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Abstract. In this paper our aim is to derive an upper bound on the dimension of the attractor
of the family of processes associated to the Navier–Stokes equations with nonhomogeneous
boundary conditions depending on time. We consider two-dimensional flows with prescribed
quasiperiodic (in time) tangential velocity at the boundary, and obtain an upper bound which is
polynomial with respect to the viscosity.

AMS classification scheme numbers: 35, 76

0. Introduction

In this paper, we continue the study initiated in [8] of the global attractor associated to
the two-dimensional Navier–Stokes equations with prescribed tangential velocity at the
boundary. The readers are referred to [11] for a comprehensive review on the subject of
attractors and the first work on the attractor for boundary driven flows. In [8], we proved
that the fractal and Hausdorff dimensions of the global attractor are bounded bycRe3/2,
whereRe is the Reynolds number andc a nondimensional constant independent ofRe in
the autonomous case. This is a significant improvement on previous bounds which were
exponential with respect to the Reynolds number (see [11]).

Recently, Chepyzhov and Vishik [1] presented a simple approach for the investigation
of nonautonomous infinite-dimensional dynamical systems that was well suited for the study
of equations arising in mathematical physics (see also Haraux [5] and Smiley [9]). In this
approach, to an equation of the type

du

dt
= Aσ0(t)(u) (∗)

whereu ∈ E andσ0(t) is called the time symbol, the authors associated a two-parametric
family of operators{Uσ0(t)(t, τ ), t > τ ∈ R} defined byUσ0(t)(t, τ )uτ = u(t), whereu is the
solution of (∗) with initial datauτ , and called the process associated to(∗). To construct
the attractors, they considered, together with(∗), a family of equations(∗) with the symbol
σ(t) belonging to a space6, called the symbol space.

§ On leave from Iowa State University.
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1048 A Miranville and X Wang

WhenE is a Banach space,6 a complete metric space, then if some invariant semigroup
{T (s), s > 0} (for instance but not necessarily the translation semigroup) acts on6 (i.e.
T (s)6 = 6, s > 0) and the translation identityUT (s)σ (t, τ ) = Uσ (t + s, τ + s), σ ∈ 6,
t > τ , τ ∈ R, s > 0 is valid, then the problem can be reduced to an autonomous system on
the extended phase spaceE × 6. The uniform (with respect toσ ) attractor of the family
of processes will then be the projection onE of the global attractor of this autonomous
system, if it exists. Furthermore, if the time symbol is quasiperiodic, then it is possible to
obtain an upper bound on the dimension of the attractor.

In this paper, we consider two-dimensional flows with prescribed, quasiperiodic in
time, tangential velocity at the boundary. In section 1 we present the equations and obtain
a priori estimates. Then, in section 2 we construct the family of processes associated to
these equations and prove the existence of the uniform attractor. Finally, in section 3 we
obtain an upper bound on the Hausdorff dimension of the attractor. This bound is of the
same order as the one obtained in the autonomous case.

1. Setting of the problem

Let � be a smooth (at leastC3) bounded domain inR2. We consider the Navier–Stokes
equations on�:

∂u

∂t
− ν1u+ (u · ∇)u+∇p = f (1)

div u = 0 (2)

u = ϕ on ∂� (3)

wheref = f (x, t) andϕ = ϕ(x, t) are quasiperiodic int .
Unless otherwise stated throughout this paper,c, c′ andc′′ will denote various generic

nondimensional constants (which may depend on the shape of the domain).
Moreover, we make the following assumptions onf andϕ:

f (·, t) = f (·, α1t, . . . , αkt) (4)

ϕ(·, t) = ϕ(·, α1t, . . . , αkt) (5)

wheref (·, ω1, . . . , ωk) andϕ(·, ω1, . . . , ωk) are 2π -periodic in each argumentωi , the {αi}
being rationally independent;

f ∈ C1
b(R;L2(�)2) (6)

ϕ ∈ C2
b(R; C3(∂�)2) (7)

whereb means that we consider bounded functions;

ϕ · n = 0 (8)

wheren denotes the unit outer normal on∂�.
For the mathematical setting of (1)–(3) we consider the spaces

H = {u ∈ L2(�)2, div u = 0, u · n = 0 on ∂�}
V = {u ∈ H 1(�)2 ∩H, u = 0 on ∂�}

which are endowed with their usual scalar products and norms which we denote(·, ·) and
| · | for H and((·, ·)) and‖ · ‖ for V .

Based on a construction by Temam and Wang [12] which improves Hopf’s original
construction of divergence-free functions with a given velocity field at the boundary we
have the following result.
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Lemma 1. For everyε > 0, there exists a smooth functionφ = φε(x, t) satisfying:
(i) divφ = 0;
(ii) φ = ϕ on ∂�;
(iii) | ∫

�
(u · ∇)φ · u dx| 6 cε|∇ϕ|L∞(R×∂�)|�|1/2‖u‖2, ∀u ∈ V ;

(iv) ‖φ‖ 6 c′
ε1/2 |∇ϕ|L∞(R×∂�);

(v) | ∂φ
∂t
| 6 c′′|�|1/2ε1/2 max(| ∂ϕ

∂t
|L∞(R×∂�), |∇ ∂ϕ∂t |L∞(R×∂�) diam�)

wherec, c′ and c′′ are nondimensional constants, independent ofε and diam� denotes the
diameter of�.

Proof. The proof here is similar to the one performed in [8], lemma 2.1. Since� is
bounded and regular there existsδ0 > 0 such that all normals from∂� do not intersect in a
neighbourhood of width 2δ0 (which we denoteO2δ0(∂�)) (see for instance [6, page 354]).
Moreover, for every(x, y) ∈ O2δ0(∂�), there exists a unique pointb(x, y) ∈ ∂� such that

dist((x, y), ∂�) = dist((x, y), b(x, y)).

Let Tb(x,y) denote the clockwise tangent vector to∂� at the pointb(x, y). We consider a
function ρ ∈ C∞([0,+∞)) such that

suppρ ⊂ [0, 1] (9)

ρ(0) = 1 (10)

|ρ(s)| 6 1 ∀s ∈ [0, 1] (11)∫ 1

0
ρ(s) ds = 0 (12)

and we set

ψ = ψε = ϕ(b(x, y), t) · Tb(x,y)
∫ dist((x,y),b(x,y))

0
ρ

(
s

|�|1/2ε
)

ds if (x, y) ∈ O2δ0(∂�)

ψ = ψε = 0 elsewhere.

We finally set

φ = φε(x, y, t) = curl(ψ) =
(− ∂ψ

∂y
∂ψ

∂x

)
.

We then prove, exactly as in [8], that (i)–(iv) are true. To obtain (v), we note that if
φ = (φ1, φ2), then

∂φ1

∂t
= − ∂

∂y

(
∂ϕ

∂t
(b(x, y), t) · Tb(x,y)

)∫ dist((x,y),∂�)

0
ρ

(
s

|�|1/2ε
)

ds

−∂ϕ
∂t
(b(x, y), t) · Tb(x,y)ρ

(
dist((x, y), ∂�)

|�|1/2ε
)
∂

∂y
dist((x, y), ∂�)

∂φ2

∂t
= ∂

∂x

(
∂ϕ

∂t
(b(x, y), t) · Tb(x,y)

)∫ dist((x,y),∂�)

0
ρ

(
s

|�|1/2ε
)

ds

+∂ϕ
∂t
(b(x, y), t) · Tb(x,y)ρ

(
dist((x, y), ∂�)

|�|1/2ε
)
∂

∂x
dist((x, y), ∂�)

and if (x, y) 6∈ O|�|1/2ε(∂�) (i.e. dist((x, y), ∂�) > |�|1/2ε) then

ρ

(
dist((x, y), ∂�)

|�|1/2ε
)
= 0∫ dist((x,y),∂�)

0
ρ

(
s

|�|1/2ε
)

ds = 0.



1050 A Miranville and X Wang

We then proceed as in [8] lemma 2.1 to verify that (i)–(v) are satisfied. This is
straightforward. We omit the details. �

We now setu = v + φ, and we obtain the following equation forv:

∂v

∂t
− ν1v + (v · ∇)v + (φ · ∇)v + (v · ∇)φ +∇p = f + ν1φ − (φ · ∇)φ − ∂φ

∂t
(13)

div v = 0 (14)

v = 0 on ∂� (15)

which can be written in functional form (see for instance [11])

dv

dt
+ νAv + B(v, v)+ Rv = f̄ (16)

where f̄ = Pf − νAφ − B(φ, φ) − P ∂φ

∂t
, P is the orthogonal projector fromL2 into H ,

A = −P1, B(u, v) = P((u · ∇)v) andRv = B(v, φ)+ B(φ, v).
As in [8], we prove that for everyτ ∈ R and for everyvτ ∈ H , there exists a unique

solutionv of (16) with initial datavτ (i.e. v(τ) = vτ ) such that:

v ∈ L2(τ,+∞;V ) ∩ L∞(τ,+∞;H) ∩ C(τ,+∞;H).
We take the scalar product inL2 of (13) by v and obtain, by integration by parts and

recalling that(B(u, v), v) = 0:

1

2

d

dt
|v|2+ ν‖v‖2+

∫
�

(v · ∇)φ · v dx = (f, v)− ν((φ, v))−
∫
�

(φ · ∇)φ · v dx − (φt , v).
(17)

Therefore, takingε = ν

2c|�| 12 |ϕ|L∞
, wherec is the constant in lemma 1, (iii),

1

2

d

dt
|v|2+ ν

2
‖v‖2 6 ν

16
‖v‖2+ cν‖φ‖2+ ν

16
‖v‖2+ c

νλ1
|f |2+ ν

8
‖v‖2

+ c

νλ1
|φt |2+

∣∣∣∣ ∫
�

(φ · ∇)φ · v dx

∣∣∣∣
whereλ1 > 0 is the first eigenvalue of the Stokes operatorA on � with zero Dirichlet
boundary condition (see for instance [11]).

As in [8] we have∣∣∣∣ ∫
�

(φ · ∇)φ · v dx

∣∣∣∣ 6 c|φ|L∞|φ|‖v‖
and thus

d

dt
|v|2+ ν

2
‖v‖2 6 c

νλ1
|f |2+ c′

νλ1
|φt |2+ c

′′

ν
|φ|2|φ|2L∞ + c′′′ν‖φ‖2. (18)

Integrating (18) betweenτ andT , we obtain

|v(T )|2+ ν
2

∫ T

τ

‖v‖2 dt 6 |v(τ)|2+ c

νλ1

∫ T

τ

|f |2 dt + c

νλ1

∫ T

τ

|φt |2 dt

+c
′′

ν

∫ T

τ

|φ|2L∞|φ|2 dt + c′′′ν
∫ T

τ

‖φ‖2 dt. (19)
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Moreover, using the Gronwall lemma and Poincaré inequality, we find

|v(t)|2 6 |v(τ)|2e−
νλ1

2 (t−τ) + c

ν2λ2
1

|f |2L∞(R,H) +
c′

ν2λ2
1

|φt |2L∞(R,L2)

+ c′′

ν2λ1
|φ|2

L∞(R,L2)
× |φ|2L∞(R,L∞) +

c′′′

λ1
|∇φ|2

L∞(R,L2)
. (20)

Finally, taking the scalar product of (16) with(t − τ)Av, we find

(t − τ)‖v‖2 6 c1(φ, f, T , τ, ν)|v(τ)|2+ (t − τ)c2(φ, f, T , τ, ν). (21)

2. Existence of the global attractor

2.1. Preliminary results

In this section we consider the framework of Chepyzhov and Vishik [1]. We recall here the
results that will be used in the sequel.

We consider a Banach spaceE and a two-parametric family of mappings acting onE:

U(t, τ ) : E→ E

t > τ, τ ∈ R. The mappingU is called a process if:
(i) U(τ, τ ) = I (identity operator);
(ii) U(t, s) ◦ U(s, τ ) = U(t, τ ),∀t > s > τ, τ ∈ R.
We denote byB(E) the set of all bounded sets inE. The process is bounded if for any

setB ∈ B(E), the set∪τ∈R∪t>τ U(t, τ )B ∈ B(E). A setB0 ∈ B(E) is absorbing if for any
setB ∈ B(E), there existsT = T (τ, B) such thatU(t, τ )B ⊂ B0 for t > T . Finally, a set
A is attracting for the process if for anyτ ∈ R and anyB ∈ B(E), dist(U(t, τ )B,A)→ 0
as t →+∞.

We now consider a family of processes{Uσ (t, τ )} depending on a functional parameter
σ ∈ 6. The parameterσ is called the symbol of the process, and6 is called the symbol
space, which is here assumed to be a complete metric space. The family of processes
is said to be uniformly (with respect toσ ∈ 6) bounded if for anyB ∈ B(E), the set
∪σ∈6 ∪τ∈R ∪t>τUσ (t, τ )B ∈ B(E). A setB0 ∈ E is said to be uniformly absorbing for the
family of processes if for anyτ ∈ R and anyB ∈ B(E), there existsT = T (τ, B) such
that∪σ∈6Uσ (t, τ )B ⊂ B0, ∀t > T . Finally, a setA is said to be uniformly attracting for
the family of processes if

lim
t→+∞ sup

σ∈6
dist(Uσ (t, τ )B,A) = 0 ∀τ ∈ R, ∀B ∈ B(E).

A family of processes possessing a compact uniformly absorbing set is said to be
uniformly compact and one possessing a compact uniformly attracting set, uniformly
asymptotically compact.

A closed setA6 ⊂ E is said to be the uniform (with respect toσ ∈ 6) attractor of the
family of processes if it is uniformly attracting and it is contained in any closed uniformly
attracting setA′ of the family of processes (minimality). We have the following result
which is proved in [1].

Proposition 1. If a family of processes is uniformly asymptotically compact then it possesses
a uniform attractorA6 .

We now assume that an invariant semigroup{T (t)}t>0 acts on6: T (t)6 = 6, ∀t > 0,
and that:

(iii) Uσ (t + s, τ + s) = UT (s)σ (t, τ ), ∀σ ∈ 6, ∀t > τ , τ ∈ R, s > 0.
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We then set

S(t) : E ×6→ E ×6
(u, σ ) 7→= (Uσ (t, 0)u, T (t)σ ) t > 0.

The family of mappings{S(t)} acting onE ×6 forms a semigroup onE ×6 (see [1]).

Definitions.
(a) A family of processes is said to be(E × 6,E)-continuous if for fixedt and τ ,

t > τ , τ ∈ R, the mapping(u, σ )→ Uσ (t, τ )u is continuous fromE ×6 into E.
(b) A curveu(s), s ∈ R is a complete trajectory of the process{U(t, τ )} if

U(t, τ )u(τ) = u(t) ∀t > τ τ ∈ R.
(c) The kernelK of the process{U(t, τ )} consists of all bounded trajectories of the

process. The setK(s) = {u(s), u ∈ K} is called the kernel section at timet = s.
We end this section with the following result, which is proved in [1].

Proposition 2. We consider a family of processes{Uσ (t, τ )}, σ ∈ 6, where6 is a compact
metric space. Let{T (t)} be a continuous-invariant semigroup on6 satisfying (iii). We
assume that the family of processes is uniformly asymptotically compact and(E × 6,E)-
continuous. Then the semigroup{S(t)} associated with the family of processes possesses a
compact, invariant attractorA. Furthermore:

(a) A6 = 51A is the uniform attractor of the family of processes;
(b) 52A = 6;
(c) A = ∪σ∈6Kσ (0)× {σ } ;
(d) A6 = ∪σ∈6Kσ (0),
where51 and52 denote the projectors fromE ×6 into E and6 respectively.

2.2. Construction of the global attractor

We write (16) in the form

dv

dt
= Gσ0(t)(v) (22)

whereσ0(t) = (f (t), φ(t), φt (t)). Using thea priori estimates derived in section 1, we
easily prove that (22) possesses a unique solution with initial datavτ ∈ H satisfying

v ∈ L∞(τ,+∞;H) ∩ L2(τ, T ;V ) ∩ C(τ,+∞;H) ∀T > τ.
We now consider the family of problems

dv

dt
= Gσ(t)(v) (23)

v(τ) = vτ (24)

σ(t) ∈ 6, where6 = H(σ0) is the hull ofσ0. We have here

H = {σ0(α1t + ω01, . . . , αkt + ω0k), (ω01, . . . , ω0k) = ω0 ∈ Tk}
whereTk denotes thek-dimensional torus. Therefore it is convenient to considerTk as the
symbol space of our problem. We also introduce the translation group{T (h), h ∈ R} which
acts onTk by the formula

T (h)ω = (αh+ ω) (modTk) ω ∈ Tk.
Now, it is easy to check that for everyσ ∈ H(σ0), (23)–(24) possess a unique solution

v(t). Moreover, estimates (19)–(21) hold with the same constants, since, for instance,
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|f (α1t + ω01, . . . , αkt + ω0k)|L∞(R,L2) = |f (t)|L∞(R,L2). Therefore, we can consider the
family of processes{Uσ (t, τ )}, σ ∈ 6 defined by

v(t) = Uσ (t, τ )vτ (25)

wherev is the solution of (23), (24). We have the following result.

Proposition 3. The family of processes defined by (15) is uniformly bounded, uniformly
compact and(H ×H(σ0),H)-continuous.

Proof. To prove that the family of processes is uniformly bounded inH , we use (20).
This inequality also enables us to prove the existence of a uniformly absorbing setB0 in
H .

Now the set∪σ∈6 ∪τ∈R Uσ (τ + 1, τ )B0 is also uniformly absorbing inH . Using (21),
we prove that this set is also bounded inH 1 and hence precompact inH . Therefore, the
family of processes is uniformly compact.

It remains to check that the family of processes is(H × H(σ0),H)-continuous. We
consider two symbolsσ1 and σ2 and their corresponding solutionsv1 and v2. Setting
v = v1− v2, f = f1− f2 andφ = φ1− φ2, we obtain the following equation forv:

dv

dt
+ νAv + B(v, v1)+ B(v2, v)+ B(φ1, v)+ B(φ, v2)+ B(v, φ1)+ B(v2, φ)

= f − νAφ − B(φ, φ1)− B(φ2, φ)− P ∂φ
∂t

(26)

v|t=τ = v1τ − v2τ . (27)

Taking the scalar product of (26) withv we obtain

1

2

d

dt
|v|2+ ν‖v‖2 = (f, v)− (B(v, v1), v)− (B(φ, v2), v)− (B(v, φ1), v)

−(B(φ, φ1), v)− (B(φ2, φ), v)− (B(v2, φ), v)− ν((φ, v))− (φt , v).
Therefore

d

dt
|v|2+ ν‖v‖2 6 c|f |2+ c′‖φ‖2+ c′′|φt |2+ ‖v1‖|v|2L4 + ‖φ1‖|v|2L4 + |φ|L4‖v2‖|v|L4

+|φ|L4‖φ1‖|v|L4 + |φ2|L4‖φ‖|v|L4 + |v2|L4‖φ‖|v|L4.

We then deduce, using Ladyzhenskaya’s inequality (|v|2
L4 6 c|v|‖v‖)

d

dt
|v|2 6 c|f |2+ c′(1+ ‖φ1‖2+ ‖φ2‖2+ ‖v2‖2)‖φ‖2+ c′′|φt |2

+c′′′(‖v1‖2+ ‖φ1‖2+ ‖v2‖2)|v|2

which yields:

|v(t)|2 6 c
(
|v(τ)|2+

∫ t

τ

(c′|f |2+ c′′(1+ ‖φ1‖2+ ‖φ2‖2+ ‖v2‖2)‖φ‖2+ c′′′‖φt‖2) dθ

)
× exp

(
c0

∫ t

τ

(‖v1‖2+ ‖φ1‖2+ ‖v2‖2) dθ

)
and using (21) (the bound on‖v‖), we finally find

|v(t)|2 6 c(|v1τ − v2τ |2+ c′(t − τ)max(|f |C(R;H), |φt |C(R;L2), |φ|C(R;H 1))
2ec

′′(t−τ))

hence the result. �
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Now let {S(t)} be the semigroup associated with the family of processes defined above.
The family of processes satisfies all the conditions of proposition 2. Therefore the following
theorem follows.

Theorem 1. The semigroup{S(t)} possesses a global attractorA. MoreoverA6 = 51A
is the uniform attractor for the family of processes defined by (25) andA6 = ∪σ∈6Kσ (0),
whereK(0) is the kernel of the process{Uσ (t, τ )}.
Remark 1. We can also consider almost periodic and asymptotically almost periodic
symbols (see [1]). In these two cases, we also obtain a result similar to theorem 1. However,
we would not be able to obtain estimates on the dimension of the attractor in these two
cases.

3. Upper bound on the dimension of the attractor

3.1. Preliminary results

We give here a general result for the estimation of the dimension of the attractor associated
to a nonautonomous system with quasiperiodic symbol. We saw that in that case the symbol
space can be identified with thek-dimensional torusTk. We consider the following system:

du

dt
= G(u, ω(t)) ω(t) = [αt + ω0] ω0 ∈ Tk α = (α1, . . . , αk) ∈ Rk (28)

u|t=τ = uτ uτ ∈ H t > τ τ ∈ R (29)

whereG(u, ω) is a family of nonlinear operators depending onω ∈ Tk with domainH1 and
with values inH0, H1 ↪→ H ↪→ H0 being Hilbert spaces.

We assume that (28), (29) is well posed. It thus generates a family of processes
{Uω0(t, τ )}, ω0 ∈ Tk. We also consider the semigroup

S(t) : H × Tk → H × Tk
(u0, ω0) 7→ (Uω0(t, 0)u0, αt + ω0)

wheret > 0. This semigroup can be constructed by considering the following autonomous
system

du

dt
= G(u, ω) (30)

dω

dt
= α (31)

u|t=0 = u0 (32)

ω|t=0 = ω0 (33)

whereu0 ∈ H , ω0 ∈ Tk, which can be rewritten in the form

dy

dt
= M(y) (34)

y|t=0 = y0 (35)

wherey = (u, ω) andM(y) = (G(u, ω), α). We assume that the family of processes is
uniformly asymptotically compact and(H × Tk, H)-continuous. Therefore the semigroup
{S(t)} possesses a compact attractorA in H × Tk. Moreover,ATk = 51A is the uniform
attractor of the family of processes. Since

dimATk 6 dimA
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where dim denotes the Hausdorff dimension, it suffices to find an upper bound for dimA
in order to obtain an upper bound on the dimension ofATk . We finally make the following
assumptions ((i)–(iii)).

(i) The semigroup is uniformly quasidifferentiable inH × Tk onA (see [11]).
(ii) The quasidifferentialS ′(t, y0)z0 = z(t), t > 0, satisfies the first variation equation

of (34) and (35):

dz

dt
= M ′(y(t))z (36)

z|t=0 = z0 (37)

wherez = (v, µ), which can be written in the form

dv

dt
= G ′u(u(t), ω(t))v + G ′ω(u(t), ω(t))µ (38)

dµ

dt
= 0 (39)

v|t=0 = v0 (40)

µ|t=0 = µ0 (41)

whereu(t) = Uω0(t, τ )u0, ω(t) = [αt + ω0].
(iii) We have

(M ′(y(t))z, z)= (G ′u(u(t), ω(t))v, v)+ (G ′ω(u(t), ω(t))µ,µ)
6 (L1(t, y0)v, v)+ (L2(t, y0)µ,µ) ≡ (M1(t, y0)z, z) (42)

for everyy0 ∈ A, t > 0 andz = (v, µ) ∈ H1×Rk, whereL1 is (for fixed (t, y0) ∈ R×A)
a selfadjoint operator inH , L1: H2→ H , H2 ⊂⊂ H , with a discrete spectrum

λ1(t, y0) > λ2(t, y0) > · · · > λi(t, y0) > . . . λi →−∞ as i →∞

and with orthonormal (inH ) eigenfunctionswi(t, y0), andL2 : Rk → Rk is selfadjoint, with
eigenvaluesηi = ηi(t, y0) and corresponding orthonormal inRk eigenfunctionspi(t, y0),
i = 1, . . . , k. Moreover, we assume thatL1 and L2 are uniformly (with respect to
(t, y0) ∈ R+ ×A) semibounded from above.

We haveM1 =
(
L1 0
0 L2

)
, M1z = L1v + L2µ, and the eigenvectors ofM1 are

ϕ
(1)
j = (wj , 0), M1ϕ

(1)
j = λjϕ(1)j , j ∈ N, andρ(2)i = (0, ζi), M1ρ

(2)
i = ηiρ(2)i , i = 1, . . . , k.

We have the following result which is proved in [1].

Proposition 4. We assume that (i)–(iii) are satisfied. Then if

qd = lim inf
t→+∞ sup

y0∈A

(
1

t

∫ t

0

d∑
j=1

(M1ζj , ζj ) dτ

)
< 0

whereζj are the eigenfunctions corresponding to thed greatest eigenvalues ofM1, we have

dimA 6 d

wheredim denotes the Hausdorff dimension.
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3.2. Application to the nonautonomous nonhomogeneous Navier–Stokes equations

We write (23), (24) as an autonomous system (i.e. in the form (34),(35)):

dy

dt
= M(y) (43)

y|t=0 = y0 (44)

wherey = (v, ω) andM(y) = (−νAv−B(v, v)−B(v, φ)−B(φ, v)+f −νAφ−B(φ, φ)−
∂φ

∂t
, α).

The proof of (i) and (ii) is classical (see for instance [11]). It remains to check that (iii)
is satisfied. In order to do so, we need to estimate(M ′(y)z, z), where

z =
(
w,

1

UL
µ

)
and

M ′(y)z = (−νAw − B(v,w)− B(w, v)+ f ′ω(x, ω(t))
1

UL
µ− B(w, φ)

−B
(
v, φ′ω(x, ω(t))

1

UL
µ

)
− B(φ,w)− B

(
φ′ω(x, ω(t))

µ

UL
, v
)

−νA
(
φ′ω(x, ω(t))

µ

UL

)
− B

(
φ, φ′ω(x, ω(t))

µ

UL

)
−B

(
φ′ω(x, ω(t))

µ

UL
, φ
)
− ∂

∂t

(
φ′ω(x, ω(t))

µ

UL
, 0
)
.

HereU is a velocity andL a length that will be fixed later and are considered for dimensional
reasons. Therefore

(M ′(y)z, z) = −ν‖w‖2− (B(w, v), w)+
(
f ′ω(x, ω(t))

µ

UL
, v
)
− (B(w, φ),w)

−
(
B
(
v, φ′ω(x, ω(t))

µ

UL

)
, w
)
−
(
B
(
φ′ω(x, ω(t))

µ

UL
, v
)
, w
)

−ν
((
φ′ω(x, ω(t))

µ

UL
,w
))
−
(
B
(
φ, φ′ω(x, ω(t))

µ

UL

)
, w
)

−
(
B
(
φ′ω(x, ω(t))

µ

UL
, φ
)
, w
)
−
(
∂

∂t
φ′ω(x, ω(t))

µ

UL
,w

)
.

We then obtain, since|(B(w, φ),w)| 6 ν
2‖w‖2 (by lemma 1 (iii) and our choice ofε

at the end of section 1)

(M ′(y)z, z) 6 −ν
2
‖w‖2+

∫
�

|∇v||w|2 dx +
∫
�

∣∣∣f ′ω µ

LU

∣∣∣ |v| dx
+
∫
�

∣∣∣∣ ∂∂t φ′ω(x, ω(t)) µUL
∣∣∣∣ |w| dx + ν ∥∥∥φ′ω(x, ω(t)) µUL∥∥∥ ‖w‖

+
∫
�

|∇φ||w|2 dx + |φ|L∞
∥∥∥φ′ω µ

UL

∥∥∥ |w| + ∣∣∣φ′ω µ

UL

∣∣∣
L∞
‖φ‖|w|

+
∣∣∣(B (φ′ω µ

UL
, v
)
, w
)∣∣∣+ ∣∣∣(B (v, φ′ω µ

UL

)
, w
)∣∣∣ .

We have ∣∣∣(B (v, φ′ω µ

UL

)
, w
)∣∣∣ 6 ∣∣∣∇φ′ω µ

LU

∣∣∣
L∞
|v||w|.
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Moreoverv ∈ ATk ⊂ B0, whereB0 is the absorbing set inH , thanks to the minimality
property. Thanks to (20),B0 = BH(0, 2R0), where

R2
0 =

c

ν2λ2
1

|f |2L∞(R,H) +
c′

ν2λ2
1

|φt |2L∞(R,L2)
+ c′′

ν2λ1
|φ|2L∞(R,L∞)|φ|2L∞(R,L2)

+ c
′′′

λ1
|∇φ|2

L∞(R,L2)

is an absorbing set inH . Therefore∣∣∣(B (v, φ′ω µ

LU

)
, w
)∣∣∣ 6 2R0

∣∣∣∇φ′ω µ

LU

∣∣∣
L∞
|w|.

Similarly we obtain, by integration by parts∣∣∣(B (φ′ω µ

LU
, v
)
, w
)∣∣∣ 6 2R0

∣∣∣∇φ′ω µ

LU

∣∣∣
L∞
|w| + 2R0

∣∣∣φ′ω µ

LU

∣∣∣
L∞
‖w‖.

Therefore

(M ′(y)z, z) 6 −ν
4
‖w‖2+

∫
�

|∇v||w|2 dx +
∫
�

|∇φ||w|2 dx

+ c

L2U2

(
1

νλ1
|f ′ω|2L∞(R,L2)

+ 1

νλ1

∣∣∣∣ ∂∂t φ′ω
∣∣∣∣2
L∞(R,L2)

+ ν|∇φ′ω|2L∞(R,L2)

+ 1

νλ1
|φ|2L∞(R,L∞)|∇φ′ω|2L∞(R,L2)

+ 1

νλ1
|φ′ω|2L∞(R,L∞)|∇φ|2L∞(R,L2)

+ R
2
0

νλ1
|∇φ′ω|2L∞(R,L∞) +

R2
0

ν
|φ′ω|2L∞(R,L∞)

)
µ2

which can be rewritten as

(M ′(y)z, z) 6 −ν
4
‖w‖2+

∫
�

|∇v||w|2 dx +
∫
�

|∇φ||w|2 dx +Kµ2. (45)

We then find

(M ′(y)z, z) 6 (M1z, z) = (L1w,w)+ (L2µ,µ)

where

L1w = −ν
4
Aw + P(|∇v| + |∇φ|)w

and

L2µ = KIkµ
whereIk is the identity operator inRk.

Sincey0 ∈ A, the function|∇v(x, t)| is smooth (see for instance [11, ch 4, section 6])
and consequentlyL1 is selfadjoint with a discrete spectrum, each eigenvalue having a finite

multiplicity. We then haveM1 =
(
L1 0
0 L2

)
, and the eigenfunctions areϕ(1)j = (wj , 0)

andϕ(2)i = (0, ζi), where{wj } is orthonormal inH , L1wj = λjwj , and{ζi} is an arbitrary
basis ofRk, i = 1, . . . , k, L2ζi = Kζi . We note that thed greatest eigenvalues ofM1 can
be written in the form

λd−k 6 · · · 6 λp 6 K 6 · · · 6 K 6 λp−1 6 · · · 6 λ1
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for d large enough. Moreover, we have

d∑
j=1

(M1ϕj , ϕj ) = −ν
4

d−k∑
j=1

‖wj‖2+
∫
�

|∇v|
d−k∑
j=1

|wj |2 dx

+
∫
�

|∇φ|
d−k∑
j=1

|wj |2 dx +K
k∑

j=1

|ζj |2

= − ν
4

d−k∑
j=1

‖wj‖2+
∫
�

|∇v|
d−k∑
j=1

|wj |2 dx +
∫
�

|∇φ|
d−k∑
j=1

|wj |2 dx +Kk.

Using the Lieb–Thirring inequality (see [11], appendix, theorem 4.1) we find

d∑
j=1

(M1ϕj , ϕj ) 6 −ν
8

d−k∑
j=1

‖wj‖2+ c

ν
(‖v‖2+ |∇φ|2

L∞(R,L2)
)+Kk.

Moreover

d − k =
∫
�

ρ dx 6 |�| 12 |ρ|

whereρ(x) =∑d−k
j=1 |wj |2. Therefore, we obtain

qd 6 − cν|�| (d − k)
2+ c

ν
(γ + |∇φ|2

L∞(R,L2)
)+Kk

where

γ = lim inf
t→+∞ sup

y0∈A

{
1

t

∫ t

0
‖v‖2 dτ

}
.

Thereforeqd < 0 if

d − k > c

( |�|
ν2
(γ + |∇φ|2

L∞(R,L2)
)+ K|�|

ν
k

)1/2

.

That is to say

d > k + c
( |�|
ν2
(γ + |∇φ|2

L∞(R,L2)
)+ K|�|

ν
k

)1/2

.

Using (19) we find

γ 6 c

ν2λ1
|f |2

L∞(R,L2)
+ c′

ν2λ1
|φt |2L∞(R,L2)

+ c
′′

ν2
|φ|2L∞(R,L∞)|φ|2L∞(R,L2)

+ c′′′|∇φ|2
L∞(0,T ;L2)

.

Therefore

|�|
ν2
γ 6 c

( |�|
ν4λ1
|f |2

L∞(R,L2)
+ |�|

2

ν4λ1
max

(
|ϕt |2L∞(R×∂�),

∣∣∣∣∇ ∂ϕ∂t
∣∣∣∣2
L∞(R×∂�)

diam2�

)
ε

+c
′′|�|
ν4λ1

(|ϕ|2L∞(R×∂�) · |∇ϕ|2L∞(R×∂�) diam2�|�|ε)+ c
′′′

ε

|�|
ν2
|ϕ|2L∞(R×∂�)

)
.

Similarly, we have

R2
0 6

c

ν2λ2
1

|f |2
L∞(R,L2)

+ c
′|�|
ν2λ2

1

max(|ϕt |2L∞(R,∂�), |∇ϕt |2L∞(R×∂�) diam2�)ε

+c
′′|�|
ν2λ1

max(|ϕ|2L∞(R×∂�), |∇ϕ|2L∞(R×∂�) diam2�)2ε + c
′′′

ε
|ϕ|2L∞(R×∂�)
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and we then find (the computations are similar to those performed in lemma 1) (note that
K is as defined by (45))

|�|
ν
K 6 c

L2U2

( |�|
ν2λ1
|f ′ω|2L∞(R,L2)

+ |�|
2

ν2λ1
max

(∣∣∣∣ ∂∂t ϕ′ω
∣∣∣∣2
L∞(R×∂�)

,

∣∣∣∣∇ ∂∂t ϕ′ω
∣∣∣∣2
L∞(R×∂�)

diam2�

)
ε

+1

ε
|�||ϕ′ω|2L∞(R×∂�) +

|�|
ν2λ1

max(|ϕ|2L∞(R×∂�), |∇ϕ|2L∞(R×∂�)

× diam2 |�|)|ϕ′ω|2L∞(R×∂�)
1

ε
+ |�|
ν2λ1

max(|ϕ′ω|2L∞(R×∂�), |∇ϕ′ω|2L∞(R×∂�)

× diam2 |�|)|ϕ|2L∞(R×∂�)
1

ε
+ R2

0

ν2λ1
|ϕ′ω|2L∞(R×∂�)

1

ε2
+ R

2
0|�|
ν2

×max(|ϕ′ω|2L∞(R×∂�), |∇ϕ′ω|2L∞(R×∂�) diam2�)

)
.

We now set

U = max(|ϕ|L∞(R×∂�), |∇ϕ|L∞(R×∂�) diam�, |ϕ′ω|L∞(R×∂�), |∇ϕ′ω|L∞(R×∂�) diam�)

L = max

(
|�|1/2,

(
1

λ1

)1/2
)

G1 = L2

ν2
|f |L∞(R,L2)

G2 = L

νU
|f ′ω|L∞(R,L2)

Re1 = UL

ν

Re2 = max(|ϕt |L∞(R×∂�)|∇ϕt |L∞(R×∂�) diam�)1/2
L3/2

ν

Re3 = max

(∣∣∣∣ ∂∂t ϕ′ω
∣∣∣∣
L∞(R×∂�)

,

∣∣∣∣∇ ∂∂t ϕ′ω
∣∣∣∣
L∞(R×∂�)

diam�

)
L2

Uν

Re = max(Re1, Re2, Re3).

We then find, takingε = cRe−1, c being a nondimensional constant, independent ofRe,

|�|
ν2
γ 6 (G2

1+ Re3)

|�|
ν2
|∇ϕ|2

L∞(R,L2)
6 c′Re3

R2
0 6

cν2

L4
(G2

1+ Re3)

|�|K
ν
6 c(G2

2+ Re +G1+ Re3).

we finally deduce that the Hausdorff dimension ofATk is bounded, as follows

dimATk 6 k + c(G1+ Re3/2)+ c′(G1+G2+ Re3/2)k1/2 (46)

wherec andc′ are nondimensional constants, independent ofG1, G2, andRe.
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Roughly speaking, the Reynolds numbers are nondimensional numbers illustrating the
ratio of (in this case) the strength of external forcing via boundary velocity and the
viscous force strength while the generalized Grashoff numbers are nondimensional numbers
illustrating the ratio of the strength of body force and the the strength of the viscous force.
Since both the boundary velocity and the body force are time and space dependent in
general, we may define different Reynolds numbers and Grashoff numbers to emphasize
different effects of different scales of the external forcing. Of course, we may always define
one single Reynolds number,Re, as above and one single Grashoff number as the sum of
G1 andG2.

Remark 2. If k = 0 (autonomous case), then (46) becomes the estimate derived in [8].
Moreover, it was proved in [1] that the termk is optimal if we consider the dependence in
k. Now if ϕ = 0, (46) reduces to the estimates derived in [1]

Thanks to (46), we find

dimATk 6
c

ν2
(47)

if f 6= 0 and,

dimATk 6
c′

ν3/2
(48)

if f = 0, wherec andc′ are independent ofν. These estimates are of the same order as those
derived in [8] for the autonomous case. Moreover, iff = 0, (48) agrees with Kolmogorov’s
heuristical estimate of the number of degrees of freedom of a two-dimensional turbulent
flow (see [11]), when the dependence onν is considered.

Remark 3. We can also obtain similar bounds for the fractal dimension ofATk just as in
the autonomous case.

Remark 4. For optimal bounds on the dimension of attractors for two-dimensional periodic
flows, the readers are referred to [3]. For more general boundary conditions, see [2].

Remark 5. In the case of shear driven channel flow we may sort out the dependence of
the dimension of the attractor on the shape of the domain (aspect ratio = length/width) in
the same way as was done by Doering and Wang [4] where the authors proved that the
dimension of the attractor for two-dimensional autonomous shear driven channel flows has
an upper bound of the form an absolute constant times the aspect ratio timesRe3/2.

Acknowledgments

This work was initiated during Professor M I Vishik’s visit to the Institute for Scientific
Computing and Applied Mathematics at Indiana University, Bloomington, where Professor
Vishik presented a series of lectures on the theory of attractors for nonautonomous dynamical
systems. The authors wish to thank him for very interesting discussions and his interest in
their work. They also wish to thank Professor Temam for several helpful comments. We
also wish to thank an anonymous referee for several useful comments.

This work was partially supported by the National Science Foundation under grant NSF-
DMS-9400615 and the Research Fund of Indiana University.



Attractors for Navier–Stokes equations 1061

References

[1] Chepyzhov V V and Vishik M I 1994 Attractors of non-autonomous dynamical systems and their dimension
J. Math. Pures Appl.73 279–333

[2] Constantin P, Foias C, and Temam R 1985 Attractors representing turbulent flowsMem. AMS53
[3] Constantin P, Foias C, and Temam R 1988 On the dimension of the attractors in two-dimensional turbulence

PhysicaD 30 284–96
[4] Doering C and Wang X Degrees of freedom for two dimensional shear driven channel flowPreprint
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