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Abstract

The purpose of this short communication is to announce that a class of numerical schemes, uniformly dissipative
approximations, which uniformly preserve the dissipativity of the continuous infinite dimensional dissipative complex (chaotic)
systems possess desirable properties in terms of approximating stationary statistics properties. In particular, the stationary statistical
properties of these uniformly dissipative schemes converge to those of the continuous system at vanishing mesh size. The idea is
illustrated on the infinite Prandtl number model for convection and semi-discretization in time, although the general strategy works
for a broad class of dissipative complex systems and fully discretized approximations. As far as we know, this is the first result
on rigorous validation of numerical schemes for approximating stationary statistical properties of general infinite dimensional
dissipative complex systems.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Many dynamical systems arising in physical applications are dissipative complex systems in the sense that they
possess a compact global attractor and the dynamics on the global attractor are complex/chaotic [16] with generic
sensitive dependence on data. Therefore, it is hardly meaningful to discuss long time behavior of a single trajectory
for this kind of complex system. Instead, we should study statistical properties of the system since they are physically
much more relevant than single trajectories [14,6,13]. If the system reaches some kind of stationary state, the objects
that characterize the stationary statistical properties are the invariant measures or stationary statistical solutions of the
system.

The numerical study of stationary statistical properties of complex system is a very challenging task since it
involves long time integration (so that the statistical averaging is computed utilizing the time averaging under the
assumption of ergodicity) and computation of large number of trajectories (if no ergodicity is assumed). In terms
of trajectory approximations, we are not aware of any effective long time integrator for dissipative complex/chaotic
systems in general unless the long time dynamics is trivial or the trajectory under approximation is stable [9,8]. It is not
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at all clear that those numerical methods that provide efficient and accurate approximations of a continuous complex
dynamical system on a finite time interval are able to provide meaningful approximation for stationary statistical
properties of the system, since small errors (truncation and rounding) may accumulate and grow over a long time (think
about the usual error estimates with a coefficient that grows exponentially in time). Even if the numerical scheme is
long time stable (solution asymptotically bounded for all time), there is still no guarantee that stationary statistical
properties will converge. As we will demonstrate in this work, a class of numerical schemes, uniformly dissipative
schemes, which preserve the dissipativity of the dissipative dynamical system under approximation uniformly in
terms of the mesh size, are able to asymptotically capture the stationary statistical properties of the continuous
complex/chaotic dynamical system at vanishing mesh size.

We will illustrate the idea of uniform dissipativity on the infinite Prandtl number model for convection and
consider semi-discretization in time only although the methodology works for many more complex/chaotic dynamical
systems [16] and fully discretized approximations. The choice of the infinite Prandtl number model is both for its
physical significance and for the sake of simplicity in exposition.

To the best of our knowledge, the convergence of stationary statistical properties of the uniformly dissipative
approximations to those of the continuous complex/chaotic system has never been explored before (on any infinite
dimensional dissipative complex system). Therefore, our work is the first establishing the usefulness of uniformly
dissipative schemes in approximating stationary statistical properties. We hope that our work will stimulate further
work on statistical properties of uniformly dissipative schemes and numerical experiments utilizing such schemes.

Previous works on uniform dissipativity largely focused on the two-dimensional incompressible Navier–Stokes
system (see [8,10,15,17] among others). The uniform dissipativity is called long time stability in these works. The
authors’ focuses there were uniform (in mesh size) bounds on the discrete solutions exclusively without any discussion
on statistical properties. As far as we know, our work is the first on convergence of statistical properties for numerical
schemes.

The work is organized as follows: we give an introduction in the first section; in Section 2 we propose a semi-
discrete (discrete in time) scheme for the infinite Prandtl number model and introduce the main result on uniformly
dissipativity and convergence of stationary statistical properties; we then provide conclusion and remarks in the third
section.

2. A uniformly dissipative scheme for the infinite Prandtl number model

Here we consider a simplified model for Rayleigh–Bénard convection at large Prandtl number, the infinite
Prandtl number model (non-dimensional) which is formally derived by setting the Prandtl number to infinity in
the Boussinesq system for convection

∇ p = 1u + Ra kT, ∇ · u = 0, u|z=0,1 = 0, (1)

∂T

∂t
+ u · ∇T = 1T, T |z=0 = 1, T |z=1 = 0 (2)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of the fluid, T is the temperature of the
fluid, k is a unit vector in the z direction, and Ra is the Rayleigh number measuring the ratio of differential heating over
overall dissipations. We assume that the fluids occupy the (non-dimensionalized) region Ω = [0, Lx ]×[0, L y]×[0, 1]

with periodicity imposed in the horizontal directions for simplicity. It is well known that convection at large Rayleigh
number is chaotic/turbulent. The interested reader is referred to [1–3,5,7,11,18,20–22] for more on convection at large
Rayleigh number.

It is well known that the infinite Prandtl number system linearized about the pure conduction state T = 1 − z is
linearly unstable. Moreover, numerical evidence suggests that the mean temperature profile is of boundary layer type.
Therefore, we decompose the temperature field into the mean background profile τ(z) (to be specified below) and the
perturbation θ away from this mean, i.e., T = θ + τ . It is easy to see that θ satisfies the following equation:

∂θ

∂t
+ Ra A−1(kθ) · ∇θ + Ra A−1(kθ)3τ

′(z) = 1θ + τ ′′(z), θ |z=0,1 = 0, (3)
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and we are searching for solution in the space H1
0,per (the subspace of H1 with zero trace in the z direction and periodic

in the horizontal directions). Here A−1(kθ)3 represents the third component (vertical velocity) of A−1(kθ) where A
is the Stokes operator with the associated boundary conditions.

The uniformly dissipative scheme that we propose is the following semi-implicit semi-discrete in time scheme

θn+1
− θn

k
+ Ra A−1(kθn) · ∇θn+1

+ Ra A−1(kθn+1)3τ
′(z) = 1θn+1

+ τ ′′(z) (4)

where θn denotes the approximate solution at time kn where k is the time step.
The background temperature profile τ will be taken as a locally smoothed (mollified) version of the following

function:

τ(z) =


1 −

z

2δ
, 0 ≤ z ≤ δ,

1
2
, δ ≤ z ≤ 1 − δ,

1 − z

2δ
1 − δ ≤ z ≤ 1.

δ = (4Ra)−
1
2 (5)

The choice of τ (or δ) given here is not optimal. A near optimal choice would be δ ∼ Ra−
1
3 but the control on the

linear destabilizing term is much longer [3,5,22]. We use this simple one since an optimal bound is not our goal here.
The well-posedness of the discrete scheme follows from Lax–Milgram theorem [12]. The scheme is also consistent,

convergent and uniformly dissipative. We summarize the preliminaries in the following lemma

Lemma 1 (Well-posedness, Consistency, Convergence and Uniform Bound/dissipativity). The scheme (4) is well-
posed in the sense that for any given θn

∈ L2 there exists a unique θn+1
∈ H1

0,per that satisfies

‖∇θn+1
‖ ≤ c‖θn

‖, ∀n ≥ 0. (6)

The scheme is also consistent and convergent in the sense that for θ0 ∈ H1
0,per

⋂
H2 and T ∗ > 0 we have

‖θn+1
− θn

‖ ≤ ck, ∀n ≥ 0. (7)

‖θk − θ‖L2(0,T ∗;L2) → 0, as k → 0, (8)

where θk(t) = θn, t ∈ [nk, (n + 1)k), nk < T ∗. Moreover, the scheme is uniformly dissipative in the sense that there
exists an absorbing ball in H1 that attracts all bounded sets in L2 uniformly for all k.

Our main result is the convergence of stationary statistical properties and a specific statistical property, the Nusselt
number, that quantifies heat transport in the vertical direction.

We first observe that the numerical scheme can be viewed as a discrete time dynamical system on the phase space
L2 with the notation

θn+1
= Fk(θ

n). (9)

The discrete dynamical system is uniformly (in k) dissipative thanks to the uniform estimates. Therefore, these
discrete dynamical systems possess compact global attractors in H1 which attract all bounded sets in L2. This leads
to the existence of invariant measures via a classical Krylov–Bogliubov argument [19,6] for the numerical scheme (or
the discrete dynamical system).

We recall the definition of invariant measures.

Definition 1 (Invariant Measures). A Borel probability measure µk on L2 is called an invariant measure for Fk if∫
L2

Φ(Fk(θ))dµk =

∫
L2

Φ(θ)dµk (10)

for all reasonable test functionals Φ. The set of all invariant measures for Fk is denoted as IMk .
We also recall that a Borel probability measure µ on L2 is an invariant measure, or stationary statistical solution

for the infinite Prandtl number model for convection, if
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1. ∫
L2

‖∇θ‖
2 dµ(θ) < ∞, (11)

2. ∫
L2

〈
−Ra A−1(kθ) · ∇θ − Ra A−1(kθ)3τ

′(z) + 1θ + τ ′′(z),Φ′(θ)
〉

dµ(θ) = 0 (12)

for any cylindrical test functional Φ(θ) = φ((θ, w1), . . . , (θ, wm)) where φ is a C1 function on Rm , {w j , j ≥ 1}

are the eigenfunctions of 1 which form an orthonormal basis for L2 and w j ∈ H1
0,per

⋂
C2, ∀ j , and 〈, 〉 denotes

the H−1, H1
0,per duality.

3. ∫
L2

∫
Ω

{|∇θ |
2
+ Ra(A−1(kθ))3θτ ′

− τ ′′θ} dx dµ(θ) ≤ 0. (13)

The set of all stationary statistical solutions for the infinite Prandtl number model is denoted as IM.

We recall the definition of the Nusselt number.

Definition 2 (Nusselt Number). The Nusselt number Nu for the infinite Prandtl number model and the Nusselt number
Nuk for the numerical scheme (4) are defined as

Nu = 1 + Ra sup
θ0∈L2

lim sup
t→∞

1
t Lx L y

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds, (14)

Nuk = 1 + Ra sup
θ0∈L2

lim sup
N→∞

1
N Lx L y

N∑
n=1

∫
Ω

A−1(kθn(x))3θ
n(x) dx. (15)

Our main result is the following theorem.

Theorem 1 (Convergence of Stationary Statistical Properties). Let µk be an arbitrary invariant measure of the
numerical scheme (4) with time step k, i.e. µk ∈ IMk , and let Nuk be the Nusselt number characterizing the heat
transport in the vertical direction for the scheme with time step k defined in (15). Then each subsequence of µk must
contain a subsubsequence (still denoted as µk) and an invariant measure µ of the infinite Prandtl number model so
that µk weakly converges to µ, i.e.,

µk ⇀ µ, as k → 0. (16)

Moreover, the Nusselt number converges in an upper semi-continuous fashion in the sense that

lim sup
k→0

Nuk ≤ Nu. (17)

3. Conclusions and remarks

Our main result clearly demonstrated the usefulness of uniformly dissipative schemes in terms of approximating
stationary statistical properties of (possibly) complex/chaotic dissipative dynamical systems since the stationary
statistical properties of the scheme converge to those of the continuous in time model. To the best of our knowledge,
this is the first rigorous result proving convergence of stationary statistical properties of numerical schemes to those
of the continuous in time dynamical system. We would like to emphasize that the methodology here can be applied
to much more general dissipative systems (with chaotic behavior for relevance), although we have treated the infinite
Prandtl number model only.

Other issues such as spatial discretization, high order schemes, schemes utilizing possible strong/exponential
mixing of the underlying dynamical system, generalizations to random dynamical systems, convergence of the global
attractors are all under investigation.

More details of the proof and discussions can be found in [4].
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