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APPROXIMATION OF STATIONARY STATISTICAL

PROPERTIES OF DISSIPATIVE DYNAMICAL SYSTEMS:

TIME DISCRETIZATION

XIAOMING WANG

Abstract. We consider temporal approximation of stationary statistical prop-
erties of dissipative infinite-dimensional dynamical systems. We demonstrate
that stationary statistical properties of the time discrete approximations, i.e.,
numerical scheme, converge to those of the underlying continuous dissipative
infinite-dimensional dynamical system under three very natural assumptions
as the time step approaches zero. The three conditions that are sufficient for
the convergence of the stationary statistical properties are: (1) uniform dissi-
pativity of the scheme in the sense that the union of the global attractors for
the numerical approximations is pre-compact in the phase space; (2) conver-
gence of the solutions of the numerical scheme to the solution of the continuous
system on the unit time interval [0, 1] uniformly with respect to initial data
from the union of the global attractors; (3) uniform continuity of the solutions

to the continuous dynamical system on the unit time interval [0, 1] uniformly
for initial data from the union of the global attractors. The convergence of the
global attractors is established under weaker assumptions. An application to
the infinite Prandtl number model for convection is discussed.

1. Introduction

Many dissipative dynamical systems arising in physical applications possess very
complex behavior with abundant instability and sensitive dependence on initial
data and parameters [32]. It is well known that statistical properties of these kinds
of systems are much more important, physically relevant and stable than single
trajectories [12, 19, 21, 23, 24, 36].

For a given abstract autonomous continuous-in-time dynamical system deter-
mined by a semi-group {S(t), t ≥ 0} on a separable Banach space H, we recall that
if the system reaches a statistical equilibrium in the sense that the statistics are
time-independent (stationary statistical properties), the probability measure µ on
H that describes the stationary statistical properties can be characterized via either
the strong (pull-back) or weak (push-forward) formulation [12, 21, 23, 36, 37].

Definition 1 (Invariant Measure (Stationary Statistical Solution)). Let {S(t), t ≥
0} be a continuous semi-group on a Banach space H which generates a dynamical
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260 XIAOMING WANG

system on H. A Borel probability measure µ on H is called an Invariant Measure
(Stationary Statistical Solution) of the dynamical system if

(1) µ(E) = µ(S−1(t)(E)), ∀t ≥ 0, ∀E ∈ B(H),

where B(H) represents the σ-algebra of all Borel sets on H.
Equivalently, the invariant measure µ can be characterized through the following

push-forward weak invariance formulation:

(2)

∫
H

Φ(u) dµ(u) =

∫
H

Φ(S(t)u) dµ(u), ∀t ≥ 0

for all bounded continuous test functionals Φ.
An invariant measure (stationary statistical solution) for a discrete dynamical

system generated by a map Sdiscrete on a Banach space H is defined in a similar
fashion with the continuous time t replaced by discrete time n = 0, 1, 2, . . . .

Another popular object utilized below and associated with the long time behavior
of a dynamical system is the global attractor, which we recall for convenience [12,
14, 32].

Definition 2 (Global Attractor and Dissipative System). Let {S(t), t ≥ 0} be a
continuous semi-group on a Banach space H which generates a continuous dynam-
ical system on H. A set A ⊂ H is called the global attractor of the dynamical
system if the following three conditions are satisfied.

(1) A is compact in H.
(2) A is invariant under the flow, i.e.

(3) S(t)A = A, for all t ≥ 0.

(3) A attracts all bounded sets in H, i.e., for every bounded set B in H,

(4) lim
t→∞

distH(S(t)B,A) = 0.

Here, distH denotes the Hausdorff semi-distance in H between two subsets, which
is defined as

(5) distH(A,B) = sup
a∈A

inf
b∈B

‖a− b‖H ,

where ‖ · ‖H = ‖ · ‖ denotes the norm on H.
The global attractor for a discrete dynamical system induced by a map Sdiscrete

on a Banach space H is defined in a similar fashion with the continuous time t
replaced by discrete time n = 0, 1, 2, . . . .

A dynamical system is called dissipative if it possesses a global attractor.

It is easy to see, thanks to the invariance and the attracting property, that the
global attractor, when it exists, is unique [14, 32]. We also caution the reader that
our definition of dissipativity may be slightly different from the traditional notation
[14, 32].

We are usually interested in
∫
H
Φ(u) dµ(u) (statistical average) for various test

functionals Φ. These test functionals are also called observable in the physics liter-
ature. We normally do not have direct access to any physically relevant invariant
measure µ of the system a priori. One of the commonly used methods in calculating
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the statistical quantity is to substitute spatial average by long time average under
Boltzmann’s assumption of ergodicity ([12, 21, 23, 37])∫

H

Φ(u) dµ(u) = lim
t→∞

1

t

∫ t

0

Φ(S(s)u) ds.

Although the above relationship is true for ergodic invariant measures and almost all
initial data (with respect to the given ergodic invariant measure), the relationship is
in general false for non-ergodic invariant measures since the long time average which
exists for almost all initial data (with respect to the given invariant measure) may
depend on the initial data and hence may not be a constant (the spatial average)
([21, 37]). One way to circumvent this difficulty is to replace the long time limit by
Banach (generalized) limits ([22], section 4.2) which are bounded linear functionals
on the space of bounded functions that agree with the usual long time limit on
those functions whenever the long time limit exists. One may show via the so-
called Bogliubov-Krylov argument that these generalized long time averages over a
trajectory lead to invariant measures (which may depend on the chosen Banach limit
and initial datum u) of the system for appropriate dissipative dynamical systems,
and the spatial and temporal averages are equivalent (see for instance [12], section
4.3, or [40], Theorem 2).

Due to the presumed complexity of the dynamics, the physically interesting
stationary statistical properties need to be calculated using numerical methods
in the generic case. Even under the ergodicity assumption, it is not at all clear
that classical numerical schemes which provide an accurate approximation on finite
time intervals will remain meaningful for stationary statistical properties (long time
properties) since small errors will be amplified and accumulated over long time
except in the case that the underlying dynamics is asymptotically stable [13, 15, 20]
where the statistical approach is not necessary since there is no chaos. Therefore,
it is of great importance and a challenge to search for numerical methods that
are able to capture stationary statistical properties of infinite-dimensional complex
dynamical systems. We will focus on dissipative systems and time discretizations
here since long time approximation seems to be the key issue involved.

As we shall demonstrate below, if the system and the scheme possess three very
natural properties, then the stationary statistical properties of the scheme will con-
verge to stationary statistical properties of the continuous dynamical system. The
first property is the uniform dissipativity in the sense that the scheme possesses a
global attractor for a small enough time step and the union of these global attractors
(for different time steps) is pre-compact in the phase space. The second property is
the uniform convergence of the numerical scheme for data from the support of the
invariant measures on the unit time interval [0, 1] modulo an initial layer. The third
property is that the continuous dynamical system is uniformly continuous (for data
from the support of the invariant measures) on the unit time interval [0, 1]. Our
result will be presented in an abstract fashion in order to clarify the central issues
and to provide well-organized means for discussing the problems. We also hope that
our work will stimulate further work on accurate and efficient numerical schemes
for stationary statistical properties of infinite-dimensional dissipative systems.

It is easy to see that the assumptions are natural. Since the underlying dynam-
ical system is dissipative, it is natural to require that the numerical scheme inherit
the dissipativity of the continuous-in-time system so that the scheme is uniformly
dissipative (for small time steps). The uniform convergence of the numerical scheme
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for initial data from the global attractor on the unit time interval is also expected
from most reasonable numerical schemes. The strong continuity of the underlying
dynamical system on the unit time interval, uniform with respect to initial data
from the union of the global attractors, is natural for most continuous dissipative
dynamical systems. Once the desired natural conditions are discovered, the proof
of the main result is relatively straightforward, although verifying these three suf-
ficient conditions for each application may be highly non-trivial (see section 3 for
a relatively easy application to the infinite Prandtl number model for convection
with a linear semi-implicit scheme).

Although we are not aware of any work on the convergence of stationary statis-
tical properties of numerical schemes for chaotic PDEs except our previous work
[4, 5] (see [6] for the case of a map on the unit interval, and [26, 29, 35] for the
case of Hamiltonian ODEs and more), there has been a lot of work on temporal
approximation of dissipative dynamical systems such as the two-dimensional in-
compressible Navier-Stokes system and the one-dimensional Kuramoto-Sivashinsky
equation (see [13, 16, 18, 27, 28, 33, 10, 11] among others). These authors were
mostly interested in the long time stability of the scheme in the sense of deriving
uniform in time bounds on the scheme (sometimes bound in the phase space H
only which is not sufficient for uniform dissipativity although it may be sufficient
for the convergence of the global attractors), and none of them discussed statistical
properties (except those works on Hamiltonian ODEs cited above). Our result on
the convergence of stationary statistical properties may be viewed as an abstraction
and generalization of [4, 5]. See [9] for the heat bath approach to computing invari-
ant measures for finite-dimensional systems and [2] for more on different sampling
methods.

A by-product of the convergence analysis of the invariant measures presented
here is the convergence of the global attractors of the scheme to that of the un-
derlying system. This is also within expectation since the global attractors carry
the support of the invariant measures. The convergence of the global attractors
under time discretization has been discussed for the two-dimensional Navier-Stokes
system, reaction-diffusion equation, and for finite-dimensional dynamical systems
[27, 30, 16] among others. Therefore our result on the convergence of global attrac-
tors may be viewed as a generalization and abstraction of these results. However, we
would like to point out that the convergence of the global attractors can be estab-
lished under much weaker assumptions. One only needs the uniform boundedness
of the union of the global attractors K, instead of the pre-compactness (plus finite
time uniform convergence for data from K). Because of this important distinction,
it is possible to have schemes that are able to capture the global attractor asymptot-
ically but not necessarily the stationary statistical properties (invariant measures).
There are also interesting works on persistence under approximation of various in-
variant sets (such as steady state, time periodic orbit, inertial manifold, etc.) both
for PDEs and ODEs under appropriate assumptions (such as the spectral gap con-
dition that is usually associated with inertial manifold theory, see [30, 17, 31, 32]
and the references therein). We would also like to point out that the convergence
of invariant sets and the convergence of stationary statistical properties are two re-
lated but very different issues associated with the long time behavior. It is easy to
construct two dynamical systems with exactly the same global attractor or inertial
manifold but with totally different dynamics or stationary statistical properties.
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The rest of the manuscript is organized as follows: in section 2 we prove the main
results, namely the convergence of stationary statistical properties and the global
attractors under the three natural hypotheses; in section 3 we discuss an application
of the main results to the infinite Prandtl number model for convection. The choice
of application is both for its physical significance and mathematical simplicity so
that an essentially self-contained short exposition is possible and we believe that
our main abstract theorem applies to many other dissipative systems and schemes.
We then provide a conclusion and some remarks in the fourth/last section.

2. Main results: Abstract formulation

Here we show our main results, namely, that uniform dissipativity plus finite time
uniform convergence of the time discrete approximation together with the finite
time uniform continuity of the underlying dynamical system imply convergence of
the stationary statistical properties / invariant measures.

Throughout this section, all semigroups are assumed to be continuous in the
sense that S(t), t ≥ 0 and Sk are continuous operators on H.

Theorem 1 (Convergence of Stationary Statistical Properties). Let {S(t), t ≥
0} be a continuous semi-group on a separable Hilbert space H which generates a
continuous dissipative dynamical systems (in the sense of possessing a compact
global attractor A) on H. Let {Sk, 0 < k ≤ k0} be a family of continuous maps
on H that generates a family of discrete dissipative dynamical systems (with global
attractor Ak) on H. Suppose that the following three conditions are satisfied.

H1: (Uniform dissipativity) There exists a k1 ∈ (0, k0) such that {Sk, 0 < k ≤
k1} is uniformly dissipative in the sense that

(6) K =
⋃

0<k≤k1

Ak

is pre-compact in H.
H2: (Uniform convergence on the unit time interval) Sk uniformly converges

to S on the unit time interval (modulo an initial layer) and uniformly for
initial data from the global attractor of Sk in the sense that for any t0 ∈
(0, 1),

(7) lim
k→0

sup
u∈Ak,nk∈[t0,1]

‖Sn
ku− S(nk)u‖ = 0.

H3: (Uniform continuity of the continuous system) {S(t), t ≥ 0} is uniformly
continuous on K on the unit time interval in the sense that for any T ∗ ∈
[0, 1],

(8) lim
t→T∗

sup
u∈K

‖S(t)u− S(T ∗)u‖ = 0.

Then the invariant measures of the discrete dynamical system {Sk, 0 < k ≤ k0}
converge to invariant measures of the continuous dynamical system S. More pre-
cisely, let µk ∈ IMk, where IMk denotes the set of all invariant measures of Sk.
There must exist a subsequence, still denoted {µk}, and µ ∈ IM (an invariant
measure of S(t)), such that µk weakly converges to µ, i.e.,

(9) µk ⇀ µ, as k → 0.
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Moreover, extremal statistics converge in an upper-semi-continuous fashion in the
sense that for any bounded continuous functional Φ on the phase space H, there exist
ergodic invariant measures µk ∈ IMk and an ergodic invariant measure µ ∈ IM,
such that

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Sn
k (u0)) =

∫
H

Φ(u)dµk(u)(10)

= lim
N→∞

1

N

N∑
n=1

Φ(Sn
k (v0)), a.s. w.r.t.µk,

sup
u0∈H

lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt =

∫
H

Φ(u)dµ(u)(11)

= lim
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)v0)dt, a.s. w.r.t.µ,

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Sn
k (u0))(12)

≤ sup
u0∈H

lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt.

Proof. Since K =
⋃

0<k≤k1
Ak is pre-compact in H and since all invariant measures

are supported on the global attractor [12, 40] and µk ∈ IMk, we see that {µk}
is tight in the space of all Borel probability measures on H thanks to Prokhorov’s
theorem [1, 22, 12]. Hence it must contain a weakly convergent subsequence (still
denoted {µk}) which weakly converges to a Borel probability measure µ on H; i.e.,∫

H

ϕ(u) dµk(u) →
∫
H

ϕ(u) dµ(u), as k → 0

for all bounded and continuous functionals ϕ on H.
Our goal is to show that µ is invariant under S(t).

Now we fix a T ∗ ∈ (0, 1] and let nk = �T∗

k 	 be the floor of T∗

k (the largest integer

dominated by T∗

k ), and let ϕ be any smooth (C1) test functional with compact
support.

Since µk ∈ IMk, we have by the weak invariance of µk under Sk and weak
convergence,∫

H

ϕ(Snk

k u) dµk(u) =

∫
H

ϕ(u) dµk(u) →
∫
H

ϕ(u) dµ(u), as k → 0.

On the other hand,∫
H

ϕ(Snk

k u) dµk(u) =

∫
H

ϕ(S(T ∗)u) dµk(u)

+

∫
H

(ϕ(S(nkk)u)− ϕ(S(T ∗)u)) dµk(u)

+

∫
H

(ϕ(Snk

k u)− ϕ(S(nkk)u)) dµk(u).
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For the first term, since S(t) is continuous, ϕ(S(T ∗)u) is bounded and continuous
in u. Hence we have∫

H

ϕ(S(T ∗)u) dµk(u) →
∫
H

ϕ(S(T ∗)u) dµ(u), as k → 0.

We also have, thanks to the uniform convergence assumption, the mean value the-
orem, and the uniform boundedness of the derivative of the smooth (C1) test func-
tional with compact support, for u ∈ Ak,

|ϕ(Snk

k u)− ϕ(S(nkk)u)| ≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak

‖Snk

k u− S(nkk)u‖

≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak,nk∈[T

∗
2 ,T∗]

‖Sn
ku− S(nk)u‖

→ 0, as k → 0,

and hence, since the support of the invariant measure µk is included in the global
attractor Ak, [12, 40],∫

H

(ϕ(Snk

k u)− ϕ(S(nkk)u)) dµk(u) → 0, as k → 0.

Moreover,

|ϕ(S(nkk)u)−ϕ(S(T ∗)u)| ≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak

‖S(nkk)u−S(T ∗)u‖ → 0, as k → 0

by the uniform continuity of S(t) at t = T ∗ and u ∈ K since nkk = �T∗

k 	k → T ∗

as k → 0. This further implies that∫
H

(ϕ(S(nkk)u)− ϕ(S(T ∗)u)) dµk(u) → 0, as k → 0.

Combining the estimates above, we have∫
H

ϕ(Snk

k u) dµk(u) →
∫
H

ϕ(S(T ∗)u) dµ(u), as k → 0.

Therefore ∫
H

ϕ(S(T ∗)u) dµ(u) =

∫
H

ϕ(u) dµ(u),

which is exactly the weak invariance (2) for the smooth (C1) test functional with
compact support and T ∗ ∈ (0, 1].

For a general bounded continuous test functional ϕ, we can first approximate it
by a finite-dimensional test functional of the form ϕ◦Pm, where Pm is the orthogonal
projection onto the m-dimensional subspace spanned by the first m elements of a
given (fixed) orthonormal basis of H (this is where we need H to be a separable
Hilbert space). We can then approximate ϕ ◦ Pm by smooth test functionals with
compact support using mollifiers and truncation since only the value of ϕ ◦ Pm on
the compact global attractor is relevant for statistics. This proves short time weak
invariance (2) for any bounded continuous test functional ϕ and T ∗ ∈ (0, 1].
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Now for a general T ∗∗ > 1, there exists a unique positive integer n and T∗ ∈ (0, 1]
such that T ∗∗ = n+ T∗. Hence∫

H

ϕ(S(T ∗∗)u) dµ(u) =

∫
H

ϕ(Sn(1)S(T∗)u) dµ(u)

=

∫
H

ϕ(S(T∗)u) dµ(u)

=

∫
H

ϕ(u) dµ(u),

where we have utilized the semi-group property of S(t), the strong continuity of
S(t) and the short time weak invariance that we proved above with T ∗ = 1 n times
and T ∗ = T∗ one time.

This ends the proof of the convergence of the invariant measures.
The first half of the results on the extremal statistics is a consequence of the

fact that extremal statistics are saturated by ergodic invariant measures (see for
instance [37] or [40, Theorem 5]). We sketch the proof for convenience. Recall that
for any fixed bounded continuous test functional Φ and initial data u0, it is possible
to choose a special Banach limit LIM which agrees with the lim sup on the orbit
[22, 40], and hence there exist invariant measures µk,u0

∈ IMk, µu0
∈ IM such

that

LIMN→∞
1

N

N∑
n=1

Φ(Sn
k (u0)) = lim sup

N→∞

1

N

N∑
n=1

Φ(Sn
k (u0)) =

∫
H

Φ(u) dµk,u0
(u),

LIMT∗→∞
1

T ∗

∫ T∗

0

Φ(S(t)u0) dt = lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt

=

∫
H

Φ(u) dµu0
(u).

On the other hand, extremal points of the set of invariant measures are ergodic
([37] or [40, Theorem 3]) and hence there exist ergodic invariant measures µk ∈
IMk, µ ∈ IM such that

sup
νk∈IMk

∫
H

Φ(u) dνk(u)=

∫
H

Φ(u) dµk(u)= lim
N→∞

1

N

N∑
n=1

Φ(Sn
k (u0)), a.s. w.r.t.µk,

sup
ν∈IM

∫
H

Φ(u) dν(u)=

∫
H

Φ(u) dµ(u)= lim
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt, a.s. w.r.t.µ,

Combining the above two sets of equations together with the tightness of IMk, IM,
we arrive at (10, 11).

As for the upper semi-convergence of the extremal statistics stated in (12), we
have, thanks to the uniform dissipativity and Prokhorov’s theorem, that there exists
a subsequence (still denoted {µk}) and ν ∈ IM such that

µk → ν, as k → 0,

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Sn
k (u0)) = lim sup

k→0

∫
H

Φ(u) dµk.
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Since IM is compact in the space of Borel probability measures on H, there
exists an ergodic invariant measure νmax ∈ IM such that supµ̃∈IM

∫
H
Φ(u) dµ̃ =∫

H
Φ(u) dνmax [40]. Therefore,

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Sn
k (u0)) = lim sup

k→0

∫
H

Φ(u) dµk

=

∫
H

Φ(u) dν

≤ sup
µ̃∈IM

∫
H

Φ(u) dµ̃

=

∫
H

Φ(u) dνmax

= lim
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt

≤ sup
u0∈H

lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0) dt.

This completes the proof of the theorem. �

Next, we show the convergence of the global attractors under weaker assump-
tions, namely the uniform boundedness of K (the union of the global attractors),
and uniform convergence on a finite time interval (modulo an arbitrary initial layer).

Proposition 1 (Convergence of Global Attractors). Let {S(t), t ≥ 0} be a continu-
ous semi-group on a Banach space H that generates a dissipative dynamical system
(in the sense of possessing a compact global attractor A) on H. Let {Sk, 0 < k ≤ k0}
be a family of continuous maps on H that generates a family of discrete dissipative
dynamical systems (with global attractor Ak) on H. Suppose that the following two
conditions are satisfied.

H4: (Uniform boundedness) There exists a k1 ∈ (0, k0] such that {Sk, 0 < k ≤
k1} is uniformly bounded in the sense that

(13) K =
⋃

0<k≤k1

Ak

is bounded in H.
H5: (Finite time uniform convergence) Sk uniformly converges to S on any

finite time interval (modulo any initial layer) and uniformly for initial data
from the global attractor of the scheme in the sense that there exists t0 > 0
such that for any T ∗ > t0 > 0,

(14) lim
k→0

sup
u∈Ak,nk∈[t0,T∗]

‖Sn
ku− S(nk)u‖ = 0.

Then the global attractors converge in the sense of Hausdorff semi-distance, i.e.

(15) lim
k→0

distH(Ak,A) = 0.
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Proof. Since K is bounded, for any given ε > 0, there exists a Tε > t0 > 0 such
that

distH(S(t)K,A) <
ε

2
, ∀t ≥ Tε

because the global attractor A attracts all bounded sets, in particular K.
Now let uk ∈ Ak. Since the global attractor Ak is invariant under Sk, there

exists a vk ∈ Ak such that uk = Snk

k vk, where nk = �Tε+1
k 	.

Thanks to the uniform convergence on [Tε, Tε+1] and u ∈ K, there exists kε > 0
such that

‖uk − S(nkk)vk‖ = ‖Snk

k vk − S(nkk)vk‖ <
ε

2
, k ≤ kε.

This implies that

distH(Ak,A) = sup
uk∈Ak

dist(uk,A)

≤ sup
uk∈Ak

(‖uk − S(nkk)vk‖+ dist(S(nkk)vk,A))

≤ ε, k ≤ kε.

This completes the proof for the convergence of the global attractors. �

We would like to reiterate the point than the uniform boundedness assump-
tion H4 is much weaker than the uniform dissipativity assumption H1 for infinite-
dimensional systems although they are equivalent for finite-dimensional systems.
This is an important difference and hence it is theoretically possible to have schemes
that are able to capture the global attractor asymptotically but not the invariant
measures necessarily for infinite-dimensional systems. Conditions H5 and H2 are
almost the same. H2 is slightly stronger than H5 in some sense since H2 requires the
uniform convergence of the scheme on [t0, 1], ∀t0 ∈ (0, 1) while H5 only requires the
uniform convergence of the scheme on [t0, T

∗] (T ∗ ≥ 1) with one t0 ∈ (0, 1). On the
other hand, H5 is slightly stronger than H2 in some other sense since only T ∗ = 1 is
needed in H2. They are usually valid for reasonable numerical schemes (see below
for an example on the infinite Prandtl number model). Therefore convergence of
the global attractors is usually easier to establish than the convergence of the in-
variant measures (stationary statistical properties). Related results on convergence
of global attractors can be found in [14, 30, 25], among others.

In applications, the discrete dynamical systems {Sk} are usually generated by
one time step discretization (numerical scheme) with time step k. In other words,
un+1 = Sk(u

n) is the solution to the numerical scheme. The uniform dissipativity
of the numerical scheme is customarily established via the existence of a uniform (in
time step) absorbing ball in another separable Hilbert space V which is compactly
imbedded in H in the case of a strongly dissipative system (see the next section
for an example). However, this may not be feasible for weakly dissipative systems
such as the Darcy-Boussinesq system for convection in a fluid saturated porous
media, or a weakly damped driven Schrödinger equation. The finite time uniform
convergence comes with classical numerical analysis for reasonable schemes (see
next section for an example). The uniform continuity of the underlying continuous
dynamical system is also easily verified for reasonable systems.
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3. Application to the infinite Prandtl number model for convection

Here we illustrate an application of the main result to the following infinite
Prandtl number model for convection [3, 34, 7, 38, 8]

∇p = ∆u+RakT, ∇ · u = 0, u|z=0,1 = 0,(16)

∂T

∂t
+ u · ∇T = ∆T, T |z=0 = 1, T |z=1 = 0,(17)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of
the fluid, T is the temperature of the fluid, k is a unit vector in the z direction,
Ra is the Rayleigh number measuring the ratio of differential heating over overall
dissipation, and we assume that the fluids occupy the (non-dimensionalized) region
Ω = [0, Lx] × [0, Ly] × [0, 1] with periodicity imposed in the horizontal directions
for simplicity.

The choice of this example is both for its physical significance and for its math-
ematical simplicity so that we may have an essentially self-contained short expo-
sition. It is well known that this system possesses turbulent behavior at large
Rayleigh numbers [3, 7, 19, 34]. The convergence of the stationary statistical prop-
erties for another class of semi-implicit schemes was discussed in [4, 5] utilizing a
Liouville-type equation approach. The scheme that we study here has an added
advantage over the schemes that we investigated earlier in the sense that the dis-
cretization is independent of any ad-hoc background temperature profile τ (to be
introduced in (22)).

Since the temperature field T satisfies inhomogeneous boundary conditions, it is
mathematically convenient to consider a perturbative temperature field

θ = T − τ (z), τ (0) = 1, τ (1) = 0,

where τ (z) is a smooth fixed background temperature profile. This decomposition is
also in accordance with the mean (τ ) and fluctuation (θ) decomposition commonly
used in the study of turbulent flows.

One of the most important statistical quantities in convection is the Nusselt
number [3, 7, 8, 19, 39] quantifying the heat transport in the vertical direction,
which is the statistics corresponding to the functional

Φ(θ) = Ra

∫
Ω

A−1(kθ)3θ dx =

∫
Ω

u3θ dx,

where A denotes the Stokes operator with the associated boundary conditions and
viscosity one, and A−1(kθ)3 represents the third component (vertical velocity) of
A−1(kθ). In other words, u = A−1f solves the following Stokes system:

−∆u+∇p = f , ∇ · u = 0,

u
∣∣
z=0,1

= 0, u periodic in x, y.

Although this Φ is not bounded, for any pre-compact set K (in particular the
union of the global attractors of the scheme), we can easily replace it by a bounded

continuous functional Φ̃ which agrees with Φ onK and hence the statistical averages
of Φ and Φ̃ are the same since the support of all interesting invariant measures is
included in K. Our result on the convergence of the maximal Nusselt number, i.e.
(12) with the Φ given above, complements the well-known variational approach [7]
since our result indicates that the numerics will provide an asymptotic lower bound
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for the maximal Nusselt number while the variational approach provides a rigorous
upper bound.

3.1. A semi-implicit scheme. Notice that the infinite Prandtl number model can
be written as a non-local non-linear advection diffusion equation for the temperature
field

(18)
∂T

∂t
+Ra A−1(kT ) · ∇T = ∆T, T |z=0 = 1, T |z=1 = 0,

where A denotes the Stokes operator with the associated boundary conditions and
viscosity one. The system can also be written in terms of the perturbative temper-
ature field θ as

(19)
∂θ

∂t
+RaA−1(kθ) · ∇θ +RaA−1(kθ)3τ

′(z) = ∆θ + τ ′′(z).

We then propose the following semi-implicit scheme for the infinite Prandtl num-
ber model

(20)
Tn+1
k − Tn

k

k
+RaA−1(kTn

k ) · ∇Tn+1
k = ∆Tn+1

k ,

where Tn
k denotes the approximate solution at time kn with k being the time step.

Our goal now is to show that the stationary statistical properties of this scheme
converge to those of the infinite Prandtl number model as the time step k approaches
zero.

In order to accomplish this goal utilizing our main result proved in the previous
section, we rewrite the scheme in the perturbative variable θ as usual so that the
phase space is the Hilbert space H = L2(Ω),

(21)
θn+1
k − θnk

k
+RaA−1(kθnk ) · ∇θn+1

k +RaA−1(kθnk )3τ
′(z) = ∆θn+1

k + τ ′′(z),

where θnk = Tn
k −τ with τ (z) being an ad-hoc background temperature profile (to be

specified below) which satisfies the non-homogeneous Dirichlet boundary condition
of Tn

k , and we are searching for a solution in the space H1
0,per (the subspace of H1

with zero trace/value at z = 0, 1 and periodic in the horizontal directions). Here
A−1(kθ)3 represents the third component (vertical velocity) of A−1(kθ).

Following [7], we set the background temperature profile τ to be a locally
smoothed (mollified) version of the following piecewise linear function:

(22) τ (z) =

{
1− z

δ , 0 ≤ z ≤ δ,

0, δ ≤ z ≤ 1.

The choice of the parameter δ will be specified later in (26).
We remark that the scheme (21) is different from the scheme that we investigated

earlier [4, 5], where the scheme

θn+1
k − θnk

k
+RaA−1(kθnk ) · ∇θn+1

k +RaA−1(kθn+1
k )3τ

′(z) = ∆θn+1
k + τ ′′(z)

was studied. The new scheme (21) has the advantage that it is independent of the
ad-hoc background profile τ since it can be written in terms of the temperature
field T only as is clear in (20).
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It is easy to see that the well-posedness of the scheme (21) follows from the weak
formulation

(23)

∫
Ω

(
1

k
θn+1
k +RaA−1(kθnk ) · ∇θn+1

k )ψ +

∫
Ω

∇θn+1
k · ∇ψ

=

∫
Ω

(
1

k
θnk + τ ′′ −RaA−1(kθnk )3τ

′(z))ψ, ∀ψ ∈ H1
0,per,

the identity
∫
Ω
A−1(kθnk ) · ∇θn+1

k θn+1
k = 0, ∀θn+1

k ∈ H1
0,per, θ

n
k ∈ L2, and the Lax-

Milgram theorem [22]. Therefore, we have a discrete dynamical system Sk defined
on the Hilbert space

(24) H = L2(Ω)

given by

(25) Sk(θ
n
k ) = θn+1

k .

We notice that Sk in fact maps H into H1
0,per, which is a direct consequence of the

weak formulation.
In order to apply the main result proved in the previous theorem to the current

situation, we will verify the three conditions postulated in the main theorem. These
will be the goal of the next three subsections.

Our main result is the following theorem on the semi-implicit scheme (21) for
the infinite Prandtl number model for convection.

Theorem 2. The semi-implicit linear scheme (21) with time step k defines a dissi-
pative discrete dynamical system Sk on the phase space H = L2(Ω). The stationary
statistical properties as well as the global attractor of this scheme (discrete dynam-
ical system) converges to those of the infinite Prandtl number model for convection
(18) in the form specified in Theorem 1 and Proposition 1.

3.2. Uniform dissipativity. Here we demonstrate the uniform dissipativity, i.e.,
H1, of the scheme (21) with an appropriate choice of δ.

Here and below, the cjs denote generic constants independent of k, n and the
initial data unless otherwise stated (but which may depend on the Rayleigh num-

ber). Here and elsewhere ‖θ‖ =
√∫

Ω
|θ|2 denotes the spatial L2 norm of θ, and

‖θ‖∞ = ess supΩ|θ| denotes the spatial L∞ norm of θ.
We first derive a uniform bound in the L2 space. For this purpose we take the

inner product of the scheme (21) with ψ = θn+1
k and utilize the identity (a− b, a) =

1
2 (|a|2 − |b|2 + |a− b|2), and we have

1

2k
(‖θn+1

k ‖2 − ‖θnk‖2 + ‖θn+1
k − θnk‖2) + ‖∇θn+1

k ‖2

≤ ‖τ ′‖‖∇θn+1
k ‖+Ra|

∫
Ω

τ ′(z)(A−1(kθnk ))3θ
n+1
k |

≤ ‖τ ′‖2 + 1

4
‖∇θn+1

k ‖2 +Ra|
∫
Ω

τ ′(z)(A−1(kθnk ))3θ
n+1
k |,

where we have used the identity
∫
Ω
A−1(kθnk ) · ∇θn+1

k θn+1
k = 0 one more time.
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As for the non-linear term, we have

Ra|
∫
Ω

τ ′(z)(A−1(kθnk ))3θ
n+1
k | ≤ Ra

δ
‖A−1(kθnk )3‖L2(z≤δ)‖θn+1

k ‖L2(z≤δ)

≤ Raδ‖ ∂

∂z
A−1(kθnk )3‖L2(z≤δ)‖

∂

∂z
θn+1
k ‖L2(z≤δ)

≤ Raδ2‖ ∂2

∂z2
A−1(kθnk )3‖L2(z≤δ)‖

∂

∂z
θn+1
k ‖L2(z≤δ)

≤ c1Raδ2‖θnk‖‖
∂

∂z
θn+1
k ‖

≤ c1Raδ2(‖θnk − θn+1
k ‖+ ‖θn+1

k ‖)‖∇θn+1
k ‖

≤ c1Raδ2‖θnk − θn+1
k ‖‖∇θn+1

k ‖+ c1Raδ2‖∇θn+1
k ‖2

≤ c1Raδ2

4
‖θnk − θn+1

k ‖2 + 2c1Raδ2‖∇θn+1
k ‖2

≤ 1

4k
‖θnk − θn+1

k ‖2 + 1

4
‖∇θn+1

k ‖2

provided that we choose the background temperature profile (through δ) and the
time step k in the following fashion:

(26) δ = (8c1Ra)−
1
2 , k ≤ 8,

where we have utilized the specific form of the background profile τ (22), the ho-
mogeneous boundary conditions for θnk , θn+1

k , A−1(kθnk )3,
∂
∂zA

−1(kθn)3, elliptic
regularity (for the Stokes operator A) and the Poincaré inequality.

Therefore, under the specific choice of the background temperature profile (22,
26), there exists a constant c2 such that

(27)
1

k
(‖θn+1

k ‖2 − ‖θnk‖2 +
1

2
‖θn+1

k − θnk‖2) + ‖∇θn+1
k ‖2 ≤ 2‖τ ′‖2 ≤ c2Ra

1
2 ,

which further implies, thanks to the Poincaré inequality,

(28) (1 + k)‖θn+1
k ‖2 ≤ ‖θnk‖2 + c2kRa

1
2 .

This leads to, with the help of a simple iteration,

(29) ‖θn+1
k ‖2 ≤ (1 + k)−(n+1)‖θ0‖2 + c2Ra

1
2 .

This is a uniform estimate in the L2 space since for any θ0 ∈ BR(L
2) (ball centered

at the origin with radius R in L2), there exists an integer N0(R, k) such that

(1 + k)−n‖θ0‖2 ≤ c2Ra
1
2 , ∀n ≥ N0.

Hence

(30) ‖θnk‖ ≤
√
2c2Ra

1
4 , ∀n ≥ N0(R, k).

Indeed, we have

(31) N0(R, k) ≈
ln R2

c2Ra
1
2

ln(1 + k)
≈

ln R2

c2Ra
1
2

k

so that the time needed to enter the absorbing ball of radius
√
2c2Ra

1
4 is roughly

(32) k N0(R, k) ≈ ln
R2

c2Ra
1
2

,

which is independentof k, n.
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There are two byproducts of the inequality (27). Namely, for any positive integer
N , we have

1

N

N∑
n=0

‖∇θn+1
k ‖2 ≤ ‖θ0‖2

kN
+ c2Ra

1
2 ,(33)

N∑
n=0

‖θn+1
k − θnk‖2 ≤ 2‖θ0‖2 + 2c2kNRa

1
2 .(34)

Thanks to the Poincaré inequality, ‖∇θ‖ is equivalent to ‖θ‖H1 and hence the first
inequality is a bound in L2(0, T ∗;H1) for the scheme for any T ∗ > 0. It is easy to
see that the second is a bound on the difference of the solution at adjacent time
steps.

Our next immediate goal is to obtain uniform estimates in H1 for the solution of
the scheme (21). The uniform in H1 estimate will guarantee the uniform dissipa-
tivity (H1) since boundedness in H1 implies pre-compactness in L2 by the Rellich
compactness theorem. For this purpose, we take the inner product of the scheme
with ψ = −∆θn+1

k and we have

1

2k
(‖∇θn+1

k ‖2 − ‖∇θnk‖2 + ‖∇(θn+1
k − θnk )‖2) + ‖∆θn+1

k ‖2
(35)

≤ ‖τ ′′‖‖∆θn+1
k ‖+Ra‖τ ′‖‖A−1(kθnk )‖∞‖∆θn+1

k ‖
+Ra‖A−1(kθnk )‖∞‖∇θn+1

k ‖‖∆θn+1
k ‖

≤ ‖τ ′′‖‖∆θn+1
k ‖+ c3Ra(‖τ ′‖‖θnk‖‖∆θn+1

k ‖+ ‖θnk‖‖θn+1
k ‖ 1

2 ‖∆θn+1
k ‖ 3

2 )

≤ c4(1 + (1 + k)−n‖θ0‖2)
1
2 ‖∆θn+1

k ‖+ c5(1 + (1 + k)−n‖θ0‖2)
3
2 ‖∆θn+1

k ‖ 3
2 )

≤ 1

2
‖∆θn+1

k ‖2 + c6(1 + (1 + k)−n‖θ0‖2)6,

where we have applied the regularity result for the Stokes operator A, the Sobolev
imbedding of H2 into L∞, an interpolation inequality, the uniform L2 estimate (29)
and a Hölder-type inequality.

This implies, when combined with (30, 33), that there existsN1(R, k)≥N0(R, k),

and c7 ≥ 2c2Ra
1
2 , such that

‖∇θn+1
k ‖2 − ‖∇θnk ‖2 + ‖∇(θn+1

k − θnk )‖2 + k‖∆θn+1
k ‖2 ≤ kc7, ∀n ≥ N1,(36)

‖∇θN1

k ‖2 ≤ c7,(37)

where N1 can be estimated as

N1(R, k) ≈ N0 +
2

k
.

This implies the following uniform H1 estimate with initial data from BR(L
2):

(38) ‖∇θn+1
k ‖2 ≤ c7, ∀n ≥ N1.

This further leads to the existence of an absorbing ball in H1 of radius
√
c7 such

that trajectories starting from BR(L
2) enter this absorbing ball in H1 within ap-

proximately N1 ≈ N0 +
2
k steps. This ends the proof of the uniform dissipativity

of the approximations (6) by the compact imbedding of H1 into L2. This uniform
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bound also implies the existence of a compact global attractor Ak ⊂ H1
0,per for the

scheme for each time step k ≤ 8 and

sup
θ∈K

‖∇θ‖ ≤ √
c7.

There are another three consequences of (35), which are: an L2(H2) estimate
on the solution, an estimate on the difference of the solution in the H1 norm at
adjacent steps, and a uniform-in-time H1 norm estimate for initial data in H1, i.e.,

1

N

N∑
n=0

‖∆θn+1
k ‖2 ≤ ‖∇θ0‖2

kN
+ 2c6(1 +R2)6,(39)

N∑
n=0

‖∇(θn+1
k − θnk )‖2 ≤ ‖∇θ0‖2 + 2c6(1 +R2)6kN,(40)

‖∇θn+1
k ‖2 ≤ (1 + k)−n+1‖∇θ0‖2 + 2c6(1 +R2)6.(41)

These estimates will be useful in our uniform convergence proof.
Uniform estimates in Sobolev spaces of higher orders can be derived just as in

the case of a continuous-in-time system. Here we sketch the proof that the H2

norm of the solution is asymptotically uniformly bounded in time, i.e., that there is
an absorbing ball in H2 which attracts all solutions with L2 initial data uniformly
for all k.

For this purpose we apply ∆ to both sides of the scheme (21) and then multiply
the scheme by ∆θn+1

k and integrate over the domain. This leads to the following:

1

2k
(‖∆θn+1

k ‖2 − ‖∆θnk ‖2 + ‖∆(θn+1
k − θnk )‖2) + ‖∇∆θn+1

k ‖2

≤ ‖τ (4)‖‖∆θn+1
k ‖+Ra(‖∆(A−1(kθnk ))‖L6‖∇θn+1

k ‖L3

+ 2‖∇A−1(kθnk )‖L∞‖∇2θn+1
k ‖)‖∆θn+1

k ‖+Ra(‖∆(A−1(kθnk ))‖‖τ ′‖L∞

+ 2‖∇(A−1(kθnk ))‖‖∇τ ′‖L∞ + ‖A−1(kθnk )‖‖∆τ ′‖L∞)‖∆θn+1
k ‖

≤ c8(‖∆θn+1
k ‖+ ‖∆θn+1

k ‖2)
≤ c9(‖∆θn+1

k ‖+ ‖∇∆θn+1
k ‖‖∇θn+1

k ‖)

≤ 1

2
‖∇∆θn+1

k ‖2 + c10,

where we have applied the identify
∫
Ω
A−1(kθnk )∇∆θn+1

k ∆θn+1
k = 0, the fact that

∆θn+1
k = 0 at z = 0, 1 (which follows from (21, 22)), Hölder’s inequality, elliptic

regularity, Sobolev imbedding, Cauchy-Schwarz, interpolation inequality, and the
H1 uniform estimate (38).

This leads to the uniform H2 estimate.
To summarize, we have the following result.

Proposition 2 (Uniform dissipativity). There exists a constant c10 independent
of the time step k such that the scheme (21) possesses an absorbing ball in H1 and
H2 with radius 2

√
c10 which attracts all bounded sets in L2. In particular, we have

(42) sup
u∈K

‖u‖H2 ≤ 2
√
c10,

where K is the union of the global attractors for the scheme with different time
steps k.
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3.3. Finite time uniform convergence. We now verify the second condition
(H2) in the main theorem. In fact, we will prove a slightly more general version
which covers both H2 and H5, i.e., the convergence of the numerical scheme (21)
on any finite time interval uniformly for initial data from K =

⋃
Ak (which is

uniformly bounded in H1 thanks to (38)).
For this purpose, we rewrite the scheme (21) as

∂θ̃k(t)

∂t
+RaA−1(kθk(t)) · ∇θk(t+ k)(43)

+RaA−1(kθk(t))3τ
′(z) = ∆θk(t+ k) + τ ′′(z),

where

θk(t) = θnk , t ∈ [nk, (n+ 1)k),(44)

θ̃k(t) = θnk +
t− nk

k
(θn+1

k − θnk ), t ∈ [nk, (n+ 1)k).(45)

For any fixed T ∗ > 0, the estimates (41, 39) imply that θk and θ̃k are uniformly
(in k) bounded in L∞(0, T ∗;H1) and L2(0, T ∗;H2) and the bounds are uniform in
k and θ0 ∈ K.

We can rephrase the differential form of the scheme as

∂θ̃k(t)

∂t
+RaA−1(kθ̃k(t)) · ∇θ̃k(t)(46)

+RaA−1(kθ̃k(t))3τ
′(z) = ∆θ̃k(t) + τ ′′(z) + fk(t),

where

fk(t) = RaA−1(kθ̃k(t)) · ∇θ̃k(t)−RaA−1(kθk(t)) · ∇θk(t+ k)(47)

+RaA−1(k(θ̃k(t)− θk(t)))3τ
′(z)−∆(θ̃k(t)− θk(t+ k)).

It is easy to see that fk is small due to our estimate on the difference of the approxi-
mate solution at adjacent time steps (40). Indeed, we have, for t ∈
[nk, (n+ 1)k),

θ̃k(t)− θk(t+ k) =
t− (n+ 1)k

k
(θn+1

k − θnk ),(48)

θ̃k(t)− θk(t) =
t− nk

k
(θn+1

k − θnk )(49)

and therefore, for θ0 ∈ K,

Ra‖A−1(kθ̃k(t)) · ∇(θ̃k(t)− θk(t+ k))‖H−1 ≤ Ra‖A−1(kθ̃k(t))‖L∞‖θn+1
k − θnk‖

≤ c11‖θn+1
k − θnk‖,

Ra‖A−1(k(θ̃k(t)− θk(t))) · ∇θk(t+ k))‖H−1

≤ Ra‖A−1(k(θ̃k(t)− θk(t)))‖L∞‖θk(t+ k)‖ ≤ c12‖θn+1
k − θnk‖,

Ra‖A−1(k(θ̃k(t)− θk(t))3τ
′‖H−1 ≤ c13‖θn+1

k − θnk‖,
‖∆(θ̃k(t)− θk(t+ k))‖H−1 ≤ c14‖∇(θn+1

k − θnk )‖,

which further leads to

(50) ‖fk(t)‖H−1 ≤ c15‖∇(θn+1
k − θnk )‖, t ∈ [nk, (n+ 1)k)
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and hence, when combined with the estimate on the time difference estimate (40),

(51) ‖fk‖L2(0,T∗;H−1) ≤ c15

√√√√√ T∗
k∑

n=0

k‖∇(θn+1
k − θnk )‖2 ≤ c16

√
k.

Taking the difference of the infinite Prandtl number model (19) and the differ-

ential form of the scheme (46), denoting ξk(t) = θ(t)− θ̃k(t), we have

∂ξk(t)

∂t
+RaA−1(kθ(t)) · ∇ξk(t) +RaA−1(kξk(t)) · ∇θ̃k(t)(52)

+RaA−1(kξk(t))3τ
′(z) = ∆ξk(t)− fk(t).

Multiplying this equation by ξk and integrating over Ω we have

1

2

d

dt
‖ξk(t)‖2 + ‖∇ξk(t)‖2

≤ Ra‖A−1(kξk(t))‖L∞‖∇θ̃k(t)‖‖ξk(t)‖+ Ra‖A−1(kξk(t))3‖L∞‖τ ′‖‖ξk(t)‖
+ ‖fk(t)‖H−1‖∇ξk(t)‖

≤ c17‖ξk(t)‖2 +
1

2
‖fk(t)‖2H−1 +

1

2
‖∇ξk(t)‖2.

Therefore, we have

(53)
d

dt
‖ξk(t)‖2 ≤ 2c17‖ξk(t)‖2 + ‖fk(t)‖2H−1 , ‖ξk(0)‖ = 0,

which leads to

(54) ‖θ − θ̃k‖L∞(0,T∗;L2) = ‖ξk‖L∞(0,T∗;L2) ≤ c18‖fk‖L2(0,T∗;H−1) ≤ c19
√
k → 0

uniformly for θ0 ∈ K.
This ends the proof of the finite time uniform convergence, which further implies

H2 and H5. To summarize, we have the following result.

Proposition 3 (Finite time uniform convergence). For any T ∗ > 0, there exists a
constant c19 independent of the time step k such that

(55) ‖θ(nk)− θnk‖ ≤ c19
√
k, ∀θ0 ∈ K, ∀nk ≤ T ∗,

i.e., assumptions H2 (7) and H5 (14) are valid for the scheme (21) with t0 = 0.

3.4. Finite time uniform continuity. Now we verify the finite time uniform
continuity of the infinite Prandtl number model for initial data starting from K,
the union of the global attractors of the scheme with different step size k.

It is easy to check that the L2 norm of the infinite Prandtl number model (19)
is uniformly bounded for θ0 belonging to a bounded set in L2 (see for instance [8],
and the discrete version (29)). A uniform H1 norm estimate can also be derived
(see (38) for the discrete version). Indeed, multiplying the infinite Prandtl number
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model (19) by −∆θ and integrating over Ω, we deduce, for θ0 ∈ K,

1

2

d

dt
‖∇θ(t)‖2 + ‖∆θ(t)‖2

≤ ‖τ ′′‖‖∆θ(t)‖+Ra‖A−1(kθ(t))‖L∞‖∇θ(t)‖‖∆θ(t)‖
+Ra‖A−1(kθ(t))3‖L∞‖τ ′‖‖∆θ(t)‖

≤ c20(1 + ‖θ(t)‖+ ‖θ(t)‖‖∇θ(t)‖)‖∆θ(t)‖

≤ 1

2
‖∆θ(t)‖2 + c21(1 + ‖∇θ(t)‖2).

This leads to the following estimates:

‖θ‖L∞(0,T∗;H1) ≤ c22,(56)

‖θ‖L2(0,T∗;H2) ≤ c22.(57)

Now, integrating the infinite Prandtl number model (19) in time from t to T ∗

we have, for θ0 ∈ K,

‖S(t)θ0 − S(T ∗)θ0‖(58)

≤ |
∫ T∗

t

(‖∆θ(s)‖+Ra‖A−1(kθ(s))‖L∞‖∇θ(s)‖

+Ra‖A−1(kθ(s))3‖L∞‖τ ′‖+ ‖τ ′′‖) ds|

≤ |
∫ T∗

t

(‖∆θ(s)‖+ c23(1 + ‖θ(s)‖‖∇θ(s)‖+ ‖θ(s)‖)) ds|

≤ |
∫ T∗

t

(‖∆θ(s)‖+ c24) ds|

≤ c25
√
|T ∗ − t|,

where we have used elliptic regularity, the uniform H1 estimate, and the L2(H2)
estimate.

This completes the proof of the uniform continuity of the infinite Prandtl number
model, i.e., H3. To summarize, we have the following result.

Proposition 4 (Finite time uniform continuity). For any T ∗ > 0, the infinite
Prandtl number model (19) is continuous on the time interval [0, T ∗] uniformly for
initial data from the union of the global attractors K defined in (6).

4. Conclusions and remarks

We have presented a general/abstract result on the convergence of stationary
statistical properties of time approximation of infinite-dimensional dissipative dy-
namical systems. The three natural conditions that guarantee the convergence of
the stationary statistical properties are uniform dissipativity of the scheme, uniform
convergence of the scheme on [0, 1], and the uniform continuity of the underlying
continuous dynamical system on the unit time interval [0, 1]. We hope that this
work will stimulate further work on numerical schemes that are able to capture
stationary statistical properties of infinite-dimensional dissipative systems.

We have also illustrated the application of our main result to the infinite Prandtl
number model for convection and we believe that the abstract main result presented
here is applicable to many other dissipative systems and associated schemes. Fully
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discretized approximation can be studied similarly for Galerkin-type spatial ap-
proximations that enjoy the three properties postulated (see [27, 28, 11] for fully
discrete long time stable schemes for other equations). Numerical implementation
in physically relevant regimes is non-trivial. Although the numerical scheme that
we proposed here is linear, which is advantageous over non-linear schemes such as
the one induced by the fully implicit Euler scheme proposed by many authors, the
linear equation (the matrix in the fully discretized case) changes at each time step
due to the presence of the convection term RaA−1(kθnk ) · ∇θn+1

k . This together
with the need for long time simulation combined with the presence of physically ex-
pected small spatial scales of the order of Ra−

1
3 or Ra−

1
2 [3, 7, 19] which need to be

resolved makes it a challenge to simulate the physically interesting large Rayleigh
number regime. One of the immediate goals is to design more efficient numerical
schemes than the one presented here. We will report this and our numerical results
elsewhere.
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