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Abstract. In this paper our aim is to derive an upper bound on the dimension of the attractor
of the family of processes associated to the Navier—Stokes equations with honhomogeneous
boundary conditions depending on time. We consider two-dimensional flows with prescribed
quasiperiodic (in time) tangential velocity at the boundary, and obtain an upper bound which is
polynomial with respect to the viscosity.

AMS classification scheme numbers: 35, 76

0. Introduction

In this paper, we continue the study initiated in [8] of the global attractor associated to
the two-dimensional Navier—Stokes equations with prescribed tangential velocity at the
boundary. The readers are referred to [11] for a comprehensive review on the subject of
attractors and the first work on the attractor for boundary driven flows. In [8], we proved
that the fractal and Hausdorff dimensions of the global attractor are bounde®d3,
where Re is the Reynolds number anda nondimensional constant independentRefin

the autonomous case. This is a significant improvement on previous bounds which were
exponential with respect to the Reynolds number (see [11]).

Recently, Chepyzhov and Vishik [1] presented a simple approach for the investigation
of nonautonomous infinite-dimensional dynamical systems that was well suited for the study
of equations arising in mathematical physics (see also Haraux [5] and Smiley [9]). In this
approach, to an equation of the type

du
dr
whereu € E andoy(t) is called the time symbol, the authors associated a two-parametric
family of operatord Uy, (t, v), t > t € R} defined byUy,,«)(t, T)u, = u(t), whereu is the
solution of (x) with initial datau,, and called the process associatedstp To construct
the attractors, they considered, together with a family of equationg*) with the symbol
o (t) belonging to a spac®&, called the symbol space.

= Agyy () (*)

§ On leave from lowa State University.
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1048 A Miranville and X Wang

WhenE is a Banach spacé&; a complete metric space, then if some invariant semigroup
{T(s),s > 0} (for instance but not necessarily the translation semigroup) acts ¢ire.

T(s)X = X, s > 0) and the translation identitYr ), (t, 7) = Us(t + 5,7 +5), 0 € &,

t > 1,1t €R, s > 0is valid, then the problem can be reduced to an autonomous system on
the extended phase spaex X. The uniform (with respect te) attractor of the family

of processes will then be the projection @hof the global attractor of this autonomous
system, if it exists. Furthermore, if the time symbol is quasiperiodic, then it is possible to
obtain an upper bound on the dimension of the attractor.

In this paper, we consider two-dimensional flows with prescribed, quasiperiodic in
time, tangential velocity at the boundary. In section 1 we present the equations and obtain
a priori estimates. Then, in section 2 we construct the family of processes associated to
these equations and prove the existence of the uniform attractor. Finally, in section 3 we
obtain an upper bound on the Hausdorff dimension of the attractor. This bound is of the
same order as the one obtained in the autonomous case.

1. Setting of the problem

Let © be a smooth (at leagt®) bounded domain ifR?. We consider the Navier—Stokes
equations orf:

M vAut @V Vp = f @)
divu =0 @
u=gq on o 3)

where f = f(x,t) andg = ¢(x, t) are quasiperiodic im.
Unless otherwise stated throughout this paper; andc¢” will denote various generic
nondimensional constants (which may depend on the shape of the domain).
Moreover, we make the following assumptions frand ¢:

FCt) = fC ot ... at) 4)

(1) =@, aal, ..., oul) ©)
where f (-, w1, ..., w) ande(-, ws, ..., wy) are 2r-periodic in each argument;, the {«;}
being rationally independent;

f € CGiR; LAQ)) (6)

¢ € CL(R; C3(0)%) @
whereb means that we consider bounded functions;

g-n=0 (8)

wheren denotes the unit outer normal @f2.
For the mathematical setting of (1)—(3) we consider the spaces

H={ueL?)>%divu =0,u-n=00ni}
V={ueHYQ?NH,u=00n0Q}
which are endowed with their usual scalar products and norms which we dengtand
| - | for H and((-,-)) and|| - || for V.
Based on a construction by Temam and Wang [12] which improves Hopf's original

construction of divergence-free functions with a given velocity field at the boundary we
have the following result.
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Lemma 1. For everye > 0, there exists a smooth functign= ¢. (x, t) satisfying:

(i) divep = 0;

(i) ¢ = p 0N OQ;

(iiiy | S (o - V/)¢ cudx| < ce|Velemxan) | QY2 ull?, Yu € V;

(V) lloll < G| Volxmxon); ‘

V) 122] < ¢"IQ1Y2eY2 max(| 9 | L@ xon). |V 92 |1~ rxag) diam)
wherec, ¢’ and ¢” are nondimensional constants, independent ahd diamS denotes the
diameter ofQ.

Proof. The proof here is similar to the one performed in [8], lemma 2.1. Sices
bounded and regular there exists> 0 such that all normals frord2 do not intersect in a
neighbourhood of width & (which we denoteD,;,(3€2)) (see for instance [6, page 354]).
Moreover, for every(x, y) € O,(3€2), there exists a unique poibix, y) € 32 such that

dist((x, y), 92) = dist((x, y), b(x, y)).

Let Ty, denote the clockwise tangent vectordf at the pointb(x, y). We consider a
function p € C*([0, +00)) such that

suppe C [0, 1] 9)
p(0) =1 (10)
o) <1 Vs € [0, 1] (11)
1
/ p(s)ds =0 (12)
0

and we set

dist((x,y),b(x,y)) s .
v =1 = o(b(x, y), 1) - Tb(x,y)/ 14 <|Q|l/28> ds if (x, y) € 0280(39)
0

v =v:.=0 elsewhere.
We finally set
o
¢ = ¢:(x,y, 1) =curl(y) = ( oy ) )
x
We then prove, exactly as in [8], that (i))—(iv) are true. To obtain (v), we note that if
¢ = (¢1, ¢2), then

a1 0 agp /dist((x,y),aﬂ) s
——=—— | = (b, y), 1) Ty " 3dq
T 9y <8t( (e, ¥)5 1) - Thix,yy A o\ gz ) &

17 dist((x, y),92)\ 9 .
—E(b()f, ), 1) - Ty P (|Q|1/28 @ dist((x, y), 0€2)

dpy 3 [dp /diSt((x.y),BQ) s
— == — | — (b, y),t) Tpie.y I
ot ox <3f( 05 20,8« T '”) 0 P\iamze ) @

3 dist((x, y), 9Q)\ 8 .
+§(b(x, ), 1) - Tpx )P <|Q|1/2g> o dist((x, y), 02)

and if (x, y) & Ojgu2:(39) (i.e. dist(x, y), Q) > |2|¥2¢) then

dist((x, y), 9RQ) _0
( 12|12 >_

dist((x.),0%) s
ol —==5]ds=0.
/0 <|Q|l/25)
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We then proceed as in [8] lemma 2.1 to verify that (i)-(v) are satisfied. This is
straightforward. We omit the details. O

We now setu = v + ¢, and we obtain the following equation for

%—vAv+(v~V)v+(¢-V)v+(v-V)¢+Vp:f—i—vA(p—(qS-V)qﬁ—%—? (13)
divv =0 (14)
v=20 on o (15)
which can be written in functional form (see for instance [11])

dv -

P +vAv+ B(w,v)+ Rv=f (16)

where f = Pf —vA¢ — B(¢,¢) — P5;, P is the orthogonal projector fromi? into H,

A=—PA, Bu,v) = P((u-V)v) andRv = B(v, ) + B(¢, v).
As in [8], we prove that for every € R and for everyv, € H, there exists a unique
solutionv of (16) with initial datav, (i.e. v(t) = v;) such that:

v € L%(z, +00; V) N L®(t, +00; H) N C(t, +00; H).

We take the scalar product ib? of (13) by v and obtain, by integration by parts and
recalling that(B(u, v), v) = 0:

1d
fEWV+WMV+A@‘W¢%Mx=UWI—WwwD—L@-W¢de%@w)
(17)

Therefore, taking = ————, wherec is the constant in lemma 1, (iii),
2¢192|2 || o0

d o, v 5 v 2 2,V 2, € 2, V2
——|vl*+ ZIvlI© < =llvlIc+cv + v+ — + v
2dt| | 2|| I 16|| 1“+ cvliell 16|| I l))\1|f| 8|| l

+ 1P+
U}\.l !

/@-w¢wd4
Q
wherei; > 0 is the first eigenvalue of the Stokes operatoon Q with zero Dirichlet

boundary condition (see for instance [11]).
As in [8] we have

< clole=1llivll

f@-w¢wa
Q

and thus

C

/ CN ”
1>+ — 10171012 + " IIgII%.  (18)
VA1 %

d - v 2 c 2
— = < —
dt|v| + 2IIvII vA1|f| +
Integrating (18) between and T, we obtain
2,V 4 2 2 c ’ 2 c ’ 2
uﬂn+—/nww<wmw%—f|ﬂw+—i/WAw
2 T 1))‘41 T V)"l T

C” r 2 2 7" T 2
-%;/IMWMIW+CVf 12 dr. (19)
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Moreover, using the Gronwall lemma and Poiricarequality, we find

/
2 2. (— ¢ 2 ¢ 2
O < @) Pe 7 0+ S e + 551 @
VeAD VeAD

/! "

C C
+v2)\1|¢|ix(R,L2) X |¢|%°°(R,L°°) + Z'Vql)lioo(R,LZ) (20)
Finally, taking the scalar product of (16) with — t)Av, we find
¢ =Dl < cr(@. f. T. 7. V(@ + (1 = T)cad. f. T, T, v). (21)

2. Existence of the global attractor

2.1. Preliminary results

In this section we consider the framework of Chepyzhov and Vishik [1]. We recall here the
results that will be used in the sequel.
We consider a Banach spageand a two-parametric family of mappings acting Bn

Uit, 7). E—> E

t > 7,t € R. The mappingU is called a process if:

(i) U(z, ) = I (identity operator);

(i U@,s)oU(s, 1) =U(t, 1),V =25 >1,T €R.

We denote by53(E) the set of all bounded sets . The process is bounded if for any
setB € B(E), the setU,cr U;>. U(t, T)B € B(E). A setBy € B(E) is absorbing if for any
setB € B(E), there exista" = T(z, B) such thatU (¢, t)B C By for ¢t > T. Finally, a set
A is attracting for the process if for anye R and anyB € B(E), distU (¢, 7)B, A) — 0
ast — +oo.

We now consider a family of processfs, (¢, t)} depending on a functional parameter
o € X. The parametes is called the symbol of the process, aRdis called the symbol
space, which is here assumed to be a complete metric space. The family of processes
is said to be uniformly (with respect t6 € ) bounded if for anyB € B(E), the set
Usex Urer Urs:Us (t, T)B € B(E). A setBg € E is said to be uniformly absorbing for the
family of processes if for any € R and anyB € B(E), there existsT = T(t, B) such
that U,s U, (¢, T)B C Bg, YVt > T. Finally, a setA is said to be uniformly attracting for
the family of processes if

t—liToo suzpdist(Ua (t,7)B, A) =0 VT € R,VB € B(E).
[AS

A family of processes possessing a compact uniformly absorbing set is said to be
uniformly compact and one possessing a compact uniformly attracting set, uniformly
asymptotically compact.

A closed setdy C E is said to be the uniform (with respect éoe X) attractor of the
family of processes if it is uniformly attracting and it is contained in any closed uniformly
attracting setA’ of the family of processes (minimality). We have the following result
which is proved in [1].

Proposition 1. If a family of processes is uniformly asymptotically compact then it possesses
a uniform attractorAsy.

We now assume that an invariant semigrd@gs)},~o acts onz: T(1)X = £, V¢t > 0,
and that:
(i) Us(t +s5,74+5)=Uroe(t, 1), Yo e Z,Vt 21,7 €R, s > 0.
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We then set
SH:ExX—ExX
(u,0) —>= (U, (t,Ou, T(t)o) t>0.
The family of mappingqS(¢)} acting onE x ¥ forms a semigroup o x X (see [1]).

Definitions.

(a) A family of processes is said to & x X, E)-continuous if for fixedr and t,
t > 1, t € R, the mappingu, o) — U, (¢, T)u is continuous fromE x X into E.

(b) A curveu(s), s € R is a complete trajectory of the procelds(z, 7)} if

U, t)u(t) = u(t) Vi>t T € R.

(c) The kernelK of the procesqU(z, t)} consists of all bounded trajectories of the
process. The sek (s) = {u(s), u € K} is called the kernel section at time= s.

We end this section with the following result, which is proved in [1].

Proposition 2. We consider a family of processfs, (¢, 1)}, o € X, whereX is a compact
metric space. Le{7(t)} be a continuous-invariant semigroup @i satisfying (iii). We
assume that the family of processes is uniformly asymptotically compadtfandx, E)-
continuous. Then the semigroif(s)} associated with the family of processes possesses a
compact, invariant attractord. Furthermore:

(a) Ag = 1A is the uniform attractor of the family of processes;

(b) oA = %;

(€) A=Usex Ky (0) x {0} ;

(d) AZ = UUEEKU(O):

wherell; and IT, denote the projectors frole x X into E and X respectively.

2.2. Construction of the global attractor

We write (16) in the form
dv

5 = Jnot0 ) (22)

whereog(t) = (f (), ¢ (1), ¢:(¢)). Using thea priori estimates derived in section 1, we
easily prove that (22) possesses a unique solution with initial da&aH satisfying

v e L>(z, +o00; H)N L?(x, T; V) N C(z, +o0; H) VT > 1.
We now consider the family of problems

d
dit) =Gor)(v) (23)
v(t) = v, (24)

o(t) € ¥, whereX = H(op) is the hull ofay. We have here
H = {oo(a1t + wot, - - -, axt + wor), (@o, - - -, wor) = wo € TF)

whereT* denotes thé&-dimensional torus. Therefore it is convenient to consiifeas the
symbol space of our problem. We also introduce the translation fbdp, » € R} which
acts onT* by the formula

T(ho = (ah + ) (mod T*) w e T*.

Now, it is easy to check that for evety € H(op), (23)—(24) possess a unigue solution
v(t). Moreover, estimates (19)—(21) hold with the same constants, since, for instance,
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| faat + wor, ..., okt + wo) | Lw. 2y = |f()|L~m 2. Therefore, we can consider the
family of processesU, (¢, )}, o € X defined by
v(t) = Uy (t, T)v, (25)

wherev is the solution of (23), (24). We have the following result.

Proposition 3. The family of processes defined by (15) is uniformly bounded, uniformly
compact and H x H(op), H)-continuous.

Proof. To prove that the family of processes is uniformly boundeddinwe use (20).
This inequality also enables us to prove the existence of a uniformly absorbirg} set
H.

Now the setU,cs U.cr Uy (t + 1, T)Bg is also uniformly absorbing if. Using (21),
we prove that this set is also boundedAft and hence precompact . Therefore, the
family of processes is uniformly compact.

It remains to check that the family of processeq 4t x H(op), H)-continuous. We
consider two symbols; and o, and their corresponding solutiong and v,. Setting
v=uv1—vy f = f1— fo and¢ = ¢1 — ¢», we obtain the following equation far;

% + vAv + B(v, v1) + B(v2, v) + B(¢1, v) + B(¢, v2) + B(v, ¢1) + B(v2, ¢)
0
= [~ vAD— B, — Bér. )~ P (26)
vlt:r = V1r — V2. (27)

Taking the scalar product of (26) with we obtain

é%M2 +llvl® = (f. v) = (B(v, v1), v) — (B(¢, v2), v) — (B(v, $1). v)
—(B($. $1),v) — (B($2,$). v) — (B(v2, $), v) — v((¢, V) — (¢1. V).
Therefore
%Ivlz +ullvl? < el f12+ N1 + "l + lvallvlZs + IgalllviZa + 18] llvalllv] e
+1plallpall vl + |2lrell@llv]ze + lvaleeldllv]Le.
We then deduce, using Ladyzhenskaya’s inequalitﬁ( < cvl|lv])

d / I/
a'”'z LclfP+ @+ gl + llgall® + lvlD gl + ¢ 2

+c” (lorll? + llgall® + llv2ll?)]v]?
which yields:

lu(t)? < c(|v(r>|2 +/ CIfIP+ @+ gl + llg212 + v 112 + e 1) de)

t
x eXP<CO/ (loall® + ligall® + llv2ll?) de)
and using (21) (the bound gpv||), we finally find

2 2 2 Mt—
lv(®)1? < e(lvie — v, |? + ¢t — T)Y Max( flew: my» [Pelew.12)s |lem: my) %€ )

hence the result. O
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Now let {S(¢)} be the semigroup associated with the family of processes defined above.
The family of processes satisfies all the conditions of proposition 2. Therefore the following
theorem follows.

Theorem 1. The semigroudS(s)} possesses a global attractot. MoreoverAs = I1;.A
is the uniform attractor for the family of processes defined by (25).4p0= U,cx K, (0),
where K (0) is the kernel of the proceg¥/, (¢, 7)}.

Remark 1. We can also consider almost periodic and asymptotically almost periodic
symbols (see [1]). In these two cases, we also obtain a result similar to theorem 1. However,
we would not be able to obtain estimates on the dimension of the attractor in these two
cases.

3. Upper bound on the dimension of the attractor

3.1. Preliminary results

We give here a general result for the estimation of the dimension of the attractor associated
to a nonautonomous system with quasiperiodic symbol. We saw that in that case the symbol
space can be identified with tikedimensional torug*. We consider the following system:

d
d—l: =Gu, w(t)) w(t) = [ott + a)o] wo € T* o= (a1,...,0) € R (28)
Uljmr = Uy u, € H t>T TeR (29)
whereG (u, w) is a family of nonlinear operators depending®ore T* with domainH; and
with values inHy, H, — H — Hy being Hilbert spaces.

We assume that (28), (29) is well posed. It thus generates a family of processes
{Un(t, T)}, wo € T*. We also consider the semigroup

S(t): Hx Tt — H x Tk
(g, wo) = (U, (t, O)utg, att + wo)

wherer > 0. This semigroup can be constructed by considering the following autonomous
system

du
dw
Ul;—o = ug (32)
w|i=0 = wo (33)
whereug € H, wp € T%, which can be rewritten in the form
dy
— =M 34
& ) (34)
Yli=0 = Yo (35)

wherey = (1, w) and M(y) = (G(u, ), o). We assume that the family of processes is
uniformly asymptotically compact an@d? x T*, H)-continuous. Therefore the semigroup
{S(t)} possesses a compact attractbin H x T*. Moreover, A« = I1;.4 is the uniform
attractor of the family of processes. Since

dimAp < dimA
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where dim denotes the Hausdorff dimension, it suffices to find an upper bound fo4 dim
in order to obtain an upper bound on the dimensiomef. We finally make the following
assumptions ((i)—(iii)).

(i) The semigroup is uniformly quasidifferentiable ki x T* on A (see [11]).

(i) The quasidifferentialS’ (s, yo)zo = z(¢), t > 0, satisfies the first variation equation
of (34) and (35):

d
g = MOm): (36)
Zli=0 = 20 (37)

wherez = (v, u), which can be written in the form

d

di; =G ), o))+ G, (), o)) (38)
T

3 =° (39)
V=0 = vo (40)
Wli=0 = o (41)

whereu(r) = Uy, (t, T)uo, @ (t) = [at + wo).
(iii) We have

(M'(y(1))z, 2) = (G, (u(1t), @ (®)v, v) + (G, (), o)1k, 1)
< (La(t, yo)v, v) + (La(t, yoyu, n) = (Ma(t, yo)z,z)  (42)

for everyyp € A, t > 0 andz = (v, n) € H; x R¥, whereL, is (for fixed (¢, yo) € R x A)
a selfadjoint operator i, L1: H, — H, H, CC H, with a discrete spectrum

Ar(t, yo) 2 Ao(t, yo) = -+ = Ai(t, yo) = ... A —> —00 asi — oo

and with orthonormal (irf) eigenfunctionsu; (¢, yo), andL, : R¥ — R is selfadjoint, with
eigenvalues;; = n;(t, yo) and corresponding orthonormal R* eigenfunctionsp; (¢, yo),

i = 1,...,k. Moreover, we assume thdt; and L, are uniformly (with respect to
(t, yo) € RT x A) semibounded from above.

We have M; = <161 LO
2

o = (. 0), Mg = ;0" j €N, andp® = (0.5,), Mip® = nip®, i =1.... k.

i

We have the following result which is proved in [1].

>, Miz = Liv + Lou, and the eigenvectors off; are

Proposition 4. We assume that (i)—(iii) are satisfied. Then if

o 1 [
qq = liminf sup < / (M1¢;, g)dr) <0
1>+o0 A\t o; .
whereg; are the eigenfunctions corresponding to thgreatest eigenvalues 81, we have
dmA <d

wheredim denotes the Hausdorff dimension.



1056 A Miranville and X Wang
3.2. Application to the nonautonomous nonhomogeneous Navier—Stokes equations
We write (23), (24) as an autonomous system (i.e. in the form (34),(35)):

dy

a = M(y) (43)
Yli=0 = Yo (44)
wherey = (v, w) andM (y) = (—vAv—B(v, v)— B(v, ¢)—B(¢p, v)+ f —vAd— B(¢, ¢)—

¢

B0 C()

The proof of (i) and (ii) is classical (see for instance [11]). It remains to check that (iii)
is satisfied. In order to do so, we need to estim@e(y)z, z), where

_ 1
I=\|\w, ULI‘L

1
M'(y)z = (—vAw — B(v, w) — B(w, v) + f) (x, a)(t))ﬁu — B(w, ¢)

and

1 Iz
-5 (v, ¢, (x. w(t))ULM) ~ B¢, w) = B (¢),(x.0(0) 1. v)
—va (¢,r 00) 57 ) = B (¢4, 00) )
B (9,000 2 0) — (900 2 0).

HereU is a velocity and. a length that will be fixed later and are considered for dimensional
reasons. Therefore

(M'(1)z.2) = =v[[wl? = Bw, v} w) + (£ 0@O) . v) = (B, ¢). w)
= (B (vt 07 ) w) = (B (#0007 0) ow)
= (10O w)) = (B (4.0, 0@ ) w)
—(B(#n0r 07 9) w) - (aatqs;(x, 0O w) .

We then obtain, sinc&B(w, ¢), w)| < g||w||2 (by lemma 1 (iii) and our choice of
at the end of section 1)

v
/(3122 < gl + [ (Volwlds+ [ [0 olds
Q Q

-
/
Q

¢,,0r.00) |l
+/Q|v¢||w|2dx+|¢|m (%%H Wity

| (o) )48 (o) w)]

;M M
‘(B <U’¢wﬁ) , w)‘ < ‘VQI"E L [v[lw].

a , i
at‘f’w(“’(’”m"“"dx*“‘

We have
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Moreoverv € A C By, where By is the absorbing set i, thanks to the minimality
property. Thanks to (20)8y = By (0, 2Rp), where

/ Z 7a

2
Ry = 2A2 |f|L°°(]R m T 2A2|¢r|Lw(R T Vg |¢’|Loo(1R L"“)|¢|L°°(]R T o |v¢|L’~’°(R L?)

is an absorbing set if/. Therefore

‘(B(”’d’;%) )‘ 2R0‘V¢”LU wl-

Similarly we obtain, by integration by parts

(8 (4 v) - w) [ < 200 900

2R
iU |w|+ 0

lJwll.

LU L “’LU‘

Therefore

(M/(y)z,z><—§||w||2+/ |VU||w|2dx+/ |Vo||w|* dx
Q

2
c

J
+L2U2< |f ILoc(RLZ)'i_i

/2
91 % + U|V¢w|L°C(]R,L2)

L®(R,L2)

|¢|L”(RL’C)|V¢ |L°°(]R L2)+ |¢ |Lm(RL%>|V¢|Lw(RL2)

2 2
R

0 v |2 0472 2

+ )L1| ¢(/U|L°°(R,L°°)+ N |¢(/u|L°°(]R,L°°)>/"L

which can be rewritten as
')z, 2) < — ol + [ (olloP e+ [ [Valwlde+ kil 49
We then find
(M'(y)z,2) < (Maz, 2) = (Law, w) + (Lop, )
where
Liw = —gAw + PVl + [VéDw
and
Lo = Kl

wherel, is the identity operator ifR.

Sinceyg € A, the function|Vu(x, t)| is smooth (see for instance [11, ch 4, section 6])
and consequently, is selfadjoint with a discrete spectrum, each eigenvalue having a finite
multiplicity. We then haveM; = (Lol I? ) and the eigenfunctions arél) = (wj,0)

2
andg;” = (0, ¢;), where{w;} is orthonormal inH, Liw; = A;jw;, and{¢;} is an arbitrary
basis ofR¥, i = 1,...,k, Lo = K¢;. We note that thel greatest eigenvalues af; can
be written in the form

2

Ak S SAHSK<- - SK<SAp1<- <M
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for d large enough. Moreover, we have
d v d—k d—k
> (a0 = =5 >yl [ 1903 s Pl
j=1 j=1 2 j=1
d—k k
+/ VoI Y wlPde + K Y [g[
2 j=1 j=1
p 4=k d—k d—k
= o2 bl [ 19wyl [ 1913 o + K
j=1 & j=1 & j=1

Using the Lieb—Thirring inequality (see [11], appendix, theorem 4.1) we find

Z(Mlq),,w] Zuw,n + - (||v|| + VO 2) + KK
j=1 /_1

Moreover
d—k=/pdx<|sz|%|p|
Q

wherep(x) = Z;i:‘i‘ |w;|2. Therefore, we obtain

qa < @w k)? + —(y +|VOI: e 12) + Kk
where
y = liminf sup{ / lv]] d‘L’}
t—+00 yoeA

Thereforeg, < 0O if

1/2
€2 2 1$2]
d—k>c ?(V+|V¢|LM(R,L2))+T]€ .

That is to say

12| K|sz| vz
d>k+c —(y+|v¢|Lm(RLz))+ .

Using (19) we find

/ //
V X |f|Loo(]R L2) + |¢f|L’~’°(R L?) + = |¢|LOQ(]R L’“)|¢|L°“(R L?) + CW|V¢|L00(0 T:L%)"
Therefore
2 |sz| |9|2 g |° .
= |f|MR oyt o max |01 17 @y VeT dianf Q| e
v I Lo ®xa9)

//| | /// I

(|¢|L“(Rxa§2) |V€0|L%(}Rxam diant Q|Qle) + — 2 |§0|%”(R><BQ)>'

Similarly, we have

/
2 ¢ 2 c |Q| 2 2 .
Ro < Uzk% |f|LN(]R,L2) + Vz)»i max(l(pllLN(RﬂQ)a |V§0Z|Lw(RxaQ) diant? Q)e

1 | | /1"

. c
|V(p|%°@(R><BQ) dian? )% + ?Wﬁw(ﬂaxm)

\)2)»1
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and we then find (the computations are similar to those performed in lemma 1) (note that
K is as defined by (45))

Gy e (2

2
< | faliom 12
v L2U2 v2kl (R,L?)

+|Q|2 max J
1)2)»1 3l(pw

2 2

Va !
az‘p‘”

3

L>*(Rx9%2)
|€2]
vzkl

L®(RxR)

diant sz) P

1 /2 2 2
+E|Q||(pw|L‘>°(]R><BQ) + Max(|@17«rxaq)> | VOIL~®xo0)

|€2]
VZ)»]_

1 R? 1 R3Q|
- 2 0 2 0
x diant? |Q|)|¢|L°°(]R><BQ); + UTMW:JLOO(Rxam —

1
H 72 /2 72
x dian? |Q|)|(pa)|L°C(R><SQ)E + MaX(|@,, |7 @xa): |V @olix@xin)

£2 v2
2 2 -
X ma)(|‘/’¢/u|L>o(Rxasz)v |V¢ZU|L°°(]R><BQ) dian? Q)>-
We now set

U = max(|¢|r=®rxs9), |V@lL~@mxan) diam, |¢) |L=®xi), | V@, |L~@xaq) diam)

1\Y2
L= max<|§2|1/2, () )
A1

2
G1= F|f|Lw(R,L2)
Go= Z1p)
2 = ——— o0 2
vy e L>(R,L?)

UL
R€1= B
Vv

3/2
Rey = \vJ diame 1/2L !
e2 = MaxX(|@; L= ®xoe) | V@ L2 ®xa0) diame2) »

0 'V 0
7()0 ) 7(p

0| xmxagy | 017
Re = max(Re1, Rey, Re3).

. L?
diamQ | —
Lo (Rx0RQ) Uv

We then find, taking = cRe™?, ¢ being a nondimensional constant, independerk af

12|
?J/ < (Gi + Rea)

12|
2

Res = max(

2 3
Vol ~m.12) < c¢'Re

2 cv? 2 3
QK

< (G54 Re 4+ G + Ré®).
we finally deduce that the Hausdorff dimension4f: is bounded, as follows
dim A < k + ¢(G1+ Re¥?) + ¢/ (G1 + G, + Re¥?)kY? (46)

wherec andc¢’ are nondimensional constants, independent gf G,, and Re.



1060 A Miranville and X Wang

Roughly speaking, the Reynolds numbers are nondimensional numbers illustrating the
ratio of (in this case) the strength of external forcing via boundary velocity and the
viscous force strength while the generalized Grashoff numbers are nondimensional numbers
illustrating the ratio of the strength of body force and the the strength of the viscous force.
Since both the boundary velocity and the body force are time and space dependent in
general, we may define different Reynolds numbers and Grashoff humbers to emphasize
different effects of different scales of the external forcing. Of course, we may always define
one single Reynolds numbeRe, as above and one single Grashoff number as the sum of
Gy and Go.

Remark 2. If k = 0 (autonomous case), then (46) becomes the estimate derived in [8].
Moreover, it was proved in [1] that the terknis optimal if we consider the dependence in
k. Now if ¢ = 0, (46) reduces to the estimates derived in [1]

Thanks to (46), we find

dimAp < (47)
vV
if f# 0 and,
. ol
dim Az < —; (48)

if f =0, wherec andc’ are independent of. These estimates are of the same order as those
derived in [8] for the autonomous case. Moreoverf i 0, (48) agrees with Kolmogorov's
heuristical estimate of the number of degrees of freedom of a two-dimensional turbulent
flow (see [11]), when the dependence wis considered.

Remark 3. We can also obtain similar bounds for the fractal dimensiopdgf just as in
the autonomous case.

Remark 4. For optimal bounds on the dimension of attractors for two-dimensional periodic
flows, the readers are referred to [3]. For more general boundary conditions, see [2].

Remark 5. In the case of shear driven channel flow we may sort out the dependence of
the dimension of the attractor on the shape of the domain (aspect ratio = length/width) in
the same way as was done by Doering and Wang [4] where the authors proved that the
dimension of the attractor for two-dimensional autonomous shear driven channel flows has
an upper bound of the form an absolute constant times the aspect ratioRifiés
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