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A PARALLEL ROBIN–ROBIN DOMAIN DECOMPOSITION
METHOD FOR THE STOKES–DARCY SYSTEM∗

WENBIN CHEN† , MAX GUNZBURGER‡ , FEI HUA§ , AND XIAOMING WANG§

Abstract. We propose a new parallel Robin–Robin domain decomposition method for the cou-
pled Stokes–Darcy system with Beavers–Joseph–Saffman–Jones interface boundary condition. In
particular, we prove that, with an appropriate choice of parameters, the scheme converges geomet-
rically independent of the mesh size.

Key words. Stokes and Darcy equations, Robin–Robin domain decomposition, geometric
convergence
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1. Introduction. The Darcy equation is a well accepted model for flow in porous
media such as often found in the subsurface. Thus, discretized versions of this equation
are often used to simulate both groundwater and petroleum flows. However, in these
settings, one often finds that the porous media do not completely cover subsurface
regions of interest. For example, in petroleum applications one often finds pockets
of oil, and in karst aquifers one finds conduits in which water flows freely. In such
regions, the flow of the liquid cannot be accurately modeled by the Darcy equation,
even though often, for expediency, that is exactly what is done in practice. A more
accurate description of the flow of liquids in cavities and conduits is given by the
Navier–Stokes equations. Due to the relative slow flows often encountered in such
situations, one can simplify matters and use the linear Stokes equations instead. Of
course, flows in conduits and cavities are coupled to the flow in the surrounding
porous media so that conditions along the interfaces separating free flows and porous
media flows must be imposed to affect the coupling. Several such interface conditions
have been proposed; see, e.g., [2, 36]. Once a coupled Stokes–Darcy system has
been defined, the remaining tasks are to first define discrete systems whose solutions
accurately approximate the exact solution of the continuous model, and then develop
efficient methods for solving the discrete equations. These are the tasks that we
address in this paper.

Here we consider a coupled Stokes–Darcy system on a bounded domain Ω =
Ωp

⋃
Ωf ⊂ R

d (d = 2, 3). In the porous media region Ωp, the governing equations are
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Porous media domain  
             Ω

p

Fluid domain    
        Ω

f

Interface Γ

Fig. 1.1. The free flow and porous media domains Ωf and Ωp, respectively, an the interface Γ.

the Darcy equations

up = −K∇φp,
∇ · up = 0,

where up is the fluid velocity in the porous media, K is the hydraulic conductivity
tensor, and φp is the hydraulic head. In the fluid region Ωf , the fluid flow is assumed
to satisfy the Stokes equations

−∇ · T(uf , pf ) = f ,

∇ · uf = 0,

where uf is the fluid velocity, pf is the kinematic pressure, f is the external body
force, ν is the kinematic viscosity of the fluid, T(uf , pf ) = 2νD(uf )− pfI is the stress
tensor, and D(uf ) = 1/2(∇uf +∇Tuf ) is the deformation tensor.

Let Γ = Ωp∩Ωf denote the interface between the fluid and porous media regions;
see Figure 1.1. Along the interface Γ, we require

uf · nf = −up · np,(1.1)

−τ j · (T(uf , pf ) · nf ) = ατ j · uf ,(1.2)

−nf · (T(uf , pf ) · nf ) = gφp,(1.3)

where nf and np denote the unit outer normal to the fluid and the porous media re-
gions at the interface Γ, respectively; τ j (j = 1, . . . , d−1) denote mutually orthogonal
unit tangential vectors to the interface Γ; and the constant parameter α depends on ν
andK. The second condition (1.2) is referred to as the Beavers–Joseph–Saffman–Jones
(BJSJ) interface condition [25, 36], which is an approximation of the Beavers–Joseph
interface boundary condition [2]. The BJSJ boundary condition is also related to the
Navier slip boundary condition.

To enable direct comparisons with the results of [16], and for simplicity, we assume
that the hydraulic head φp and the fluid velocity uf satisfy a homogeneous Dirichlet
boundary condition except on Γ; i.e., φp = 0 on the boundary ∂Ωp\Γ and uf = 0 on
the boundary ∂Ωf\Γ.
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1066 W. CHEN, M. GUNZBURGER, F. HUA, AND X. WANG

The spaces that we utilize are

Xf = {vf ∈ [H1(Ωf )]
d | vf = 0 on ∂Ωf\Γ},

Qf = L2(Ωf ),

Xp = {ψp ∈ H1(Ωp) | ψp = 0 on ∂Ωp\Γ}.

For the domain D (D = Ωf or Ωp), (·, ·)D denotes the L2 inner product on the domain
D, and 〈·, ·〉 denotes the L2 inner product on the interface Γ or the duality pairing

between H−1/2(Γ) and H
1/2
00 (Γ).

With this notation, the weak formulation of the coupled Stokes–Darcy problem
is given as follows [6, 16]: find (uf , pf) ∈ Xf ×Qf and φp ∈ Xp such that

af (uf ,vf ) + bf (vf , pf ) + gap(φp, ψp) + 〈gφp,vf · nf 〉 − 〈guf · nf , ψp〉
+ α〈Pτuf , Pτvf 〉 = (f ,vf )Ωf

∀vf ∈ Xf ψp ∈ Xp,(1.4)

bf (uf , qf ) = 0 ∀ qf ∈ Qf ,(1.5)

where the bilinear forms are defined as

ap(φp, ψp) = (K∇φp,∇ψp)Ωp ,

af (uf ,vf ) = 2ν(D(uf ),D(vf ))Ωf
,

bf(vf , q) = −(∇ · vf , q)Ωf
,

and Pτ denotes the projection onto the tangent space on Γ, i.e.,

Pτu =

d−1∑
j=1

(u · τ j)τ j .

It is easy to see that the system (1.4), (1.5) is well posed for f ∈ [L2(Ωf )]
d [6, 16].

Because the governing equations are different for the fluid and the porous media
regions, it is natural to utilize a domain decomposition method (DDM) so that off-the-
shelf efficient solvers for the Darcy system and the Stokes system can be utilized [16].
The central issue is then to determine the convergence constraints or conditions and
to find the associated convergence rate. The main contribution of this paper is the
development and analysis of a new parallel domain decomposition method based on
Robin boundary conditions that converges with a rate that, for appropriate choices of
acceleration parameters, is independent of the mesh size.

For classical second-order elliptic problems, a Robin-type DDM was introduced
in [27], where it was also proved that the solution of the Robin DDM converges weakly
to the solution of the elliptic problems with respect to the H1 norm. In [11, 12], new,
updated techniques for the Robin data were introduced, and it was proved that the
weak convergence in H1 could induce strong convergence. In [18], it was pointed out
that a convergence rate 1 − O(h1/2) can be achieved in the case of two subdomains.
Recently, a rigorous analysis for the case of many subdomains was given in [31, 32]
where it was proved, in certain cases such as for a small number of subdomains,
that the convergence rate could be 1 − O(h1/2H−1/2), where H is the size of the
subdomain and h is the size of the finite element grid. In particular, the new term
“winding number” was proposed in [32] to describe the depth of subdomains, and
in the case of many subdomains, it was shown that the convergence rate not only
depends on the mesh size h and the size H of the subdomains, but also on the winding
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number. Recently, in [41], it was also proved that optimized Schwarz methods with
Robin transmission conditions cannot converge geometrically in the case of continuous
second-order elliptic problems.

In [16], two Robin DDMs for the Stokes–Darcy equations, one a serial version
(sRR) and the other a parallel version (pRR), are considered and compared with
the Dirichlet–Neumann DDMs [14, 15]; mesh-independent convergence rates were ob-
served for serial Robin DDMs numerically but were not proved rigorously. In addition
to providing a rigorous analysis, in this paper we treat the more general case of the
BJSJ interface boundary condition instead of the further simplified interface boundary
conditions considered in [16]. However, the full Beavers–Joseph interface boundary
condition is not treated here, since well posedness in the steady state case is estab-
lished only for particular choices of parameters [6]. Other algorithms that combine
ideas from multigrid and DDMs can be found in [29], where the authors proposed
to solve the coupled problem directly on a coarse grid (with mesh size hcoarse) and
then use the coarse solution to provide boundary conditions for the Stokes and Darcy
systems at the interface so that they may be solved separately on a finer mesh (with

mesh size of the order of h
3
2
coarse). For DDMs under other settings, and especially for

the parallel Robin–Robin DDMs, one may refer to [11, 12, 14, 15, 16, 27, 30, 31, 32,
33, 37, 38] and the references cited therein. Application of finite element methods
to the Stokes–Darcy system has been a very active research area recently. There
are many more interesting works besides the references mentioned above (see, for in-
stance, [1, 3, 4, 5, 7, 9, 10, 13, 17, 20, 21, 22, 24, 26, 28, 34, 35, 39, 40]). In particular,
the methodology in this paper has been generalized and modified to the develop-
ment of parallel DDMs for the Stokes–Darcy system with Beavers–Joseph interface
boundary condition in [4].

The rest of the paper is organized as follows. In section 2, we propose the Robin
boundary conditions at the interface for the Stokes and Darcy systems. A necessary
and sufficient condition on the equivalence of the Stokes–Darcy system with BJSJ
interface boundary condition and the new decoupled Stokes and Darcy systems with
Robin boundary conditions is derived. In section 3, we propose our new parallel
Robin–Robin DDM. We establish the convergence of the new scheme for the case of
equal acceleration parameters γf = γp and the case of γf < γp, with a convergence
rate for appropriate choices of the acceleration parameters. In section 4, we invoke
the von Neumann method (or semianalytic method) to analyze the detailed conver-
gence behavior of the proposed algorithms on a rectangular domain with appropriate
boundary conditions. We prove that the iteration cannot converge for γf > γp, and
convergence results can be obtained for γf ≤ γp cases similar to those obtained in
section 3. Finite element approximations are considered in section 5. In particular, we
derive a convergence rate of 1−O(h) for the case of equal acceleration parameters and
the case of γf > γp (provided that γf and γp are close enough). Although the conver-
gence rate is derived for globally regular triangulations only, we may easily generalize
the result to mortar elements so that solvers with different mesh sizes may be utilized
for the fluid and the porous media regions. We present our results of some computa-
tional experiments in section 6. These results are in accordance with our analyses.

2. Robin boundary conditions. In order to solve the coupled Stokes–Darcy
problem utilizing the domain decomposition idea, we naturally consider (partial)
Robin boundary conditions for the Stokes and the Darcy equations because Robin
boundary conditions are more general and embody both the Neumann- and Dirichlet-
type conditions in (1.1)–(1.3).
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1068 W. CHEN, M. GUNZBURGER, F. HUA, AND X. WANG

Let us consider the following Robin condition for the Darcy system: for a given
constant γp > 0 and a given function ηp defined on Γ,

(2.1) γpK∇φ̂p · np + gφ̂p = ηp on Γ.

Then, the corresponding weak formulation for the Darcy system is given by the fol-
lowing: for ηp ∈ L2(Γ), find φ̂p ∈ Xp such that

γpap(φ̂p, ψp) + 〈gφ̂p, ψp〉 = 〈ηp, ψp〉 ∀ψp ∈ Xp.

Similarly, we propose the following Robin-type condition for the Stokes equations:
for a given constant γf > 0 and a given function ηf defined on Γ,

(2.2) nf · (T(ûf , p̂f ) · nf ) + γf ûf · nf = ηf on Γ.

Then, the corresponding weak formulation for the Stokes system is given by the
following: for ηf ∈ L2(Γ), find ûf ∈ Xf and p̂f ∈ Qf such that

af (ûf ,vf ) + bf(vf , p̂f ) + γf 〈ûf · nf ,vf · nf 〉
+ α〈Pτ ûf , Pτvf 〉 = (f ,vf )Ωf

+ 〈ηf ,vf · nf 〉 ∀vf ∈ Xf ,(2.3)

bf (ûf , qf ) = 0 ∀ qf ∈ Qf .

We can combine the Stokes and Darcy systems with Robin boundary conditions
into one system. Indeed, for any positive constant ω, it is easy to see that if ηp ∈
L2(Γ) and ηf ∈ L2(Γ) are given, then there exists a unique solution (φ̂p, ûf , p̂f )
∈ Xp ×Xf ×Qf such that

(2.4)

af(ûf ,vf ) + bf (vf , p̂f ) + ωγpap(φ̂p, ψp) + ω〈gφ̂p, ψp〉+ γf 〈ûf · nf ,vf · nf 〉
+ α〈Pτ ûf , Pτvf 〉 = (f,vf )Ωf

+ 〈ηf ,vf · nf 〉+ ω〈ηp, ψp〉 ∀ψp ∈ Xp,vf ∈ Xf ,
bf(ûf , qf ) = 0 ∀ qf ∈ Qf .

Remark 2.1. Note that the solution (φ̂p, ûf , p̂f ) is independent of the parameter
ω.

Our next goal is to show that, for appropriate choices of γf , γp, ηf , and ηp,
(smooth) solutions of the Stokes–Darcy system are equivalent to solutions of (2.4),
and hence we may solve the latter system (2.4) instead of the former.

Lemma 2.2. Let (φp,uf , pf ) be the solution of the coupled Stokes–Darcy sys-

tem (1.4)–(1.5), and let (φ̂p, ûf , p̂f) be the solution of the decoupled Stokes and Darcy

systems with Robin boundary conditions at the interface (2.4). Then, (φ̂p, ûf , p̂f ) =
(φp,uf , pf ) if and only if γf , γp, ηf , and ηp satisfy the following compatibility condi-
tions:

ηp = γpûf · nf + gφ̂p,(2.5)

ηf = γf ûf · nf − gφ̂p.(2.6)

Proof. For the necessity, we set ψp = 0 in the Stokes–Darcy system (1.4)–(1.5)
and deduce that (φp,uf , pf ) solves (2.3) if

(2.7) 〈ηf − γfuf · nf + gφp,vf · nf 〉 = 0 ∀vf ∈ Xf ,

which implies (2.6). The necessity of (2.5) can be derived in a similar fashion.
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As for the sufficiency, by setting ω = g/γp in (2.4) and substituting the com-

patibility conditions (2.5)–(2.6), we easily see that (φ̂p, ûf , p̂f) solves the coupled
Stokes–Darcy system (1.4)–(1.5).

Since the solution to the Stokes–Darcy system is unique, we have (φ̂p, ûf , p̂f) =
(φp,uf , pf ).

3. Robin–Robin domain decomposition methods.

3.1. The Robin–Robin domain decomposition algorithm. Now we pro-
pose the following parallel Robin–Robin DDM for solving the coupled Stokes–Darcy
system.

1. Initial values of η0p and η0f are guessed. They may be taken to be zero.
2. For k = 1, 2, . . . , independently solve the Stokes and Darcy systems with

Robin boundary conditions. More precisely, φmp ∈ Xp is computed from

(3.1) γpap(φ
m
p , ψp) + 〈gφmp , ψp〉 = 〈ηmp , ψp〉 ∀ψp ∈ Xp,

and um
f ∈ Xf and pmf ∈ Qf are computed from

af(u
m
f ,vf ) + bf (vf , p

m
f ) + γf 〈um

f · nf ,vf · nf 〉+ α〈Pτu
m
f , Pτvf 〉

= 〈ηmf ,vf · nf 〉+ (f ,vf )Ωf
∀vf ∈ Xf ,(3.2)

bf(u
m
f , qf ) = 0 ∀ qf ∈ Qf .(3.3)

3. ηm+1
p and ηm+1

f are updated in the following manner:

ηm+1
f = aηmp + bgφmp ,(3.4)

ηm+1
p = cηmf + dum

f · nf ,(3.5)

where the coefficients a, b, c, d are chosen as follows:

a =
γf
γp
, b = −1− a,(3.6)

c = −1, d = γf + γp.(3.7)

In the special case for which γf = γp = γ, we have

a = 1, b = −2, c = −1, d = 2γ.

The relations (3.6)–(3.7) are necessary to ensure the convergence of the scheme.
Indeed, suppose that ηmf and ηmp converge to η∗f and η∗p , respectively, and that φmp ,u

m
f

also converge to the true solution φ∗p and u∗
f , respectively. Then, by (3.4)–(3.5) and

Lemma 2.2, we see that the following relationships hold:

η∗f = aη∗p + bgφ∗p = γfu
∗
f · nf − gφ∗p,(3.8)

η∗p = cη∗f + du∗
f · nf = γpu

∗
f · nf + gφ∗p.(3.9)

This leads to(
bgφ∗p

du∗
f · nf

)
=

(
b 0
0 d

)(
gφ∗p

u∗
f · nf

)
=

(
1 −a
−c 1

)(
η∗f
η∗p

)
=

(
1 −a
−c 1

)(
−1 γf
1 γp

)(
gφ∗p

u∗
f · nf

)
,(3.10)
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which implies the consistency equations (3.6)–(3.7) on the coefficients a, b, c, d and
γf , γp.

These relationships (3.6)–(3.7) among the parameters are used in the convergence
analysis of the Robin–Robin DDM.

Remark 3.1. If the updating strategy (3.4)–(3.5) is changed to

ηm+1
f = a1η

m
p + b1gφ

m
p + c1u

m
f · nf ,

ηm+1
p = a2η

m
f + b2gφ

m
p + c2u

m
f · nf ,

then the “consistency” conditions change to(
−a1 1
1 a2

)(
1 γp
−1 γf

)
=

(
b1 c1
b2 c2

)
.

In this case, we have more flexibility. However, the convergence analysis is somewhat
more complicated and will be addressed elsewhere.

The parallel Robin–Robin domain decomposition algorithm proposed here is re-
lated to the serial version (sRR algorithm) of [16]. As a matter of fact, the sRR
algorithm can be obtained by implementing our algorithm serially as follows. Initial-
ize η0p, and, for k = 0, 1, . . . ,

1. find φmp by solving the Darcy system (3.1);
2. set ηmf = aηmp + bgφmp and find um

f and pmf by solving the Stokes system
(3.2)–(3.3);

3. set ηm+1
p = cηmf + dum

f · nf .
In [16], it is proved, for γf = γp = γ, that the solution of the sRR algorithm

converges to the solution of the Darcy–Stokes system. Here, we are able to prove a
similar convergence result. Moreover, we are able to prove that the convergence could
be geometric for an appropriate choice of γf < γp.

3.2. Convergence of the parallel Robin–Robin DDM. We follow the ele-
gant energy method proposed in [27] to demonstrate the convergence of the parallel
Robin–Robin DDM for appropriate choice of parameters γp and γf .

To this end, let (φp,uf , pf ) denote the solution of the coupled Stokes–Darcy
system (1.4)–(1.5). Then, we have that (φp,uf , pf ) solves the equivalent decoupled
system (2.4) with γf , γp, ηp, ηf satisfying the compatibility conditions (2.5)–(2.6), with
the hats removed.

Next, we define the error functions

εmp = ηp − ηmp , εmf = ηf − ηmf , emφ = φp − φmp , emu = uf − um
f , emp = pf − pmf .

Then, the error functions satisfy the following error equations:

(3.11) γpap(e
m
φ , ψp) + 〈gemφ , ψp〉 = 〈εmp , ψp〉 ∀ψp ∈ Xp,

af (e
m
u ,vf ) + bf (vf , e

m
p ) + γf 〈emu · nf ,vf · nf 〉+ α〈Pτe

m
u , Pτvf 〉

= 〈εmf ,vf · nf 〉 ∀vf ∈ Xf ,(3.12)

bf (e
m
u , qf ) = 0 ∀ qf ∈ Qf ,(3.13)

and, along the interface Γ, we have

εm+1
f = aεmp + bgemφ ,(3.14)

εm+1
p = cεmf + demu · nf .(3.15)
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Equation (3.15) leads to

‖εm+1
p ‖2Γ = c2‖εmf ‖2Γ + d2‖emu · nf‖2Γ + 2cd〈εmf , emu · nf 〉.

Setting vf = emu in (3.12), we deduce

〈εmf , emu · nf 〉 = af (e
m
u , e

m
u ) + γf‖emu · nf‖2Γ + α‖Pτe

m
u ‖2Γ,

and, hence, combining the last two equations, we have

(3.16) ‖εm+1
p ‖2Γ = c2‖εmf ‖2Γ+(d2+2cdγf )‖emu ·nf‖2Γ+2cd af (e

m
u , e

m
u )+2cd α‖Pτe

m
u ‖2Γ.

Similarly, (3.14) implies

‖εm+1
f ‖2Γ = a2‖εmp ‖2Γ + b2‖gemφ ‖2Γ + 2ab〈εmp , gemφ 〉.

Setting ψp = gemφ in (3.11), we have

〈εmp , gemφ 〉 = γpap(e
m
φ , ge

m
φ ) + 〈gemφ , gemφ 〉.

Combining the last two equations, we deduce

(3.17) ‖εm+1
f ‖2Γ = a2‖εmp ‖2Γ + (b2 + 2ab)‖gemφ ‖2Γ + 2abγpg ap(e

m
φ , e

m
φ ).

Substituting (3.6)–(3.7) into (3.16) and (3.17), we have the following result.
Lemma 3.2. The error functions satisfy

‖εm+1
p ‖2Γ = ‖εmf ‖2Γ + (γ2p − γ2f )‖emu · nf‖2Γ

− 2(γf + γp)af (e
m
u , e

m
u )− 2(γf + γp) α‖Pτe

m
u ‖2Γ,

‖εm+1
f ‖2Γ =

(
γf
γp

)2

‖εmp ‖2Γ +

(
1−

(
γf
γp

)2
)
‖gemφ ‖2Γ

− 2γf

(
1 +

γf
γp

)
g ap(e

m
φ , e

m
φ ).

We are now ready to demonstrate the convergence of our parallel Robin–Robin
DDM. The convergence analyses for γf = γp and γf �= γp are different and will be
treated separately.

Case 1: γf = γp = γ. In this case, we have

‖εm+1
p ‖2Γ = ‖εmf ‖2Γ − 4γaf(e

m
u , e

m
u )− 4γα‖Pτe

m
u ‖2Γ,

‖εm+1
f ‖2Γ = ‖εmp ‖2Γ − 4γgap(e

m
φ , e

m
φ ).

Adding the two equations and summing over k from k = 0 to N , we deduce

‖εN+1
p ‖2Γ+‖εN+1

f ‖2Γ = ‖ε0p‖2Γ+‖ε0f‖2Γ−4γ

N∑
k=0

(af (e
m
u , e

m
u )+g ap(e

m
φ , e

m
φ )+α‖Pτe

m
u ‖2Γ).

This implies that ‖εN+1
p ‖2Γ+‖εN+1

f ‖2Γ is bounded from above by ‖ε0p‖2Γ+‖ε0f‖2Γ and that

emu and emφ tend to zero in (H1(Ωf ))
d and H1(Ωp), respectively. The convergence of

emφ together with the error equation (3.11) implies the convergence of εmp in H− 1
2 (Γ).

Combining the convergence of εmp and emφ and the error equation on the interface
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1072 W. CHEN, M. GUNZBURGER, F. HUA, AND X. WANG

(3.14), we deduce the convergence of εmf in H− 1
2 (Γ). The convergence of the pressure

then follows from the inf-sup condition and (3.12)–(3.13). Note that we have no rate
of convergence here. Hence, we have proved the following result.

Theorem 3.3. If γp = γf = γ, then

φmp
Xp−→ φp, um

f

Xf−→ uf , pmf
Qf−→ pf ,

and

ηmp
H− 1

2 (Γ)−→ γuf · nf + gφp = −γK∇φp · np + gφp,

ηmf
H− 1

2 (Γ)−→ γuf · nf − gφp = nf · (T(uf , pf) · nf ) + γuf · nf .

Case 2: γf < γp. In this case, because emφ ∈ Xp, we deduce that, thanks to the
trace theorem and the Poincaré inequality, there exists a constant Cp (independent
of K) such that

(3.18) ‖emφ ‖2Γ ≤ Cp‖K−1‖ap(emφ , emφ ).

Thus, if γf < γp and

(3.19)
1

γf
− 1

γp
≤ 2

gCp‖K−1‖ ,

we have (
1−

(
γf
γp

)2)
‖gemφ ‖2Γ − 2γf

(
1 +

γf
γp

)
gap(e

m
φ , e

m
φ )

≤ γfg

(
1 +

γf
γp

)((
1

γf
− 1

γp

)
gCp‖K−1‖ − 2

)
ap(e

m
φ , e

m
φ )

≤ 0.

Similarly, thanks to the trace theorem and Korn’s inequality, there exists a con-
stant Cf such that

(3.20) ‖emu · nf‖2Γ ≤ Cf

∫
Ωf

|D(emu )|2dx.

Therefore, under the additional constraint

γp − γf ≤ 4ν

Cf
,

we have

(3.21) (γ2p − γ2f )‖emu · nf‖2Γ ≤ 2(γf + γp)af (e
m
u , e

m
u ).

This combined with Lemma 3.2 gives

‖εm+1
p ‖2Γ ≤ ‖εmf ‖2Γ, ‖εm+1

f ‖2Γ ≤
(
γf
γp

)2

‖εmp ‖2Γ,
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which leads to

‖εm+1
p ‖Γ ≤ γf

γp
‖εk−1

p ‖Γ, ‖εm+1
f ‖Γ ≤ γf

γp
‖εk−1

f ‖Γ.

This implies the convergence of the η, which further implies the convergence of the
velocity emu , the pressure emp , and the hydraulic head emφ through the error equations
(3.11)–(3.13).

Hence we have derived the following geometric convergence result.
Theorem 3.4. Assume that the parameters γp and γf are chosen so that

(3.22) 0 < γp − γf ≤ 4ν

Cf
,

1

γf
− 1

γp
≤ 2

gCp‖K−1‖ ,

where Cp and Cf are the constants in (3.18) and (3.20), respectively. Then, the
solutions of the parallel Robin–Robin DDM converge to the solution of the Stokes–
Darcy system. Moreover,

ap(e
m
φ , e

m
φ ) + af (e

m
u , e

m
u ) + ‖emp ‖2Γ + ‖εmp ‖2Γ + ‖εmf ‖2Γ ≤ C

(
γf
γp

)� k
2 � (

‖ε0p‖2Γ + ‖ε0f‖2Γ
)
.

The last inequality follows from the geometric convergence of εmp , ε
m
f , the error

relationship at the interface, and the error equations.

4. Von Neumann analysis. In this section, we use the von Neumann method
to analyze the convergence of the Robin–Robin DDM scheme for one special problem.
We will demonstrate that the convergence behavior is essentially the same as that
obtained in the previous section.

Let Ωp = (0, π) × (−1, 0), Ωf = (0, π) × (0, 1), and Γ = {0 ≤ x ≤ π, y = 0}.
The normal directions are nf = (0,−1) and np = (1, 0). Along the interface Γ, the
interface conditions (1.1)–(1.3) can be rewritten as follows:

uf,2 = −K∇φp · np,(4.1)

ν

(
∂uf,1
∂y

+
∂uf,2
∂x

)
= αuf,1,(4.2)

2ν
∂uf,2
∂y

− p = −gφp,(4.3)

where uf,1 and uf,2 are the two components of the velocity uf . The right-hand force
f vanishes since only the error equations are needed in the analysis. For simplicity,
we assume that K = KI and g = 1 in this section. By using von Neumann analysis,
the solutions are assumed to be periodic in the x-direction and have single wave
formulations, that is

(4.4) φp = eikxφ̄(y), uf = eikxū(y), pf = eikxp̄(y),

where the integer k is the wave number and i =
√
−1. The assumptions can hold if

the initial guesses of ηf and ηp have the same single wave formulations of ηf = eikxη̄f
and ηp = eikxη̄p.

Note that if uf satisfies the divergence-free constraint, there exists a stream func-
tion ψ(y) such that

(4.5) ū(y) =

(
−dψ(y)

dy
, ikψ

)T

.
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From the Stokes equation, after substituting the single wave formulations of uf and
pf , ψ(y) must satisfy

(4.6)
d4ψ

dy
− 2k2

d2ψ

dy
+ k4ψ = 0,

and therefore ψ(y) = C1e
ky +C2e

−ky +C3ye
ky +C4ye

−ky. Similarly, φp satisfies the
Darcy equations, and then

(4.7) −φ̄(y) + k2φ̄(y) = 0,

which means that φ̄(y) = C5e
ky + C6e

−ky . In order to determine the coefficients
Ci(i = 1, . . . , 6), the boundary conditions should be imposed. In the Stokes domain,
the Dirichlet boundary condition uf |y=1 = 0 leads to the conditions

(4.8) ψ(1) =
dψ

dy
(1) = 0.

The interface condition (4.2) becomes

(4.9) ν
d2ψ

dy2
+ α

dψ

dy
+ νk2ψ = 0.

Instead of the condition (1.3) or (4.3), the Robin condition (2.2) is used in the DDM
iterations and can be simplified to

(4.10) −3νki
dψ

dy
− iν

k

d3ψ

dy
− γfkiψ = η̄f .

In fact, we are interested in the relationship of ψ(0) and η̄f , that is, in finding Rf

such that

(4.11) ψ(0) = Rf
iη̄f
k
.

And from the boundary conditions (4.8)–(4.10),

(4.12) Rf = (1, 1, 0, 0)

⎛⎜⎜⎝
ek e−k ek e−k

kek −ke−k (1 + k)ek (1 − k)e−k

2νk2 + αk 2νk2 − αk 2νk + α −2νk + α
−2νk + γf 2νk + γf 0 0

⎞⎟⎟⎠
−1⎛⎜⎜⎝

0
0
0
1

⎞⎟⎟⎠ .

After careful computations, we deduce

(4.13)
1

Rf
= γf + ν

4(e−k + ek)2 − 2α
kν (e

2k − e−2k) + 8 + 16k2 − 8α
ν

2
k (e

2k − e−2k)− α
ν

(ek−e−k)2

k2 − 8 + 4α
ν

.

Let us denote the fractional part of the second term on the right-hand side as ζf so

that Rf = 1
γf+νζf

. Since
∂ζf
∂α > 0, ζf monotonically increases with respect to α or α

ν ,

so it is enough to set α = 0 if we want to obtain the minimal value of ζf . ζf takes
its minimal value at k = 2 and α = 0, and min ζf ≈ 6.408 for all positive α, ν and
nonnegative integral k.
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Remark 4.1. In fact, α depends on ν and K (see, for example, [6]) and may be

replaced by
√
3αν√

trace(K)
, where α is a new parameter independent of the viscosity and

hydraulic conductivity. Then ζf is independent of ν.
Note that uf · nf = −ikψ(0); then

(4.14) uf · nf = Rf η̄f .

Similarly, in the Darcy domain, we have the Dirichlet boundary condition φ̄ = 0 at
the bottom boundary and the Robin condition at the interface Γ

(4.15) γpK
dφ̄

dy
+ φ̄ = η̄p.

We can also build up the relationship

(4.16) φ̄(0) = Rpη̄p,

and

(4.17) Rp =
1

1 + γpkK
ek+e−k

ek−e−k

.

Obviously, Rp and Rf are even functions with respect to k; then only nonnegative
integer k should be considered.

Now the parallel Robin–Robin DDM (3.4)–(3.5) can be written as

η̄m+1
f =

γf
γp
η̄mp +

(
−1− γf

γp

)
φ̄m =

(
γf
γp

+

(
−1− γf

γp

)
Rp

)
η̄mp � ρpη̄

m
p ,(4.18)

η̄m+1
p = −η̄mf + (γf + γp)u

m
f · nf = (−1 + (γf + γp)Rf )η̄

m
f � ρf η̄

m
f .(4.19)

So the convergence rate ρ of the iteration is ρ =
√
|ρpρf |. For large k, we have the

asymptotic expressions

(4.20) Rf ∼ 1

γf + 2νk
and Rp ∼ 1

1 + γpkK
,

and then

(4.21) ρp ∼ γfkK − 1

γpkK + 1
and ρf ∼ γp − 2νk

γf + 2νk
.

So ρp tends to
γf

γp
and ρf tends to −1 when k tends to infinity. Combining the above

analysis with Theorem 3.3 and Theorem 3.4, we can obtain the following result.
Theorem 4.2. The parallel Robin–Robin DDM (3.4)–(3.5) converges for any η0f

and η0p if and only if γf ≤ γp.
Moreover, even for γf ≤ γp, further results can be obtained. For the case of

γp = γf = γ, and for large k, the convergence rate ρ has the asymptotic estimation

(4.22) ρ ∼
(
1− 2

γkK

) 1
2 (

1− γ

νk

) 1
2 ∼ 1−

(
1

γK
+

γ

2ν

)
1

k
.

The estimation implies that the convergence rate in the finite element context will
depend on the mesh size h.
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Now let us consider the case of γf < γp. In this case, ρp is bounded by

(4.23) |ρp| ≤ max

(
γf
γp
,
|1− γfK|
1 + γpK

)
∀ k.

And |ρp| ≤ γf

γp
if the following inequality holds:

(4.24)
1

γf
− 1

γp
≤ 2K.

Recall that 0 ≤ Rf ≤ 1
γf+ν min ζf

and min ζf < 6.41. Therefore if

(4.25) γp − γf ≤ 2νmin
k
ζf ≈ 12.82ν,

then |ρf | ≤ 1 for all integral k. Hence for the problem under consideration, we have
stronger results than Theorems 3.3 and 3.4.

Theorem 4.3. If γf ≤ γp, the parallel Robin–Robin DDM (3.4)–(3.5) converges
for any η0f and η0p, and

• when γf = γp, the convergence rate has asymptotic expression 1−O( 1k );

• when γf < γp and if (4.24) holds, the convergence rate is max(
γf

γp
,
|1−γfK|
1+γpK

)
1
2 .

Moreover if (4.25) also holds, then the convergence rate is
√

γf

γp
.

Remark 4.4. In the serial Robin–Robin DDM, the iteration (4.18)–(4.19) is im-
plemented by

(4.26) η̄m+1
f = ρpη̄

m
p , η̄m+1

p = ρf η̄
m+1
f .

Then the convergence rate of the serial Robin–Robin DDM is ρpρf , which means that
the serial Robin–Robin DDM is twice as fast as the parallel Robin–Robin DDM. In
sections 3 and 5, Rf and Rp become operators, but this remark still holds.

5. Finite element approximations. We next consider finite element discretiza-
tion of the Robin DDM that was proposed in the previous section. One of the advan-
tages of considering finite element approximations is that we can then derive explicit
convergence rates, even for the case γf = γp = γ. Of course, the rate of convergence
will depend on the size of the element h. This is different from the case of γf < γp,
where the rate of convergence is independent of h. We will also demonstrate the con-
vergence of the finite element approximation even in the parameter region of γp < γf ,
which may seem unlikely in view of Lemma 3.2. One of the key advantages of the
finite element setting is the availability of an inverse Poincaré-type inequality [8] that
allows us to control various terms.

We consider a regular triangulation Th of the global domain Ωp

⋃
Ωf , which is

assumed to be regular and quasi uniform. We also assume that the triangulations
Tf,h, Tp,h induced on the subdomains Ωf and Ωp are compatible on Γ and that the
mesh on the interface Γ is quasi uniform. The induced triangulation on Γ will be
denoted Bh. Nonmatching grid or mortar cases will be considered elsewhere. We
denote by Xp,h ⊂ Xp a finite element space on the porous media domain Ωp and
denote by Xf,h ⊂ Xf and Qf,h ⊂ Qf finite element spaces on the fluid domain Ωf .
We use these spaces to approximate the hydraulic head in the porous media and the
fluid velocity and pressure.
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Specifically, we choose

Xp,h = {ψp,h ∈ C0(Ωp)
∣∣ ψp,h|T ∈ P2(T ) ∀T ∈ Tp,h, ψp,h

∣∣
∂Ωp\Γ = 0},

Xf,h = {vf,h ∈ (C0(Ωf ))
d
∣∣ vf,h|T ∈ (P2(T ))

d ∀T ∈ Tf,h, vf,h

∣∣
∂Ωf\Γ = 0},

Qf,h = {qp,h ∈ C0(Ωf )
∣∣ qf,h|T ∈ P1(T ) ∀T ∈ Tf,h}.

The spaces Xf,h and Qf,h are assumed to satisfy the discrete LBB or inf-sup condition
[19, 23].

We also define the discrete trace space on the interface

Zh = {ηh ∈ C0(Γ)
∣∣ ηh|τ ∈ P2(τ) ∀ τ ∈ Bh, ηh|∂Γ = 0}.

It is easy to see that Zh is the trace space in the sense that

Yp,h : = Xp,h

∣∣
Γ
= Zh,

Yf,h : = Xf,h

∣∣
Γ
· nf = Zh.

The discrete weak formulation of the coupled Stokes–Darcy problem is then given
by the following: find (uf,h, pf,h) ∈ Xf,h ×Qf,h and φp,h ∈ Xp,h such that

(5.1)

af (uf,h,vf ) + bf (vf , pf,h) + gap(φp,h, ψp) + 〈gφp,h,vf · nf 〉 − 〈guf,h · nf , ψp〉
+ α〈Pτuf,h, Pτvf 〉 = (f ,vf )Ωf

∀vf ∈ Xf,h, ψp ∈ Xp,h,
bf (uf,h, qf ) = 0 ∀ qf ∈ Qf,h.

The finite element approximation of the decoupled Stokes–Darcy system with
Robin boundary conditions (2.1)–(2.2) can be formulated in the following way: for

given ηp,h ∈ L2(Γ) and ηf,h ∈ L2(Γ), find (φ̂p,h, ûf,h, p̂f,h) ∈ Xp,h ×Xf,h ×Qf,h such
that

(5.2)

af(ûf,h,vf ) + bf (vf , p̂f,h) + ωγpap(φ̂p,h, ψp) + ω〈gφ̂p,h, ψp〉+ γf 〈ûf,h · nf ,vf · nf 〉
+ α〈Pτ ûf,h, Pτvf 〉 = (f ,vf )Ωf

+ 〈ηf,h,vf · nf 〉+ ω〈ηp,h, ψp〉 ∀ψp ∈ Xp,h,vf ∈ Xf,h,
bf(ûf,h, qf ) = 0 ∀ qf ∈ Qf,h.

Similarly to the continuous case, finite element approximations of the coupled
Stokes–Darcy system, defined by (5.1), and of the revised Robin approximation, de-
fined by (5.2), are related in the following fashion.

Lemma 5.1. For ηp,h ∈ Yp,h and ηf ∈ Yf,h, (φ̂p,h, ûf,h, p̂f,h) = (φp,h,uf,h, pf,h)
if and only if ηp,h and ηf,h satisfy

ηp,h = Pp,h(γpuf,h · nf + gφp,h), ηf,h = Pf,h(γfuf,h · nf − gφp,h),

where Pp,h and Pf,h are L2(Γ)-projections onto the spaces Yp,h and Yf,h respectively;
i.e., for v ∈ L2(Γ),

〈Pp,hv, wp〉 = 〈v, wp〉 ∀wp ∈ Yp,h, 〈Pf,hv, wf 〉 = 〈v, wf 〉 ∀wf ∈ Yf,h.

Remark 5.2. Comparing with the Robin conditions (2.1) and (2.2), we see that
we have heuristically used

Pp,h(γpK∇φp,h · np + gφp,h) = ηp,h,

Pf,h(nf · (T (uf,h, pf,h) · nf ) + γfuf,h · nf ) = ηf,h.
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The choices of the spaces Yp,h and Yf,h are not unique; other choices are also
possible.

The parallel Robin–Robin domain decomposition finite element method is defined
as follows.

1. The initial values of η0p,h ∈ Yp,h and η0f,h ∈ Yf,h are guessed; they may be
taken to be zero.

2. For k = 1, 2, . . . , solve the discrete Stokes and Darcy systems with Robin
conditions independently; i.e., φmp,h ∈ Xp,h is determined from

γpap(φ
m
p,h, ψp) + 〈gφmp,h, ψp〉 = 〈ηmp,h, ψp〉 ∀ψp ∈ Xp,h,

and um
f,h ∈ Xf,h and pmf,h ∈ Qf,h are determined from

af (u
m
f,h,vf ) + bf (vf , p

m
f,h) + γf 〈um

f,h · nf ,vf · nf 〉+ α〈Pτu
m
f,h, Pτvf 〉

= 〈ηmf,h,vf · nf 〉+ (f ,vf )Ωf
∀vf ∈ Xf,h,

bf(u
m
f,h, qf ) = 0 ∀ qf ∈ Qf,h.

3. ηm+1
p,h and ηm+1

f,h are updated by

ηm+1
f,h = Pf,h(aη

m
p,h + bgφmp,h), ηm+1

p,h = Pp,h(cη
m
f,h + dum

f · nf ).

One important observation is that ηmp,h, η
m
f,h, φ

m
p,h

∣∣
Γ
,um

f · nf

∣∣
Γ

∈ Zh for all k,
provided that the initial guesses belong to Zh. Therefore, the projections Pp,h and
Pf,h in the implementation of the algorithm are identity operators.

We now consider the error functions for finite element approximations, just as in
the continuous case studied in the previous section. Let

εmp,h = ηp,h − ηmp,h, εmf,h = ηf,h − ηmf,h, emφ,h = φp,h − φmp,h,

emu,h = uf,h − um
f,h, emp,h = pf,h − pmf,h.

It is straightforward to verify that

εmp,h ∈ Zh, εmf,h ∈ Zh, emφ,h|Γ ∈ Zh, emu,h · nf ∈ Zh.

It is also easy to see that the error functions satisfy the error equations

(5.3) γpap(e
m
φ,h, ψp) + 〈gemφ,h, ψp〉 = 〈εmp,h, ψp〉 ∀ψp ∈ Xp,h,

af (e
m
u,h,vf ) + bf(vf , e

m
p,h) + γf 〈emu,h · nf ,vf · nf 〉+ α〈Pτe

m
f,h, Pτvf 〉

= 〈εmf,h,vf · nf 〉 ∀vf ∈ Xf,h,(5.4)

bf(e
m
u,h, qf ) = 0 ∀ qf ∈ Qf,h,(5.5)

and, along the interface,

εm+1
f,h = Pf,h(aε

m
p,h + bgemφ,h), εm+1

p,h = Pp,h(cε
m
f,h + demu,h · nf ).

It is easy to verify the following relationship for the error functions, just as in the
continuous case.
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Lemma 5.3. The error functions satisfy

‖εm+1
p,h ‖2Γ = ‖εmf,h‖2Γ + (γ2p − γ2f )‖emu,h · n‖2Γ − 2(γf + γp)af (e

m
u,h, e

m
u,h)

− 2(γf + γp)‖Pτe
m
u,h‖2Γ,

‖εm+1
f,h ‖2Γ =

(
γf
γp

)2

‖εmp,h‖2Γ +

(
1−

(
γf
γp

)2
)
‖gemφ,h‖2Γ

− 2γf

(
1 +

γf
γp

)
gap(e

m
φ,h, e

m
φ,h).

The key ingredient in deriving an explicit convergence rate for the case of γf = γp
is the following estimate.

Lemma 5.4.

‖εmp,h‖2Γ ≤ C(‖K−1‖1/2 + γph
−1/2‖K‖1/2)2ap(emφ,h, emφ,h).

Proof. The key in the proof of this lemma is an extension operator. Let Np,h be
the set of nodes for the finite element triangulation on Ωp, and let Np,Γ = Np,h|Γ.
Denote by Ep,h the zero extension operator from Yp,h = Zh to Xp,h:

Ep,hε
m
p,h(P ) =

{
εmp,h(P ) if P ∈ Np,Γ,

0 if P ∈ Np,h\Np,Γ.

Then, we have

(5.6) ‖Ep,hε
m
p,h‖2L2(Ωp)

≈ hd
∑

P∈Np,h

(Ep,hε
m
p,h(P ))

2 ≈ hd
∑

P∈Np,Γ

(εmp,h(P ))
2 ≈ h‖εmp,h‖2Γ.

Note that Ep,hε
m
p,h ∈ Xp,h due to the definition of the extension operator and the fact

that εmp,h ∈ Zh. Hence, we may set ψp = Ep,hε
m
p,h in (5.3) and utilize the Cauchy–

Schwarz inequality to deduce

‖εmp,h‖2Γ = γpap(e
m
φ,h, Ep,hε

m
p,h) + 〈gemφ,h, εmp,h〉

≤ γpap(e
m
φ,h, e

m
φ,h)

1/2ap(Ep,hε
m
p,h, Ep,hε

m
p,h)

1/2 + ‖gemφ,h‖Γ‖εmp,h‖Γ.(5.7)

On the other hand, thanks to the inverse inequality for finite element spaces and (5.6),
we deduce

ap(Ep,hε
m
p,h, Ep,hε

m
p,h) ≤ ‖K‖‖∇Ep,hε

m
p,h‖2L2(Ωp)

≤ Ch−2‖K‖‖Ep,hε
m
p,h‖2L2(Ωp)

≤ Ch−1‖K‖‖εmp,h‖2Γ.(5.8)

Combining the inequality (3.18) with (5.7)–(5.8), we obtain

‖εmp,h‖2Γ ≤ Cγph
−1/2‖K‖1/2ap(emφ,h, emφ,h)1/2‖εmp,h‖Γ

+ gC1/2
p ‖K−1‖1/2ap(emφ,h, emφ,h)1/2‖εmp,h‖Γ,

which implies the lemma.
Remark 5.5. Similar results are available for P1 conforming and nonconforming

elements for classical second-order elliptic problems (see [31, 32]).
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Now for γf = γp = γ, by Lemma 5.3, we have

‖εm+1
p,h ‖2Γ = ‖εmf,h‖2Γ − 4γaf (e

m
u,h, e

m
u,h)− 4γ‖Pτe

m
u,h‖2Γ,

‖εm+1
f,h ‖2Γ = ‖εmp,h‖2Γ − 4γgap(e

m
φ,h, e

m
φ,h).

Combining the above equalities with Lemma 5.4, we deduce

‖εm+1
p,h ‖2Γ ≤ ‖εmf,h‖2Γ, ‖εm+1

f,h ‖2Γ ≤ (1− Cγ(‖K−1‖1/2 + γh−
1
2 ‖K‖1/2)−2)‖εmp,h‖2Γ.

Therefore, we have proved the following lemma.
Lemma 5.6. For γf = γp = γ, we have

‖εm+1
p,h ‖2Γ ≤ (1− Cγh(h1/2‖K−1‖1/2 + γ‖K‖1/2)−2)‖εm−1

p,h ‖2Γ,
‖εm+1

f,h ‖2Γ ≤ (1− Cγh(h1/2‖K−1‖1/2 + γ‖K‖1/2)−2)‖εm−1
f,h ‖2Γ.

This further implies convergence with convergence rate proportional to 1 − Ch
for the case of γp = γf = γ.

Theorem 5.7. If γp = γf = γ, then

ap(e
m
φ,h, e

m
φ,h) + af (e

m
u,h, e

m
u,h) + ‖emp,h‖2L2(Ωf )

+ ‖εmp,h‖2Γ + ‖εmf,h‖2Γ
≤ C(1− Chγ(h1/2‖K−1‖1/2 + γ‖K‖1/2)−2)�

m
2 � (‖ε0p‖2Γ + ‖ε0f‖2Γ

)
.

Remark 5.8. Now assume that hydraulic conductivity tensor K = KI; then the
convergence rate of the Robin–Robin domain decomposition finite element method
is 1 − Ch since (1 − ChK/(h1/2 + γK)−2)

1
2 = 1 − O(h) for small h. This result is

consistent with the result (4.22).
In the case γf �= γp, we have the same result as Theorem 3.4 with geometric

convergence with a rate independent of h.
Theorem 5.9. If (3.22) is satisfied, then

ap(e
m
φ,h, e

m
φ,h) + af (e

m
u,h, e

m
u,h) + ‖emp,h‖2L2(Ωf )

+ ‖εmp,h‖2Γ + ‖εmf,h‖2Γ

≤ C

(
γf
γp

)m (
‖ε0p,h‖2Γ + ‖ε0f,h‖2Γ

)
.

Now we consider the case γf > γp which is counterintuitive in view of Lemma 3.2.
Nevertheless, at the discrete level, we are able to control the excessive growth term by
the decay terms so long as the parameters γf and γp are chosen to be close (depending
on K and h). Indeed, thanks to Lemma 5.4, we have((

γf
γp

)2

− 1

)
‖εmp,h‖2Γ − γf

(
1 +

γf
γp

)
g ap(e

m
φ,h, e

m
φ,h)

≤
(((

γf
γp

)2

− 1

)
C(‖K−1‖1/2 + γph

−1/2‖K‖1/2)2 − γf

(
1 +

γf
γp

)
g

)
ap(e

m
φ,h, e

m
φ,h)

= γf

(
1 +

γf
γp

)((
1

γp
− 1

γf

)
C(‖K−1‖1/2 + γph

−1/2‖K‖1/2)2 − g

)
ap(e

m
φ,h, e

m
φ,h)

≤ 0

provided that the following condition holds:

(5.9) 0 ≤ 1

γp
− 1

γf
≤ gh

C(h1/2‖K−1‖1/2 + γp‖K‖1/2)2 .
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An undesirable feature here is the dependence on the mesh size h, but this constraint
is natural since the scheme could be divergent for the continuous problem (see The-
orem 4.2). For every small h, the γ’s must be very close in order to have the above
inequality satisfied. This would lead to a very slow convergence rate.

We then have, when combined with Lemma 5.3 and under assumption (5.9),

‖εm+1
p,h ‖2Γ ≤ ‖εmf,h‖2Γ − 2(γf + γp)af (e

m
u,h, e

m
u,h) ≤ ‖εmf,h‖2Γ − 4γpaf (e

m
u,h, e

m
u,h),

‖εm+1
f,h ‖2Γ ≤ ‖εmp,h‖2Γ − γf

(
1 +

γf
γp

)
g ap(e

m
φ,h, e

m
φ,h) ≤ ‖εmp,h‖2Γ − 2γfg ap(e

m
φ,h, e

m
φ,h).

Summing the two inequalities for k from 0 to N , we deduce the convergence of
emφ,h and emu,h that leads to the convergence (without rate) of all quantities involved.
A rate of convergence can be derived just as in the case of γp = γf . Indeed, we may
deduce, with the help of Lemma 5.4 and the last inequality above,

‖εm+1
f,h ‖2Γ ≤ (1− Cγfh(h

1/2‖K−1‖1/2 + γp‖K‖1/2)−2)‖εmp,h‖2Γ,

and hence we obtain

‖εm+1
p,h ‖2Γ ≤ (1− Cγfh(h

1/2‖K−1‖1/2 + γp‖K‖1/2)−2)‖εm−1
p,h ‖2Γ,

‖εm+1
f,h ‖2Γ ≤ (1− Cγfh(h

1/2‖K−1‖1/2 + γp‖K‖1/2)−2)‖εm−1
f,h ‖2Γ.

This further implies convergence with convergence rate proportional to 1−Ch for the
case of γf > γp under the additional constraint of (5.9). Therefore, we have proved
the following theorem.

Theorem 5.10. For γf > γp, assume that the additional constraint (5.9) holds.
Then, we have the following convergence result for our parallel Robin–Robin domain
decomposition finite element method for the coupled Stokes–Darcy system:

ap(e
m
φ,h, e

m
φ,h) + af (e

m
u,h, e

m
u,h) + ‖emp,h‖2L2(Ωf )

+ ‖εmp,h‖2Γ + ‖εmf,h‖2Γ
≤ C(1− Cγfh(h

1/2‖K−1‖1/2 + γp‖K‖1/2)−2)�
m
2 � (‖ε0p‖2Γ + ‖ε0f‖2Γ

)
.

6. Computational experiments. We present some preliminary computational
results based on the parallel Robin–Robin domain decomposition finite element method
for the coupled Stokes–Darcy system with the BJSJ interface boundary condition.

The following example is used in the parallel Robin–Robin DDM. Let Ωp =
(0, π) × (−1, 0), Ωf = (0, π) × (0, 1), and let Γ = {0 ≤ x ≤ π, y = 0}. Assume
that the hydraulic conductivity is homogeneous and isotropic, i.e., K = KI, and we
have the solutions

uf,1 = v′(y) cosx, uf,2 = v(y) sinx, pf = 0, φp = ey sinx,

where v(y) = −K − gy
2ν + (− αg

4ν2 + K2

2 )y2. Then these functions exactly satisfy the
Stokes–Darcy system with the BJSJ interface boundary condition.

We now consider the differences between iterations of the Robin–Robin DDM
and the exact solution of the discrete finite element problems; the convergence and
superconvergence behaviors have been analyzed in [7]. Specifically, in Figure 6.1, we

plot the relative errors
‖um

f,h−uf,h‖�2

‖uf,h‖�2
versus the iteration counter m; the results of

the other three relative errors
‖φm

h −φh‖�2

‖φh‖�2
,

‖ηm
f,h−ηf,h‖�2

‖ηf,h‖�2
, and

‖ηm
p,h−ηp,h‖�2

‖ηp,h‖�2
are almost

the same. The computational results presented confirm our theoretical convergence
analysis.
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Fig. 6.1. Relative errors
‖um

f,h−uf,h‖
�2

‖uf,h‖
�2

of Robin–Robin DDM versus m. Left: parallel version.

Right: serial version.

By setting K = 1, ν = 1, α = 1 and γp = 1, Figure 6.1 shows that, for the
Robin–Robin DDMs,

• if γf < γp(γf = 1
3γp or 1

2γp), convergence is very fast;
• if γf > γp(γf = 3γp or 2γp), the iterative method diverges;
• if γf = γp, the iterative method converges, but with a slow rate;
• the serial implementation is twice as fast as the parallel one.

7. Conclusions. The convergence behavior of Robin–Robin DDMs for the
Stokes–Darcy equations were studied. The geometric convergence can be obtained
for appropriate choices of the parameters both for the continuous PDE and the finite
element, and it is possible to get the convergence rate independent of the mesh size,
which is different from the recent results obtained in [41] for the classical second-order
elliptic problem.
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for valuable comments and suggestions.
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