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A SEMI-IMPLICIT SCHEME FOR STATIONARY STATISTICAL
PROPERTIES OF THE INFINITE PRANDTL NUMBER MODEL∗

WENFANG (WENDY) CHENG† AND XIAOMING WANG‡

Abstract. We propose a semidiscrete in time semi-implicit numerical scheme for the infinite
Prandtl model for convection. Besides the usual finite time convergence, this scheme enjoys the
additional highly desirable feature that the stationary statistical properties of the scheme converge
to those of the infinite Prandtl number model at vanishing time step. One of the key characteristics
of the scheme is that it preserves the dissipativity of the infinite Prandtl number model uniformly in
terms of the time step. So far as we know, this is the first rigorous result on convergence of stationary
statistical properties of numerical schemes for infinite dimensional dissipative complex systems.

Key words. stationary statistical property, infinite Prandtl number model, uniformly dissipative
scheme, Nusselt number

AMS subject classifications. 65M12, 65Z05, 65P99, 37M25, 76D06, 76M25, 76R10

DOI. 10.1137/080713501

1. Introduction. Many dynamical systems arising in applications are dissipa-
tive complex systems in the sense that they possess a compact global attractor and
the dynamics on the global attractor are complex/chaotic [39]. Well-known examples
include the simple Lorenz 63 model, Lorenz 96 model, the Navier–Stokes equations at
large Reynolds number or Grashoff number, the Boussinesq system for convection at
large Rayleigh number, the Kuramoto–Sivashinsky equation at large spatial size, and
many models for the atmosphere, ocean, weather, and climate, etc. The dynamics of
these systems are typically very complex/chaotic with generic sensitive dependence
on data. Therefore, it is hardly meaningful to discuss long time behavior of a sin-
gle trajectory for this kind of complex system. Instead, we should study statistical
properties of the system since they are physically much more relevant than single
trajectories [33, 15, 31, 29]. If the system reaches some kind of stationary state, then
the objects that characterize the stationary statistical properties are the invariant
measures or stationary statistical solutions of the system.

With a given complex system, analytical exact expressions for statistical proper-
ties are extremely rare, just as exact solution formulas are rare for single trajectory.
Therefore we naturally turn to numerical methods, especially with today’s power-
ful computers and ever advancing computational technologies. The natural question
then is what kind of numerical schemes would provide good approximations for the
stationary statistical properties.

In terms of trajectory approximations, we are not aware of any effective long time
integrator for dissipative complex/chaotic systems in general unless the long time dy-
namics is trivial or the trajectory under approximation is stable [21, 17, 28]. It is not
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CONVERGENCE OF STATIONARY STATISTICAL PROPERTIES 251

at all clear whether those numerical methods that provide efficient and accurate ap-
proximations of the continuous complex dynamical system on a finite time interval are
able to provide meaningful approximation for stationary statistical properties of the
system since small errors (truncation and rounding) may accumulate and grow over a
long time (think about the usual error estimates with a coefficient that grows exponen-
tially in time due to the existence of chaotic behavior/positive Lyapunov exponent).
Here we forego the idea of long time fidel approximation of any single trajectory, but
ask if it is possible to approximate the mean or statistical properties faithfully. The
numerical study of stationary statistical properties of complex system still is a very
challenging task since it involves long time integration (so that the statistical aver-
aging is computed utilizing time averaging under the assumption of ergodicity) and
computation of a large number of trajectories (if no ergodicity is assumed).

We will demonstrate in this paper that a semidiscrete in time and semi-implicit
scheme for the infinite Prandtl number model for convection is able to capture sta-
tionary statistical properties of the underlying infinite Prandtl number model. It
seems that one of the key ingredients in the convergence of the stationary statistical
properties is the uniformly dissipativity of the scheme; i.e., the scheme is dissipative
uniformly with respect to the time step. Although this scheme may not approximate
individual trajectory faithfully for a long time due to the accumulation of truncation
and rounding errors and abundant instability/chaos, we will show that stationary sta-
tistical properties characterized by the invariant measures (stationary statistical solu-
tions) of the scheme converge to those of the continuous-in-time system. This gives
us strong evidence that these kinds of uniformly dissipative schemes are appropriate
schemes in investigating statistics.

Although the idea of uniform dissipativity and convergence of stationary statis-
tical properties is illustrated on the infinite Prandtl number model for convection
and semidiscretization in time only, we believe that the methodology works for many
more complex/chaotic dynamical systems [39] and fully discretized approximations.
The key ingredients are uniform (in mesh size) dissipativity and finite time uniform
convergence (see [48] for a somewhat general statement). The choice of the infinite
Prandtl number model is both for its physical significance (see the next section) and
for the sake of simplicity in exposition.

The idea of uniformly dissipative approximation for a dissipative dynamical sys-
tem is a very natural one. Since the continuous-in-time dynamical system is dissi-
pative (possess a global attractor), it is natural to consider numerical schemes that
preserve the dissipativity in the sense that the solutions to the schemes should pos-
sess global attractors that are uniformly compact in some appropriate sense (say the
union of the global attractors is precompact). These uniformly dissipative schemes
are usually implicit in some way (to ensure long time stability) and therefore have not
been very popular in practice so far. What we shall demonstrate below is that some
of these uniformly dissipative schemes enjoy a highly desirable property in terms of
approximating stationary statistical properties: the stationary statistical properties
of the schemes converge to those of the continuous-in-time dynamical systems. We
hope that our work will stimulate further study, both analytical and numerical, on
approximating statistical properties of dissipative systems.

Earlier works on long time behavior of numerical schemes for dissipative systems
mainly focused on the two-dimensional incompressible Navier–Stokes system and the
Kuramoto–Sivashinsky equation (see [17, 22, 26, 36, 40, 13, 14, 25] among others)
and the notion of long time stability or dissipativity. The uniform bound in the
phase space and a finer/smaller space is called long time stability or dissipativity in
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252 WENFANG (WENDY) CHENG AND XIAOMING WANG

these works (some of the authors derived only uniform bound/long time stability in
the phase space without other bounds that are necessary for ensuring the uniform
dissipativity of the scheme). We prefer the term uniform dissipativity since long time
stability could be misleading in the sense that it may imply the scheme is global
in time, stable in one single phase space only, which is not sufficient to ensure the
existence of the global attractor. Also, none of the authors discussed stationary
statistical properties of their schemes. To the best of our knowledge, our work is the
first in establishing the convergence of stationary statistical properties and therefore
the usefulness of uniformly dissipative schemes in approximating stationary statistical
properties. An announcement of the main results presented here can be found in [10].

The manuscript is organized as follows: we give an introduction in the first section;
in section 2 we propose a semidiscrete (discrete in time) scheme for the infinite Prandtl
number model and verify that it is uniformly dissipative and enjoys the property that
the stationary statistical properties of the scheme converge to those of the continuous-
in-time model; we then provide our conclusion and remarks in the third section.

2. A uniformly dissipative scheme for the infinite Prandtl number
model.

2.1. The infinite Prandtl number model for convection. One of the fun-
damental systems in fluid dynamics is the Boussinesq system for Raleigh–Bénard
convection, which is a model for convection; i.e., fluid motion induced by differential
heating under Boussinesq approximation [41, 16]. We assume that the fluids occupy
the (nondimensionalized) region Ω = [0, Lx]× [0, Ly]× [0, 1] with periodicity imposed
in the horizontal directions for simplicity.

The Boussinesq system exhibits extremely rich phenomena (see, for instance, [16,
41] and the recent reviews [4, 37]). In fact, the Boussinesq system is considered a fun-
damental paradigm for nonlinear dynamics including instabilities and bifurcations,
pattern formation, chaotic dynamics, and fully developed turbulence [27]. On the
other hand, we have very limited mathematical knowledge on the system. There-
fore various physically relevant simplifications are highly desirable in order to make
progress.

For fluids such as silicone oil or the earth’s mantle, the Prandtl number is large;
therefore, we may formally set the Prandtl number to infinity in the nondimensional
Boussinesq system, and we arrive at the following (see, for instance, [4, 6, 8, 18, 41]
among others) infinite Prandtl number model (nondimensional):

∇p = Δu +RakT, ∇ · u = 0, u|z=0,1 = 0,(2.1)

∂T

∂t
+ u · ∇T = ΔT, T |z=0 = 1, T |z=1 = 0,(2.2)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of
the fluid, T is the temperature of the fluid, k is a unit vector in the z direction, and
Ra is the Rayleigh number measuring the ratio of differential heating over overall
dissipation.

It is well known that for complex systems such as a convection system at large
Rayleigh number where turbulent/chaotic behavior abounds (see, for instance, [6,
16, 27, 4, 37]), statistical properties for such systems are much more important and
physically relevant than single trajectories [33, 15, 29, 31].

Although there have been extensive works on heat transport in Rayleigh–Bénard
convection [1, 4, 6, 7, 18, 37, 23, 24], basic statistical properties of the system, such
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as the heat transport in the vertical direction quantified by the Nusselt number and
the mean velocity field, are not very well understood. On the other hand, the infinite
Prandtl number model is much simpler than the Boussinesq system since the Navier–
Stokes equations are replaced by the Stokes equations (and therefore the phase space is
that of the temperature only). We also know that the statistics of the infinite Prandtl
number model are close to those of the Boussinesq system at large Prandtl number
[44, 45, 46]. Therefore it makes sense for us to study some fundamental statistical
properties of convection utilizing the simple infinite Prandtl number model since we
can generally expect to push to a physically more interesting higher Rayleigh number
without sacrificing accuracy with the currently available computing resource.

In our case of infinite Prandtl number convection at large Rayleigh number, even
the computation on order one time scale (diffusive time scale) is a challenge since it
is in fact a long time integration in disguise. To see this, we can rewrite the infinite
Prandtl number model as

∂T

∂t
+RaA−1(kT ) · ∇T = ΔT, T |z=0 = 1, T |z=1 = 0,(2.3)

where A denotes the Stokes operator with viscosity one and the associated boundary
conditions. It is then apparent that this is an advection dominated problem (large
Péclet number) for large Rayleigh number Ra. We divide both sides of the equation
by Ra and introduce the fast time scale τ = Ra t, for which we may rewrite the infinite
Prandtl number model in the following alternative form with an order one advection
term

∂T

∂τ
+A−1(kT ) · ∇T =

1
Ra

ΔT.(2.4)

It appears that the leading order dynamics at large Rayleigh number is the nonlocal
advection equation ∂T

∂τ +A−1(kT ) · ∇T = 0. However, this is valid only on order one
time scale for the fast time τ . What we are interested in is order one time scale for
the diffusive time t, which means a long time for the fast time τ (of the order of Ra).

2.2. A semidiscrete in time scheme. In this subsection, we provide a specific
semidiscrete in time convergent dissipative scheme for the infinite Prandtl number
model. The scheme is semi-implicit and utilizes a background temperature profile.
Indeed, consider a generic background temperature profile τ(z) which satisfies the
nonhomogeneous Dirichlet boundary condition of T . We introduce the perturbative
temperature field θ = T − τ . The exact form of the background profile τ to be used
will be specified below. It is easy to see that θ satisfies the following equation:

∂θ

∂t
+RaA−1(kθ) · ∇θ +RaA−1(kθ)3τ ′(z) = Δθ + τ ′′(z), θ|z=0,1 = 0,(2.5)

and we are searching for a solution in the space H1
0,per (the subspace of H1 with zero

trace in the z direction and periodic in the horizontal directions). Here A−1(kθ)3
represents the third component (vertical velocity) of A−1(kθ).

The semi-implicit semidiscrete in time scheme that we propose is given by

θn+1 − θn

k
+RaA−1(kθn) · ∇θn+1 + RaA−1(kθn+1)3τ ′(z) = Δθn+1 + τ ′′(z),(2.6)

where θn denotes the approximate solution at time kn where k is the time step. A
more accurate notation would be θn

k to indicate the dependence on the time step k.
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254 WENFANG (WENDY) CHENG AND XIAOMING WANG

However, we will suppress the k dependence in the notion for simplicity except in the
convergence proof.

Note that the scheme is linear although the PDE is nonlinear.
Also, we would arrive at a different scheme if we were to discretize in time first

and then apply the translation/background profile (see (3.2) for the case of λ = 0).
Following the pioneering works of Constantin and Doering [7, 8], we set back-

ground temperature profile τ to be a locally smoothed (mollified) version of the fol-
lowing piecewise linear function:

τ(z) =

⎧⎪⎨
⎪⎩

1 − z
2δ , 0 ≤ z ≤ δ,

1
2 , δ ≤ z ≤ 1 − δ,

1−z
2δ , 1 − δ ≤ z ≤ 1.

(2.7)

The choice of the parameter δ will be specified later.
We would like to remark here that the typical choice of τ being the conduction

state 1 − z is not a good one. In fact, the linearized equation is unstable in this
case [6] and the solutions (to the linearized problem) grow without bound for generic
initial data. Therefore we have to utilize the nonlinear term (this is where the new
background profile comes into the picture) to stabilize the whole system. It is also
worthwhile to point out that boundary conditions play an important role in the stabi-
lization process. For instance, if we choose τ = 1− z (the pure conduction state) and
utilize periodicity for the perturbative variables in all three directions (the so-called
homogeneous Rayleigh–Bénard convection), then the nonlinear system is not stable
[5] (look at solutions that are z independent).

2.3. Well-posedness. The well-posedness of the discrete scheme follows from
the Lax–Milgram theorem [30].

The weak formulation of the scheme can be derived by multiplying the scheme
(2.6) by a test function ψ ∈ H1

0,per and integrating by parts. The weak formulation
of the discrete scheme can be rewritten into the form

Bn(θn+1, ψ) = Ln(ψ),(2.8)

where

Bn(θn+1, ψ)(2.9)

=
(

1
k
θn+1 +RaA−1(kθn) · ∇θn+1 +RaA−1(kθn+1)3τ ′, ψ

)
+ (∇θn+1,∇ψ),

Ln(ψ)(2.10)

= −
(
τ ′(z),

∂ψ

∂z

)
+

(
1
k
θn, ψ

)
.

It is easy to see that Bn is a continuous bilinear form on H1
0,per ×H1

0,per , and Ln is a
continuous linear functional on H1

0,per. We need only verify the coercivity for Bn in
order to show the solvability thanks to the Lax–Milgram theorem.

For this purpose we notice that, thanks to the specific form of the background pro-
file τ given in (2.7), the homogeneous boundary conditions for θn+1, (A−1(kθn+1))3,
∇(A−1(kθn+1))3, elliptic regularity (for the Stokes operator), and Poincaré inequality
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(three times), there exists a constant c1 independent of k, n,Ra, such that

Ra

∣∣∣∣
∫

Ω

τ ′(z)(A−1(kθn+1))3θn+1

∣∣∣∣ ≤ c1 δ
2Ra‖∇θn+1‖2 ≤ 1

4
‖∇θn+1‖2(2.11)

provided that we choose1

δ = (4c1Ra)−
1
2 .(2.12)

Therefore

Bn(θn+1, θn+1) ≥ 1
k
‖θn+1‖2 +

3
4
‖∇θn+1‖2(2.13)

which proves the coercivity. Here and elsewhere ‖θ‖ =
√∫

Ω
|θ|2 denotes the spatial

L2 norm of θ, and ‖θ‖∞ = esssupΩ|θ| denotes the spatial L∞ norm of θ.
This ends the proof of the well-posedness of the discrete scheme.

2.4. Uniform dissipativity. Next, we prove the uniform dissipativity. Here
and below, the cjs denote generic constants independent of k, n (but which may
depend on the Rayleigh number).

We first derive a uniform bound in the L2 space. For this purpose we take the
inner product of the scheme with ψ = θn+1 and utilize the identity (a − b, a) =
1
2 (|a|2 − |b|2 + |a − b|2) together with the estimate on the destabilizing term (2.11),
and we have

1
2k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2

≤ ‖τ ′‖‖∇θn+1‖ +Ra

∣∣∣∣
∫

Ω

τ ′(z)(A−1(kθn+1))3θn+1

∣∣∣∣
≤ ‖τ ′‖2 +

1
2
‖∇θn+1‖2.

Therefore, there exists a constant c2 such that

1
k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2 ≤ 2‖τ ′‖2 ≤ c2Ra
1
2(2.14)

which further implies, thanks to the Poincaré inequality, that

(1 + k)‖θn+1‖2 ≤ ‖θn‖2 + c2kRa
1
2 .(2.15)

This leads to, with the help of a simple iteration,

‖θn+1‖2 ≤ (1 + k)−(n+1)‖θ0‖2 + c2Ra
1
2 .(2.16)

This is a uniform estimate in the L2 space.
A byproduct of this estimate is that

1
N

N∑
n=0

‖∇θn+1‖2 ≤ ‖θ0‖2

kN
+ c2Ra

1
2 ,(2.17)

which is a bound on the Nusselt number in this discretized case for largeN (see the def-
inition later for Nusselt number (2.58, 2.59)), and a bound in L2(H1) for the scheme.

1The choice of τ or δ given here is not optimal. A near optimal choice would be δ ∼ Ra− 1
3 , but

the control on the linear destabilizing term is much longer [8, 12, 46]. We use the simple one since
the optimal bound is not our goal here.
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256 WENFANG (WENDY) CHENG AND XIAOMING WANG

We also have
N∑

n=0

‖θn+1 − θn‖2 ≤ ‖θ0‖2 + c2kNRa
1
2 .(2.18)

In order to obtain uniform estimates in H1, we take the inner product of the
scheme with ψ = −Δθn+1, and we have

1
2k

(‖∇θn+1‖2 − ‖∇θn‖2 + ‖∇(θn+1 − θn)‖2) + ‖Δθn+1‖2

≤ ‖τ ′′‖‖Δθn+1‖ +Ra‖τ ′‖‖A−1(kθn+1)‖∞‖Δθn+1‖
+Ra‖A−1(kθn)‖∞‖∇θn+1‖‖Δθn+1‖

≤ ‖τ ′′‖‖Δθn+1‖ + c3Ra‖τ ′‖‖θn+1‖‖Δθn+1‖ + c4Ra‖θn‖‖θn+1‖ 1
2 ‖Δθn+1‖ 3

2

≤ 1
2
‖Δθn+1‖2 + c5,

where we have applied the regularity result for the Stokes operator, the Sobolev
imbedding of H2 into L∞, interpolation inequality, the uniform L2 estimate (2.16),
and Hölder type inequality.

This implies that

(1 + k)‖∇θn+1‖2 ≤ ‖∇θn‖2 + 2c6k,(2.19)

which further implies, with the help of a simple iteration, that

‖∇θn+1‖2 ≤ (1 + k)−n‖∇θ1‖2 + 2c6.(2.20)

This is the desired uniform estimates in the H1 space; i.e., there is a uniform in k
bounded absorbing ball in H1 which attracts all solutions with L2 initial data.

Uniform estimates in Sobolev spaces with more derivatives can be derived just as
in the case of a continuous-in-time system. Here we demonstrate that the H2 norm of
the solution is asymptotically uniformly bounded in time; i.e., there is an absorbing
ball in H2 which attracts all solutions with L2 initial data uniformly for all k.

For this purpose we apply Δ to both sides of the scheme (2.6) and then multiply
the scheme by Δθn+1 and integrate over the domain. This leads to the following:

1
2k

(‖Δθn+1‖2 − ‖Δθn‖2 + ‖Δ(θn+1 − θn)‖2) + ‖∇Δθn+1‖2

≤ ‖τ (4)‖‖Δθn+1‖ +Ra(‖Δ(A−1(kθn))‖L6‖∇θn+1‖L3

+2‖∇A−1(kθn)‖L∞‖∇2θn+1‖)‖Δθn+1‖
+Ra(‖Δ(A−1(kθn+1))‖‖τ ′‖L∞ + 2‖∇(A−1(kθn+1))‖‖∇τ ′‖L∞

+‖A−1(kθn+1)‖‖Δτ ′‖L∞)‖Δθn+1‖
≤ c7(‖Δθn+1‖ + ‖Δθn+1‖2)

≤ c8(‖Δθn+1‖ + ‖∇Δθn+1‖‖∇θn+1‖)

≤ 1
2
‖∇Δθn+1‖2 + c9,
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where we have applied the identity
∫
A−1(kθn)∇Δθn+1Δθn+1 = 0, Hölder’s inequal-

ity, elliptic regularity, Sobolev imbedding, Cauchy–Schwarz, and interpolation in-
equality.

This leads to the inequality

(1 + k)‖Δθn+1‖2 ≤ ‖Δθn‖2 + 2c9k,(2.21)

which further implies, with the help of a simple iteration,

‖Δθn+1‖2 ≤ (1 + k)−n+1‖Δθ2‖2 + 2c9.(2.22)

This is the desired uniform estimates in the H2 space, i.e., there is a uniform in k
bounded absorbing ball in H2 which attracts all solutions with L2 initial data.

To summarize, we have the following lemma.
Lemma 1 (uniform bound/dissipativity). There exists a constant c9 independent

of the time step k such that the scheme (2.6) possesses an absorbing ball in H1 and
H2 with radius 2

√
c9 which attracts all bounded sets in L2.

2.5. Consistency and convergence. Here we check the consistency first since
this is what we need in the following.

Multiplying the scheme (2.6) by k(θn+1−θn) and integrating over the domain we
have

‖θn+1 − θn‖2 ≤ k

{
−1

2
(‖∇θn+1‖2 − ‖∇θn‖2 + ‖∇(θn+1 − θn)‖2)

+‖τ ′‖‖∇(θn+1 − θn)‖ + c10‖θn‖∞‖∇θn+1‖‖θn+1 − θn‖

+c11‖θn+1‖∞‖τ ′‖‖θn+1 − θn‖
}

≤ k(c12 + c13‖θn+1 − θn‖),

where we have applied the Cauchy–Schwarz inequality, Hölder’s inequality, elliptic
regularity, and uniform bounds in H1 (2.20).

This implies the following consistency result :

‖θn+1 − θn‖ ≤ c14k
1
2 ,(2.23)

provided that θ0 ∈ H1
0,per.

If we assume θ0 ∈ H1
0,per

⋂
H2, we may deduce from the scheme (2.6) and the

uniform bound (2.22) the following stronger consistency result:

‖θn+1 − θn‖ ≤ c15k.(2.24)

Next, we show that the solutions to the scheme converge to the solution of the
infinite Prandtl number model in L2(0, T ∗, L2) for any given time T ∗ > 0 as k → 0.

For this purpose, we rewrite the scheme (2.6) as

∂θ̃k(t)
∂t

+ RaA−1(kθk(t)) · ∇θk(t+ k) +RaA−1(kθk(t+ k))3τ ′(z)(2.25)

= Δθk(t+ k) + τ ′′(z),
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where

θk(t) = θn
k , t ∈ [nk, (n+ 1)k),(2.26)

θ̃k(t) = θn
k +

t− nk

k
(θn+1

k − θn
k ), t ∈ [nk, (n+ 1)k).(2.27)

The estimates (2.16, 2.17) imply that θk and θ̃k are uniformly (in k) bounded in
L∞(0, T ∗;L2) and L2(0, T ∗;H1

0,per). Hence we have a subsequence, still denoted θk

and θ̃k and θ, θ̃ ∈ L∞(0, T ∗;L2)
⋂
L2(0, T ∗;H1

0,per) such that

θk ⇀ θ, weak * in L∞(0, T ∗;L2),(2.28)

θk ⇀ θ, weak in L2(0, T ∗;H1
0,per),(2.29)

θ̃k ⇀ θ̃, weak * in L∞(0, T ∗;L2),(2.30)

θ̃k ⇀ θ̃, weak in L2(0, T ∗;H1
0,per).(2.31)

It is also easy to check, thanks to (2.18), for any a < T ∗,

∫ T∗−a

0

‖θk(t+ k) − θk(t)‖2 dt ≤ c16k,(2.32)

∫ T∗

0

‖θk(t) − θ̃k(t)‖2 dt ≤ c17k.(2.33)

Therefore

θ = θ̃,(2.34)

θk(· + k) ⇀ θ, weak * in L∞(0, T ∗;L2),(2.35)

θk(· + k) ⇀ θ, weak in L2(0, T ∗;H1
0,per).(2.36)

Furthermore, thanks to a compactness theorem due to Témam ([38, Ch. 13, Theo-
rem 13.3], which states that a bounded set G ⊂ L1(0, T ∗;Y )

⋂
Lp(0, T ∗;X), p > 1

with X,Y being two Banach spaces and the injection of Y into X being compact,
and supg∈G

∫ T∗−a

0 ‖g(a + s) − g(s)‖p
X ds → 0, as a → 0, is necessarily precompact

in Lq(0, T ∗;X) ∀q ∈ [1, p)), there exists a sub-subsequence of θ̃k which converges
strongly in Lq(0, T ∗;L2) ∀q ∈ [1, p). Indeed, testing the scheme (2.25) against a test
function v and integrating from t to t+ a, we have

|(θ̃k(t+ a) − θ̃k(t), v)|(2.37)

≤
∫ t+a

t

{‖∇θk(s+ k)‖‖∇v‖

+‖τ ′‖‖∂v
∂z

‖ +Ra ‖A−1(kθk(s))‖L∞‖θk(s+ k)‖‖∇v‖

+Ra ‖A−1(kθk(s+ k))3‖L∞‖τ ′‖‖v‖} ds

≤ c18‖∇v‖a 1
2 ,
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where we have applied the regularity for the Stokes operator, Sobolev imbedding,
Poincaré inequality, and the a priori estimates in L∞(L2) and L2(H1) valid for L2

initial data. Now set v = θ̃k(t + a) − θ̃k(t) and utilize the L2(H1) estimate on θ̃k.
Then we have

∫ T∗−a

0

‖θ̃k(t+ a) − θ̃k(t)‖2 ≤ c19a
1
2 .(2.38)

This implies the strong convergence by Témam’s compactness theorem.
Combining this strong convergence in Lq(L2), q ∈ [1, 2) with the uniform L∞

(0, T ∗;L2) estimate, we conclude that the sub-subsequence in fact converges strongly
in Lq(0, T ∗;L2) ∀q ∈ [1,∞). Hence we may summarize the a priori estimates as

θk(·), θk(· + k), θ̃k(·), θ̃k(· + k) → θ(·), in Lq(0, T ∗;L2) ∀q ∈ [1,∞),(2.39)

θk(·), θk(· + k), θ̃k(·), θ̃k(· + k) ⇀ θ(·), weakly in L2(0, T ∗;H1
0,per).(2.40)

Now for any φ ∈ H1
0,per and ψ ∈ C1([0, T ∗]) with ψ(T ∗) = 0, we can rewrite the

scheme (2.25) in the following weak form:
∫ T∗

0

∫
Ω

{
−θ̃k(x, t)φ(x)ψ′(t) +RaA−1(kθk(x, t)) · ∇θk(x, t+ k)φ(x)ψ(t)

+RaA−1(kθk(x, t+ k))3τ ′(z)φ(x)ψ(t) + ∇θk(x, t+ k) · ∇φ(x)ψ(t)(2.41)

+τ ′(z)
∂

∂z
φ(x)ψ(t)

}
dxdt

=
∫

Ω

θ0(x)φ(x)ψ(0) dx.

Utilizing the strong Lq(L2) convergence (2.39) and the weak L2(H1
0,per) convergence

(2.40) together with elliptic regularity, we can pass to the limit as k → 0 and arrive at
∫ T∗

0

∫
Ω

{
−θφψ′ +RaA−1(kθ) · ∇θφψ +RaA−1(kθ)3τ ′φψ(2.42)

+∇θ · ∇φψ + τ ′
∂

∂z
φψ

}
dxdt =

∫
Ω

θ0φψ(0),

which is exactly the weak form of the infinite Prandtl number model. Since the infinite
Prandtl number model possesses a unique solution, θ must be the unique solution;
hence, the whole sequence of θk and θ̃k converges to θ as any subsequence has a
sub-subsequence that converges to the same limit θ.

We summarize the result here as the following lemma.
Lemma 2 (consistency and convergence). For any given T ∗ > 0 and θ0 ∈ L2,

the solution to the numerical scheme (2.25) converges to the solution of the infinite
Prandtl number model; i.e.,

θk(·), θk(· + k), θ̃k(·), θ̃k(· + k) → θ(·) in Lq(0, T ∗;L2) ∀q ∈ [1,∞),(2.43)

θk(·), θk(· + k), θ̃k(·), θ̃k(· + k) ⇀ θ(·) weakly in L2(0, T ∗;H1
0,per),(2.44)

where θ is the unique solution to the infinite Prandtl number model.

D
ow

nl
oa

de
d 

03
/1

7/
23

 to
 1

31
.1

51
.2

6.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

260 WENFANG (WENDY) CHENG AND XIAOMING WANG

Moreover, if θ0 ∈ H1
0,per

⋂
H2, then there exists a generic constant c15 indepen-

dent of k, n such that

‖θn+1 − θn‖ ≤ c15k.(2.45)

We have established Lq(L2) ∀q < ∞ convergence of the numerical scheme. Uni-
form in time convergence (on finite time interval, i.e., L∞(0, T ∗;L2)) of the scheme
can be established as well if we assume all the compatibility conditions needed (so
that the exact solution is smooth enough up to the initial time t = 0; see [38] for the
case of Navier–Stokes equations). If no high order compatibility condition is assumed,
then one can show the uniform in time convergence on any finite interval modulus an
initial layer (see [20] for the case of Navier–Stokes equations). Uniform convergence
without enough compatibility conditions is needed for the proof of convergence of the
global attractors [48], but not required here and hence we skip the details.

2.6. Convergence of the stationary statistical properties. As we men-
tioned earlier, for complex systems with chaotic/turbulent behavior, statistical prop-
erties are much more important than individual trajectories. In fact it is essentially
hopeless to try to find approximation schemes that possess the property that the
approximate trajectory remain close to the “true” trajectory for all time due to abun-
dant sensitive dependence on data and positive Lyapunov exponents.2 Therefore, the
natural question to ask is if stationary statistical properties are well approximated.
These stationary statistical properties are characterized by stationary statistical so-
lutions or invariant measures of the system. Hence the question that we ask here is if
the invariant measures of the discrete time approximation approximate the invariant
measures of the continuous-in-time infinite Prandtl number model.

We first observe that the numerical scheme (2.6) can be viewed as a discrete time
dynamical system on the phase space L2 with the notation

θn+1 = Fk(θn).(2.46)

Thanks to the well-posedness result, we see that Fk in fact maps L2 into H1
0,per, and

F 2
k maps L2 into H1

0,per

⋂
H2 by elliptic regularity. Moreover, the discrete dynamical

system is uniformly (in k) dissipative thanks to the uniform H1 estimate (2.20).
Therefore, this dynamical system possesses a compact global attractor in H1 which
attracts all bounded sets in L2. This leads to the existence of invariant measures via
a classical Krylov–Bogliubov argument [42, 15] for the numerical scheme (the discrete
dynamical system).

We recall the definition of invariant measures.
Definition 1 (invariant measures). A Borel probability measure μk on L2 is

called an invariant measure for Fk if

∫
L2

Φ(Fk(θ))dμk =
∫

L2
Φ(θ)dμk(2.47)

for all bounded continuous test functional Φ.
The set of all invariant measures for Fk is denoted IMk.

2There is a notable exception when the system possesses an explicit hyperbolic structure for
which numerical shadowing may be possible [35].
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We also recall that a Borel probability measure μ on L2 is an invariant measure, or
stationary statistical solution, for the infinite Prandtl number model for convection if

1. ∫
L2

‖∇θ‖2 dμ(θ) <∞,(2.48)

2. ∫
L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z)(2.49)

+Δθ + τ ′′(z),Φ′(θ) > dμ(θ) = 0

for any cylindrical test functional Φ(θ) = φ((θ, w1), . . . , (θ, wm)), where φ is
a C1 function on Rm, {wj , j ≥ 1} are the eigenfunctions of Δ which form
an orthonormal basis for L2 and wj ∈ H1

0,per

⋂
C2 ∀j, and <,> denotes the

H−1, H1
0,per duality,

3. ∫
L2

∫
Ω

{|∇θ|2 +Ra(A−1(kθ))3θτ ′ − τ ′′θ} dx dμ(θ) ≤ 0.(2.50)

The set of all stationary statistical solutions for the infinite Prandtl number model is
denoted IM.

Roughly speaking, the first condition says that the invariant measures are sup-
ported on the smaller and finer space of H1, the second condition is the differential
form of the weak formulation of the invariance of the measure under the flow, and the
third condition is a statistical version of the energy inequality.

Now let μk ∈ IMk be a sequence of invariant measures. Thanks to the uniform
estimate in H1 (2.20), we see that the support of μk is contained in a bounded ball in
H1 independent of k. Therefore, thanks to the Prokhorov compactness theorem and
Rellich compactness theorem [3, 30], the sequence μk is weakly precompact in the set
of all Borel probability measures on L2; hence it must contain a weakly convergent
subsequence (still denoted {μk}) which converges to a Borel probability measure μ.
Our goal is to show that μmust be an invariant measure of the infinite Prandtl number
model.

The first condition in the definition is easily verified since the global attractors
for the discrete dynamical systems are uniformly bounded in H1 independent of the
time step k, and the invariant measures are supported on the global attractor [15, 48].

In order to check the second condition, i.e., the differential form of the weak
formulation of invariance, we let Φ(θ) = φ((θ, w1), . . . , (θ, wm)) = φ(y1, . . . , ym) be a
cylindrical test functional. Notice that

Φ′(θ) =
m∑

j=1

∂

∂yj
φ((θ, w1), . . . , (θ, wm))wj .(2.51)

Hence, denoting by <,> the duality between H−1 and H1
0,per, we have

∫
L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z) + Δθ + τ ′′(z),Φ′(θ) > dμ(θ)

=
∫

L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z)
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+Δθ + τ ′′(z),
m∑

j=1

∂φ

∂yj
((θ, w1), · · · , (θ, wm))wj > dμ(θ)

=
∫

L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjθ −RaA−1(kθ)3τ ′(z)wj

+Δwjθ + τ ′′(z)wj) dx dμ(θ)

= lim
k→0

∫
L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjθ −RaA−1(kθ)3τ ′(z)wj

+Δwjθ + τ ′′(z)wj) dx dμk(θ)

= lim
k→0

∫
L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjFk(θ) −RaA−1(kFk(θ))3τ ′(z)wj

+ΔwjFk(θ) + τ ′′(z)wj) dx dμk(θ)

= lim
k→0

∫
L2
< −RaA−1(kθ) · ∇Fk(θ) −RaA−1(kFk(θ))3τ ′(z)

+ΔFk(θ) + τ ′′(z),Φ′(θ) > dμk(θ)

= lim
k→0

∫
L2
<
Fk(θ) − θ

k
,Φ′(θ) > dμk(θ)

= lim
k→0

∫
L2

1
k

(Φ(Fk(θ)) − Φ(θ)) dμk(θ)

= 0,

where we have used the boundedness and continuity of ∂φ
∂yj

on the union of the support
of μk, the consistency estimate (2.24), the invariance of μk under Fk, and the following
straightforward estimates valid on the union of the support of the μks (uniformly
bounded in H1

0,per

⋂
H2):

∣∣∣∣
∫

Ω

A−1(kθ) · ∇wj(Fk(θ) − θ) dx
∣∣∣∣ ≤ c‖Fk(θ) − θ‖ = O(k) → 0,

∣∣∣∣
∫

Ω

(A−1(k(Fk(θ) − θ)))3τ ′(z)wj dx
∣∣∣∣ ≤ c‖Fk(θ) − θ‖ = O(k) → 0,

∣∣∣∣
∫

Ω

Δwj(Fk(θ) − θ) dx
∣∣∣∣ ≤ c‖Fk(θ) − θ‖ = O(k) → 0,

< Fk(θ) − θ,Φ′(θ) > = Φ(Fk(θ)) − Φ(θ) + o(‖Fk(θ) − θ‖)
= Φ(Fk(θ)) − Φ(θ) + o(k),

the weak convergence of μk to μ, the scheme, and the invariance of μk.
This proves the differential form of the weak invariance of μ under the infinite

Prandtl number dynamics, i.e., 2 of Definition 1.
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The energy type inequality 3 of Definition 1 can be verified easily as well. For
this purpose, we first show that any invariant measure μk of the numerical scheme
(2.6) must satisfy the same energy type estimate. The desired continuous one will be
the limit as the time step approaches zero.

We first show that the invariant measures for Fk also satisfy the energy inequality.
For this purpose we multiply the scheme (2.6) by θn+1 and integrate over the domain,
and we then have

1
2k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2

+
∫

Ω

(−τ ′′θn+1 +Ra τ ′A−1(kθn+1)3θn+1) = 0.

This can be rewritten using the discrete dynamical system notation Fk as
1
2k

(‖Fk(θ)‖2 − ‖θ‖2 + ‖Fk(θ) − θ‖2) + ‖∇Fk(θ)‖2(2.52)

+
∫

Ω

(−τ ′′Fk(θ) +Ra τ ′A−1(kFk(θ))3Fk(θ)) = 0.

Integrating this identity with respect to the invariant measure μk and utilizing
the invariance of μk under Fk, we have∫

L2

∫
Ω

(|∇Fk(θ)|2 − τ ′′Fk(θ) +Ra τ ′A−1(kFk(θ))3Fk(θ))dx dμk(θ)(2.53)

= − 1
2k

∫
L2

‖Fk(θ) − θ‖2dμk(θ) ≤ 0.

Utilizing the invariance of μk under Fk again in the lower order terms we have∫
L2

(‖∇Fk(θ)‖2 +
∫

Ω

(−τ ′′θ +Ra τ ′(A−1(kθ))3θ) dx) dμk(θ) ≤ 0.(2.54)

Now we recall that the support of μk is uniformly bounded in H1 and hence, since
the wjs are the eigenfunctions of Δ which form an orthonormal basis in L2, wj also
forms a complete orthogonal system in H1

0,per (with the inner product between f and
g given by

∫
Ω ∇f · ∇g),

‖∇Fk(θ)‖2 = lim
m→∞

m∑
j=1

(∇Fk(θ),∇wj)2

‖∇wj‖2
= lim

m→∞

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2
.

Therefore ∫
L2

‖∇Fk(θ)‖2 dμk(θ) =
∫

L2
lim

m→∞

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2
dμk(θ)

= lim
m→∞

∫
L2

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2
dμk(θ)

= lim
m→∞

∫
L2

m∑
j=1

(θ,Δwj)2

‖∇wj‖2
dμk(θ)

=
∫

L2
‖∇θ‖2 dμk(θ),(2.55)
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where we have used the uniform boundedness of ‖∇θ‖ and ‖∇Fk(θ)‖ on the support
of μk, the Lebesque dominated convergence theorem and the invariance of μk under
Fk.

Hence we see that μk also satisfies the energy inequality, i.e.,
∫

L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ) ≤ 0.(2.56)

Next, we take the limit as k approaches zero. The last two terms in the discrete
energy inequality above converge to the right limit by the very definition of weak
convergence of μk to μ. As for the leading order quadratic term, we have

∫
‖∇θ‖2 dμ(θ) = lim

m→∞

m∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2
dμ(θ)

= lim
m→∞ lim

k→0

m∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2
dμk(θ)

≤ lim inf
k→0

∞∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2
dμk(θ)

= lim inf
k→0

∫
‖∇θ‖2 dμk(θ).

This implies that
∫

L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμ(θ)

≤ lim inf
k→0

∫
‖∇θ‖2 dμk(θ) + lim

k→0

∫
L2

∫
Ω

(−τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ)

≤ lim inf
k→0

∫
L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ)

≤ 0.(2.57)

This completes the proof of the energy type inequality (3 in Definition 1) for the limit
probability measure μ. Therefore we conclude that the limit μ must be an invariant
measure of the infinite Prandtl number model.

Sometimes we impose a stronger version of the statistical energy inequality in
the definition of stationary statistical solutions: we require that the statistical ver-
sion of the energy inequality be true on any energy shells e1 ≤ ‖θ‖ ≤ e2 instead
of just one infinite shell from zero to infinity. Such a kind of energy inequalities is
useful in some applications in the Navier–Stokes case (see, for instance, [15]). They
can be verified with a little bit of extra work which involves approximating the fi-
nite difference by differentiation and utilizing the uniform in H2 estimates (invariant
measures are supported in a bounded ball in H2). We shall supply details elsewhere.
Likewise it is sometimes useful to have a stronger version of the invariance of μ un-
der the continuous-in-time dynamics either as a straightforward pullback invariance
or differential form of the weak invariance with a broader class of test functionals
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that are bounded on bounded sets of L2, Fréchet differentiable for θ ∈ H1
0,per with

Φ′(θ) ∈ H1
0,per, and the derivative is continuous and bounded as a function from

H1
0,per to H1

0,per . It can be shown that these variations yield the same definition just
as in the case of two-dimensional Navier–Stokes equations [15].

Next, we turn our attention to one of the most important statistical quantities
in convection: the heat transport in the vertical direction quantified by the Nusselt
number. More specifically, we consider the limit of heat transport in the vertical
direction; i.e., the Nusselt number, as the step size approaches zero. We first recall
the definition of the Nusselt number.

Definition 2 (Nusselt number). For the infinite Prandtl number model, the
nondimensional averaged heat transport in the vertical direction is defined as

Nu = sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

|∇T (x, s)|2 dxds

= 1 +Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kT (x, s))3T (x, s) dxds

= 1 +Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds.(2.58)

Likewise, the nondimensional averaged heat transport in the vertical direction for
the discrete in time scheme (2.6) is defined as

Nuk = 1 +Ra sup
θ0∈L2

lim sup
N→∞

1
NLxLy

N∑
n=1

∫
Ω

A−1(kθn(x))3θn(x) dx.(2.59)

It is well known that long time averages defined through Banach (generalized)
limits are spatial averages with respect to appropriate invariant measures of the un-
derlying dynamical system [2, 15, 42, 43, 47]. Moreover, for a given continuous test
functional ϕ0 (in the application here ϕ0(θ) = 1 + Ra

LxLy

∫
Ω
A−1(kθ(x))3θ(x) dx), and

a particular trajectory (initial data), there exists a particular Banach limit, LIM0,
so that LIM0

1
t

∫ t

0 ϕ0(θ(s)) ds = lim sup 1
t

∫ t

0 ϕ0(θ(s)) ds [46, 47]. Therefore, when
combined with the Prokhorov’s compactness theorem, we deduce the existence of an
invariant measure μk ∈ IMk such that

Nuk = 1 +
Ra

LxLy

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμk .(2.60)

Hence by the weak convergence result that we just proved, we see that for any sequence
of Nuk (and hence μk) there exists a subsequence (still denoted Nuk and μk) and
μ ∈ IM such that

lim
k→0

Nuk = 1 +
Ra

LxLy
lim
k→0

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμk

= 1 +
Ra

LxLy

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμ

≤ 1 +
Ra

LxLy
sup

ν∈IM

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdν

= 1 +
Ra

LxLy
sup

θ0∈L2
lim

t→∞
1

tLxLy

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds,(2.61)
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where we have used the weak convergence of μk to μ, the compactness of the set of
all invariant measures due to Prokhorov’s theorem and the a priori estimates, and the
fact that extremal points of the set of invariant measures are ergodic (in the sense
that phase space spatial average and time average are the same) [2, 43, 46].

To summarize, we have proved the following main result.
Theorem 1 (convergence of stationary statistical properties). Let μk be an

arbitrary invariant measure of the numerical scheme (2.6) with time step k, i.e.,
μk ∈ IMk, and let Nuk be the Nusselt number characterizing the heat transport in
the vertical direction for the scheme with time step k defined in (2.59). Then each sub-
sequence of μk must contain a sub-subsequence (still denoted {μk}) and an invariant
measure μ of the infinite Prandtl number model so that μk weakly converges to μ; i.e.,

μk ⇀ μ, k → 0.(2.62)

Moreover, the Nusselt number converges in an upper semicontinuous fashion in the
sense that

lim sup
k→0

Nuk ≤ Nu.(2.63)

In particular, this implies that the convergent numerical schemes will not overestimate
the Nusselt number asymptotically.

Notice that our asymptotic lower bound on the Nusselt number for the infinite
Prandtl number model nicely complements the rigorous upper bound for the Nusselt
number using a variational approach proposed by Constantin and Doering [7, 8].

3. Conclusions and remarks. Our main result clearly demonstrated the use-
fulness of the uniformly dissipative scheme that we proposed in terms of approximating
stationary statistical properties of the infinite Prandtl number model for convection
since the stationary statistical properties of the scheme converge to those of the con-
tinuous time model. To the best of our knowledge, this is the first rigorous result
proving convergence of stationary statistical properties of numerical schemes to those
of the continuous-in-time dynamical system under approximation. Our result may
be viewed as a partial generalization of Lax’s equivalence theorem in the sense that
consistency and long time stability (uniform dissipativity) imply convergence of sta-
tionary statistical properties. We would like to emphasize that the methodology here
can be applied to much more general dissipative systems (with chaotic behavior for
relevance) although we have treated the infinite Prandtl number model only [48]. We
hope that our work will stimulate further study on numerical schemes for approxi-
mating statistical properties of dissipative dynamical systems.

The convergence of the stationary statistical properties relies on the uniform
bound in a space which is compactly embedded in the phase space (it is H1

0,per in
the infinite Prandtl number case which is compactly imbedded in the phase space L2

by Rellich’s theorem). Simply having a uniform bound in the phase space may not
imply the convergence of the statistical properties. (We could construct schemes that
possess an absorbing ball in L2 but not in H1.) Therefore, we would rather use the
uniformly dissipative terminology instead of the global in time stability used by many
other authors, which could mean uniform boundedness in the phase space only.

The convergence that we derived here is actually semiconvergence since different
subsequences may converge to different invariant measures of the continuous-in-time
dynamical system. There is no convergence rate either. This is perhaps the generic

D
ow

nl
oa

de
d 

03
/1

7/
23

 to
 1

31
.1

51
.2

6.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF STATIONARY STATISTICAL PROPERTIES 267

picture in the sense that the result here is nearly optimal without additional assump-
tion on the continuous dynamical system. One very useful physical assumption is the
mixing of the continuous system. Indeed, if we assume that the continuous system is
exponentially mixing with a rate of r [43], i.e., there is a physically relevant invariant
measure μ so that

∣∣∣∣1t
∫ t

0

Φ(θ(x, s)) ds −
∫

Φ(θ(x)) dμ
∣∣∣∣ ≤ c exp (−rt)(3.1)

for all appropriate test functionals Φ(θ) and almost all trajectories, then approxi-
mating a specific statistical quantity

∫
Φ(θ(x)) dμ becomes a finite time integration

problem. Indeed, supposing the given tolerance level is 2ε, we first fix a time t so that
c exp (−rt) ≤ ε (the time t is usually large for small mixing rate r). We then adjust
our mesh size (small time step or mesh size) so that

∣∣∣∣∣
1
t

∫ t

0

Φ(θ(x, s)) ds − 1
N

N∑
n=1

Φ(θn)

∣∣∣∣∣ ≤ ε,

where Nk = t with k being the time step. Hence the infinite time approximation
of a stationary statistical property becomes the problem of approximation on finite
time interval [0, t] for appropriate numerical schemes (say uniformly dissipative). This
motivates us to work on higher order schemes so that the integration on [0, t] can be
calculated quickly.

Of course we do not have exponential mixing for generic dissipative complex/cha-
otic dynamical systems. One way to circumvent this difficulty is by considering noisy
systems since our environment is intrinsically noisy. Exponential mixing can be veri-
fied for many dissipative systems with appropriate additive white noise [11, 49, 32, 29,
50]. Hence there is a strong incentive to generalize the notion of uniformly dissipative
schemes to approximations of continuous-in-time stochastic dynamical systems (both
SDE and SPDE; see [32] for the case of SDE and fully implicit approach). We will
report results in this direction at another time.

The scheme that we presented here is not the only scheme that is able to cap-
ture stationary statistical properties of the underlying continuous system. The fully
implicit backward Euler scheme is a uniformly dissipative scheme as one can read-
ily verify. However, the backward Euler is nonlinear in the unknown and hence the
computational cost at each time step is expected to be higher. There are other linear
implicit uniformly dissipative schemes. For instance one may check that the following
family of schemes is uniformly dissipative for λ ∈ [0, 1]:

θn+1 − θn

k
+ RaA−1(kθn) · ∇θn+1 +Ra (A−1(k(λθn+1 + (1 − λ)θn)))3τ ′(z)(3.2)

= Δθn+1 + τ ′′(z).

However, it seems that this family of schemes is uniformly dissipative under small
time step restriction k ≤ 1

Ra2 . This kind of restriction may be expected since the
linearly unstable modes grow as the Rayleigh number grows; hence the time step
should reflect this through CFL condition. On the other hand, we observe that for
the case of λ = 0, the scheme is the same as

T n+1 − T n

k
+RaA−1(kT n) · ∇T n+1 = ΔT n+1,
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whose inviscid part is stable (satisfies maximum principle). Hence if the viscous
scheme is unstable, then the viscous term plays a destabilizing role. We also no-
tice that the case with λ = 0 corresponds to discretization in time first followed by
translation, as we mentioned in section 2.2.

It is also worthwhile to point out that at the time discretization only stage we
should anticipate an implicit scheme due to the CFL condition.

An issue that we have not addressed here is spatial discretization. Since we have
utilized the background temperature profile τ in our uniform dissipativity argument,
it is expected that we need to resolve small scales within the background profile. A
similar issue for the Navier–Stokes was investigated earlier [9]. We will report the
details at another time.

Another issue that we have not addressed here is the behavior of the global attrac-
tors. We fully anticipate an upper semicontinuity result. The proof is a modification
of the classical one [39, 34, 19] since we will not have uniform in time convergence of
trajectories on finite time interval. In fact, we will have uniform in time convergence
after a transitional period of time due to the fact that the points on the global attrac-
tors of the scheme may not satisfy high order compatibility condition for the infinite
Prandtl number model and hence the solution may have an initial transitional layer
(see [20] for the case of two-dimensional Navier–Stokes equations). We will report
this at another time as well.

Acknowledgment. We acknowledge helpful conversations with Brian Ewald
and Andy Majda.
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