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A b s t r a c t - - W e  present a rigorous result regarding the boundary layer associated with the incom- 
pressible Newtonian channel flow with injection and suction. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - B o u n d a r y  layers, Fluid mechanics, Vanishing viscosity, Navier-Stokes equations, Eu- 
ler equations. 

1. I N T R O D U C T I O N  A N D  T H E  M A I N  R E S U L T  

T h e  pu rpose  of  th is  a r t ic le  is to  present  a new resu l t  r egard ing  the  b o u n d a r y  layer a s soc ia t ed  

wi th  Nav ie r -S tokes  equa t ions  for incompress ib le  Newton ian  fluids in a channel  w i th  in jec t ion  and  

suc t ion  a t  the  boundary ,  i.e., when the  b o u n d a r y  in noncharac te r i s t i c .  

au e 
O - - - [ - + ( u e . ~ ) u ~ - s A u e + V p ~ = f ,  i n f ' ×  (0, T) ,  (1.1) 

div  u ~ = 0, in fl × (0, T) .  (1.2) 

Here u e is t he  ve loc i ty  field in the  Eule r ian  represen ta t ion ,  p~ is t he  pressure  which  enforces t he  

incompress ib i l i t y  condi t ion ,  ~ > 0 is the  k inemat ic  viscosity,  f is the  ex t e rna l  b o d y  force, and  

f~ = (0, L1) × (0, L2) × (0, h) (1.3) 

is t he  channel  occup ied  by  the  fluid. 
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For realistic fluids like air and water, the kinematic viscosity ~ is very small, and hence, we 
may formally set c = 0 in the Navier-Stokes equations and arrive at the Euler equations for 
incompressible inviscid fluids: 

Ou o 
+ (u ° .  V) u ° + Vp ° = f ,  in f~ x (0, T), (1.4) 

Ot 
divu  ° = 0, in ~ x (0, T). (1.5) 

The natural  question is then if such a formal procedure can be justified. 
In this article, we provide an affirmative answer to this problem, for short time, in the case 

when there are injections or suction at the boundary. More precisely, we specify the boundary 
condition for the viscous problem to be 

Ueiz=h 

satisfying (for injection at the top): 

Ut (x, y) >_ a > O, 

and 

= ( 0 , 0 , - U t ( x , y ) ) ,  (1.6) 

for all (x, y) E (0, L1) x (0, L2), (1.7) 

u°[ z = 0 = -Ub(x,  y). (1.11) 

The physical reason for the boundary condition (1.10) is that  we have flux at the boundary, 
and thus, we need to specify the whole velocity field at the upwind direction (z = h) in order to 
have a well-posed inviscid problem [2]. 

The approximation of u e by u ° cannot be uniform due to the presence of the boundary layer (see 
for instance [3]). The uniform convergence can be established only with the aid of a corrector p~. 
Our corrector ~ will be an approximate solution to the model boundary layer problem proposed 
in [3], 

More precisely we have the following. 

THEOREM. Let uo, f , Ut, Ub be smooth functions satisfying certain compatibility conditions 
(see [4,5]) including 

uo + (0, 0, ub) = 0, a t  z = o, ( 1 . i 2 )  

(i. 7) a .d  (1.9). 

and at the outlet (bottom) 

UOiz=h = (0 ,0 , -U t ( x ,  y)), (1.10) 

  lz=0 = (0 , 0 -  Ub(x, y)), (z.s) 

satisfying (for suction at the bottom): 

Ub(x,y) _2> b > 0, for all (x ,y)  E (0, L1) x (O, L2), (1.9) 

and periodicity in x and y. 
Thanks to the boundary conditions, the top (0, L1) x (0, L2) x {h} and the bot tom (0, L1) x 

(0, L2) x {0} are not streamlines of the flow. Hence, it is also called the noncharacteristic boundary 
condition. 

Physically, such boundary conditions could occur in the control of fluids when there are injection 
and suction at the boundary or in the situation of a moving domain after applying a Galilean 
transformation, or in geophysical fluid dynamics for flows in a limited domain; see also [1]. 

The corresponding boundary condition for the Euler system is a little bit unconventional. 
Instead of specifying the normal velocity only at the boundary, we need to specify the whole 
velocity at the inlet (top) of the channel 
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Then there exists a time 

T. = T.(uo, f ,  Ut,Ub, L1,L2, h), (1.13) 

and a constant ~ = n(Uo, f ,  fit, Ub, L1, L2, h) (independent of ¢) such that 

E - ) < (1.14) 

Furthermore, in the two-dimensional case (with the y dependence suppressed), we have the 
fbllowing uniform ( L °°) estimate: 

Here ~E is a corrector (boundary layer function) defined in the following w~v: 

~E = curl '~b E, (1.17) 

with 

¢ = ( ~ ,  ¢~, 0), 

~ P ~ ( x ' Y ' z ' t ) = - u ° ( x ' y ' O ' t ) P  h Ub(x,y) 1 - e - u " ~ / E  ' 

' ~ x t) = u ° ( x , y , O , t ) p  -~ Us(x,y) 1 e -U'z/E ~ 2 (  , y , z ,  - . , 

and where the cut-off function p is defined as follows: 

(1.18) 

(1.19) 

(1.~0) 

p e C°°[0, oo), supp p C [0, 1], p(0) = 1, p'(0) = p"(0) = p'"(0) = 0. (1.21) 

In other words, we proved the existence of a stable boundary layer of the form (~-u,,,/E at the 
outlet (bottom) of the channel only. 

To the best of our knowledge, this is the first rigorous result on boundary l%ver associated with 
incompressible viscous fluids. The result also agrees with laboratory experiments of flow past 
obstacle in the region close to the front of the smooth obstacle (see for instance [6]). 

Partial  results (not extending to H 1 and L °° convergences) appear in [7], and convergence of 
~he Navier-Stokes to the Euler equations were recently proved by Sammartino and Caflisch [81 for 
short time, half-space and analytic data. See [9-15] for partial results related to the characteristic 
boundary case, and [16-19] for results related to viscous perturbation of hyperbolic systems. 

The detailed proof of the theorem for the special case of fit = U5 = U~ = constant will be 
[)resented elsewhere [5]. Here we just present a sketch of the proof. 

2. S K E T C H  O F  T H E  

In this section, we sketch the proof of our theorem. 
W'e consider the adjusted difference 

W E z ' t t  E - -  ?_t o - -  ~ c  

P R O O F  

{2.1) 

which satisfies the following equation: 

Ow E 

Ot 
- -  - c a w  E + (v  E • V )  w E + ( w  ~ . V )  v ° + ( w  E • V )  ~ / +  V (pE _ p0)  = n "~, 

div w ~ -- O, 

(2.2) 

(2.311 
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Welz=O = WS[z=h = 0, (2.4) 

where 
F e _  0~ e e Z X v 0 + e Z X ~ e _ ( ~ e . V ) ~ _ ( ~ e . V ) v O _ ( v  o . v ) ~ e .  (2.5) 

Ot 
We proceed with energy methods. Notice that  the adjusted difference w e is divergence free due 

to the explicit construction of our divergence free corrector. Hence, the most problematic term 
(v e • V)w e disappears in the basic energy estimates. 

We illustrate our method on one of the other terms, namely (w e. V)~ e. In the energy estimate, 
we wish to bound fn  [(w e • V)~e] • w e by the dissipative term ¢[Vwe{22 and [W~[L2.2 Roughly 

speaking, we have 

a = fa  (We'V) We' e 

W@ L 2 -< IVwe[L  {z elL  (2.6) 
m a x  

-- min ' 
{z = 0}Ub 

where ~h (depending on h only) is the constant from the Hardy inequality (see more details in [5]) 
and k is a universal constant. In order to dominate the right-hand side of (2.6) by the dissipative 

term e[VWe[L 2, we impose 
m a x  

'~h {Z =0} {{uOl + [uO{} < 1 (2.7) 
rain -- 8' 

{z = O}Ub 
This condition is guaranteed at initial t ime t = 0 by the compatibility condition (1.12). This 
combined with local in time well-posedness of the inviscid problem we deduce that  there exists T, 

such that  (2.7) is valid for t E [0, T,]. 
This basically explains why we have a short time result only, from the mathematical perspective. 

From the physical point of view, we anticipate the development of turbulence after a sufficiently 
long time; after this we would need to address the turbulent boundary layer problem. 

The first half of the theorem then follows by similar t reatment of the other terms. 
For the uniform in space and in time estimates, the problem is much harder because there is 

no known maximum principle for the velocity field. Here, to bypass this difficulty, we observe 
that  we have a bet ter  control on the tangential derivatives than on the normal derivative on 
average and we want to take advantage of this. This agrees with the classical boundary layer 
theory. For this purpose we consider the equations satisfied by °u~ In the process of estimating --~-z • 
0u e o-T, we encounter the same difficulty as in the study of the global regularity for solutions to 
the three-dimensional Navier-Stokes equations in the three-dimensional case. Thus, we restrict 
ourselves to the two-dimensional case. 

The energy estimates (sometimes weighted as in the first half) together with the following 
anisotropic Sobolev imbedding (see [13]) 

[[g[lLoo(fO < ~ ( [ { g ] [ ~ 2 0 g  1/2 1/2 029 1/2 ) 
( 2 . 8 )  - +{{gllL  

yield the second part  of our theorem. 
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