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Abstract:

In our previous study, we developed the Stokes–Darcy (SD) model was developed for flow in a karst aquifer with a conduit
bedded in matrix, and the Beavers–Joseph (BJ) condition was used to describe the matrix–conduit interface. We also studied the
mathematical well-posedness of a coupled continuum pipe flow (CCPF) model as well as convergence rates of its finite element
approximation. In this study, to compare the SD model with the CCPF model, we used numerical analyses to validate finite
element discretisation methods for the two models. Using computational experiments, simulation codes implementing the finite
element discretisations are then verified. Further model validation studies are based on the results of laboratory experiments.
Comparing the results of computer simulations and experiments, we concluded that the SD model with the Beavers–Joseph
interface condition is a valid model for conduit–matrix systems. On the other hand, the CCPF model with the value of the
exchange parameter chosen within the range suggested in the literature perhaps does not result in good agreement with
experimental observations. We then examined the sensitivity of the CCPF model with respect to the exchange parameter,
concluding that, as has previously been noted, the model is highly sensitive for small values of the exchange parameter.
However, for larger values, the model becomes less sensitive and, more important, also produces results that are in better
agreement with experimental observations. This suggests that the CCPF model may also produce accurate simulation results, if
one chooses larger values of the exchange parameter than those suggested in the literature. Copyright © 2011 John Wiley &
Sons, Ltd.

KEY WORDS karst aquifer; conduit and matrix domains; pipe flow model; Stokes equation; Beavers–Joseph boundary; mass
exchange rate
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INTRODUCTION

Karst aquifers are susceptible to greater contamination than
non-karstic aquifers because of rapid transport processes
and limited chemical filtering capacities, both of which
quicken the spread of solutes (Taylor and Greene, 2001;
Matusick and Zanbergen, 2007; Kuniansky, 2008). In
comparison with the large amount of modelling studies on
groundwater flow and contaminant migration in porous
and fractured media, similar studies on karst aquifers are
very limited and inaccurate, although, in many states, karst
aquifers represent a very significant source of water for
public and private use (Kincaid, 2004). A karst aquifer, in
addition to a porous limestone matrix, typically has large
cavernous conduits that are known to largely control
groundwater flow and contaminant transport within the
aquifer (Katz et al., 1998). During a high-flow event, the

water pressure in the conduits is larger than that in the
ambient matrix so that conduit-borne contaminants can be
driven into the matrix. During a low-flow event, the
pressure differential reverses and contaminants seques-
tered in the matrix can be released into the free flow in the
conduits and exit through, for example, springs and wells,
into surface water systems (Li et al., 2008). This retention
and release phenomenon induces an environmental issue in
that sequestered contaminants may influence the quality of
groundwater sources for a long time and thus significantly
decrease water availability. Figure 1 provides a sketch of
the conceptual model of a karst aquifer (Faulkner et al.,
2009). In Figure 1, Ωm and Ωc denote the matrix and the
conduit domains, respectively; Γg indicates the ground
surface; Γsi and Γsp indicate a sinkhole and spring
boundary, respectively; Γcm indicates the conduit–matrix
interface boundary; and Γ0 indicates a bounding surface
that is presumably far removed from the region of interest.
The dual character of a karst flow system is widely

recognised and stems from the existence of different
porosities within a karst aquifer (Ford, 1998; Worthington,
2003), which determines the type of flow prevailing in the
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aquifer (Ford and Williams, 1989; Bauer et al., 2003).
Similar to the dual-porosity/permeability model widely
used for fractured media (Gerke and van Genuchten,
1993a, 1993b), the coupled continuum pipe flow (CCPF)
model has been proposed to describe the flow and solute
transport in karst aquifers (Chen and Bian, 1988; Kiraly,
1998; Bauer et al., 2000, 2003; Birk et al., 2003;
MacQuarrie and Sudicky, 1996). The CCPF model is a
dual flow system consisting of a matrix representing the
bulk mass of permeable limestone and a conduit system
representing the karst conduit network. Flow exchange
between the two systems is controlled by differences in
hydraulic heads as well as the hydraulic conductivity and
the geometric setting. In the CCPF model, the groundwater
flow in thematrix is described by theDarcy’s law, and theflow
in the conduit is modelled by a pipe flow model. The water
mass exchange flow rate between the two systems, qex, is
described by a first-order mass exchange model; the exchange
flow rate is assumed to be linearly proportional to the head
difference between the two systems (Barenblatt et al., 1960;
Cao et al., 1988; Teutsch, 1989; Sauter, 1992; Cao et al.,
2011). The exchange rate coefficient is a lumped parameter,
and its value will depend on many factors including, among
others, the hydraulic conductivity in the matrix, the exchange
surface between the conduit and the matrix and the conduit
geometry (Barenblatt et al., 1960; Liedl et al., 2003). The value
of the exchange rate parameter is not usually obtained from
measurements but rather through curve fitting. On the basis of
theCCPFmodel, a newnumericalmethod has been developed
andbecamepart of thenewMODFLOWsoftware (Shoemaker
et al., 2008). Cao et al. (2011) studied the mathematical well-
posedness of the CCPF model as well as convergence rates of
finite element approximation established in the two-
dimensional case. However, the suitability and validity of the
CCPF as a model for groundwater flow in a karst aquifer,
especially for the flow exchange between the matrix and the
conduit, has not been well studied. In addition, the
determination of the value of the exchange rate parameter is
also an issue that needs attention.
Flow in karst aquifers, and especially the exchange of

water and contaminants between the matrix and the
conduit, can also be modelled by coupling the Darcy
model for the flow in the matrix with the Navier–Stokes

equations (or Stokes under low Reynolds number
assumption) for the flow in the conduits. In this case,
we have three-dimensional conduits (in contrast to the
one-dimensional conduits of the pipe flow model)
embedded in the matrix, and the exchange of water and
water-borne contaminants occurs at the boundaries
between the matrix and the conduit. In the study of
Beavers and Joseph (1967), interface conditions, called
the Beavers–Joseph (BJ) conditions, governing that
exchange were developed on the basis of experimental
observations; these have become widely accepted.
However, the BJ conditions engender mathematical and
computational difficulties so that several simplifications
have been proposed (Saffman, 1971; Discacciati et al.,
2002). Faulkner et al. (2009) developed the Stokes–Darcy
(SD) method for flow in a karst aquifer with a conduit
bedded in matrix. The BJ interface condition was used to
describe the matrix–conduit interface.
The purpose of this study is to use mathematical,

computational and experimental means for the verification
and validation of the SD and CCPF models and of finite
element discretisation algorithms and their implementa-
tions. Obtaining information about good choices for the
values of the exchange parameters appearing in the models
is also an objective of this study.
In the section on Models for Matrix–Conduit Flows, we

provide descriptions of the SD andCCPFmodels and briefly
touch on the mathematical issues of well-posedness of the
models and on mathematical and computational results
obtained from finite element discretisations. For the SD
model, the results of asymptotic comparisons of the SD
models with the BJ condition are provided, using the more
sophisticated Stokes–Brinkman model as a benchmark. In
the section on Experimental Validation of Simulation
Models, we compare results obtained from the two models
with results obtained from laboratory experiments. In the
section on Sensitivities of Modeling Parameters, we use
results obtained with the CCPF model to study the
sensitivity of that model with respect to a modelling
parameter (the exchange rate coefficient) and, using the
validated SD model as a benchmark, glean some insight as
to effective choices for the value of that parameter. Finally,
in the section on Summary and Conclusions, we provide
some concluding remarks.

MODELS FOR MATRIX–CONDUIT FLOWS

In this section, we considered two models for determining
flowvelocities and pressures in karst-like systems consisting
of a porous matrix in which conduits are embedded. For
both models, the Darcy equation is used for the flow in the
matrix; for the free flow in the conduits, one uses a one-
dimensional pipe flow model whereas the other uses the
Stokes equations. A particularly important aspect we
addressed was the proper accounting of the fluid exchange
between the matrix and the conduit. The velocity field in the
matrix, Vm, determined from either the coupled pipe flow
Darcy or the coupled SD systems is used in the governing
equation for the conservative solute transport in the matrix

Ωm

Ωm

Ωc Γcm

Γg

Γg

Γsp

Γg

Γo

Γo

Γo

Γsi

Γcm

Ωc

Ωm

Figure 1. Conceptual model of a karst aquifer having a conduit Ωc

embedded in a matrixΩm
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@Cm

@t
þ Vm�rCm �r� DmrCmð Þ ¼ Fm (1)

whereCm denotes the solute concentration in the matrix,Dm

is the dispersion coefficient and Fm is the solute sources and
sinks. Ideally, one should couple the tracer density in the
matrix and conduit. However, assuming that the flow in the
channel moves significantly faster than that in thematrix, we
simply imposed aDirichlet boundary condition forCm along
the matrix–conduit interface and a homogeneous Neumann
boundary condition elsewhere on the matrix boundary.

SD model

SD model formulation. As shown in Figure 1, we denoted
by Ωm the domain occupied by the porous media and by
Ωc the one-dimensional (possibly) curved pipes that we
used as surrogates for the embedded conduits. The conduits
are modelled by one-dimensional curves, imbued with a
diameter parameter d. We considered SD models for
coupled conduit–matrix flows.
The flow in the porous matrix is modelled by a

continuum approach using the Boussinesq equation (Bear
and Verruijt, 1987),

Ss
@hm
@t

þr� �Krhmð Þ ¼ fm in Ωm (2)

whereK (x, y, z) denotes the hydraulic conductivity (L/T),
Ss is the specific storage coefficient (L

�1) and fm represents
the sink/source term (T�1). The hydraulic head hm (L) is
defined byhm ¼ zþ pm

rg, where pmdenotes the water pressure
(M/LT2), r is the water density (M/L3), g is the gravitational
constant (L/T2) and z is the height (L).
We imposed the boundary conditions

pm ¼ 0 on Γsp; Γsi and groundwater table; Krhm�n
¼ 0 on Γ0 (3)

where the first of which implies that the pressure on Γsp, Γsi
and groundwater table is zero and the second is a reasonable
fictitious boundary condition useful for analysis and
simulation purposes.
In the conduit domain,Ωc, the other domain of the

problem, the Navier–Stokes equations govern the free flow
that is assumed to be incompressible (Faulkner et al., 2009):

@Vc

@t
�r�T ¼ fc

r�Vc ¼ 0
Vc x; t ¼ 0ð Þ ¼ V0

g in Ωc (4)

where Vc denotes the fluid velocity, T(Vc, p) =� pcI+ 2nD
(Vc) indicates the stress tensor, pc is the kinetic fluid pressure
(pressure divided by fluid density), D Vcð Þ ¼
1
2 rVc þ rVcð ÞT� �

is the deformation tensor, I represents
the identity matrix here in the definition of the stress tensor
T, n is the kinetic viscosity of the fluid (viscosity divided by
fluid density) and fc is the general body forcing term.

At the sinkhole and the spring, we applied nonhomoge-
neous Dirichlet boundary conditions that specify the inflow
and outflow velocities, respectively. Specifically, we set

Vc � n ¼ 0 and Vc�n ¼ fsi on Γsi (5a)

Vc � n ¼ 0 and Vc�n ¼ fsp on Γsp (5b)

where fsi and fsp are inflow and outflow discharges at the
spring and sinkhole, respectively, and the discharges are
perpendicular to the water surface. The boundary condi-
tions tell us that the discharges are perpendicular to the
water surface. The discharge amounts, fsi and fsp, in the
sinkhole and spring, respectively, are determined from
field measurements.
Along Γcm, the interface boundary between the matrix

and the conduit, we applied the BJ conditions (Beavers
and Joseph 1967),

Vc�ncm ¼ Vm�ncm
�nTcm�T Vc; pð Þ�ncm ¼ p ¼ cp m ¼ g hm � zð Þ

�tTi D Vcð Þ�ncm ¼ asdn
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Πð Þp tTi Vc � Vmð Þ;i ¼ 1; 2 gonΓcm

(6)

where {t1, t2} represents a local orthonormal basis to the
tangent plane to Γcm, ncm denotes the unit normal to Γcm

pointing from the conduit to the matrix, g is the
gravitational acceleration, asd is a constant parameter,Π
is the intrinsic permeability that satisfies K =Πg/g and
trace Πð Þ ¼ P

i Πii i ¼ 2or3ð Þ . The first condition states
that the water mass flow is conserved across ?Γcm, the
second one is the balance of forces normal to the interface
and the third interface condition relates the viscous drag
forcing on the interface to the jump in tangential velocity.
Justifications for the BJ interface conditions can be found
in the work of Beavers and Joseph (1967).

Verification of finite element discretisations of the SD
model. For the SD mathematical model developed in the
section on SD model formulation, we applied a finite
element method to numerically solve the model. For the
computational experiments, we set Ωm= (0, 1)� (0, 0.75)
andΩc = (0, 1)� (�0.25, 0) so that the interfaceΓcm is given
by (0, 1)� {0}. For simplicity, all the parameters appearing
in the SD model with the BJ boundary condition are set to
unity, and the Dirichlet boundary conditions for Vc and hm
are applied on the boundary. The finite element spaces are
defined with respect to a uniform grid. The Taylor–Hood
element pair, that is, continuous piecewise quadratic
polynomials for the velocity components and continuous
piecewise linear polynomials for the pressure, is used for the
spatial discretisation of the Stokes system. The Darcy
system is discretised using continuous piecewise quadratic
polynomials. The backward Euler method with a constant
time step is used to temporal discretisation. Error estimates
are derived for this discretisation scheme; a typical result is
that, for sufficiently smooth exact solutions (Hua, 2009),

2033VALIDATION AND VERIFICATION OF SD AND CPF MODELS
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vc � v fe
c

�� ��þ 〚hm � h fe
m〛≤ C h3 þ Δt

� �
(7)

for a constant Cwhose value does not depend on the spatial
grid size h or the time stepΔt; in Equation (7), ( � )fe denotes
the finite element solution. Error estimates for a steady state
case are obtained by omitting the term depending on Δt. Of
course, a better rate of convergence with respect toΔt can be
obtained if one uses a higher-order temporal discretisation
scheme and the exact solution is sufficiently smooth. Using
the method of manufactured solutions, we set the data in the
differential equations, boundary conditions and initial
condition so that the exact solution of the SD problem is
given by (Hua, 2009)

uc ¼ x2y2 þ e�y½ � cos 2ptð Þ
vc ¼ � 2

3
xy3 þ 2� p sin pxð Þ½ �

� �
cos 2ptð Þ

pc ¼ � 2� p sin pxð Þ½ � cos 2pyð Þ cos 2ptð Þ
hm ¼ 2� p sin pxð Þ½ � �yþ cos p 1� yð Þð Þ½ � cos 2ptð Þ

2
66664

(8)

We first considered a steady-state case for which the
exact solution is chosen by setting t= 0 in the previous
expressions. Table I gives the computationally derived
convergence rates as well as errors for this steady-state
problem. We then considered the time-dependent prob-
lem; on the basis of the error estimate (Equation (7), we
chose the time step to be related to the spatial grid size by
Δt ~ h3 so that, according to that estimate, spatial and
temporal errors should be equilibrated. (A less onerous time
step–spatial grid size relationship would be obtained if a
higher-order temporal discretisation is used. For the purposes
of this article, the discretisation methods we used suffice.)
The resulting errors and rates of convergence are given

in Table II. The results in both tables indicate that the
finite element approximations converge at the optimal rate

for the discretisation schemes used; in particular, they are
in agreement with the error estimate (Bobok, 1993).

Coupled continuum pipe flow model

CCPF model formulation. We denoted by Ωm the
domain occupied by the porous media and by Ωp the one-
dimensional (possibly) curved pipes that we used as
surrogates for the embedded conduits. For the CCPF
model, the conceptual model sketched in Figure 1 reduces
to that in Figure 2.
Cao et al. (2011) developed a CCPF model,

S
@hm
@t

�r Krhmð Þ ¼ �accpf hm � hcð ÞdΩc þ fm in Ωm (9a)

� @

@t
D
@hc
@t

� 	
¼ accpf hm � hcð Þ þ fc along Ωc (9b)

where hm and hc are the hydraulic heads in matrix and
conduit, respectively; fm and fc are the sink/source terms
in matrix and conduit, respectively; a ccpf denotes the
exchange rate coefficient between conduit and matrix; dΩc
represents the Dirac d function concentrated on Ωc; D ¼
pd4g
128n is for three dimensions or D ¼ d3g

12n is for two
dimensions, where d is the diameter of the tube, g is the
gravitational acceleration, n is the kinematic viscosity of
water and Q is the total discharge in the pipe.
In this article, we considered a simplified, steady-state,

two-dimensional setting. The following geometrical setup
is used. Thematrix continuum is assumed to occupy the square
Ωm= {0< x< 1, -½< y<½} and the one-dimensional
conduit pipe lies in the middle so that Ωc = {0< x< 1;
y=0}. Then, Equation (9) reduces to

�r Krhmð Þ ¼ �accpf hm x; 0ð Þ � hc xð Þð Þd yð Þ þ fm in Ωm

(10a)

� @

@t
D
@hc
@t

� 	
¼ accpf hmð jy ¼ 0ð Þ � hcÞ þ fc in Ωc(10b)

where d(y) denotes the Dirac delta function in y. In addition,
we imposed thefixed-head (Dirichlet) boundary conditions for
the purpose of numerical analysis

Table I. Errors and convergence rates for the steady-state SD
problem

h eu,0 eu,1 ep,0 eh,0 eh,1

2�3 2.83E-04 1.08E-02 8.57E-03 5.48E-04 3.12E-02
2�4 3.63E-05 2.67E-03 1.93E-03 5.99E-05 7.78E-03
2�5 4.61E-06 6.64E-04 4.65E-04 7.085E-06 1.94E-03
2�6 5.80E-07 1.66E-04 1.15E-04 8.68E-07 4.86E-04
rate 2.976 2.009 2.070 3.099 2.001

Column headings correspond to eu;0 ¼ uc � ufec
�� ��

0
, eu;1 ¼ uc � ufec

�� ��
1
,

ep;0 ¼ pc � pfec
�� ��

0
, eh;0 ¼ hm � hfem

�� ��
0
and eh;1 ¼ hm � hfem

�� ��
1
.

Table II. Errors and convergence rates for the time dependent SD
problem with Δt ~ h3

h eu,0 eu,1 ep,0 eh,0 eh,1

2�3 1.11E�03 1.47E�02 1.56E�02 3.68E�03 4.31E�02
2�4 1.43E�04 3.01E�03 2.18E�03 4.61E�04 9.26E�03
2�5 1.80E�05 6.92E�04 4.30E�04 5.73E�05 2.12E�03
2�6 2.25E�06 1.68E�04 1.06E�04 7.12E�06 5.08E�04
Rate 2.984 2.143 2.394 3.005 2.135

Ωm

Ωm

Ωp

Γg

Γg
Γsp

Γg

Γo

Γo

Γo

Γsi

Ωp

Ωm

Figure 2. For the CCPF model, the conduit Ωp in the conceptual model of
a karst aquifer is a (one-dimensional) curve, and the sinkhole and spring

boundaries Γsi and Γsp are the end points of the curve, respectively

2034 X. HU ET AL.
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hm ¼ gm on @Ωm¼ boundary of Ωm (11a)

hc ¼ gc0 at x ¼ 0; hc ¼ gc1 at x ¼ 1 (11b)

where gm is a given function and gc0 and gc1 are given
numbers. In simulations, fixed flow rate (Neumann) bound-
ary condition can be applied to the ends of the conduit aswell.
In Cao et al. (2011), it is proved that, in the steady-state

case, the two-dimensional problem (Equations (10) and
(11)) is well posed, that is, a unique solution exists and, in
appropriate norms, depends continuously on the data, that
is, the forcing terms fm and fc. Additional regularity of the
solution is also proved if the given data are smoother than
that required for the existence of the solution. A finite
element method for the discretisation of Equations (10)
and (11) is developed and analysed. The well-posedness
of the discrete problem obtained from the finite element

discretisation is proved, and error estimates are derived
for the cases of continuous piecewise linear and quadratic
finite element functions.
In summary, we have used analytical and computa-

tional approaches to validate both the SD model with BJ
boundary condition and CCPF model with first-order
mass exchange between the two domains and to verify the
correctness of the finite element codes developed to
obtain approximate solutions for the models.

EXPERIMENTAL VALIDATION OF SIMULATION
MODELS

In the section on Models for Matrix–Conduit Flows, we
provide mathematical and computational verifications that
the finite element simulation codes we developed for

Figure 3. Experimental (top) and computational CCPF (middle) and SD (bottom) head distributions in the matrix

2035VALIDATION AND VERIFICATION OF SD AND CPF MODELS
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solving the SD and CCPF models produce accurate
results. What remains is to validate either or both models
through comparisons with experimental results. Further-
more, both models contain a tuning ‘parameter’, that is,
asd in Equation (6) and accpf in Equation (9). Thus, we
used the experimental results of Faulkner et al. (2009) to
obtain some guidance about the value of these param-
eters. The experimental facilities and procedure are
described in Faulkner et al. (2009). Here, we just used
the results to compare with the numerical simulations.
The model parameters used in the computer simula-

tions are determined from the calibration of the
experiment, for example, the matrix porosity and
hydraulic conductivity, or from the literature. Bauer
et al. (2003), Birk et al. (2003) and Liedl et al. (2003)
concluded that the value of the exchange rate coefficient
in the CCPF model accpf should be proportional to the
hydraulic conductivityK and also depend on the surface area

available for the exchange of fluid between the matrix and
the conduit. On the basis of these observations and
calibrations of the matrix used in the experimental setup, a
value of accpf = 7� 10�4m/s2 was chosen for simulations.
For the parameter appearing in the BJ interface

condition, we used the value asd = 0.2, which is in the
range suggested by Beavers and Joseph (1967). Figure 3
shows the hydraulic head distribution obtained from the
experiments and from computer simulations on the basis
of the SD and CCPF models. One observes that the SD
simulation results are very close to the experimental
results, whereas the CCPF model generally overestimates
the hydraulic heads in the matrix, especially at the
boundary between the matrix and the conduit.
Figure 4 presents the experimental and computational

results of tracer evolution (visualised using a dye in the
experiments) at several time instants. The results of the
SD simulation are very similar to the experimental results,

t = 32.5s 

t = 62.5s 

t = 92.5s 

t = 122.5s 

Figure 4. Experimental (left) and computational CCPF (middle) and SD (right) for solute concentration in the matrix at times t = 32.5 s, t= 62.5 s,
t = 92.5 s and t = 122.5 s

2036 X. HU ET AL.
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but the CCPF simulation results are quite different. First,
CCPF modelling underestimates the dye-front movement
in the conduit as well as the dye exchange at the interface
between the conduit and the matrix. Second, the
modelling plume distribution in the matrix has a convex
shape for the CCPF model and does not capture the
characteristics of the plume distribution in the experiment,
that is, a broad U-shape with two humps caused by the
two end points of the interface. The SD simulations do
capture these features of the experimental results. The
results given in Figures 3 and 4 as well as other similar
examples indicate that the SD model with the BJ interface
condition is a valid model for coupled matrix–conduit
flows and tracer transport. On the other hand, at least for
the value of accpf used in the calculations resulting in
Figures 3 and 4, it seems that the CCPF model is not
validated. The question remains: can other values of accpf
yield better results? This question is addressed next.

SENSITIVITIES OF MODELING PARAMETERS

Both the CCPF and the SD models contain a modelling
parameter, asd and accpf, respectively. In this section, we
examined the sensitivity of solutions with respect to these

parameters and also used experimental and computational
results to gain some insight into the calibration of these
parameters.
As is pointed out and verified by (Bauer et al. (2003),

Birk et al. (2003) and Liedl et al. (2003), the CCPF model
is very sensitive to the value of exchange rate parameter
accpf. Those studies focussed on the small values of the
parameter, that is, in the range of O(1) multiples of the
hydraulic conductivity. It was noted that as accpf varies
over this range, which is approximately 0 to 10�3, the
breakthrough time of conduit genesis may vary over
several orders of magnitude.
The high sensitivity of the CCPF model to variation in

the exchange coefficient for small values of accpf may also
be gleaned from an examination of the equation from
which that sensitivity may be determined. For simplicity,
we considered the steady-state case. The formal differen-
tiation of the steady-state version of Equations (10a) and
(10b) with respect to accpf yields the sensitivity equations

�r Krh′m
� �þ accpf h′m � h′c

� �
dΩc ¼ � hm � hcð ÞdΩc in Ωm

(12a)

� @

@t
D
@h′c
@t

� 	
� accpf h′m � h′c

� � ¼ hm � hcð Þ along Ωc

(12b)

for the sensitivities h′m ¼ @hm=@a and h′mc ¼ @hc=@a .
Next, denote by hm,0′ and hc,0′ is the solution of
Equations (10a) and (10b) for accpf = 0; note that in this
case, Equations (12a) and (12b) for the conduit pipe Ωc

and matrix Ωm are uncoupled. Then, from Equations
(12a) and (12b), we deduced that the sensitivities hm,0′
and hc,0′ evaluated at accpf = 0 are determined from

�r Krh′m;0
� � ¼ � hm;0 � hc;0

� �
dΩc in Ωm (13a)

� @

@t
D
@h′c
@t

� 	
¼ hm;0 � hc;0

� �
along Ωc (13b)

Now examine, for example, Equation (13a); (hm,0� hc,0)
is of O(1), whereasK is of O(10�4) so that hm,0′ is of O(10

4).
Figure 5. Normal velocity at the matrix–conduit interface for different

values of the exchange rate coefficient accpf in the CCPF model

Figure 6. The exchange velocity (left) and conduit discharge (right) for the different values obtained from SD simulations with asd =0.2 and 2

2037VALIDATION AND VERIFICATION OF SD AND CPF MODELS
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Figure 7. Comparison between SD (circles) and CCPF (hash marks) results for the exchange velocity (left) and conduit discharge (right) for the different
values of the exchange rate coefficient accpf in the CCPF model; top to bottom: accpf = 10�4, 10�3, 10�2 and 1

2038 X. HU ET AL.
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Thus, we see that hm will change rapidly for small
values of accpf.
In general, quantities such as the exchange of fluid along

the interface and the discharge in the conduit are sensitive to
the choice of the value of the exchange parameter accpf. In
the laboratory experiment, the hydraulic conductivity of the
glass beads is 6.19� 10�4m/s, sowe set accpf in the range of
[10�4, 10�1]. Note that this is a range of larger values of accpf
than that used in the sensitivity studies by Bauer et al.
(2003), Birk et al. (2003) and Liedl et al. (2003). As shown
in Figure 5, the exchange flow rate at the matrix–conduit
interface is very sensitive to the choice of accpf. Note that for
this study, we used discharge boundary condition at the inlet
and outlet of the conduit pipe.
The SDmodel with the BJ interface condition seems to be

much less sensitive with respect to its modelling parameter
asd. In Beavers and Joseph (1967), it is suggested that asd
should be chosen somewhere in the range [0.2, 2]. In
Figure 6, we see that the exchange velocity and the conduit
discharge for asd = 0.2 and 2 are very nearly identical when
the fixed inflow rate and outflow rate boundary conditions
are specified for the conduit. Thus, we see that the results of
this model are not very sensitive to changes in asd.
In the section on Experimental Validation of Simulation

Models, we concluded that the SD model with the BJ
interface condition produced results that were in good
agreement with experimental results but that the CCPF
model results were in not such good agreement for the
parameter value accpf = 7.4� 10�4. We also just concluded
that the SD model is largely insensitive to the value of asd.
Thus, we would like to determine if other values of accpf
might yield better results.
When using the CCPF model, we compared results

using that model with different values of accpf to those
obtained by using the SD model with asd = 0.2. In
Figure 7, such comparisons are provided for four values
of accpf. We see that agreement improves as the value of
accpf increases and that for the largest value, the
agreement between the CCPF and SD results are quite
good. These results suggest the possibility that CCPF
simulations of karst-like problems can be improved by
using values for the exchange rate parameter accpf that are
larger than those that have been used in practice. Of
course, a much more intensive study of this issue is
needed before such a conclusion can be made definite. As
mentioned earlier, this is a subject of our current work,
which involves applying optimisation strategies to
determine an optimal value for accpf and for studying
the dependence of the optimal value on other parameters
defining the CCPF model.

SUMMARY AND CONCLUSIONS

In our previous study, Faulkner et al. (2009) developed
the SD model for groundwater flow in a conduit–matrix
system. Stokes equation was used to describe the flow in
conduit, and the Darcy law is applied for flow in matrix,
and the BJ interface condition is adopted to describe the

interface between the conduit and the matrix. Cao et al.
(2011) studied the mathematical well-posedness of the
CCPF model as well as convergence rates of its finite
element approximation. In this study, we used the
analyses to validate a finite element SD simulation
model. By using computational experiments, we also
verified the implementation codes for the simulation
model.
To compare with the currently used model, we

reviewed the CCPF model for flows in conduit–matrix
systems and the results of mathematical analyses of the
model. We validated a finite element CCPF simulation
model using numerical analyses and, using computational
experiments, we verified the implementation codes for the
simulation model.
The laboratory experiment of Faulkner et al. (2009) is

used to provide data for further validation studies of the
computer simulation models. The studies suggest that the
SD model with the BJ interface condition is a valid model
for conduit–matrix systems. On the other hand, perhaps
the CCPF model with the value of the exchange
parameter chosen within the range suggested in the
literature does not result in good agreement with
experimental observations. In particular, the CCPF model
overestimates the hydraulic heads along the interface
between the matrix and the conduit, underestimates solute
transport in the conduit and does not capture well the
plume distribution in the matrix.
We examined the sensitivity of the CCPF model with

respect to the exchange parameter, concluding that, as
other authors have previously noted, the model is highly
sensitive for small values of the exchange parameter.
However, for larger values, the model becomes less
sensitive and, more important, also produces results that
are in better agreement with experimental observations.
This suggests that the CCPF model may also produce
accurate simulation results, if one chooses larger values of
the exchange parameter than those suggested in the
literature. We also found that the SD model with the BJ
interface is relatively insensitive to the value of the
exchange parameter appearing in that model.
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