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Asymptotic Behavior of the Global Attractors

to the Boussinesq System for Rayleigh-Bénard Convection

at Large Prandtl Number

XIAOMING WANG
Florida State University

Fudan University

Dedicated to Prof. Peter Lax with great admiration and sincere gratitude

on the occasion of his 80th birthday

Abstract

We study asymptotic behavior of the global attractors to the Boussinesq sys-

tem for Rayleigh-Bénard convection at large Prandtl number. In particular, we

show that the global attractors to the Boussinesq system for Rayleigh-Bénard

convection converge to that of the infinite-Prandtl-number model for convection

as the Prandtl number approaches infinity. This offers partial justification of

the infinite-Prandtl-number model for convection as a valid simplified model for

convection at large Prandtl number even in the long-time regime. c© 2006 Wiley

Periodicals, Inc.

1 Introduction

One of the fundamental systems in fluid dynamics is the following Boussinesq

system for Raleigh-Bénard convection (nondimensional):

1

Pr

(
∂u

∂t
+ (u · ∇)u

)
+ ∇ p = �u + Ra kT, ∇ · u = 0,(1.1)

∂T

∂t
+ u · ∇T = �T,(1.2)

u|z=0,1 = 0,(1.3)

T |z=0 = 1, T |z=1 = 0,(1.4)

u|t=0 = u0, T |t=0 = T0,(1.5)

where u is the fluid velocity field, p is the modified pressure, T is the temperature

field, and k is the unit upward vector.

The system is a model for convection, i.e., fluid motion induced by differential

heating, of a layer of fluids bounded by two horizontal parallel plates a distance

Communications on Pure and Applied Mathematics, Vol. LX, 1293–1318 (2007)
c© 2006 Wiley Periodicals, Inc.
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1294 X. WANG

FIGURE 1.1. Rayleigh-Bénard convection.

h apart in the Rayleigh-Bénard setting [22, 43] with the bottom plate heated at

temperature T2 and the top plate cooled at temperature T1 (T1 < T2).

We assume that the fluids occupy the (nondimensionalized) region

(1.6) � = [0, Lx ] × [0, L y] × [0, 1]

with periodicity in the horizontal directions assumed for simplicity. The param-

eters of the system are thus absorbed into the geometry of the domain plus two

nondimensional numbers: the Rayleigh number

(1.7) Ra =
gα(T2 − T1)h

3

νκ

measuring the ratio of overall buoyancy force to the damping coefficients, and the

Prandtl number

(1.8) Pr =
ν

κ

measuring the relative importance of kinematic viscosity over thermal diffusivity.

Here ν and κ are the kinematic viscosity and thermal diffusive coefficient, respec-

tively, α is the thermal expansion coefficient of the fluid, g is the gravitational

constant, h is the distance between the two plates confining the fluid, and T2 − T1

is the temperature difference between the bottom and top plates. We have taken the

distance between the plates, h, as the typical length scale, and the thermal diffusive

time as the typical time scale; the temperature is scaled so that the top plate is set

to 0 while the bottom plate is set to 1 (see [43] among others).
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1295

The Boussinesq system exhibits extremely rich phenomena from pure conduc-

tion at low Rayleigh number, to Bénard cells at first bifurcation, spatial-temporal

patterns and chaos at intermediate Rayleigh number, all the way to convective tur-

bulence at high Rayleigh number (see, for instance, [22, 43], and the recent review

by [3, 26, 38]). In fact, the Boussinesq system is considered a fundamental par-

adigm for nonlinear dynamics including instabilities and bifurcations, pattern for-

mation, chaotic dynamics, and fully developed turbulence [26]. On the other hand,

we have very limited mathematical knowledge on the system. Even the issue of the

existence of regular enough solutions is unresolved. Indeed, the velocity equation

is exactly the Navier-Stokes system (forced by a buoyancy term) whose regularity

of solutions is one of the million-dollar mathematical problems of the new millen-

nium (www.claymath.org/Millennium_Prize_Problems/). For such

a complex system, simplification is highly desirable. A simpler model can be

obtained if we consider the regime of large Prandtl number. If we formally set

the Prandtl number to infinity, we arrive at the following infinite-Prandtl-number

model (nondimensional)

∇ p0 = �u0 + Ra kT 0, ∇ · u0 = 0,(1.9)

∂T 0

∂t
+ u0 · ∇T 0 = �T 0,(1.10)

u0|z=0,1 = 0,(1.11)

T 0|z=0 = 1, T 0|z=1 = 0.(1.12)

(see, for instance, [3, 4, 6, 8, 23, 43, 44, 45] among others), which is relevant for

fluids such as silicone oil and the earth’s mantle as well as many gases under high

pressure. One observes that the Navier-Stokes equations in the Boussinesq system

have been replaced by the Stokes system in the infinite-Prandtl-number model.

The fact that the velocity field is linearly “slaved” by the temperature field has

been exploited in several recent, very interesting works on rigorous estimates on the

rate of heat convection in this infinite-Prandtl-number setting (see [8, 10, 12, 14]

and the references therein, as well as the work of [4]).

An important natural question is whether such an approximation is valid.

The mathematical justification of the infinite-Prandtl-number model on any

fixed time interval can be found in [44]. Encouraged by the finite-time conver-

gence, we naturally inquire if the solutions of the Boussinesq system and solutions

of the infinite-Prandtl-number model remain close on a large time interval for large

Prandtl number. In general, we should not expect long-time proximity of each indi-

vidual orbit. Such a long-time orbital stability result shouldn’t be expected for such

complex systems where turbulent/chaotic behavior abound. Instead, the statistical

properties for such systems are much more important and physically relevant, and
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1296 X. WANG

hence it is natural to ask if the statistical properties (in terms of invariant measures)

as well as global attractors (which contains the support of any invariant measures

if they exist) remain close.

The first obstacle in studying long-time behavior is the well-posedness of the

Boussinesq system global in time. This is closely related to the well-known prob-

lem related to the three-dimensional Navier-Stokes equations ([9, 32, 41] among

others). This is partially resolved by considering suitable weak solutions (see Sec-

tion 2). Indeed, we are able to show the eventual regularity for suitably defined

weak solutions to the Boussinesq system that exists for all time [46].

Recall that the global attractor of a given dynamical system is a compact invari-

ant set that attracts all bounded sets in the phase space ([24, 40] among others). In

particular, the global attractor is maximal in the sense that any compact invariant

set must be a subset of the global attractor. The global attractor is also minimal in

the sense that any bounded set that attracts an arbitrary bounded set in the phase

space must contain the global attractor. Therefore the closeness of global attrac-

tors, if they exist, would be a good measure of closeness of long-time behavior. It

also provides positive indication on the closeness of statistical properties since the

invariant measures are supported on the global attractors.

Although the dynamics of the Boussinesq system may not be well-defined due

to the well-known regularity problem, all properly defined weak solutions become

regular after a transitional time at large Prandtl number [46]. The dynamics is also

well-defined if solutions start from a bounded set in a (smaller) subspace of the

phase space. Moreover, such a bounded set is in fact absorbing in the sense that

all suitably defined weak solutions will enter this bounded set in finite time [46].

Furthermore, the system possesses a global attractor that is regular in space and in

time, and attracts all suitably defined weak solutions [46]. It is also known that the

infinite-Prandtl-number model for convection possesses a global attractor. Hence

it makes sense to discuss the closeness of the global attractors.

Another issue that we encounter here is the difference in natural phase spaces:

for the Boussinesq system we need both velocity and temperature, while only the

temperature field is needed for the infinite-Prandtl-number model since the velocity

field is linearly slaved. There are two ways of handling the discrepancy in phase

space:

(1) project the phase space of the Boussinesq system down to the temperature

field only, and

(2) lift the phase space of the infinite-Prandtl-number model to the product

space of velocity and temperature.

We will see that the comparison of global attractors after projection is relatively

easy and is similar to the upper semicontinuity of global attractors for dynamical

systems (see, for instance, [24, 40]). The comparison of global attractors after
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1297

lifting the phase space of the infinite-Prandtl-number model is a little bit more in-

volved. Here we view the Boussinesq system as a small perturbation of the infinite-

Prandtl-number model. The proximity of global attractors follows from appropri-

ate a priori estimates (uniform in Prandtl number) on the material derivative of the

velocity field after the initial layer. The convergence result (Corollary 3.2) was

announced earlier [44, 45].

The rest of the manuscript is organized as follows: In Section 2 we derive a few

a priori estimates needed in the proof in Section 3. These estimates refine previous

estimates [46]. In Section 3 we present our main results on the convergence of the

global attractors of the Boussinesq system to that of the infinite-Prandtl-number

model. The proof of the main results are sketched as well. In Section 4 we make

concluding remarks. In particular, we discuss if similar results are valid for other

systems with multiple time scales.

Throughout this manuscript, we assume the physically important assumption of

the domain having a large aspect ratio, i.e.,

(1.13) Lx ≥ 1, L y ≥ 1, and hence |�| ≥ 1.

Likewise, we also assume the physically important case of a high Rayleigh number

(1.14) Ra ≥ 1

so that we may have nontrivial dynamics.

We also follow the mathematical tradition of denoting our small parameter as

ε, i.e.,

(1.15) ε =
1

Pr
.

2 A Priori Estimates

Here we establish a few a priori estimates on suitable weak solutions to the

Boussinesq system needed in the proof of the convergence of the global attractors.

The estimates given here refine previous estimates [46] and are uniform in terms

of the (large) Prandtl number, or equivalently, the small parameter ε. They are

uniform in time as well as modulo an initial layer. An initial time layer has to

be neglected here since the time derivative is proportional to 1/ε within a certain

initial layer [44]. Estimates in higher-order Sobolev spaces can be derived as well.

Following a traditional approach, we recast the Boussinesq system in terms of

the perturbative variable

(2.1) (u, θ) = (u, T − (1 − z))
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1298 X. WANG

(perturbation away from the pure conduction state (0, 1 − z)). Thus we have the

nondimensional Boussinesq system for Raleigh-Bénard convection in a perturba-

tive variable:

1

Pr

(
∂u

∂t
+ (u · ∇)u

)
+ ∇ p = �u + Ra kθ, ∇ · u = 0,(2.2)

∂θ

∂t
+ u · ∇θ − u3 = �θ,(2.3)

u|z=0,1 = 0,(2.4)

θ |z=0 = 1, θ |z=1 = 0,(2.5)

u|t=0 = u0, θ |t=0 = θ0.(2.6)

The infinite-Prandtl-number model for convection can be cast in terms of the per-

turbative variable in a similar fashion. Thus we have the nondimensional infinite-

Prandtl-number model in a perturbative variable:

∇ p0 = �u0 + Ra kθ0, ∇ · u0 = 0,(2.7)

∂θ0

∂t
+ u0 · ∇θ0 − u0

3 = �θ0,(2.8)

u0|z=0,1 = 0,(2.9)

θ0|z=0,1 = 0.(2.10)

Next, we recall the definition of suitable weak solutions [46]:

DEFINITION 2.1 (Suitable Weak Solution) The function (u, θ) is called a suitable

weak solution to the Boussinesq equations on the time interval [0, T ∗] with given

initial data (u0, θ0) if the following hold:

u ∈ L∞(0, T ∗; H) ∩ L2(0, T ∗; V ) ∩ Cw([0, T ∗]; H),(2.11)

u′ ∈ L4/3(0, T ∗; V ′), u(0) = u0,(2.12)

θ ∈ L∞(0, T ∗; L2(�)) ∩ L2(0, T ∗; H 1
0 (�)) ∩ Cw([0, T ∗]; L2(�)),(2.13)

θ ′ ∈ L4/3(0, T ∗; H−1(�)), θ(0) = θ0,(2.14)

ε

(
d

dt

∫
�

u · v +

∫
�

(u · ∇)u · v

)
+

∫
�

∇u · ∇v = Ra

∫
�

θv3 ∀v ∈ V,(2.15)

d

dt

∫
�

θη +

∫
�

u · ∇θ η +

∫
�

∇θ · ∇η =

∫
�

u3 η ∀η ∈ H 1
0 ,(2.16)

ε

2

d

dt
|u(t)|2

L2 + |∇u(t)|2
L2 ≤ Ra θ(t)u3(t),(2.17)
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1299

d

dt
|(T − 1)+(t)|2

L2 + 2|∇(T − 1)+(t)|2
L2 ≤ 0,(2.18)

d

dt
|T −(t)|2

L2 + 2|∇T −(t)|2
L2 ≤ 0.(2.19)

Here we have used standard notation on function spaces used in the study of

incompressible fluids (see, for instance, [9, 13, 20, 41] among others). In particular,

the energy inequalities should be understood in the weak sense with the initial value

taken into consideration.

Recall our goal here is to derive estimates that are uniform in large Prandtl num-

ber Pr or small ε that are also uniform in time after neglecting an initial transitional

time interval.

We will start with the easy L2-estimates for the temperature and velocity fields.

In the second stage we derive uniform H 1-estimates for the solutions. These es-

timates imply the eventual regularity of solutions to the Boussinesq system for

convection and the existence of global attractors [46]. In the third stage, we de-

rive uniform estimates on the time derivative of the solutions. In the fourth stage,

we utilize the uniform estimates on the time derivative to derive uniform estimates

in H 2.

We start with L2-estimates on the temperature field. Thanks to (2.18), (2.19),

and the Poincaré inequality, we see that

|(T − 1)+(t)|2
L2 ≤ e−2t |(T0 − 1)+|2

L2 ≤ e−2t |T0|
2
L2,(2.20)

|T −(t)|2
L2 ≤ e−2t |T0|

2
L2 .(2.21)

Therefore,

|T (t)|L2 ≤ |T −(t)|L2 + |T +(t)|L2

≤ |T −(t)|L2 + |(T − 1)+(t)|L2 + |�|

≤ 2e−t |T0|L2 + |�|.(2.22)

Hence, for

(2.23) t1 = ln
2|T0|L2

|�|

we have

(2.24) |T (t)|L2 ≤ 2|�| t ≥ t1.

With the L2-estimate in temperature, the L2-estimate of the perturbative vari-

able θ is obvious. Indeed,

|θ(t)|L2 ≤ |T (t)|L2 + |1 − z|L2

≤ 2e−t |T0|L2 + 2|�|

≤ 3|�| ∀t ≥ t1.(2.25)
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1300 X. WANG

This, together with the energy inequality for the velocity field (2.17), implies

(2.26)
ε

2

d

dt
|u(t)|2

L2 + |∇u(t)|2
L2 ≤ Ra(2e−t |T0|L2 + 2|�|)|u3(t)|L2,

which further implies, by Poincaré and the Cauchy-Schwarz inequality,

(2.27) ε
d

dt
|u(t)|2

L2 + |u(t)|2
L2 ≤ 4 Ra2(e−t |T0|L2 + |�|)2.

Therefore, by the Gronwall inequality,

|u(t)|2
L2 ≤ |u0|

2
L2

e− t
ε

+ 4 Ra2

(
1

1 − 2ε
e−2t |T0|

2
L2 +

2

1 − ε
e−t |T0|L2 |�| + |�|2

)
.

(2.28)

Hence, for

(2.29) t2 = max

{
t1,

1

2
ln

(
|u0|L2

|�| Ra

)
, ln

(
16|T0|L2

3|�|

)}

and ε < 1
4
, we have

|u(t)|L2 ≤ 3 Ra |�| ∀t ≥ t2.(2.30)

This completes the uniform estimates in the L2-space.

Next, we focus on the uniform estimates in the H 1-space. We first derive a

uniform H 1-bound for the velocity.

Following [46], we show that a ball of radius R1 = c1 Ra is absorbing after time

t1 for suitable c1 (2.40).

Indeed, multiplying the velocity equation in the Boussinesq equation (2.2) by

Au, where A is the Stokes operator [9, 13, 20, 41], integrating over �, and applying

Cauchy-Schwarz, Agmon’s inequality, and the uniform estimate on θ (2.25), we

have, for t ≥ t1,

ε

2

d

dt
|∇u|2

L2 + |Au|2
L2 ≤ Ra|θ |L2 |Au|L2 + ε|∇u|L2 |Au|L2 |u|L∞

≤ Ra|θ |L2 |Au|L2 + c2ε|∇u|
3/2

L2 |Au|
3/2

L2

≤
1

2
|Au|2

L2 + Ra2|θ |2
L2 + 64c4

2ε
4|∇u|6

L2

≤
1

2
|Au|L2 + 9|�|2 Ra2 + 64c4

2ε
4|∇u|6

L2 .(2.31)

Hence,

ε
d

dt
|∇u|2

L2 + |∇u|2
L2 ≤ 18|�|2Ra2 + 128c4

2ε
4|∇u|6

L2 .(2.32)

Consequently, we have

d

dt
|∇u|2

L2 ≤ 0(2.33)
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1301

provided the following hold simultaneously:

1

2
|∇u|2

L2 ≥ 18|�|2Ra2,(2.34)

1

2
|∇u|2

L2 ≥ 128c4
2ε

4|∇u|6
L2,(2.35)

or equivalently,

|∇u|2
L2 ≥ 36|�|2Ra2,(2.36)

|∇u|2
L2 ≤

1

16c2
2ε

2
.(2.37)

Hence we need

36|�|2 Ra2 ≤
1

16c2
2ε

2
,(2.38)

i.e.,

ε Ra =
Ra

Pr
≤

1

24c2|�|
.(2.39)

This is the exact condition of large Prandtl number that we need, as was discovered

earlier [46].

Now we set

(2.40) c1 = 6

and we observe that the ball of radius

(2.41) R1 = c1 Ra |�| = 6 Ra |�|

in H 1 centered at the origin is invariant for the velocity field after t1 under the

large-Prandtl-number assumption (2.39) since d
dt

|∇u|2
L2 < 0 at the boundary of the

ball for t ≥ t1.

In order to show that this ball is absorbing, we need to show that the velocity

field must enter this ball within a set period of time after t1. For this purpose, we

go back to the energy inequality for the velocity (2.26), and we can deduce

1

t − t2

∫ t

t2

|∇u(s)|2
L2 ds

≤
ε

t − t2
|u(t2)|

2
L2 +

4 Ra2

t − t2

(
1

2
|T0|

2
L2 + 2|T0|L2 |�| + (t − t2)|�|2

)
.

(2.42)

For the given c1 = 6 and ε < 1
4
, we define

(2.43) t3 = max

{
t2 +

9

4
, t2 +

2|T0|
2
L2

|�|2
, t2 +

2|T0|L2

|�|

}
.
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1302 X. WANG

We then have

(2.44)
1

t − t2

∫ t

t2

|∇u(s)|2
L2 ds ≤

c2
1|�|2 Ra2

2
= 18|�|2Ra2, t ≥ t3,

which implies the existence of t∗ ∈ [t2, t3] such that

(2.45) |∇u(t∗)|L2 ≤ c1|�| Ra = R1.

Therefore,

(2.46) |∇u(t)|L2 ≤ 6|�| Ra ∀t ≥ t3.

Now we see that a ball of radius R1 = c1|�| Ra = 6|�| Ra in H 1 is absorbing for

the velocity field.

This uniform estimate in H 1 for the velocity field implies a similar H 1-estimate

for the perturbative temperature field. Indeed, multiplying the temperature equa-

tion (2.3) by θ , integrating over �, and applying the Poincaré inequality, we have

(2.47)
d

dt
|θ |2

L2 + |θ |2
L2 + |∇θ |2

L2 ≤ 2|u3|L2 |θ |L2 ≤ 9 Ra |�|2 for t ≥ t2.

This implies that for any t ≥ t∗ ≥ t2

e−t

∫ t

t∗
es |∇θ(s)|2

L2 ds ≤ 9 Ra |�|2 + e−(t−t∗)|θ(t∗)|2
L2

≤ 9 Ra |�|2 + 9e−(t−t∗)|�|2

≤ 10 Ra |�|2.(2.48)

We also have, for t ≥ t3 + 1,

1

t − t3

∫ t

t3

|∇θ(s)|2
L2 ≤

|θ(t3)|
2
L2

t − t3
+ 9aRa|�|2

≤ 9|�|2
(

Ra +
1

t − t3

)

≤ 10|�|2 Ra for t ≥ t3 + 1.(2.49)

This implies there exists t∗ ∈ [t3, t3 + 1] such that

(2.50) |∇θ(t∗)|2
L2 ≤ 10|�|2 Ra .

Next, we multiply the perturbative temperature equation (2.3) by −�θ and in-

tegrate over �; we then have

1

2

d

dt
|∇θ |2

L2 + |�θ |2
L2 ≤ |u3|L2 |�θ |L2 + |u|L6 |∇θ |L3 |�θ |L2

≤
1

4
|�θ |2

L2 + |u3|
2
L2 + c3|∇u|L2 |∇θ |

1/2

L2 |�θ |
3/2

L2

≤
1

2
|�θ |2

L2 + |u3|
2
L2 + c4|∇u|4

L2 |∇θ |2
L2 .(2.51)
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Hence, after applying Poincaré inequality, we have, for t ≥ t3,

d

dt
|∇θ |2

L2 + |∇θ |2
L2 ≤ 2|u3|

2
L2 + 2c4|∇u|4

L2 |∇θ |2
L2

≤ 18 Ra2 |�|2 + 2c464|�|4 Ra4 |∇θ |2
L2 .(2.52)

This implies, with Gronwall’s inequality and t∗ chosen in (2.50) and the interme-

diate estimate (2.48),

|∇θ(t)|2
L2 ≤ e−(t−t∗)|∇θ(t∗)|2

L2 + 18 Ra2 |�|2 + 20c464|�|6 Ra5

≤ 10|�|2 Ra +18|�|2 Ra2 +20c464|�|6 Ra5

≤ c5|�|6 Ra5 ∀t ≥ t3 + 1.(2.53)

These uniform H 1-norm estimates after neglecting a transitional time period

(depending on initial data) imply the existence of a global attractor for the Boussi-

nesq system at large Prandtl number (2.39).

This completes our uniform H 1-estimates.

Next, we estimate the time derivatives that are needed in order to view the

Boussinesq system as a perturbation of the infinite-Prandtl-number model.

We first observe that, according to the perturbative temperature equation (2.3)

and the uniform estimates (2.53), (2.46), (2.25), and (2.30),∣∣∣∣∂θ

∂t

∣∣∣∣
H−1

≤ |�θ |H−1 + |u · ∇θ |H−1 + |u3|H−1

≤ |∇θ |L2 + |u|L6 |θ |L3 + |u3|L2

≤ |∇θ |L2 + c6|∇u|L2 |θ |
1/2

L2 |∇θ |
1/2

L2 + |u3|L2

≤ c7|�|3 Ra5/2 ∀t ≥ t3 + 1.(2.54)

Next we differentiate the velocity equation (2.2) in time and deduce

(2.55) ε

(
∂2u

∂t2
+

(
∂u

∂t
· ∇

)
u + (u · ∇)

∂u

∂t

)
+ ∇

∂p

∂t
= �

∂u

∂t
+ Ra k

∂θ

∂t
.

Multiplying this equation by ∂u/∂t and integrating over �, we deduce, for t ≥

t3 + 1,

ε

2

d

dt

∣∣∣∣∂u

∂t

∣∣∣∣
2

L2

+

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
2

L2

≤ Ra

∣∣∣∣∂θ

∂t

∣∣∣∣
H−1

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
L2

+ ε|∇u|L2

∣∣∣∣∂u

∂t

∣∣∣∣
2

L4

≤ Ra

∣∣∣∣∂θ

∂t

∣∣∣∣
H−1

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
L2

+ c8ε|∇u|L2

∣∣∣∣∂u

∂t

∣∣∣∣
1/2

L2

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
3
2

L2
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1304 X. WANG

≤
1

4

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
2

L2

+ 2 Ra2

∣∣∣∣∂θ

∂t

∣∣∣∣
2

H−1

+ c9ε
4|∇u|4

L2

∣∣∣∣∂u

∂t

∣∣∣∣
2

L2

≤
1

4

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
2

L2

+ 2c2
7|�|6 Ra7 +c964ε4|�|4 Ra4

∣∣∣∣∂u

∂t

∣∣∣∣
2

L2

(2.56)

where we have utilized (2.54) and (2.46).

Therefore,

(2.57) ε
d

dt

∣∣∣∣∂u

∂t

∣∣∣∣
2

L2

+

∣∣∣∣∇ ∂u

∂t

∣∣∣∣
2

L2

≤ 4c2
7|�|6 Ra7, t ≥ t3 + 1,

provided Pr = 1/ε is large enough so that

(2.58) c964ε4|�|4 Ra4 = c964|�|4
(

Ra

Pr

)4

≤
1

4
.

This is again large Prandtl number condition as in (2.39).

Applying the Poincaré and Gronwall inequalities, we deduce, for t ≥ t∗ ≥

t3 + 1,∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

L2

≤ e− t−t∗

ε

∣∣∣∣∂u

∂t
(t∗)

∣∣∣∣
2

L2

+ 4c2
7|�|6 Ra7

≤
e− t−t∗

ε

ε2
(|�u(t∗)|L2 + Ra |θ(t∗)| + ε|(u(t∗) · ∇)u(t∗)|L2)2

+ 4c2
7|�|6 Ra7 .(2.59)

Thanks to (2.31), (2.46), and (2.39), we have

ε
d

dt
|∇u|2

L2 + |Au|2
L2 ≤ 18|�|2 Ra2 +128c4

2ε
4|∇u|6

L2

≤ 18|�|2 Ra2 +128c4
2ε

466|�|6 Ra6

≤ 36|�|2 Ra2 ∀t ≥ t3.(2.60)

This implies, for t > t3 + 1,

1

t − t3 − 1

∫ t

t3+1

|Au(s)|2
L2 ds ≤ 36|�|2 Ra2 +ε|∇u(t3 + 1)|2

L2

≤ 72|�|2 Ra2(2.61)

where we have applied the H 1 uniform estimate for the velocity (2.46).

Hence there exists t∗ ∈ [t3 + 1, t3 + 2] such that

(2.62) |Au(t∗)|2
L2 ≤ 72|�|2 Ra2,

and thus by elliptic regularity,

(2.63) |�u(t∗)|2
L2 ≤ c10|�|2 Ra2,
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1305

which further implies

|(u(t∗) · ∇)u(t∗)|L2 ≤ c11|∇u(t∗)|
3/2

L2 |�u(t∗)|
1/2

L2

≤ c12|�|2 Ra2 .(2.64)

Combining this estimate with (2.59), (2.53), (2.63), and (2.39), we have∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

L2

≤
c13

ε2e−
t−t3−2

ε (|�|2 Ra2 +ε2|�|4 Ra4) + 4c2
7|�|6 Ra7

≤ c14|�|6 Ra7 ∀t ≥ t3 + 3(2.65)

since 1
ε
e−1/ε ≤ 4e−2.

Next, we differentiate the temperature equation (2.3) in time and deduce

(2.66)
∂2θ

∂t2
+ u · ∇

∂θ

∂t
+

∂u

∂t
· ∇θ −

∂u3

∂t
= �

∂θ

∂t
.

Multiplying this equation by ∂θ/∂t and integrating over �, we have

1

2

d

dt

∣∣∣∣∂θ

∂t

∣∣∣∣
2

L2

+

∣∣∣∣∇ ∂θ

∂t

∣∣∣∣
2

L2

≤

∣∣∣∣∂u3

∂t

∣∣∣∣
L2

∣∣∣∣∂θ

∂t

∣∣∣∣
L2

+

∣∣∣∣∂u

∂t

∣∣∣∣
L2

|∇θ |L6

∣∣∣∣∂θ

∂t

∣∣∣∣
L3

≤
1

2

∣∣∣∣∇ ∂θ

∂t

∣∣∣∣
2

L2

+

∣∣∣∣∂u3

∂t

∣∣∣∣
2

L2

+ c15

∣∣∣∣∂u

∂t

∣∣∣∣
2

L2

|�θ |2
L2 .(2.67)

Combining this with (2.65) and the Poincaré inequality, we have, for t ≥ t3 + 3,

(2.68)
d

dt

∣∣∣∣∂θ

∂t

∣∣∣∣
2

L2

+

∣∣∣∣∂θ

∂t

∣∣∣∣
2

L2

≤ c16|�|6 Ra7(1 + |�θ |2
L2).

On the other hand, thanks to (2.51) and (2.53), we have

(2.69)
d

dt
|∇θ |2

L2 + |∇θ |2
L2 + |�θ |2

L2 ≤ c17|�|10 Ra9 ∀t ≥ t3 + 1.

This implies, together with (2.53) and a Gronwall-type argument,

e−t

∫ t

t3+3

es |�θ(s)|2
L2 ds ≤ e−(t−t3−3)|∇θ(t3 + 3)|2

L2 + c17|�|10 Ra9

≤ c18|�|10 Ra9,(2.70)

and ∫ t

t3+3

|�θ(s)|2
L2 ds ≤ c17|�|10 Ra9(t − t3 − 3) + |∇θ(t3 + 3)|2

L2

≤ c19|�|10 Ra9(t − t3 − 2).(2.71)

Therefore, there exists t∗ ∈ [t3 + 3, t3 + 4] such that

(2.72) |�θ(t∗)|2 ≤ 2c19|�|10 Ra9 .
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1306 X. WANG

Hence

∣∣∣∣∂θ

∂t
(t∗)

∣∣∣∣
L2

≤ |�θ(t∗)|L2 + |u3(t
∗)|L2 + |u(t∗)|L6 |∇θ(t∗)|L3

≤ |�θ(t∗)|L2 + |u3(t
∗)|L2 + c20|∇u(t∗)|L2 |∇θ(t∗)|

1/2

L2 |�θ(t∗)|
1/2

L2

≤ c21|�|5 Ra5/4 .(2.73)

We now apply the Gronwall inequality to (2.68) and utilize (2.70) and (2.73) to

deduce

∣∣∣∣∂θ

∂t
(t)

∣∣∣∣
2

L2

≤ e−(t−t∗)

∣∣∣∣∂θ

∂t
(t∗)

∣∣∣∣
2

L2

+ c22|�|16 Ra16

≤ c23|�|16 Ra16 ∀t ≥ t3 + 4.(2.74)

Thus we have completed the uniform L2-estimates of the time derivatives.

We are left with the uniform H 2-estimates. For this purpose, we multiply the

velocity equation (2.2) by Au and integrate over � and deduce

|Au(t)|2
L2

≤ Ra |Au(t)|L2 |θ(t)|L2 + ε

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
L2

|Au(t)|L2

+ ε|u(t)|L∞ |∇u(t)|L2 |Au(t)|L2

≤ Ra |Au(t)|L2 |θ(t)|L2 + ε

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
L2

|Au(t)|L2

+ c24ε|∇u(t)|
3/2

L2 |Au(t)|
3/2

L2

≤
1

2
|Au(t)|2

L2 + 4 Ra2 |θ(t)|2
L2 + 4ε2

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

L2

+ c25ε
4|∇u(t)|6

L2 .(2.75)

Hence, for t ≥ t3 + 3, we have

|Au(t)|2
L2 ≤ 8 Ra8 |θ(t)|2

L2 + 8ε2

∣∣∣∣∂u

∂t
(t)

∣∣∣∣
2

L2

+ 2c25ε
4|∇u(t)|6

L2

≤ 72 Ra2 |�|2 + 8ε2c14|�|6 Ra7 +c26ε
4|�|6 Ra6

≤ c27|�|4 Ra5,(2.76)

where we have used the large-Prandtl-number assumption (2.39) and the large-

Rayleigh-number and aspect-ratio assumption.
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1307

Elliptic regularity then implies

(2.77) |u(t)|H2 ≤ c28|�|2 Ra5/2 ∀t ≥ t3 + 3..

As for the H 2-estimate for the temperature field, we have

|�θ(t)|L2 ≤

∣∣∣∣∂θ

∂t
(t)

∣∣∣∣
L2

+ |u3(t)|L2 + |u(t)|L∞|∇θ(t)|L2

≤

∣∣∣∣∂θ

∂t
(t)

∣∣∣∣
L2

+ |u3(t)|L2 + c29|∇u(t)|
1/2

L2 |u(t)|
1/2

H2 |∇θ(t)|L2

≤ c30|�|8 Ra8(2.78)

where we have applied the uniform estimates (2.74), (2.30), (2.46), (2.77), and

(2.53).

This completes our uniform estimates in H 2.

To summarize, we have the following:

LEMMA 2.2 (Uniform A Priori Estimates) Let Ra be an arbitrary large but fixed

Rayleigh number. Suppose the Prandtl number Pr is large enough so that con-

ditions (2.39) and (2.58) are satisfied. Then for any given suitable weak solutions

(u(t), θ(t)) of the Boussinesq system, there exists a time t3 = t3(|u0|L2, |T0|L2, |�|)

given explicitly in (2.43), and a constant c31 independent of Pr and Ra such that

the following hold when t ≥ t3 + 4:

|u(t)|H2 ≤ c31|�|2 Ra5/2,(2.79)

|θ(t)|H2 ≤ c31|�|8 Ra8,(2.80) ∣∣∣∣∂u

∂t
(t)

∣∣∣∣
L2

≤ c31|�|3 Ra7/2,(2.81)

∣∣∣∣∂θ

∂t
(t)

∣∣∣∣
L2

≤ c31|�|8 Ra8 .(2.82)

In particular, solutions on any of the global attractors must satisfy these estimates.

3 Convergence of the Global Attractors

We now show the convergence of the global attractors of the Boussinesq sys-

tem to that of the infinite-Prandtl-number model as the Prandtl number approaches

infinity.

As we mentioned earlier, the natural phase space for the Boussinesq system and

the infinite-Prandtl-number model are different; the Boussinesq system requires

both the velocity and the temperature field while the infinite-Prandtl-number model

has only the temperature field (or velocity field).
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1308 X. WANG

There are two natural approaches to handle this discrepancy in phase space.

We either project the phase space of the Boussinesq system down to the temper-

ature field only, or we lift the phase space for the infinite-Prandtl-number model

to the product space of velocity and temperature. We will see that the compar-

ison of global attractors after projection is relatively easy and is similar to the

upper semicontinuity of global attractors for dynamical systems (see, for instance,

[24, 37, 40]). The comparison of global attractors after lifting the phase space of

the infinite-Prandtl-number model is a little bit more involved. The proof utilizes

a priori estimates (uniform in Prandtl number) on the material derivative of the

velocity field after the initial layer that we derived in the previous section.

It is our belief that the techniques developed here can be applied to more general

dynamical systems with two explicitly separated time scales (see Section 4 as well).

Therefore, we formulate our result in a more general fashion and view the case of

convection at large Prandtl number as a special application.

The reader is referred to [28] for rudiments of functional analysis.

THEOREM 3.1 (Convergence of Global Attractors) Consider a generalized dynam-

ical system on X1 × X2 with two explicitly separated time scales

ε

(
dx1

dt
+ g(x1, x2)

)
= f1(x1, x2), x1(0) = x10,(3.1)

dx2

dt
= f2(x1, x2), x2(0) = x20,(3.2)

where X1, X2 are two Banach spaces.

Let

0 = f1(x0
1 , x0

2),(3.3)

dx0
2

dt
= f2(x0

1 , x0
2), x2(0) = x20,(3.4)

be the limit system at ε = 0.

We postulate the following assumptions:

(H1) (Uniform Dissipativity of the Perturbed System) The two-time-scale sys-

tem (3.1)–(3.2) possesses a global attractor Aε for all small positive ε. We

also assume that the global attractors are regular and uniformly bounded

in the sense that there exist Banach spaces Yj , j = 1, 2, which are con-

tinuously imbedded in the X j , j = 1, 2, respectively, and there exists a

constant R0 such that

(3.5) ‖x1‖Y1
+ ‖x2‖Y2

≤ R0 ∀(x1, x2) ∈ Aε ∀ε.

(H2) (Dissipativity of the Limit System) The limit system is well-posed and pos-

sesses a global attractor A0 in X2.

(H3) (Convergence of the Slow Variable) The slow variable of the solutions of

the two-time-scale system converges uniformly on bounded sets in Y1 × Y2
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1309

to that of the limit system after neglecting a transitional time period; i.e.,

for any R > 0, there exists a t0 > 0 such that for any t > t0,

(3.6) lim
ε→0

sup
‖x10‖Y1

+‖x20‖Y2
≤R

‖x2(t) − x0
2(t)‖X2

= 0 ∀t ≥ t0.

Then the global attractors Aε of the two-time-scale system converge to A0 after

projection, i.e.,

(3.7) lim
ε→0

distX2
(P2Aε,A0) = 0,

where P2 is the projection from X1 × X2 to X2 defined as

(3.8) P2(x1, x2) = x2.

Furthermore, let us assume the following:

(H4) (Smallness of the Perturbation) The two-time-scale problem (3.1)–(3.2)

is a uniformly small perturbation of the limit problem (3.3)–(3.4) when

confined to the global attractors, i.e.,

(3.9) lim
ε→0

sup
(x1,x2)∈Aε

∥∥∥∥ε

(
dx1

dt
+ g(x1, x2)

)∥∥∥∥
X1

= 0.

(H5) (Continuity of the Slave Relation) The first equation in the limit system

(3.3) can be solved continuously for x0
1 with given x0

2 and a nontrivial left-

hand side; i.e., there exists a continuous function F1 : X2 × X1 → X1 such

that

(3.10) y = f1(F1(x2, y), x2).

Moreover, we assume F1 is uniformly continuous for y = 0 and x2 in

bounded sets in Y2.

Then the attractors Aε of the two-time-scale system converge to A0 after lift, i.e.,

(3.11) lim
ε→0

distX1×X2
(Aε,LA0) = 0,

where L is the lift from X2 to X1 × X2 defined by

(3.12) L(x2) = (F1(x2, 0), x2).

PROOF: We borrow ideas from the proof of upper semicontinuity of global

attractors for dissipative dynamical systems [24, 37, 40].

Recall that the Hausdorff semidistance between two sets A1 and A2 in a Banach

space is defined as

(3.13) distX (A1, A2) = sup
x1∈A1

inf
x2∈A2

‖x1 − x2‖X .

We first prove the convergence in the projected sense, i.e., (3.7).

Let δ > 0 be fixed. Since the limit system possesses a global attractor A0 (H2),

and since a bounded ball in Y2 is bounded in X2 by the continuous imbedding
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1310 X. WANG

(H1), and since the global attractor attracts all bounded sets in the phase space,

there exists a T = T (δ) > 0 such that

(3.14) distX2

(
S0(t)BR0

(Y2),A0

)
≤

δ

3
∀t ≥ T,

where S0(t) denotes the solution semigroup associated with the limit system (3.3)–

(3.4) and BR0
(Y2) denotes the ball in Y2 with radius R0 centered at the origin.

On the other hand, utilizing (H3) with R = R0, we see that there exists an ε(δ)

such that

(3.15) sup
(x10,x20)∈BR0

(Y1×Y2)

‖x2(T ) − x0
2(T )‖X2

≤
δ

2
∀ε ≤ ε(δ).

Now for (y1, y2) ∈ Aε with ε ≤ ε(δ), there exists (x10, x20) ∈ Aε ⊂ BR0
(Y1 ×

Y2) so that

(3.16) (y1, y2) = (x1(T ), x2(T ))

since Aε is invariant. Therefore, thanks to (3.15),

(3.17) ‖y2 − x0
2(T )‖X2

= ‖x2(T ) − x0
2(T )‖X2

≤
δ

2
.

On the other hand, since x0
2(T ) = S0(T )x20 ∈ S0(T )BR0

(Y2), there exists a x0
2∞ ∈

A0 such that

(3.18) ‖x0
2(T ) − x0

2∞‖X2
≤

δ

2
,

by the attracting property of A0 (3.14).

Hence we deduce, by the triangle inequality,

(3.19) ‖y2 − x0
2∞‖X2

≤ δ.

This further implies

(3.20) distX2
(y2,A0) ≤ δ.

Since y2 is an arbitrary element in P2Aε, ε ≤ ε(δ), we have

(3.21) distX2
(P2Aε,A0) ≤ δ ∀ε ≤ ε(δ).

This ends the proof of the convergence of the global attractors in the projected

sense, i.e., (3.7).

Next we discuss convergence in the lifted sense as defined in (3.11). Thanks to

(H5), we can rewrite the fast equation (3.1) as

(3.22) x1 = F1

(
x2, ε

(
dx1

dt
+ g(x1, x2)

))
.

We also notice that for any fixed δ > 0, there exists an η = η(δ) > 0 such that

(3.23) ‖F1(x2, y) − F1(x0
2 , 0)‖X1

≤
δ

2
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1311

provided that

(3.24) ‖x2 − x0
2‖X2

+ ‖y‖X1
≤ η

by the uniform continuity of F1 (H5).

Thanks to (H4), we have, for some ε1 = ε1(δ),

(3.25) sup
(x1,x2)∈Aε

∥∥∥∥ε

(
dx1

dt
+ g(x1, x2)

)∥∥∥∥
X1

≤
η

2
∀ε ≤ ε1.

We also have, thanks to the first part of the theorem, that there exists an ε2 = ε2(δ)

such that

(3.26) distX2
(P2Aε,A0) ≤ min

(
δ

3
,
η

3

)
∀ε ≤ ε2.

Therefore, for any given (x1, x2) ∈ Aε, ε ≤ min(ε1, ε2), there exists an x0
2 ∈ A0

such that

(3.27) ‖x2 − x0
2‖X2

≤ min

(
δ

2
,
η

2

)
.

Consequently, for ε ≤ min(ε1, ε2), we have

(3.28) ‖x2 − x0
2‖X2

+

∥∥∥∥ε

(
dx1

dt
+ g(x1, x2)

)∥∥∥∥
X1

≤ η

and hence

‖x1 − x0
1‖X1

+ ‖x2 − x0
2‖X2

=

∥∥∥∥F1

(
x2, ε

(
dx1

dt
+ g(x1, x2)

))
− F1(x0

2 , 0)

∥∥∥∥
X1

+ ‖x2 − x0
2‖X2

≤ δ.

Henceforth

(3.29) distX1×X2
((x1, x2),LA0) ≤ δ.

This ends the proof of the theorem. �

An immediate consequence of the theorem is its application to the Boussinesq

system for convection at large Prandtl number. We have the following:

COROLLARY 3.2 (Application to Large-Prandtl-Number Convection) For every

large but fixed Rayleigh number Ra, the global attractors Aε of the Boussinesq

system for convection with Prandtl number Pr = 1/ε converge to the attractor A0

of the infinite-Prandtl-number model for convection in both the projected sense of

(3.7) and the lifted sense of (3.11) as ε approaches 0.
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1312 X. WANG

PROOF: We need to verify the assumptions in the theorem.

We first identify

X1 = {u ∈ L2 : u3|z=0,1 = 0,∇ · u = 0, periodic in x and y},(3.30)

X2 = L2,(3.31)

Y1 = {u ∈ H2 : u|z=0,1 = 0,∇ · u = 0, periodic in x and y},(3.32)

Y2 = {θ ∈ H 2 : θ |z=0,1 = 0, periodic in x and y}.(3.33)

It is then obvious that the Hilbert spaces Yj , j = 1, 2, are continuously imbedded

in the Hilbert spaces X j , j = 1, 2, respectively.

Hypothesis (H1) is clear thanks to Lemma 2.2 and [46], where we have shown

the existence of global attractors for the Boussinesq system for convection.

Hypothesis (H2) is evident with our infinite-Prandtl-number model.

Hypothesis (H3) is verified thanks to theorem 2 of [44], where we proved the

convergence of solutions of the Boussinesq system to that of the infinite-Prandtl-

number model on a finite time interval after neglecting a transitional time period

and with initial data in Y1 × Y2. The uniformity of convergence is clear since the

constants depend on the Y1 × Y2 norm only.

As for Hypothesis (H4), we have∣∣∣∣ε
(

∂u

∂t
+ (u · ∇)u

)∣∣∣∣
L2

≤ ε

(∣∣∣∣∂u

∂t

∣∣∣∣
L2

+ |u|L∞ |∇u|L2

)

≤ ε

(∣∣∣∣∂u

∂t

∣∣∣∣
L2

+ c32|u|H2 |∇u|L2)

→ 0(3.34)

according to Lemma 2.2. Thus Hypothesis (H4) is verified.

In terms of Hypothesis (H5), we have, for (v, θ) ∈ Y1 × Y2,

(3.35) F1(θ, v) = A−1(Ra P(kθ) − v)

where A is the Stokes operator and P is the Leray-Hopf projection from L2 to X1

[9, 13, 20, 41]. It is then clear that Hypothesis (H5) is satisfied.

This ends the proof of the corollary. �

Remark 3.3. It is worthwhile to reiterate that the global attractors to the Boussinesq

system for convection and the infinite-Prandtl-number model for convection are

nontrivial. It is easy to see that the pure conduction state belongs to each of the

global attractors. It is well-known that the pure conduction state becomes unstable

at high enough Rayleigh number and Bénard cells emerge [25, 30, 36]. Hence

the attractors must be nontrivial. Indeed, numerical results indicate convection at

large Prandtl number could be very complicated with thermal plumes emerging at

a seemingly random time and location [43].
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1313

4 Concluding Remarks

In this manuscript we have demonstrated that the global attractors of the Boussi-

nesq system (which exist at large Prandtl number [46]) converge to that of the

infinite-Prandtl-number model for convection. This complements our earlier result

on the convergence of suitable weak solutions to the Boussinesq system to that of

the infinite-Prandtl-number model on a finite interval modulo an initial transitional

layer [44]. These two results provide us with confidence for using the infinite-

Prandtl-number model as a simplified model for convection at large Prandtl num-

ber, both on short time and on long time since the global attractors embody all

long-time behavior. This also provides positive indication that the statistical prop-

erties may be close.

On the other hand, convergence in the symmetric Hausdorff distance sense, i.e.,

replacing dist(A1, A2) by dist(A1, A2) + dist(A2, A1) for two sets in a Banach or

metric space, usually requires some hyperbolicity [1, 37, 40] and may be much

harder or even invalid as we can see from simple bifurcation examples such as

(4.1)
du

dt
= u(−1 + 2u2 − u4 − ε).

There are two immediate questions that naturally come to mind. First, are there

any other good measures of the (long-time) validity of the infinite-Prandtl-number

model? If yes, what can we say about the the validity under these measures? Sec-

ond, is the result here special or could it be applied to more general (generalized)

dynamical systems with two explicitly separated time scales?

Regarding the first question, there are many other measures of (long-time) va-

lidity of the infinite-Prandtl-number model. For instance, it is easy to show that

the Hausdorff/fractal dimension of the global attractor to the Boussinesq system

at large Prandtl number and that of the infinite Prandtl number are finite. Thus we

may ask if the dimension of the global attractors to the Boussinesq system converge

to that of the infinite-Prandtl-number model. This could be very hard since we are

usually only able to estimate upper bounds for the dimension of attractors. We can

then ask whether there is a bound that is uniform in (large) Prandtl number on the

dimension of attractors for the Boussinesq system. The direct application of the

Constantin-Foias-Temam version of the Kaplan-Yorke formula [40] does not seem

to work and may need to be revised due to the two time scales. The theorem that

we have in Section 3 supports an affirmative answer to the question of existence of

uniform bounds on the dimension of the global attractors. However, it is not con-

clusive since two very close sets could have very different fractal dimensions due to

local oscillations. Therefore, it also makes sense to discuss convergence of trajec-

tories and attractors in spaces with more regularity (which measures oscillation).

An alternative approach is to use the crude estimates using squeezing properties

[27, 39, 40]. One may also consider bounds on the number of determining modes,

nodes, volumes, etc. (see, for instance, [20] among others).
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1314 X. WANG

Two other objects related to long-time behavior are inertial manifold and ex-

ponential attractors [17, 40]. It is easy to check that the infinite-Prandtl-number

model for convection possesses an exponential attractor that is positively invariant

and attracts all orbits with exponential rate. We can ask if the Boussinesq system

possesses an exponential attractor at large Prandtl number and whether the expo-

nential attractors, if they exist, converge in some sense to one of the exponential

attractors of the infinite-Prandtl-number model. See [19] for such a convergence

result for a singularly perturbed wave equation, [21] for a general result, and [17]

for more on exponential attractors. Indeed, one may even be hopeful for conti-

nuity of exponential attractors since these objects are more stable [17, 34]. The

question regarding inertial manifold (a finite-dimensional manifold that is posi-

tively invariant under the dynamics and attracts all orbits with exponential rate) is

much harder. Even the existence of an inertial manifold for the simplified infinite-

Prandtl-number model is unknown.

A related result is a connection to the Landau-Lifshits theory on degrees of

freedom for turbulent flows. With fixed Rayleigh and Prandtl numbers, the inten-

sity of the turbulence is fixed, and thus it is expected that the degrees of freedom

of the system scale linearly in each of the horizontal lengths (Lx and L y) accord-

ing to the Landau-Lifshits theory (see, for instance, [13, 20]). Utilizing techniques

that we developed earlier for shear flows in elongated channels [15], we can obtain

upper bounds on the dimension of attractors for the Boussinesq system and the

infinite-Prandtl-number model that scale linearly in each of the horizontal lengths

(Lx and L y). We leave the details to the interested reader. Such a bound is optimal

in terms of dependence on Lx and L y since one can show that at a fixed value of Ra

the number of linearly unstable modes around the conduction state is proportional

to the “density of states” that is proportional to Lx ∗ L y (C. R. Doering, private

communication). Similar optimal bounds in the case of the free-slip boundary con-

dition on top and bottom and with restriction to the two-dimensional case or certain

functional invariant sets in the three-dimensional case are known [33, 35].

As we discussed earlier, statistical behavior is probably more important and re-

alistic for systems like the Boussinesq system, where we expect turbulent/chaotic

behavior. Thus a more important criterion for the validity of the infinite-Prandtl-

number model for convection is if the statistical properties for the Boussinesq

system are close to the corresponding statistical properties of the infinite-Prandtl-

number model. A prominent statistical quantity in convection is the averaged heat

transfer in the vertical direction that can be characterized via the time-averaged

Nusselt number [4, 8, 43]. In the case of the infinite-Prandtl-number model, an up-

per bound on the Nusselt number that agrees with physical scaling (modulo a loga-

rithmic term) has been derived by Constantin and Doering [8]. It is then interesting

to see if we can derive an upper bound on the Nusselt number for the Boussi-

nesq system that agrees with the Constantin-Doering result in the sense that the

upper bound should be the Constantin-Doering bound for infinite-Prandtl-number
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GLOBAL ATTRACTOR FOR RBC AT LARGE PRANDTL NUMBER 1315

convection plus a correction term that vanishes as the Prandtl number approaches

infinity. This and a few other issues are currently under investigation [16].

In terms of the second question, we consider the Rayleigh-Bénard convection

problem at large Prandtl number as a special case of more general physical systems

with two explicitly separated time scales. In general, we should not expect such

kind results to be true all the time. For instance, problems with fast oscillation on

the fast-time scale cannot be expected to converge in the strong sense as is clear

from the following example

ε
dx

dt
= −y − z, ε

dy

dt
= x − z,

dz

dt
= −z.

We see that the limit problem (ε = 0) has trivial dynamics (converge to the origin)

while we have persistent oscillation for positive ε. We do not have convergence

in terms of individual trajectory or in terms of long-time behavior. This exam-

ple can easily be modified into a dissipative one via applying a filter in space.

Although strong convergence is not possible in this oscillatory situation, it may

still be possible to discuss convergence in the weak sense (see, for instance, [31]).

Oscillation could occur spontaneously via Hopf bifurcation. For instance, the two-

dimensional Navier-Stokes equation under generalized Kolmogorov forcing may

experience Hopf bifurcation [7]. Therefore it may be relatively easier to deal with

the case with explicit fast oscillation; it may still be very hard to handle the general

situation with oscillation generated by the nonlinear mechanism.

If the fast dynamics is not oscillatory and the limit system is regular enough,

i.e., the two-time-scale problem relaxes to the slow-time-scale problem as we have

encountered here for convection at large Prandtl number, we expect similar results.

For instance, we expect to have similar results (convergence of trajectory modulo a

transitional layer and convergence of the global attractor) for convection in a porous

medium at small Darcy-Prandtl number [42]. Convection in a porous medium

is more regular than standard convection since the nonlinear advection term in

the velocity field is missing and the well-posedness of the governing system is

known [18, 29]. We remark that there are models for convection in porous media

that retain the nonlinear advection term [5, 11]. In this case, the mathematical

difficulty in terms of well-posedness is the same as that for the three-dimensional

incompressible Euler systems. We also expect to have similar results for certain

reaction-diffusion systems with one fast reaction/diffusion time. In this case, the

limit system may not be well posed since the limit elliptic equation in the fast

variable may not have a unique solution. In this case we employ the notion of

generalized dynamical systems [2], and it seems that similar results may follow as

well.
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