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A b s t r a c t - - I n  this article, we derive explicit asymptotic formulas for the solutions of Oseen's 
equations in space dimension two in a channel at large Reynolds number (small viscosity e). These 
formulas exhibit typical boundary layers behaviors. Suitable correctors are defined to resolve the 
boundary obstacle and obtain convergence results valid up to the boundary. We study also the 
behavior of the boundary layer when simultaneously time and the Reynolds number tend to infinity 
in which case the boundary layer tends to pervade the whole domain. 

K e y w o r d s - - A s y m p t o t i c  expansions, Boundary layer, Oseen's equations, Navier-Stokes equations, 
Correctors. 

1. I N T R O D U C T I O N  

As a preliminary step towards the understanding of the asymptotic behavior of the solutions to 
the Navier-Stokes equat ions  in a bounded  region equipped with nonsl ip b o u n d a r y  condi t ion  at 

small  viscosity (large Reynolds  number) ,  we s tudy  here the asymptot ic  behavior of the Oseen 

equa t ions  which are derived from the Navier-Stokes equat ions  by l inear izat ion a round  a cons tan t  

flow (Uoo, 0). Consider ing  these equat ions  in space d imension two, in a channel  we have 

Ou e 
O---T - e A u ~  + U°°DlU~  + v p ~  = f '  (1.1)  

u e = u0 at t = 0, (1.2) 

u e e V for t > 0, (1.3) 

where 
{ 1 2 } V =  v E  (Hlo c(gtoo)) , d i v v = 0 ,  vl0a ~ = 0 ,  v periodic in x with period 2~ , 

(1.4) 
~'~oo : ~ I  X (0, 1),  ~-~ = (0,271") X (0, 1),  (1 .5)  

and  D1 denotes the derivative in the horizontal (x) direction. 
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The corresponding inviscid equations (linearized Euler equations) read 

cgu 0 

~t + U°°Dlu° + ~Tp° = f '  (1.6) 

u ° = u0 at t = 0, (1.7) 

u ° E H, (1.8) 

where 

H -- closure of V in (L~o c (floo)) 2 

= {v  = (Vl,V2) E (L2oc (floo)) 2 div v -- 0 , v 2 [ a ~  -- 0, vl periodic in x with period 2 r }  

(1.9) 
The convergence of u e to u ° in some weak sense (say L2(0,T; L2(~)2)) is classical (see, e.g., 

[1,2]). However the convergence in stronger topology (say L2(0, T; H I ( ~ )  2) or L°°((0, T) x ~2) 2) is 
not obvious. In fact, this convergence is not true due to the disparity of the boundary conditions 
between u ~ and u °, or the so-called boundary layer problem. Usually this difficulty is overcome 
by introducing a corrector (boundary layer type function) ~e and we obtain the convergence 
of u E - (u ° + ~e) to 0 valid up to the boundary, e.g., in the strong topology of L2(0, T; H l (~ )2 ) .  

There is abundant  literature about  boundary layers in fluid mechanics (see, e.g., [3-10]). In 
the spirit of [11], and also [2,12], we derive here the boundary layer for the Oseen equations by 
constructing a corrector ~ (i.e., a function such tha t  u ~ - u ° - ~ --~ 0 strongly as ~ --* 0), first 
in an abst ract  form, i.e., as the solution of an evolution equation, and then in an explicit form. 
The major  difficulty here is the presence of pressure which is a global function of the velocity, 
and this makes localization efforts hard. This is present even in the linear s ta t ionary case (see, 
e.g., [2,13]). 

To overcome this difficulty, we depart  from several points of view from classical studies in 
boundary  layers in fluid mechanics and in particular we have a functional analysis global treat-  
ment  of the pressure term; we also consider a corrector which is not divergence free and which 
acts only on the tangential velocity: although we could produce a divergence free corrector, this 
appears  to be of no avail. Finally we work with L 2 Sobolev type norms instead of uniform 
(L c~) norms, which is useful since a corrector as 0 ~ is small in the L 2 norm but not in the 
L °° norm. Notice tha t  we consider here the Oseen equations in a nonconventional way. Usually 
they  are introduced for low Reynolds number flows, while here we study them for large Reynolds 
number; hence they are of interest to us as a simplified model for the Navier-Stokes equations 
rather  than  for their usual physical relevance. In the process, we resolve a number of open ques- 
tions raised in [2,12] and we also improve our previous result [11] when Uoo = 0. I t  is worthwhile 
to point out two phenomenons which appear  here and were not present in [11] when U~  -- 0 
and which give us a taste of the difficulties tha t  might be encountered in the nonlinear case: the 
first is the appearance of a mixing of the boundary layers in the tangential directions due to the 
presence of the t ransport  term; the second is some difference in the boundary layers depending 
on whether  the driving force has a vanishing average over a period in the tangential direction. 

2.  T H E  M A I N  R E S U L T  

We now state  our main result and make a few comments. 

THEOREM. Let uo , f  E H be su~ciently smooth. Then the solution u ~ of (1.1)-(1.3) has the 
following asymptotic expansion: 
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for s E [0, 1]. Here 

8e ( t; x, y) = uo ( x - Uoot, 1) ( 1 -  2 erf 1 -  y-~ ) + uo ( x - U~t ,  O ) ( 1 -  2 erf 

x Ot  + U o o D l U  ° (s; x - U ~ ( t  - s ) ,  1) d s  

x Ot + U ~ D l u  ° ( s ;x  - U ~ ( t -  s),O) ds 

and  erf is the s tandard error function, defined as 

e r f ( y ) - -  1 / Y e  
Z2/2 

- d z .  

Moreover, we have the following est imate on the pressure: 

lip ° __ p HL2(O,T;HI(~t) ) ~__ ~¢1/2, 

where a is a generic constant  depending on the data but  independent  of  ~. 

The  theorem is proved by choosing 0 ~ to be the solution of 

(2.2) 

(2.3) 

(2.4) 

O--T - ~ASe  + U°°DIO~ = 0, (2 .5 )  

0~ = 0 at t = 0, (2.6) 

0e = - u  ° at  y = 0 or 1, (2.7) 

then  proving the  convergence of  u ~ - u ° - 0e in L 2 (0, T; ( H  1 (f~))2) with explicit rate depending  
on e. T h e n  we apply  an asympto t ic  formula for 0~. The  detailed proofs will appear  elsewhere [14]. 

REMARK 2.1. An  explicit bounda ry  layer of thickness x / ~  can be observed from (2.1) which 
agrees with heuristic physical a rguments  (see, e.g., [4]). I t  is also observed tha t  the t ranspor t  

t e rm UooDlu ~ has the  effect of  mixing the bounda ry  layers. 

REMARK 2.2.  W h e n  f is zero, the  vort ici ty is t ranspor ted  by the inviscid equation. However we 

observe, by  applying curl to  (2.2), t ha t  vorticities are generated near the  bounda ry  and they  axe 
t r anspor t ed  along the tangential  direction of the boundary  for the viscous equations. 
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