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Case 3. |A3| ≥ 2, |A2| ≥ d s2eb
s
2
c, 2|A2|+ |A3| = 2

(
s
ds/2e

)
− 1, and s ≥ 5.

Let ψ = (Nb s
2
c, c) and Iψ = {λ ∈

(
(Ns,c)
ds/2e

)
| |λ ∩ ψ| = 1}. It is easy to check

|Iψ| = d s
2
eb s

2
c and ψ̄ 6∈ Iψ. Let Oψ = {λ ∈

(
(Ns,c)
ds/2e

)
| ψ ⊂ λ} and observe that

|Oψ| = d s
2
e. Our aim is to design an orientation in which the elements of Iψ and

Oψ are used as Ic((2, [i])) and Oc((1, [i])) respectively, where [i] ∈ A2, i.e., Iψ ⊆ BI
2

and Oψ ⊆ BO
2 . To achieve this, we introduce two new listings of the elements in(

(Ns,c)
ds/2e

)
. Let

(
(Ns,c)
ds/2e

)
= {γ1, γ2, . . . , γ( s

ds/2e)
} = {µ1, µ2, . . . , µ( s

ds/2e)
} such that ψ̄ = γ( s

ds/2e)
,

Iψ = {γ1, γ2, . . . , γd s
2
eb s

2
c} and Oψ = {µ1, µ2, . . . , µd s

2
e}. The denotation of the remain-

ing γi’s and µj’s can be arbitrary. Assume further that A2 = {[i] | i ∈ N|A2|} and
A3 = {[i] | i ∈ N|A2|+|A3| − N|A2|}. Define an orientation D3 of H as follows.

(2, [i])→ {(1, [α, i]), (2, [α, i])} → (1, [i]),

µ̄i → (1, [i])→ µi, and γi → (2, [i])→ γ̄i,

for all 1 ≤ i ≤ |A2| and all 1 ≤ α ≤ degT ([i]) − 1, i.e., the d s
2
e-sets γ1, γ2, . . . , γ|A2|

(µ1, µ2, . . . , µ|A2| resp.) are used as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

{(1, [j]), (2, [j])} → (1, [β, j])→ (3, [j]),

{(1, [j]), (3, [j])} → (2, [β, j])→ (2, [j]),

ψ̄ → (1, [j])→ ψ, and

µ̄j → {(2, [j]), (3, [j])} → µj

for all |A2|+1 ≤ j ≤
(

s
ds/2e

)
and all 1 ≤ β ≤ degT ([j])−1, i.e., the d s

2
e-sets µ|A2|+1, µ|A2|+2,

. . . , µ( s
ds/2e)

are used as ‘out-sets’ to construct BO
3 .

(3, [k])→ (1, [θ, k])→ {(1, [k]), (2, [k])},
(2, [k])→ (2, [θ, k])→ {(1, [k]), (3, [k])},
ψ̄ → (1, [k])→ ψ, and

γk−( s
ds/2e)+|A2| → {(2, [k]), (3, [k])} → γ̄k−( s

ds/2e)+|A2|

for all
(

s
ds/2e

)
+ 1 ≤ k ≤ |A2| + |A3| and all 1 ≤ θ ≤ degT ([k]) − 1, i.e., the d s

2
e-sets

γ|A2|+1, γ|A2|+2, . . . , γ( s
ds/2e)−1 are used as ‘in-sets’ to construct BI

3 .

ψ̄ → {(1, [l]), (2, [l])} → ψ

for all [l] ∈ E.
It can be verified for i = 1, 2, 3, that d(Di) = 4 and every vertex lies in a directed C4 for

Di; this part of the proof is omitted for brevity and we refer the interested reader to [24]
for details. Hence, d̄(T ) ≤ max{4, d(Di)} by Lemma 1.3, and we have d̄(T ) = 4.

Corollary 4.7. Suppose s ≥ 5 is odd, A≥4 = ∅, |A2| ≥ d s2eb
s
2
c, |A3| ≥ 2, and 2|A2| +

|A3| = 2
(

s
ds/2e

)
− 1 for a T . If D is an optimal orientation of T , then either D or D̃

fulfills the following, after a suitable relabelling of vertices and with A3 partitioned into
AO3 and AI3.
(I) |Oc((1, [i]))| = |Ic((2, [i]))| = d s

2
e for all [i] ∈ A2,

(II) |Oc((3, [j]))| = |Ic((3, [k]))| = d s
2
e for all [j] ∈ AO3 , [k] ∈ AI3, and
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(III) (2, [i]) → (p, [α, i]) → (1, [i]) for all [i] ∈ A2, all 1 ≤ α ≤ degT ([i]) − 1 and
1 ≤ p ≤ s[α,i].
(1A) |A2 ∪ AO3 | =

(
s
ds/2e

)
and |A2 ∪ AI3| =

(
s
ds/2e

)
− 1;

(2A) |Oc((1, [i]))| = b s
2
c and |Oc((2, [i]))| = d s

2
e for all [i] ∈ AO3 ;

(3A) Oc((1, [i])) = Oc((1, [j])) for all [i], [j] ∈ AO3 ;
(4A) Oc((2, [i])) = Oc((3, [i])) for all [i] ∈ AO3 ;
(5A) |Oc((1, [j]))| = |Oc((2, [j]))| = b s

2
c for all [j] ∈ AI3;

(6A) Oc((1, [j])) = Oc((1, [i])) and Oc((2, [j])) = Oc((3, [j])) for all [i] ∈ AO3 , [j] ∈ AI3.

Except for (III), the proof of Corollary 4.7 largely follows from the proof of Proposition
4.3; we refer the interested reader to [24] for details. The optimal orientation(s) described
in Corollary 4.7 was extended to the construction D3 in Case 3 of the proof of Proposition
4.3.

Proposition 4.8. Suppose s ≥ 3 is odd, A2 6= ∅, A3 = ∅ and A≥4 6= ∅ for a T . Then,
T ∈ C0 if and only if |A2| ≤

(
s
ds/2e

)
− 1.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As
A2 6= ∅, we assume (3.1)-(3.2) here. Let [j] ∈ A≥4. If |Oc((1, [j]))| ≥ d s

2
e, then for any

[i] ∈ A2, dD((1, [1, i]), (1, [j])) = 3 implies Oc((1, [i])) ∩ Ic((1, [j])) 6= ∅. Hence, by Lih’s
theorem, |A2| = |BO

2 | ≤
(

s
ds/2e

)
−
(
s−|Ic((1,[i]))|
ds/2e

)
≤
(

s
ds/2e

)
− 1. Suppose |Oc((1, [j]))| ≤ b s

2
c.

Equivalently, |Ic((1, [j]))| ≥ d s
2
e. So, this case follows from the previous case by the

Duality Lemma.

(⇐) If |A2| + |A≥4| ≤
(

s
ds/2e

)
− 1, then by Corollary 3.8(i), T ∈ C0. Hence, we as-

sume |A2|+ |A≥4| ≥
(

s
ds/2e

)
hereafter, on top of the hypothesis that |A2| ≤

(
s
ds/2e

)
− 1. If

|A2| ≥ s−1, define A�2 = A2. Otherwise, A�2 = A2∪A∗, where A∗ is an arbitrary subset of
A≥4 such that |A�2| = s−1. Then, let A�4 = A2∪A≥4−A�2. Furthermore, assume without
loss of generality that A�2 = {[i] | i ∈ N|A�2|} and A�4 = {[i] | i ∈ N|A�2|+|A�4| − N|A�2|}.

LetH = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 4 for all [i] ∈ T (A�4)
and tv = 2 otherwise. We will use Aj for H(Aj) for the remainder of this proof. Define
an orientation D of H as follows.

(2, [i])→ {(1, [α, i]), (2, [α, i])} → (1, [i]), and

λ̄i+1 → (1, [i])→ λi+1 → (2, [i])→ λ̄i+1

for all 1 ≤ i ≤ |A2| and all 1 ≤ α ≤ degT ([i])− 1, i.e., the d s
2
e-sets λ2, λ3, . . . , λ|A2|+1 are

used as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

(2, [β, j])→ {(2, [j]), (4, [j])} → (1, [β, j])→ {(1, [j]), (3, [j])} → (2, [β, j]),

and λ̄1 → {(1, [j]), (4, [j])} → λ1 → {(2, [j]), (3, [j])} → λ̄1

for all [j] ∈ A4 and all 1 ≤ β ≤ degT ([j])− 1.

λ1 → {(1, [k]), (2, [k])} → λ̄1

for all [k] ∈ E.
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we

refer the interested reader to [24] for details. Since every vertex lies in a directed C4 for
D and d(D) = 4, d̄(T ) ≤ max{4, d(D)} by Lemma 1.3, and thus d̄(T ) = 4.
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Corollary 4.9. If s ≥ 3 is odd and |A≤3| ≤
(

s
ds/2e

)
− 1 for a T , then T ∈ C0.

Proof : Note that every vertex lies in a directed C4 for the orientation D defined in
Proposition 4.8, d̄(T ) ≤ max{4, d(D)} by Lemma 1.3. This implies d̄(T ) = 4.

Corollary 4.9 is an improvement of Corollary 3.8(i) for odd s as the count |A≤3| now
excludes |A≥4|, compared to the previous |A≥2|.

Proposition 4.10. Suppose s ≥ 3 is odd, A2 6= ∅, A3 6= ∅ and A≥4 6= ∅ for a T . Then,

T ∈ C0 ⇐⇒

{
|A2| ≤

(
s
ds/2e

)
− 2, if |A3| = 1,

2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2, if |A3| ≥ 2.

Proof : (⇒) Since T ∈ C0, there exists an orientation D of T , where d(D) = 4. As A2 6= ∅
and A3 6= ∅, we assume (3.1)-(3.5) here.

Case 1. |A3| = 1.
PartitionA≥4 intoAO≥4, AI≥4, andAN≥4 as follows. LetAN≥4 = {[i] ∈ A≥4 | |O((p, [α, i]))| ≥

2 and |I((p, [α, i]))| ≥ 2 for all 1 ≤ α ≤ degT ([i]) − 1 and all 1 ≤ p ≤ s[α,i]}, and AO≥4 =
{[i] ∈ A≥4 | |O((p, [α, i]))| = 1 for some 1 ≤ α ≤ degT ([i]) − 1 and some 1 ≤ p ≤ s[α,i]}.
Furthermore, let AI≥4 = A≥4 − AO≥4 ∪ AN≥4, i.e., for every [i] ∈ AI≥4, there exist some
1 ≤ α ≤ degT ([i])− 1 and some 1 ≤ p ≤ s[α,i] such that |I((p, [α, i]))| = 1.

Without loss of generality, we assume

(Ns[i] , [i])− {(4, [i])} →(1, [1, i])→ (4, [i]) if [i] ∈ AO≥4,

(4, [i])→(1, [1, i])→ (Ns[i] , [i])− {(4, [i])} if [i] ∈ AI≥4,

and {(1, [i]), (2, [i])} →(1, [1, i])→ {(3, [i]), (4, [i])} if [i] ∈ AN≥4.

Also, we let

BO
≥4 = {Oc((4, [i])) | [i] ∈ AO≥4} and BI

≥4 = {Ic((4, [i])) | [i] ∈ AI≥4}.

Note that each of BO
2 ∪ BO

3 ∪ BO
≥4 and BI

2 ∪ BI
3 ∪ BI

≥4 is an antichain by Lemma 2.15

and its dual respectively. Hence, |A2| + |AO3 | + |AO≥4| = |BO
2 ∪ BO

3 ∪ BO
≥4| ≤

(
s
bs/2c

)
and

|A2|+ |AI3|+ |AI≥4| = |BI
2 ∪BI

3 ∪BI
≥4| ≤

(
s
bs/2c

)
by Sperner’s theorem.

We will only consider the case when |AO3 | = 1 since the case when |AI3| = 1 can be ar-
gued analogously. If |AO≥4| > 0, then |A2|+|AO3 |+|AO≥4| ≤

(
s
bs/2c

)
implies |A2| ≤

(
s
bs/2c

)
−2.

Hence, suppose |AO≥4| = 0. Note that |A3| = 1 implies |AI3| = |BI
3 | = 0.

Subcase 1.1. |Oc((q, [j]))| ≥ d s
2
e for some [j] ∈ AI≥4 ∪ AN≥4 and some 1 ≤ q ≤ s[j].

For any [i] ∈ A2 ∪ AO3 , dD((1, [1, i]), (q, [j])) = 3 implies X ∩ Ic((q, [j])) 6= ∅ for all
X ∈ BO

2 ∪BO
3 . Hence, by Lih’s theorem, |A2|+|AO3 | = |BO

2 ∪BO
3 | ≤

(
s
ds/2e

)
−
(
s−|Ic((1,[i]))|
ds/2e

)
≤(

s
ds/2e

)
−
(ds/2e
ds/2e

)
≤
(

s
ds/2e

)
− 1. Since |AO3 | = 1, it follows that |A2| ≤

(
s
bs/2c

)
− 2.

Subcase 1.2. |Oc((q, [j]))| < b s
2
c for some [j] ∈ AI≥4 ∪ AN≥4 and some 1 ≤ q ≤ s[j].

For any [i] ∈ A2, dD((q, [j]), (1, [1, i])) = 3 implies Oc((q, [j]))∩X 6= ∅ for all X ∈ BI
2 .

Hence, by Lih’s theorem, |A2| = |BI
2 | ≤

(
s
ds/2e

)
−
(
s−|Oc((q,[j]))|
ds/2e

)
≤
(

s
ds/2e

)
−
(ds/2e+1
ds/2e

)
=(

s
ds/2e

)
− (d s

2
e+ 1) ≤

(
s
ds/2e

)
− 3.
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Subcase 1.3. |Oc((q, [j]))| = b s
2
c for all [j] ∈ AI≥4 ∪ AN≥4 and all 1 ≤ q ≤ s[j].

For any [i] ∈ A2, dD((q, [j]), (1, [1, i]) = 3 implies X ∩Oc((q, [j])) 6= ∅ for all X ∈ BI
2 .

Hence, by Lih’s theorem, |A2| = |BI
2 | ≤

(
s
ds/2e

)
−
(
s−|Oc((q,[j]))|
ds/2e

)
=
(

s
ds/2e

)
−
(ds/2e
ds/2e

)
=(

s
ds/2e

)
− 1. By Griggs’ theorem, |A2| =

(
s
ds/2e

)
− 1 if and only if BI

2 consists of only

d s
2
e-sets.
If |A2| =

(
s
ds/2e

)
− 1, then it must follow that Oc((p, [j])) = Oc((q, [j])) for all [j] ∈

AI≥4 ∪ AN≥4 and all 1 ≤ p, q ≤ s[j]. Otherwise, dD((r, [j]), (1, [1, i])) = 3 for all 1 ≤
r ≤ s[j] and all [i] ∈ A2 implies X̄ 6= Oc((r, [j])) for all X ∈ BI

2 , i.e., BI
2 ⊆

(
(Ns,c)
ds/2e

)
−

{Oc((p, [j])), Oc((q, [j]))}. Hence, |A2| = |BI
2 | ≤

(
s
ds/2e

)
− 2, a contradiction.

Now, BO
2 ∪ BO

3 ∪ {Oc((3, [j])) | [j] ∈ AI≥4 ∪ AN≥4} is an antichain by Lemma 2.15. So,

|A2| + |A3| + |A4| = |BO
2 | + |BO

3 | + |AI≥4| + |AN≥4| ≤
(

s
ds/2e

)
. Since |A3| = 1 and |A4| ≥ 1,

it follows that |A2| ≤
(

s
ds/2e

)
− 2.

Case 2. |A3| ≥ 2.
For any [i], [j] ∈ A2∪A3, i 6= j, [k] ∈ A≥4, 1 ≤ α ≤ degT ([i])−1, 1 ≤ γ ≤ degT ([k])−1,

1 ≤ x ≤ s[α,i], and 1 ≤ z ≤ s[γ,k], 1 ≤ q ≤ 3 (where applicable), 1 ≤ r ≤ 4, observe in D
that the vertices (r, [k]) and (z, [γ, k]) do not lie on any shortest path between (x, [α, i])
and (q, [j]). By the proof in Proposition 4.3, we have 2|A2| + |A3| ≤ 2

(
s
ds/2e

)
− 1, where

equality is possible only as in Subcases 2.3 and 2.4.
Suppose 2|A2| + |A3| = 2

(
s
ds/2e

)
− 1 holds, as in Subcase 2.3 with [i∗] as given, and

recall (4.1). In particular, BI
2 ∪BI

3 =
(

(Ns,c)
ds/2e

)
− {Ic((1, [i∗]))} by Claims 6A and 7A.

Let [i] ∈ A≥4. If there exists some 1 ≤ p ≤ s[i] such that |Oc((p, [i]))| ≥ d s
2
e, then X ⊆

Oc((p, [i])) for some X ∈ BO
2 ∪ BO

3 . This implies that dD((1, [1, j]), (p, [i])) > 4 for some
[j] ∈ A2 ∪ AO3 , a contradiction. If there exists some 1 ≤ p ≤ s[i] such that |Oc((p, [i]))| <
b s

2
c, or |Oc((p, [i]))| = b s

2
c and Oc((p, [i])) 6= Oc((1, [i∗])), then Oc((p, [i])) ⊆ X̄ for

some X ∈ BI
2 ∪ BI

3 . It follows that dD((p, [i]), (1, [1, j])) > 4 for some [j] ∈ A2 ∪ AI3,
a contradiction. Thus, it remains that Oc((p, [i])) = Oc((1, [i∗])) for all [i] ∈ A≥4 and
all 1 ≤ p ≤ s[i]. By Lemma 2.15, Q = {Oc((4, [i])) | [i] ∈ AO≥4} ∪ {Oc((3, [i])) | [i] ∈
AI≥4 ∪ AN≥4} ∪ BO

2 ∪ BO
3 is an antichain. However, this contradicts Sperner’s theorem as

|Q| > |BO
2 |+ |BO

3 | =
(

s
ds/2e

)
.

A similar argument shows 2|A2|+ |A3| = 2
(

s
ds/2e

)
− 1 does not hold as in Subcase 2.4.

Hence, 2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2.

(⇐) By Corollary 4.9, T ∈ C0 if |A2| ≤
(

s
ds/2e

)
−2 and |A3| = 1, or |A2|+ |A3| ≤

(
s
ds/2e

)
−1

and |A3| ≥ 2. Hence, we assume |A2| + |A3| ≥
(

s
ds/2e

)
, on top of the hypothesis that

2|A2|+ |A3| ≤ 2
(

s
ds/2e

)
− 2 and |A3| ≥ 2. Furthermore, assume without loss of generality

that A2 = {[i] | i ∈ N|A2|}, and A3 = {[i] | i ∈ N|A2|+|A3| − N|A2|}.
LetH = T (t1, t2, . . . , tn) be the subgraph of T , where tc = s, t[i] = 3 for all [i] ∈ T (A3),

t[j] = 4 for all [j] ∈ T (A≥4) and tv = 2 otherwise. We will use Aj for H(Aj) for the
remainder of this proof. Define an orientation D of H as follows.

(2, [i])→ {(1, [α, i]), (2, [α, i])} → (1, [i]), and

λ̄i+1 → (1, [i])→ λi+1 → (2, [i])→ λ̄i+1

for all 1 ≤ i ≤ |A2| and all 1 ≤ α ≤ degT ([i])− 1, i.e., the d s
2
e-sets λ2, λ3, . . . , λ|A2|+1 are
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used as ‘in-sets’ (‘out-sets’ resp.) to construct BI
2 (BO

2 resp.).

(3, [j])→ {(1, [β, j]), (2, [β, j])} → {(1, [j]), (2, [j])},
λ̄1 → (1, [j])→ λ1 → (2, [j])→ λ̄1, and

λj+1 → (3, [j])→ λ̄j+1

for all |A2| + 1 ≤ j ≤
(

s
ds/2e

)
− 1 and all 1 ≤ β ≤ degT ([j]) − 1, i.e., the d s

2
e-sets

λ|A2|+2, λ|A2|+3, . . . , λ( s
ds/2e)

are used as ‘in-sets’ to construct BI
3 .

{(1, [k]), (2, [k])} → {(1, [γ, k]), (2, [γ, k])} → (3, [k]),

λ1 → (1, [k])→ λ̄1 → (2, [k])→ λ1, and

λ̄k−( s
ds/2e)+|A2|+2 → (3, [k])→ λk−( s

ds/2e)+|A2|+2

for all
(

s
ds/2e

)
≤ k ≤ |A2| + |A3| and all 1 ≤ γ ≤ degT ([k]) − 1, i.e., the d s

2
e-sets

λ|A2|+2, λ|A2|+3, . . . , λ2|A2|+|A3|+2−( s
ds/2e)

are used as ‘out-sets’ to construct BO
3 .

(2, [τ, l])→ {(2, [l]), (4, [l])} → (1, [τ, l])→ {(1, [l]), (3, [l])} → (2, [τ, l]), and

λ̄1 → {(1, [l]), (4, [l])} → λ1 → {(2, [l]), (3, [l])} → λ̄1

for all [l] ∈ A4 and all 1 ≤ τ ≤ degT ([l])− 1.

λ1 → {(1, [m]), (2, [m])} → λ̄1

for all [m] ∈ E. (See Figure 10 for D when s = 3.)
It can be verified that d(D) = 4; this part of the proof is omitted for brevity and we

refer the interested reader to [24] for details. Since every vertex lies in a directed C4 for
D and d(D) = 4, d̄(T ) ≤ max{4, d(D)} by Lemma 1.3, and thus d̄(T ) = 4.

This concludes the proof of Theorem 1.9.

5. Conclusion

In this paper, we almost completely characterise the case of even s and give a complete
characterisation for the case of odd s ≥ 3. With the current approach of searching
for optimal orientation(s) in tree vertex-multiplications, the complexity and quantity of
the subcases increase sharply when the subsets Oc((p, [i])) are of ‘middle’ size (b s

2
c or

d s
2
e). For instance in Proposition 4.3, it is relatively easy to settle Subcases 2.1 and 2.2

but Subcase 2.3 is rather involved. Furthermore, the even case (see Proposition 3.12)
illustrates a similar yet more complicated situation. It seems that a new approach may
be needed to cut through this entanglement. Since this paper focuses on trees of diameter
4, we end off by proposing the following problem.

Problem 5.1. For trees T with d(T ) = 3, characterise the tree vertex-multiplications
T (s1, s2, . . . , sn) that belong to C0.
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(1, c)

(2, c)

(3, c)

(1, [1, 1])

(2, [1, 1])

(1, [1])

(2, [1])

(1, [1, 2])

(2, [1, 2])

(1, [2])

(2, [2])

(3, [2])

(1, [1, 3])

(2, [1, 3])

(1, [3])

(2, [3])

(3, [3])

(1, [1, 4])

(2, [1, 4])

(1, [4])

(2, [4])

(3, [4])

(4, [4])

(1, [1, 5])

(2, [1, 5])

(1, [5])

(2, [5])

(3, [5])

(4, [5])

(1, [7])

(2, [7])

(1, [6])

(2, [6])

Figure 10: Orientation D for H for s = 3,
A2 = {[1]}, A3 = {[2], [3]}, A4 = {[4], [5]}, E = {[6], [7]}.
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