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A b s t r a c t - - W e  establish the validity of the infinite Prandtl number model as an approximation 
of the Boussinesq system at large Prandtl number on finite and infinite time interval, as well as in 
some statistical sense. @ 2004 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Most realistic fluid phenomena involve heat transfer. Here, we consider the Rayleigh-B6nard 

setting of a horizontal layer of fluids confined by two parallel planes a distance h apart and 
heated at the bottom plane at temperature T2 and cooled at the top plane at temperature T1 

(T2 > TI). Hot fluids at the bottom tend to rise while cool fluids on top tend to sink by 

gravity force. If the relative change of density is small with respect to a background density, 
we may ignore density variation in the system except a buoyancy force proportional to the local 
temperature in the momentum balance, and we arrive at the so-called Boussinesq approximation 
of the Rayleigh-B~nard convection. The dynamic model consists of the heat advection-diffusion 
of the temperature coupled with the incompressible l~avier-Stokes equations via a buoyancy force 
proportional to the temperature [1-3]. 

Since we are interested in convection, i.e., motion of the fluid induced by buoyancy, the stan- 

dard/appropriate nondimensional form of the system is achieved by using the units of the layer 
depth h as the typical length scale, the thermal diffusion time h2/~ as the typical time, the ratio 
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of typical length over typical time, i.e., ~/h as t yp ica l  velocity, the temperature on a scale where 
the top plane is kept at zero and the bottom plane kept at one. The nondimensional form of 
the Boussinesq equations then take the form, after taking into account the effect of rotation, 
normalizing the background density to one, 

p--~ - ~ - + ( u - V ) u  + ~ - / ~ k x u + V p = A u ÷ R a k T ,  

0T 
cg--T + u .  VT = AT, 

V . u = 0 ,  

equipped with the following boundary conditions: 

Tt~=I = O, Tl~=o = 1, ul~--0,1 = 0 

together with periodic boundary conditions in the horizontal directions with period L~ and Ly. 
Here, the control parameters are the Prandtl number Pr = ~/~, the Rayleigh number Ra = 
ga(T2 - T1)h3/p~, and the Ekman number Ek = v /2~h  2. Here v is the kinematic viscosity of 
the fluid, ~ is the thermal diffusivity, g is the gravitational constant, a is the thermal expansion 
coefficient, and f~ is the rotation rate [1-4]. 

The behavior of the Boussinesq system is extremely complex ranging from pure conduction 
at low Rayleigh number to pattern formation after and convective turbulence [1-4]. Thus, we 
naturally look for regimes where simplification can be made. One popular approach is to consider 
the case with large Prandtl number which is relevant for fluids such as the earth's mantle, silicone 
oil, and many gases under high pressure [1,4-6]. If we formally set the Prandtl number in 
the Boussinesq system to infinity, we arrive at the so-called infinite Prandfl number model for 
Rayleigh-B~nard convection 

1 uO ~--~k × ÷ Vp ° = Au ° + R a k T  °, 

OT o 
- -  + u  ° .  VT 0 _- AT 0, 
0t 

-110 = O, 

together with the boundary conditions 

T°[~=t = O, T°l~=o = 1, u°[~=0,1 = 0. 

The infinite Prandtl number model is a much simpler model with the velocity field linearly slaved 
by the temperature field. It  has been used in many fruitful investigations of convection [1,4,5,7,8]. 

A natural question to ask then is if such an approximation is valid, i.e., 

(u, T) --* (u °, TO), as Pr --* c~? 

Since the velocity field in the infinite Prandtl number model is linearly slaved by the temper- 
ature field, no initial data can be prescribed for the velocity in this simplified model. This is in 
contrast to the Boussinesq system where initial data must be prescribed for both the temperature 
and the velocity fields. We then observe that the large Prandtl number limit of the Boussinesq 
system is a singular perturbation problem involving an initial layer. 

2. D E R I V A T I O N  O F  T H E  E F F E C T I V E  D Y N A M I C S  

In order to derive the effective dynamics for the Boussinesq system at large Prandtl number, we 
recognize that the large Prandtl number problem is really a problem involving two time scales, 
namely, the fast viscous time scale of 1/Pr (h2/v before nondimensionalization) and the slow 
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(thermal) t ime scale of 1 (h2/~ before nondimensionalization). This suggests tha t  we should take 
the two t ime scale approach and introduce the fast t ime scale 

t 1 cO cO lcO 
7 = P r . t = - ,  w i t h e =  P r '  cOt Ot + s s OT 

and postulate the formal asymptotic  expansion 

u = u(°)(t, 7) + zu(1)(t, ~-) + h.o.t., T = T(°)(t ,7)  + zT(1)(t, r)  + h.o.t., 

with the usual sublinear growth condition. 
Following the s tandard two t ime scale approach (see, for instance, [9]) we arrive at the following 

effective dynamics: 

AT(0) - OT (°) ~_ u (0) . VT(°), 
0t 

u(°)(t, T) = R a A  -1 (kT(°)( t ) )  + e-A~uo - Rae -A~A-Z(kTo) ,  

where A is the solution operator for the velocity equation in the infinite Prandt l  number model. 
It  is easy to see that  the effective dynamics is closely related to the infinite Prandt l  number model 

u (°) = u ° + initial layer + lower-order terms, T (°) = T o + lower-order terms. 

3 .  F I N I T E  T I M E  C O N V E R G E N C E  R E S U L T  

With the compelling formal asymptotic  given in the previous section, we are able to prove the 
following convergence result. 

THEOREM 1. For any given T*, there exists a constant n independent of ~ such that 

u - u (°) ~ _< he, 
L (0,T*;L2 (~)) 

T - T (°) < hE. 
L ~¢ (0,T* ;L 2 (fl)) - -  

This convergence result rigorously establishes the validity of the infinite Prandt l  number model 
as an effective model for Boussinesq system at large Prandt l  number  modulo an initial layer. The 
convergence rate of z is optimal  and the reader may consult [10] for more details. 

4 .  L O N G  T I M E  P R O X I M I T Y  

Encouraged by the short t ime convergence presented in the previous section, we naturally ask 
if the solutions of the Boussinesq system are close to the solutions of the infinite Prandt l  number 
model over a long period of time. On the other hand, such a long time orbital stability result 
should not be expected for such complex systems where turbulent /chaot ic  behavior abound. 
Instead, we care more about statistical properties for such systems, and hence, it is natural  to 
ask if the statistical properties (in terms of invariant measures) as well as global at tractors remain 
close. 

The first obstacle in studying long t ime behavior is the well-posedness of the Boussinesq system 
global in time. This is closely related to the well-known problem related to 3D Navier-Stokes 
equations [11-13]. Fortunately, in the regime of large Prandt l  number,  we are able to prove the 
eventual regularity for suitably defined weak solutions to the Boussinesq system, which exists 
for all time. The suitable weak solutions will be defined as Leray-Hopf type weak solution 
plus suitable energy inequality which ensures certain maximum principle type estimates. More 
precisely, we have, in terms of the perturbative variables (u, 8) where t9 -- T - (1 - z) ((0, 1 - z) 
being the conduction state), the following. 
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DEFINITION 1. SUITABLE WEAK SOLUTIONS. (u, O) iS called a suitable weak solution to the 
Boussinesq equations on the time interval [0, T*] with given initial data (uo, 0o) if the following 
hold: 

u ~ L ~ (0, T*; H) n L 2 (0, T*; V) n C~ (0, T*; H ) ,  

u' E L a/3 (0, T*; V'),  u(0) = u0, 

0 e L ~ (0, T*; L2(~)) N L 2 (0, T*; Hl(f~)) n C~ (0, T*; L2(ft)),  

O' • L 4/3 (0, T*; H -1 (Q)), 0(0) = 0o, 

,(d ) p---/ ~-/(u,v)+b(u,u,v) +((u,,.,))=Ra(e,v~), VveV, 
d ~(,,~) + ~(e, e,,7) + ((e,,7)) = (~,,7), v~ e H~(rt), 

1 / '  1 ~ fo' p-;lu(t) l~ + 2  IVu(s ) l~  ds < ~lu01L~ + 2Ra (O(s),u3(s))ds, 

I(r - 1)+(t ) l~  + 2 ]V(r  - 1 )+(s ) l~  ds < I(ro - 1)+1~,  

Ir-( t) l~ + 2 IVT-(s)l~ de __ I(T0)-I~. 

The existence of suitable weak solutions can be derived using hyperviscosity together with 
suitable Galerkin approximation. 

We then have the following regularity result concerning the suitable weak solutions. 

THEOREM 2. EVENTUAL REGULARITY FOR SUITABLE WEAK SOLUTIONS. There exists an 
absolute constant no such that for Pr /Ra  _> ~o and any initial data (uo,To), there exists a 
constant T* so that all the suitable weak solutions with the given initial data to the Boussinesq 
equations become regular after T*. 

Furthermore, we are able to derive uniform estimates on these suitable weak solutions which 
further ensures the existence of a global attractor [11,12,14,15] in the sense of attracting all 
suitable weak solutions. 

THEOREM 3. There exists an absolute constant no such that for Pr /Ra  >_ ~o, one may derive 
uniform in time estimates for the H 1 norm of the solutions after a suf~ciently long time which 
depends on the parameters and the L 2 norm of the initiaJ data only. In particular, this implies 
that the Boussinesq system possesses a global attractor which attracts all suitable weak solutions. 

Next, we proceed to compare the global attractors for the Boussinesq system (with large Prandtl 
number) and the global attractor for the infinite Prandtl number model. The first difficulty that 
we encounter is the difference in phase spaces. This can be resolved by lifting the phase space for 
the infinite Prandtl number model or projecting down the phase space of the Boussinesq system. 
We then proceed to derive uniform H 1 as well as time derivative estimates in Pr. 

THEOREM 4. PROXIMITY OF GLOBAL ATTRACTORS. Let A0 and J~e be the global attractors 
for the infinite Prandtl number model and the Boussinesq equations with e = 1/Pr .  Let £ be 

the lift operator from the phase space for the perturbative temperature 0 to the product space 
of 0 and u. Then, the global attractors are upper semicontinuous in the following sense: 

lim dist(A~, £A0) = 0. 
~-~0 

Recall that  Prandtl number is the ratio of viscosity over thermM diffusivity. Thus, large Prandtl 
number implies large viscosity (in our case with the ratio of Prandtl over Rayleigh being large). 
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A native question is if the global attractors are trivial as for the case of Navier-Stokes equations 
with small Grashoff number. Numerical simulations and laboratory experiments indicate that  the 
long time behavior of the Boussinesq system is extremely complex [1-3,6,16]. Indeed, we observe 
that the global attractor for the Boussinesq system must contain at least three steady states: the 
pure conduct ion  s ta te  (0, 1 - z), two B6nard  cells (different or ienta t ion)  after threshold value of 

Rayleigh n u m b e r  [2,10,17]. The  existence of the  three  s teady  s tates  can be verified on the  infinite 

P r a n d t l  n u m b e r  model  as well by modifying the  work of Yudovitch [18] and  Rabinowi tz  [17]. 

Final ly,  we t u r n  to proximity  of s ta t is t ical  properties.  I t  seems t h a t  we are able to prove the  

t ightness of the  set of invar iant  measures  for the  Boussinesq sys tem at  large P r a n d t l  number ,  

which implies convergence of subsequences of invar ian t  measures  to t ha t  of the  infinite P r a n d t l  

n u m b e r  model.  However, convergence of specific s ta t is t ical  propert ies  such as t ime  averaged bulk 
heat transport  is not known in the sense that  the limiting invariant measure may not correspond 
to a time average for the limiting system. Nevertheless, we are able to prove a new bound on 
time averaged bulk heat transport  in terms of Nusselt number that  links to the optimal upper 
b o u n d  for the infinite P r a n d t l  n u m b e r  model  derived by  Cons t an t i n  and  Doer ing [5]. 

Recall  t ha t  the  Nussel t  n u m b e r  is defined as 

1 
Nu = 1 + L - ~  t--,oo t u 3 ( s , x ) T ( s , x ) d x d s .  

We then have 

Nu < nRa 1/3(ln Ra) 2/3 + Remainder(Ra, Pr), 

Remainder(Ra, Pr) --~ 0, as Pr  --~ oz. 

This  is an improvement  over previous results and  consistent  wi th  physical  predict ions [6,16]. 

There  are m a n y  other  in teres t ing  problems tha t  need to be invest igated.  
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