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A b s t r a c t - - I n  this article, we establish partial results concerning the convergence of the solutions of 
the Navier-Stokes equations to that of the Euler equations. Convergence is proved in space dimension 
two under a physically reasonable assumption, namely that the gradient of the pressure remains 
bounded at the boundary as the Reynolds number converges to infinity. 
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1. I N T R O D U C T I O N  

The understanding of turbulent boundary layers and the behavior of the solutions of the Navier- 

Stokes equations at large Reynolds numbers are outstanding problems in mathematics and 

physics. An abundance of literature is available in the fluid mechanic and mathematics liter- 

atures; on the mathematical side, see, e.g., [1-6], and the references therein. The most recent 
results include a new approach to the law of the wall for turbulent boundary layers [7,8], a proof 

of the convergence of the solutions of the Navier-Stokes equations to that  of the Euler equations, 

for a small interval of time in the context of analytic solutions [9], and the s tudy of the inviscid 
limit of vortex patches [10]. 

In earlier works we have studied the convergence, for large Reynolds numbers, of the solutions 
of linearized Navier-Stokes of the Oseen type, see [11-13]; see also [14] for related but distinct 
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situations. In this article, we apply some of the technics developed in [11-13], to the full (nonlin- 
ear) Navier-Stokes equations in space dimension two. Under physically reasonable assumptions 
we prove tha t  the solutions to the Navier-Stokes equations converge to the solutions of the Euler 
equations on any finite interval of time: the assumptions tha t  we make on the solutions are either 
the boundedness at the wall of the gradient of the pressure, an assumption which is confirmed by 
physical experiments and well accepted in turbulence theory, or we assume a moderate  growth 
condition for the tangential derivative of the tangential flow near the wall, an assumption whose 
physical relevance is discussed in the text. 

For the sake of simplicity, we restrict ourselves to the case of rectangular geometry, considering 
the flow in a channel; however the flow in a general domain can be handled in a similar manner  [12]. 

This article is organized as follows. In Section 2, we set the notations and state the main 
results; then in Sections 3 and 4, we give some indications on the proofs. The details of the 
proofs will be given elsewhere [15]. 

2. T H E  M A I N  RESULTS 

We consider the Navier-Stokes in space dimension two in an infinite channel f~oo = R x (0, 1): 

~U c 
- ~ -  - eAu c + (u e.  W)u e + Vp e = f ,  in ~too x R+, (2.1) 

V .  u ~ = 0, in f~oo x R+. (2.2) 

The velocity u e vanishes at the boundary 0 ~  of the channel (i.e., at  y = 0, 1), 

u e : 0 on 0~oo x R+, (2.3) 

and periodicity (period 2H) is assumed in the horizontal (x) direction. We set 12 = (0, 27r) x 
(0, 1), F = (0, 2~r) x {0, 1}, and introduce the natural  function spaces 

i ~ 2 V -- {v E (Hioc(oo) )  , div v = O, vlo~o¢ = O, v is 2~r-periodic in x } ,  
tL2 t~ ~2 g = {v  = ( v l , v 2 )  • ~ Io¢~ c~jj , div v = O, v21oa~=o, v l  is 2~r-periodic in x } .  

Finally, equations (2.1)-(2.3) are supplemented with the initial condition 

u e = u0, (given in V) at t = 0. (2.4) 

We intend to compare the solutions of (2.1)-(2.4) to the solutions ( u ° , p  °) of the corresponding 
Euler equations, i.e., 

ou  o 
+ (u ° .  V)u  ° + Vp ° = f ,  in floo x R+, (2.5) 

0t 
V .  u ° = 0, in 12oo x R+, (2.6) 

u ° .  n = 0, on 012c~ x R+, (2.7) 

u ° = u0, at  t = 0. (2.8) 

In (2.7), n is the unit outward normal, so tha t  for u 0 = (ul,0 u2),0 (2.7)is equivalent to u ° = 0 at  
y -- 0, 1. Furthermore,  space periodicity in x is understood. 

We are not interested in issues related to the possible loss of regularity for u c and u°; hence 
we assume hereafter tha t  u c, pe, u o, p0 are as smooth as needed. In fact, the classical results 
on regularity of the solutions of the Navier-Stokes equations provide all the desired regularity 
for u c, pC, provided f and u0 are sufficiently smooth; for the Euler equations (2.5)-(2.8) existence 
and regularity are shown in [16] by a proper generalization of the corresponding results for the 
Euler equations with the nonpenetrat ion boundary condition [3,17-20], (see also [21,22]). 

Our main result asserts tha t  if the tangential derivative of pC (x-derivative on F) does not grow 
too fast, then u e converges to u ° as e --* 0; as demonstrated in Theorem 1. 
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THEOREM 1. Let u E and u ° be the solutions of the Navier-Stokes and Euler equations above. 

We assume that  T > 0 is fixed and that  there exist two constants a l ,  6 independent of e, 
0 _< 6 < 1/2, such that  either 

lip IIL2(O,T;H1/2(r)) <-- ~1 ~-6, 

or 

IlperrllL2(O,T;L2(F)) -~ IlpellL2(O,T;Hl(r)) <_ /~1 e -6-1 /4 .  

Then, there exists a2 independent of 6 such that  

Ilu ~ - uOIILoc(O,T;~) <_ n2~(1-~)/5. 

(2.9) 

(2.1o) 

(2.11) 

The principle of the proof of Theorem 1 is given in Section 4; all the details will appear in [15]. 

REMARK 1. The convergence in (2.11) is in the strong (norm) topology of L°°(0, T; L2(~)2); as 
usual in boundary layer phenomena, convergence in the LC~(fl) or Hl ( f l ) -norm is not expected 
(is not t rue in general), because of the discrepancy in the boundary values of u e and u °. 

REMARK 2. As mentioned in the Introduction, it is expected on physical grounds that  pC and 
p~,, -- - ~  remain bounded on and near F; therefore (2,9) or (2.10) are physically very realistic 
hypotheses, since they even allow some growth of pe,p~,,. 

Of course, a complete mathematical proof of the convergence of u ~ to u ° would necessitate 
proving these hypothesis. 

3 .  A R E L A T E D  R E S U L T  

The proof of Theorem 1 is based on a related result which has some interest on its own. We 
state this result. 

THEOREM 2. Let u e and u ° be the solutions of the Navier-Stokes and Euler equations above and 
let T > 0 be _6xed. 

We assume that  there exist two constants a and ~3, 3/4 _< a < 1, such that  

T OU~ 2 dt <__ /~3 e3-4°~, (3.1) 
~00 OX L2(FtQF~ct) 

where Fr is the r-neighborhood of F. 
Then, there exists a constant ha independent of e such that  

[I ue -- uOIILoo(O,T;H) <<_ /£4 ~2(1-a)/5. (3.2) 

REMARK 3. On physical grounds, we expect that  the normal component u S does not display a 

boundary layer phenomenon since u S = u ° = 0 on F, although its normal derivative ~ might 
display such a boundary layer. Hence, the assumption (3.1) is physically reasonable as well, 
although this is less transparent than for hypotheses (2.9),(2.10) in Theorem 1. 

REMARK 4. Condition (3.1) is also close to be mathematically necessary for (3.2) to be true. 
Indeed by the energy equations for u e and u °, 

]o T ]o T lu~(T)l 2 + 2e luel~ dt = lu0]~ + 2 (f ,  u~)g dt, 

lu°(T)l  = lu°l  + 2 (f ,  U°)H dt. 
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Hence, if (3.2) occurs then, as e --* 0, 

j~O T j~O T e 2 lu~[ 2 dt = ~ I V u  [L~(n) dt -~ O, 

which implies (3.1) with c~ = 1. | 

The  details of the proof of Theorem 2 appear  in [15]; the principle of the proof is as follows. 
We consider as in [11] a divergence free function ~e which agrees with - u  ° on the wall (i.e., 

on a~oo),  so tha t  w e = u e - u ° - ~e is divergence free and vanishes on 0~oo; see [11] for the 
construction and properties of ~e. 

Then we consider the equations, boundary conditions and initial conditions satisfied by w e . 

Finally we write the energy equation satisfied by w e and we properly est imate from above all the 

nonpositive terms. 

4. P R O O F  O F  T H E O R E M  1 

We multiply the Navier-Stokes equation (2.1) by - e A u  e and integrate over ~. For the nonlinear 
t e rm we use the property, valid in space dimension two, for the present boundary conditions tha t  

2 e 0U.  
[(u e .  V)ue] • A u  ~ dx dy = ~ f u~ - -~ A u  e. dx  dy = O. 

z._, Jn Oxi J i ,j=l l~ 

Hence, we find 

e d  e2 2 e2 f~  ~-~]WU [L 2 -~ g Ih• [L 2 --~ - - e ( f ,  AUe)L 2 + e V/Aue dxdy; 

we then conclude by integration by parts  on the te rm involving pe. 
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