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A bound on the vertical transport of heat in the
‘ultimate’ state of slippery convection at large

Prandtl numbers
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An upper bound on the rate of vertical heat transport is established in three dimensions
for stress-free velocity boundary conditions on horizontally periodic plates. A variation
of the background method is implemented that allows negative values of the quadratic
form to yield ‘small’ (O (1/Pr)) corrections to the subsequent bound. For large (but
finite) Prandtl numbers this bound is an improvement over the ‘ultimate’ Ra1/2 scaling
and, in the limit of infinite Pr, agrees with the bound of Ra5/12 recently derived in that
limit for stress-free boundaries.

Key words: Bénard convection, mantle convection, turbulent convection

1. Introduction
Since Lord Rayleigh’s mathematical description of convection in Rayleigh (1916),

and computation of the onset of convective instability, his idealized model (since
called Rayleigh–Bénard convection after his seminal description and the experimental
work of Henri Bénard) has been extensively studied. Lord Rayleigh demonstrated
that the inert, conductive solution’s stability is dependent on a single non-dimensional
number that is proportional to the forcing imposed on the system (since called the
Rayleigh number). While Rayleigh’s work was restricted to two dimensions and stress-
free vertical boundaries, the onset of convective instability was later investigated for
a variety of boundary conditions; see Sparrow, Goldstein & Jonsson (1963) for one
example. As the Rayleigh number is increased beyond this critical value (dependent
on boundary conditions), roll-like structures appear, followed by more complicated
dynamics and eventually turbulence; see Busse, Swinney & Gollub (1985) for an
overview of this phenomenon.

Of more physical relevance to the geophysical and astrophysical community is
when the Rayleigh number Ra is asymptotically larger than the critical Rayleigh
number Rac at which the conductive profile becomes unstable (Ahlers 2009). Recent
experimental and numerical investigations have focused on the ‘ultimate’ regime of

† Email address for correspondence: whitehead@lanl.gov
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104 X. Wang and J. P. Whitehead

strongly forced convection, in the hope of determining functional relationships between
the relevant statistical quantities, the Rayleigh number, and other material parameters
of the system; see Ahlers, Grossmann & Lohse (2009), Funfschilling, Bodenschatz
& Ahlers (2009), Urban, Musilová & Skrbek (2011) and He et al. (2012) for some
experimental results, and Amati et al. (2005), Johnston & Doering (2009), Shishkina
et al. (2010), Stevens, Verzicco & Lohse (2010) and Stevens, Lohse & Verzicco (2011)
for numerical explorations. Of key interest is the enhancement of vertical heat flux
due to convection, as measured by the dimensionless Nusselt number Nu. Modulo the
impact of the geometry (it is generally accepted that the dependence on aspect ratio
of a cylindrical or horizontally periodic container, is small), the Nusselt number is
believed to depend on Ra and Pr . Typically this dependence is depicted as a series
of power laws whose coefficients vary according to the dynamic state of the flow
(Grossmann & Lohse 2000, 2001, 2011).

To formulate the problem explicitly, we will follow Lord Rayleigh (Rayleigh 1916)
and consider the rate of vertical heat transport in Rayleigh Bénard convection, as
described by the classical (non-dimensional) Boussinesq equations with stress-free
vertical boundaries:

1
Pr

(
∂u
∂t
+ (u ·∇)u

)
+∇p=1u+ Ra kT, ∇ ·u= 0, (1.1)

∂T

∂t
+ u ·∇T =1T, (1.2)

∂uj

∂z

∣∣∣∣
z=0,1

= u3|z=0,1 = 0, j= 1, 2 (1.3)

T|z=0 = 1, T|z=1 = 0, (1.4)

u|t=0 = u0, T|t=0 = T0, (1.5)

where u = (u1, u2, u3) is the fluid velocity field, p is the kinematic pressure, T is
the (scaled) temperature field, k is the unit upward vector, Ra = (gα1Th3)/νκ is
the Rayleigh number where g is the force of gravity, α is the thermal expansion
coefficient, 1T is the dimensional measure of the enforced temperature gradient, h is
the dimensional height of the box, and ν and κ are the kinematic viscosity and thermal
diffusivity respectively. The Prandtl number is defined as Pr = ν/κ . The domain in the
non-dimensional coordinates is the (non-dimensionalized) region

Ω = [0,Lx] × [0,Ly] × [0, 1], (1.6)

where periodicity in the horizontal directions is assumed, implying the flow has mean
zero (this is consistent with the horizontal momentum equations, and guarantees the
applicability of the Poincaré-type inequality: see e.g. Constantin & Foias 1988), that is,∫

Ω

uj dx dy dz= 0, j= 1, 2, (1.7)

and for all t > 0, if this is satisfied initially.
The Nusselt number is defined (Otero 2002) as

Nu= 1+
〈∫

u3T dx dy dz

〉
, (1.8)
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Bound on heat transport for slippery convection at large Prandtl numbers 105

where

〈f (·)〉 = lim sup
t→∞

1
t

∫ t

0
f (s) ds (1.9)

is the long time average and u3 is the vertical component of velocity.
Approximately half a century after Rayleigh’s mathematical definition of the

problem, Malkus (1954) addressed the problem of establishing the rate of heat
transport as a function of Ra, considering the contribution of marginally stable thermal
boundary layers to the transport of heat in fully developed turbulence, postulating
that Nu ∼ Ra1/3. Kraichnan (1962) then proposed that instead of the boundary layers
dictating the rate of heat transport, the rate-limiting factor would be the flow through
the bulk, indicating that Nu ∼ Ra1/2 (within logarithmic corrections, and dependence
on Pr). Recently Grossmann & Lohse (2000, 2001, 2011) and Stevens et al. (2013)
have developed a comprehensive theory that predicts different effective scaling laws
dependent on the relative size of the thermal and viscous boundary layers. For
moderately large Rayleigh numbers (Ra . 1012) experiments and simulations agree
well with the Grossmann and Lohse theory. However, to date, the only experiments
claiming to observe this ‘ultimate’ state predicted in Grossmann & Lohse (2011)
come from the same experimental apparatus (Ahlers et al. 2012; He et al. 2012),
although these results must be weighed against the observations of Urban et al. (2012)
that a ‘spurious cross-over . . . that might be misinterpreted as a transition to the
ultimate Kraichnan regime’ may be a result of measuring the mean temperature of the
sample as the arithmetic mean of the top and bottom plate temperatures. With these
considerations in mind, it is beneficial to consider the impact that analysis can have on
the problem.

Variational bounds on the convective heat transport were first formed by Howard
(1963) and elucidated in Busse (1969). Some time later, Doering & Constantin
(1996) applied the background method to the problem, finding that Nu 6 cRa1/2

for no-slip, fixed-temperature boundaries, although it is clear from their argument
that the same bound can be applied to stress-free, fixed-temperature convection as
well. Further investigation using the background method included variations in the
temperature boundary conditions (Otero et al. 2002; Wittenberg 2010) and numerical
solutions of the underlying Euler–Lagrange equations (Plasting & Kerswell 2003),
but an improvement over the Ra1/2 bound has not been made for Pr 6∞ in three
dimensions.

In contrast, the infinite Prandtl number problem, which is a valuable approximation
for fluids such as some silicone oils, the earth’s mantle as well as many gases under
high pressure (e.g. Busse 1989, Getling 1998 and Bodenschatz, Pesch & Ahlers 2000),
has yielded several interesting results. For no-slip, fixed-temperature boundaries it can
rigorously be shown that to within a logarithmic correction, Nu 6 Ra1/3 (Constantin
& Doering 1999; Doering, Otto & Reznikoff 2006; Otto & Seis 2011). The work of
Doering et al. (2006) can be combined with Wittenberg (2010) to yield similar bounds
for no-slip convection with varying temperature boundary conditions (Whitehead &
Wittenberg 2013). For no-slip, fixed-temperature boundaries some of these results were
verified (at infinite Pr) by the asymptotic and numerical calculations of Plasting &
Ierley (2005) and Ierley, Kerswell & Plasting (2006). The results of Constantin &
Doering (1999) and Doering et al. (2006) were extended to the case of finite but large
Pr in Wang (2008a,b) respectively, indicating that the rigorous estimates for infinite
Prandtl numbers are indicative of bounds on heat transport even when the limit (of
Pr =∞) is not reached.
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106 X. Wang and J. P. Whitehead

In Plasting & Ierley (2005) and Ierley et al. (2006) the authors also investigated
the behaviour of infinite Pr convection with stress-free, fixed-temperature boundaries
and found that Nu . Ra5/12, identifying the optimal background profile achieving this
scaling as piecewise linear (albeit non-monotonic). Using these results and a similar
calculation performed for finite Pr in two dimensions (Otero 2002) as motivation,
Whitehead & Doering (2011, 2012) proved that for stress-free, fixed-temperature
boundaries, either at finite Pr in two dimensions or Pr = ∞ in three dimensions,
Nu . Ra5/12. This paper will extend the work of Whitehead & Doering (2012) to large
but finite Prandtl numbers for stress-free, fixed-temperature boundaries.

These particular boundary conditions (stress-free on the horizontal plates, and
periodic sidewalls) are not well suited to experiment, and likely induce very
different dynamics than what would be seen in the more traditional setting of no-
slip plates. Even so, it is likely that the physically interesting situations where
convection is asymptotically strong (and the ultimate state occurs) will not have
exact no-slip boundaries either. In particular asymptotically strong convection in stellar
hydrodynamics (convective cells in the outer envelope of the sun for example) would
be better modelled by either stress-free boundaries or more appropriately by the
Navier-slip condition (an interpolation between no-slip and stress-free). In conjunction
with Whitehead & Doering (2011, 2012) this paper indicates that these variations
in boundary conditions (that are physically relevant) need to be considered more
carefully, particularly with respect to the theory of Grossmann & Lohse (2011).

At sufficiently large Prandtl number, we can formally consider the infinite Prandtl
number limit as

∇p0 =1u0 + RakT0, ∇ ·u0 = 0, (1.10)
∂T0

∂t
+ u0
·∇T0 =1T0, (1.11)

∂u0
j

∂z

∣∣∣∣∣
z=0,1

= u0
3|z=0,1 = 0, j= 1, 2 (1.12)

T0|z=0 = 1, T0|z=1 = 0. (1.13)

This simplification removes the nonlinear and time derivative terms from the
momentum equation, slaving the temperature field to the velocity. This slaving was
key in previous bounds on the Nusselt number, allowing (as described above) stricter
bounds than in the finite Pr case.

Following Wang (2008a,b), we consider the full Boussinesq system as a perturbation
of the infinite Prandtl number model, implying that the velocity field is only
a perturbation from a linear slaving with the temperature field. This near-linear
relationship is exploited to bound the Nusselt number as

Nu 6 0.3546Ra5/12 + cGr2Ra1/4 (1.14)

when the Grashof number Gr = Ra/Pr is small, i.e. Pr/Ra > c0 (where c0 is given in
(2.25)). It is pertinent to point out at this point that the bound Nu . Ra5/12 derived here
is valid only for a finite range of Rayleigh numbers, Ra 6 Pr/c0.

Throughout this manuscript, we assume the physically important case of high
Rayleigh number Ra� 1 so that we may have non-trivial dynamics. We also follow
the mathematical tradition of denoting the small parameter as ε, i.e.

ε = 1
Pr
. (1.15)
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Bound on heat transport for slippery convection at large Prandtl numbers 107

Here c will denote a generic non-dimensional constant independent of the Rayleigh
number and Prandtl number.

The rest of the manuscript is organized as follows. In § 2 we recall a few a priori
estimates on the solutions to the Boussinesq system at large Prandtl number. In § 3, we
derive the Ra5/12 upper bound for the Nusselt number at large Prandtl number. In § 4,
we offer concluding remarks.

2. A priori estimates
Some of the estimates contained in this section (or at least closely related estimates)

are contained in Wang (2007) and Constantin & Doering (1996). For completeness we
re-derive all the estimates needed for the current result. The mathematical inequalities
referred to are listed (with references) in the Appendix.

The bulk of this paper is concerned with the long time average of certain relevant
statistical quantities. To that end it is important to note that for long time averages, one
can change the initial time without affecting the average. More specifically, we have

lim sup
t→∞

1
t

∫ t

0
f (s) ds= lim sup

t→∞

1
t

∫ t+t0

t0

f (s) ds (2.1)

for any bounded (measurable) function f , and any t0 > 0. Because the L2 norms of
the velocity and temperature are uniformly bounded in time for this particular system
(even for Leray weak solutions), then the long time average of the vertical heat
transport always exists. It can be shown that (suitable weak) solutions to this specific
system become regular after an initial period of time (the so-called eventual regularity)
provided that the Prandtl number is sufficiently large (Wang 2005, 2007, 2008b).
Therefore, we focus only on the (sufficiently large) time interval over which the weak
solutions are regular enough to justify all the operations involved below. The eventual
regularity of the (suitable weak) solutions is implicitly implied in all of the a priori
estimates below. In this sense, we will assume sufficient regularity on u(t) and T(t) to
derive the following estimates.

2.1. Maximum principle and previous estimates
Throughout this manuscript, we assume that the range of initial temperature T0 is
contained in the unit interval [0, 1]. Hence we deduce by the maximum principle that
the range of T is contained in [0, 1] for all time, i.e.

‖T‖L∞ 6 1 (2.2)

where we will use the notation ‖ · ‖L∞ to refer to the L∞ norm. Following the
background method developed in Doering & Constantin (1996) and Constantin
& Doering (1996), we will decompose the temperature field as T(x, y, z, t) =
θ(x, y, z, t) + τ(z) and assume that the background temperature profile τ(z) under
consideration is always contained in the unit interval [0, 1] as well (see (3.27)).
Therefore, the fluctuation temperature field θ = T − τ satisfies the same estimate,

‖θ‖L∞ 6 1. (2.3)

Note that the estimates on the Nusselt number derived in Constantin & Doering
(1996) (again noting that these bounds are valid for stress-free boundaries as well as
no-slip) imply that

〈‖∇u‖2〉6 cRa3/2, (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.289


108 X. Wang and J. P. Whitehead

〈‖∇T‖2〉6 cRa1/2, (2.5)

for all suitable weak solutions of the Boussinesq system with arbitrary Prandtl number
where 〈·〉 represents long time average as defined in (1.9) and we let ‖ · ‖ = ‖ · ‖L2 ,
where

‖f‖Lp =
(∫

f p(x, y, z) dx dy dz

)1/p

(2.6)

defines the Lp norms.

2.2. Long time supremum
For the first estimate derived in this paper, multiply the velocity equation (1.1) by
u, and after integrating over the domain (including several integrations by parts) and
rearranging some terms, we see that

ε

2
d
dt
‖u(t)‖2 + ‖∇u(t)‖2 = Ra

∫
Ω

u3(t)T(t) dx dy dz. (2.7)

Applying the Cauchy–Schwarz inequality (A 1) to the right-hand side, followed by the
Poincaré inequality (A 2) applied to u(t) (noting that ‖u3(t)‖ 6 ‖u(t)‖, and using the
maximum principle as discussed above) we arrive at

ε

2
d
dt
‖u(t)‖2

L2 + ‖∇u(t)‖2 6 Ra‖T(t)‖‖u3(t)‖
6 c Ra‖∇u(t)‖. (2.8)

Applying the Young inequality (A 3) to the right-hand side yields

ε

2
d
dt
‖u(t)‖2 + ‖∇u(t)‖2 6 c2

2
Ra2 + 1

2
‖∇u(t)‖2. (2.9)

Rearranging, and again making use of the Poincaré inequality, we obtain the bound

ε

2
d
dt
‖u(t)‖2 6 cRa2 − c2

p

2
‖u(t)‖2. (2.10)

Applying the Gronwall inequality (A 5) and considering the long time limit, we deduce
that

lim sup
t→∞

‖u(t)‖6 cp

c
Ra. (2.11)

2.3. Large Prandtl number estimates
2.3.1. Bounds on the Stokes operator

For the next estimate, multiply the velocity equation (1.1) by Au(t), where
A denotes the Stokes operator with viscosity one and the associated boundary
conditions (formally the Stokes operator is the Laplacian operator followed by the
Leray projection onto divergence-free fields: see e.g. Constantin & Foias 1988), and
integrate (by parts when necessary) over the domain, again applying Cauchy–Schwarz
throughout and using the L∞ norm on the nonlinear term, yielding

ε

2
d
dt
‖∇u(t)‖2 + ‖Au(t)‖2 6 Ra‖T(t)‖‖Au(t)‖ + ε‖∇u(t)‖‖Au(t)‖‖u(t)‖L∞ . (2.12)
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Bound on heat transport for slippery convection at large Prandtl numbers 109

Applying the Agmon inequality (A 6) and employing the maximum principle on the
temperature field T(t) results in

ε

2
d
dt
‖∇u(t)‖2 + ‖Au(t)‖2 6 Ra|Ω|1/2‖Au(t)‖ + cAε‖∇u(t)‖3/2‖Au(t)‖3/2

6 1
2
‖Au(t)‖2 + Ra2|Ω| + 27

4
c4

Aε
4‖∇u(t)‖6, (2.13)

where the generalized Young inequality (A 3) was used twice to obtain the last
line, first with a = ‖Au(t)‖/2, p = 2, and b = 2Ra|Ω|1/2, q = 2 and second with
a = (1/3)3/4‖Au(t)‖3/2, p = 4/3, and b = 33/4cAε‖∇u(t)‖3/2, q = 4 (following the
notation in the Appendix). Finally the Poincaré inequality on ∇u(t) with constant
cp is used to arrive at

ε
d
dt
‖∇u(t)‖2 + c2

p‖∇u(t)‖2 6 2|Ω|Ra2 + 27
2

c4
Aε

4‖∇u(t)‖6. (2.14)

It follows that the ball of radius 2|Ω|1/2Ra/cp is invariant for ‖∇u(t)‖ if the following
large Prandtl number (small Grashof number) condition holds:

Gr = Ra

Pr
6

c3/2
p

2 33/4cA|Ω|1/2 . (2.15)

That is, if (2.15) is satisfied and ‖∇u(t0)‖ 6 2|Ω|1/2Ra/cp at some time t0, then
‖∇u(t)‖ 6 2|Ω|1/2Ra/cp for all t > t0. On the other hand, estimate (2.4) implies that
for Ra sufficiently large, any orbit will enter this ball of radius 2|Ω|1/2Ra/cp (provided
that the initial time is chosen after any irregularities are present). Hence this is an
absorbing ball and

lim sup
t→∞

‖∇u(t)‖6 2Ra|Ω|1/2/cp. (2.16)

Inserting this into (2.13) and taking the long time average (relying on (2.15)), we have
the following estimate:

〈‖Au‖2〉6 cRa2|Ω|. (2.17)

2.3.2. Bounds on the time derivative
Next, we need an estimate on the time derivative of the velocity. For this purpose

we differentiate the velocity (1.1) in time to reach

ε

(
∂2u
∂t2
+
(
∂u
∂t
·∇

)
u+ (u ·∇)∂u

∂t

)
+∇ ∂p

∂t
=∆∂u

∂t
+ Rak

∂T

∂t
. (2.18)

Multiplying this equation by ∂u/∂t, integrating over Ω and applying Cauchy–Schwarz
and the generalized Hölder inequalities (A 1) and (A 8) (applied to the nonlinear term
specifically), we deduce that for t sufficiently large to avoid any regularity issues in the
initial phase:

ε

2
d
dt

∥∥∥∥∂u(t)∂t

∥∥∥∥2

+
∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥2

6 Ra

∥∥∥∥∂T(t)

∂t

∥∥∥∥
H−1

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥
+ ε‖u(t)‖L3

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥∥∥∥∥∂u(t)∂t

∥∥∥∥
L6
, (2.19)
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110 X. Wang and J. P. Whitehead

where the Sobolev norm ‖ · ‖H−1 is defined as

‖f‖H−1 = ‖f‖ + ‖∇−1f‖. (2.20)

Using the Sobolev inequalities (A 9) we see that for large t (sufficiently large to avoid
irregularities in the solution) the right-hand side of this is less than or equal to

Ra

∥∥∥∥∂T(t)

∂t

∥∥∥∥
H−1

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥+ cSε ‖∇u(t)‖
∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥2

6 1
4

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥2

+ Ra2

∥∥∥∥∂T(t)

∂t

∥∥∥∥2

H−1
+ 2

cp
Ra|Ω|1/2cSε

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥2

, (2.21)

where cS = cS1cS2, and (2.16) and the Young inequality were used in the last line. This
implies that 〈∥∥∥∥∇ ∂u∂t

∥∥∥∥2
〉

6 2Ra2

〈∥∥∥∥∂T

∂t

∥∥∥∥2

H−1

〉
(2.22)

provided the following large Prandtl number (small Grashof number) condition is
satisfied:

Gr = Ra

Pr
6 cp

8cS|Ω|1/2 . (2.23)

Setting

c0 = cp

2|Ω|1/2 min

{
c1/2

p

33/4 cA
,

1
4cS

}
, (2.24)

we combine the two large Prandtl number conditions (2.15) and (2.23) into the
following large Prandtl number (small Grashof number) condition

Gr = Ra

Pr
6 c0. (2.25)

In order to express the right-hand side of (2.22) in terms of the Rayleigh number,
we consider the H−1 norm applied to the temperature equation (1.2) to deduce∥∥∥∥∂T(t)

∂t

∥∥∥∥
H−1

6 ‖T(t)u(t)‖ + ‖∇T(t)‖
6 ‖u(t)‖ + ‖∇T(t)‖, (2.26)

where we have used the maximum principle on the temperature field T . This further
implies, thanks to (2.4) and (2.5),〈∥∥∥∥∂T

∂t

∥∥∥∥2

H−1

〉
6 2〈‖u‖2 + ‖∇T‖2〉6 cRa3/2. (2.27)

Inserting this back into (2.22), we have〈∥∥∥∥∇ ∂u∂t

∥∥∥∥2
〉

6 CRa7/2. (2.28)
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2.3.3. Bounds on the nonlinear term
For the final estimate, we need to bound 〈‖∇((u · ∇)u)‖2〉 in terms of the non-

dimensional parameters of the system. With this in mind, note that the momentum
equation can be rewritten as

Au= RaP(kT)− εP
(
∂u
∂t
+ (u ·∇)u

)
, (2.29)

where P denotes the Leray–Hopf projector from the square-integrable space onto the
divergence-free subspace. Classic elliptic regularity arguments applied to the Stokes
operator A (see e.g. Constantin & Foias 1988) give

‖A3/2u‖2 6 C

{
Ra2‖∇T‖2 + ε2

∥∥∥∥∇ ∂u∂t

∥∥∥∥2

+ ε2‖∇((u ·∇)u)‖2

}
. (2.30)

Using the product rule, and pulling out an L∞ norm, we see that

‖∇((u ·∇)u)‖2 6 c(‖u‖2
L∞‖1u‖2 + ‖∇u‖4

L4). (2.31)

Using the Agmon inequality (A 6) on the first term, and the Sobolev inequality (A 9)
on the second, we bound the portion of the right-hand side in parentheses by

‖∇u‖‖Au‖‖1u‖2 + ‖∇u‖‖1u‖3, (2.32)

which after application of the elliptic regularity of the Stokes operator (A 11) and
interpolation inequality (A 12) indicates that

‖∇((u ·∇)u)‖2 6 c‖∇u‖‖Au‖3

6 C‖∇u‖5/2‖A3/2u‖3/2, (2.33)

where c and C are distinct constants.
Inserting this into (2.30) and rearranging the terms to be a bound on ‖A3/2u‖2 only

(and allowing C to absorb all of the relevant constants) we see that (using (2.5) and
(2.28))

〈‖A3/2u‖2〉6 C

〈
Ra2‖∇T‖2 + ε2

∥∥∥∥∇ ∂u∂t

∥∥∥∥2

+ ε8‖∇u‖10

〉
6 C

(
Ra2+1/2 + ε2Ra7/2 + ε8Ra19/2

)
. (2.34)

where we have used the following estimate that relies on (2.16) and (2.4),

〈‖∇u‖10〉6 lim sup
t→∞

‖∇u(t)‖8〈‖∇u‖2〉6 C Ra19/2, (2.35)

valid for initial times taken beyond the point of any irregularities in the solution u(t)
and T(t). This also implies that

〈‖∇((u ·∇)u)‖2〉6 C〈‖∇u‖5/2‖A3/2u‖3/2〉
6 C〈‖∇u‖10〉1/4〈‖A3/2u‖2〉3/4
6 C

(
Ra19/2

)1/4(
Ra5/2 + ε2Ra7/2 + ε8Ra19/2

)3/4

6 C
(
Ra17/4 + ε3/2Ra5 + ε6Ra19/2

)
, (2.36)

where we have used the Hölder inequality (A 8) on the second line.
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3. Bound on the Nusselt number
3.1. The background method at large Prandtl number

The Nusselt number (1.8) can equivalently be defined by (see e.g. Otero 2002 for
detailed derivations)

Nu= 1+
〈∫

u3θ dx dy dz

〉
(3.1)

=
〈∫
|∇T|2 dx dy dz

〉
, (3.2)

where T(x, y, z, t) = τ(z) + θ(x, y, z, t) is the temperature field and τ(z) is the
background temperature profile (as proposed in the theory of Constantin & Doering
(1996), Doering & Constantin (1996), Constantin & Doering (1999), Doering et al.
(2006), Whitehead & Doering (2011, 2012) as a generalization of E. Hopf’s original
calculation Temam (2000)), satisfying the same boundary conditions as T , and (u, θ)
are suitable weak solutions to

∇p=1u+ Ra kθ + εf, ∇ ·u= 0, (3.3)
∂θ

∂t
+ u ·∇θ + u3τ

′(z)=1θ + τ ′′(z), (3.4)

∂uj

∂z

∣∣∣∣
z=0,1

= u3|z=0,1 = 0, j= 1, 2 (3.5)

θ |z=0,1 = 0, (3.6)

f =−
(
∂u
∂t
+ (u ·∇)u

)
, (3.7)

with appropriate initial conditions (u0, θ0). The Nusselt number is a statistical property
of the Boussinesq system in the sense that it is the average of 1 + (∫

Ω
u3θ/|Ω|) over

the whole phase space with respect to some appropriate invariant measure (stationary
statistical solution) of the Boussinesq system (Wang 2008b).

Writing the momentum equation as a perturbation away from the infinite Prandtl
number (1.10) (ε = 0) model illustrates the methodology employed in this paper.
Heuristically the perturbation from the infinite Pr system is small as ε → 0 or
Pr →∞. Using the estimates on the Nusselt number obtained in Whitehead &
Doering (2012) for infinite Prandtl number stress-free convection on this system yields
bounds on the Nusselt number for large Pr within O(ε). The O(ε) terms can then
be bounded using the estimates derived in the previous section, yielding a bound on
the vertical heat transport for a restricted region of Ra so that (2.25) is satisfied, that
agrees in the limit of Pr→∞ with the bounds derived in Whitehead & Doering
(2011, 2012).

Using the background decomposition described above, we multiply the temperature
equation (3.4) by θ and integrate over Ω to reach

1
2

d
dt
‖θ(t)‖2 + ‖∇θ(t)‖2 +

∫
Ω

τ ′
∂θ(t)

∂z
+
∫
Ω

τ ′u3(t)θ(t)= 0. (3.8)

From the definition of θ we also have

‖∇T(t)‖2 = ‖∇θ(t)‖2 + 2
∫
Ω

τ ′
∂θ(t)

∂z
+ ‖τ ′‖2. (3.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.289


Bound on heat transport for slippery convection at large Prandtl numbers 113

Following Constantin & Doering (1999) and Doering et al. (2006), we combine these
two identities to see that〈‖∇T‖2

〉= ‖τ ′‖2 −
〈∫

Ω

(|∇θ |2 + 2τ ′u3θ)

〉
. (3.10)

In traditional applications of the background method, this gives the bound on the
Nusselt number

Nu 6 ‖τ ′‖2 (3.11)

provided that

Q =
〈∫

Ω

(|∇θ |2 + 2τ ′u3θ
)〉

> 0. (3.12)

For finite Prandtl number in three dimensions, however, we do not guarantee the
positivity of Q, but we do show that all O(1) terms are positive definite, showing
that the only negative contribution to Q is o(ε). With this in mind, in the following
we will break Q into an ε = 0 component (for which the methods in Whitehead &
Doering (2012) in the absence of the balance parameter can be applied directly), and
use the estimates obtained in § 2 to bound the remaining quantities.

To estimate the indefinite term in Q, we combine the divergence of the momentum
equation with the Laplace operator applied to the evolution equation for u3 to arrive at

12u3 =−Ra1Hθ + ε
(
−1Hf3 + ∂2f1

∂x∂z
+ ∂2f2

∂y∂z

)
, (3.13)

u3|z=0,1 = ∂2u3

∂z2

∣∣∣∣
z=0,1

= 0, 1H = ∂2

∂x2
+ ∂2

∂y2
. (3.14)

Using the periodic horizontal boundary conditions, we note that this equation can be
rewritten in terms of the horizontal Fourier coefficients of each variable, i.e. we let
f (x, y, z)=∑kfk(z)e

ik·x, where k= (kx, ky)
T and

fk = (1/|LxLy|)
∫ Lx

0

∫ Ly

0
f (x, y, z)e−ik·x dy dx, (3.15)

and then (3.13) is equivalent to

(k2 − D2)
2
û3k = Ra k2θ̂k + ε(k2 f̂3k + ik1Df̂1k + ik2Df̂2k), (3.16)

where k = |k| is the length of the horizontal wavenumber k, D= d/dz is the derivative
operator in the vertical direction, and ·̂ indicates the Fourier coefficient of the
corresponding variable.

The quadratic form Q can be rewritten in terms of its Fourier expansion as
well, and one can see (Wittenberg 2010) that maintaining Q > 0 is equivalent to
maintaining

Qk =
〈
‖Dθ̂k‖2 + k2‖θ̂k‖2 + 2Re

∫ 1

0
τ ′û3kθ̂k dz

〉
> 0 (3.17)

for all wavenumbers k, where ‖ · ‖ now refers to the L2 norm in the z-direction only
and Re refers to the real part of a complex quantity. In the following we will use
(3.16), showing that all O(1) terms of Qk are bounded below by zero, and then the
o(ε) remaining terms will be estimated using the results of § 2.
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3.2. Pseudo-vorticity

Following the motivation in Whitehead & Doering (2011, 2012), we denote the
pseudo-differential operator |∇H| =

√−∇H ·∇H =
√−1H and introduce the pseudo-

vorticity ω as

1u3 = |∇H|ω, (3.18)

which in terms of the Fourier coefficients is expressed as

(−k2 + D2)û3k = kω̂k. (3.19)

The pseudo-vorticity takes the place of the scalar vorticity in two dimensions utilized
in Whitehead & Doering (2011). In that paper the two-dimensional scalar vorticity was
used (with the stress-free boundary conditions) to include an enstrophy balance that
proved to be key in controlling the growth of the vertical velocity near the boundaries.
Although the vortex-stretching term is absent at infinite Prandtl number, the vorticity
is not a scalar so the same balance does not exist, and therefore Whitehead &
Doering (2012) introduced the pseudo-vorticity as a quantity that imitates the role
of the vorticity in two dimensions. The slaving of the vertical velocity to the
temperature fluctuation at infinite Prandtl number then includes a pseudo-enstrophy
balance automatically. For large but finite Prandtl number this relationship is still
present, although the inertial terms (and hence vortex-stretching) are present at O(ε).
Eliminating û3k in (3.16), we tie the pseudo-vorticity to the temperature fluctuations as

k(−k2 + D2)ω̂k = Ra k2θ̂k + ε(k2 f̂3k + ik1Df̂1k + ik2Df̂2k). (3.20)

Modulo the O(ε) inertial terms, this is identical to the relationship exploited in
Whitehead & Doering (2012). To see where the pseudo-enstrophy balance arises,
consider the definition of the Nusselt number given by (3.2), and the relationship
(3.10). Noting that in Fourier space

‖∇θ‖2 =
∑

k

(
‖Dθ̂k‖2 + k2‖θ̂k‖2

)
, (3.21)

we see that for k 6= 0,

k2|θ̂k|2 > 1
Ra2

(
|(−k2 + D2)ω̂k|2 + ε2

∣∣∣∣kf̂3k + i
k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣2
− 2ε

∣∣(−k2 + D2)ω̂k

∣∣ ∣∣∣∣kf̂3k + i
k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣)
> 1

2Ra2

∣∣(−k2 + D2)ω̂k

∣∣2 − ε2

Ra2

∣∣∣∣kf̂3k + i
k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣2
> 1

2Ra2

∣∣(−k2 + D2)ω̂k

∣∣2 − ε2

Ra2

(∣∣∣kf̂3k

∣∣∣+ ∣∣∣Df̂1k

∣∣∣+ ∣∣∣Df̂2k

∣∣∣)2
, (3.22)

so that the L2 norms of the temperature fluctuations θ yield a pseudo-enstrophy
balance with O(ε2) corrections due to the inertial terms.

It is shown in § 5.1 of Whitehead & Doering (2012) that the use of the balance
parameter is equivalent (at least in terms of the qualitative bound) to the presence of a
non-monotonic piecewise linear background profile. The key notion is that either case
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introduces an energy balance into the variational formulation of the Nusselt number.
The balance parameter does this by utilizing the equivalent definition of the Nusselt
number (derived directly from the equations of motion)

Nu= 1
Ra

〈∫
|∇u|2 dx dy dz

〉
, (3.23)

while the non-monotonic slope of the background profile introduces a stabilizing
component to the variational formulation. To fully utilize this energy balance we
need to determine the relationship between that balance and the pseudo-enstrophy.
In Fourier space this is done by first letting ûHk = (û1k, û2k)

T. Then it follows
from (3.19) and incompressibility of the flow field (expressed in Fourier space as
kxû1k + kyû2k + Dû3k = 0) that

|k|2|ω̂k|2 = |D2û3k|2 + |k|2|Dû3k|2 + |k|4|û3k|2
= |kxDû1k + kyDû2k|2 + |k|2|Dû3k|2 + |k|4|û3k|2 (since u is divergence-free)

6 2|k|2|DûHk|2 + |k|2|Dû3k|2 + |k|4|û3k|2
6 2|k|2(|DûHk|2 + |Dû3k|2 + |k|2|û3k|2). (3.24)

Dividing this through by |k|2 we see that

|ω̂k|2 6 2(|DûHk|2 + |Dû3k|2 + |k|2|û3k|2), (3.25)

or in real space

‖ω‖2 6 2‖∇u‖2. (3.26)

3.3. Bounds on heat transport at large Pr

We now choose a specific background temperature profile following Whitehead &
Doering (2012)

τ ′(z)=



1−
(

1+ p

2δ
− p

)
z, 0 6 z 6 δ,

1
2
+ p

(
z− 1

2

)
, δ 6 z 6 1− z,(

1+ p

2δ
− p

)
(1− z), 1− δ 6 z 6 1.

(3.27)

We focus on this piecewise linear, non-monotonic background profile, but neglect to
consider the balance parameter (b = 0 in the notation of Whitehead & Doering 2012)
in order to keep the derivation simpler, and because the balance parameter will not
affect the resultant exponential dependence of Nu on Ra. With this in mind, we apply
exactly the same calculations as in Whitehead & Doering (2012) in the absence of the
balance parameter to see that the O(1) terms of Qk are positive definite, i.e.

1
2Ra2
‖(k2 − D2)ω̂k‖2 + ‖Dθ̂k‖2 + p

Ra
‖ω̂k‖2

− 1+ p

δ
Re
{∫ δ

0
û3k
¯̂
θ k +

∫ 1

1−δ
û3k
¯̂
θ k

}
> 0, (3.28)
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for all k, is equivalent to enforcing

k4

Ra2
+ p

Ra
− 33/2 (1+ p)2 k

22 52
δ3 > 0

⇒ 33/2 (1+ p)2

22 52
δ3 6 k3

Ra2
+ p

kRa
, (3.29)

implying that

δ 6 24/3 52/3 p1/4

33/4 (1+ p)2/3
1

Ra5/12
, (3.30)

where

km =
(p

3
Ra
)1/4

(3.31)

is the horizontal wavenumber that saturates the bound on δ. Letting p = 3/29
(optimally chosen to minimize the prefactor in the final bound: see Whitehead &
Doering 2012 for details) we choose the optimal size of the boundary layer as

δ = 52/3 295/12

22 31/2

1
Ra5/12

. (3.32)

Therefore, using (3.9),

Nu= 〈‖∇T‖2〉
= ‖τ ′‖2 −

〈∫
Ω

(|∇θ |2 + 2τ ′u3θ)

〉
= ‖τ ′‖2 −

〈
‖∇θ‖2 + 2p

∫
Ω

θu3 − 1+ p

δ

{∫ δ

0
u3θ +

∫ 1

1−δ
u3θ

}〉
. (3.33)

Using the identity 〈∫
Ω

u3θ

〉
= 1

Ra

〈∫
Ω

|∇u|2
〉

(3.34)

and (3.26), we can bound the Nusselt number from above as

Nu 6 ‖τ ′‖2 −
∑

k

〈
‖kθ̂k‖2 + ‖Dθ̂k‖2 + p

Ra
‖ω̂k‖2 − 1+ p

δ
Re
{∫ δ

0
û3k
¯̂
θ k +

∫ 1

1−δ
û3k
¯̂
θ k

}〉
6 ‖τ ′‖2 + ε2

Ra2

〈‖∇f ‖2
〉−∑

k

〈
1

2Ra2
‖(k2 − D2)ω̂k‖2 + ‖Dθ̂k‖2 + p

Ra
‖ω̂k‖2

− 1+ p

δ
Re
{∫ δ

0
û3k
¯̂
θ k +

∫ 1

1−δ
û3k
¯̂
θ k

}〉
6 ‖τ ′‖2 + ε2

Ra2

〈‖∇f ‖2
〉
, (3.35)

as long as the size of the boundary layer is chosen according to (3.32) so that (3.28) is
satisfied.
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The remainder term is multiplied through, and then the Young inequality is used to
combine everything into two terms as

ε2

Ra2
〈‖∇f ‖2〉6 2ε2

Ra2

〈(∥∥∥∥∇ ∂u∂t

∥∥∥∥2

+ ‖∇((u ·∇)u)‖2

)〉
. (3.36)

These terms are bounded by (2.28) and (2.36) respectively, to arrive at

ε2

Ra2

〈‖∇f ‖2
〉

6 C
(
ε2Ra9/4 + ε7/2Ra3 + ε8Ra15/2 + ε2Ra3/2

)
. (3.37)

Inserting this back into the bound on Nu, calculating ‖τ ′‖2 explicitly, and rewriting the
remainder in terms of the Grashof number Gr, we can see that

Nu 6 211 31/2

52/3 2929/12
Ra5/12 + C

(
Gr2Ra1/4 + ε1/2Gr3 + ε1/2Gr15/2 + ε1/2Gr3/2

)
∼ 0.3546Ra5/12 + CGr2Ra1/4, (3.38)

for Gr 6 c0 for stress-free (slippery) horizontal plates in three dimensions.

4. Concluding remarks
The bound (3.38) at small Gr is consistent with the infinite Prandtl (Gr = 0)

bound obtained in Whitehead & Doering (2012), albeit with a less optimal prefactor.
(Nu . 0.28764 Ra5/12 at Pr =∞, although the current estimate does not consider the
impact of the balance parameter, which may subtly improve the prefactor as indicated
in Whitehead & Doering (2012).) The improvement provided by this result is shown
in figure 1(b). Specifically, for sufficiently large Prandtl numbers, the lower curves
in this plot indicate a tighter bound than that dictated by Doering & Constantin
(1996) (the upper curve in the plot). Figure 1(a) compares this bound with the
theoretical predictions of the Grossmann and Lohse theory (Grossmann & Lohse
2000, 2001, 2004; Stevens et al. 2013). To make a valid comparison, the relationship
Pr = c0Ra (marginally satisfying (2.25)) was chosen and inserted into (2.1) and (2.2)
of Stevens et al. (2013) to derive the asymptotic relation (in the limit of Re→ 0):

Nu∼ c2/3
4 Ra1/3

41/3c1/3
1 c0

, (4.1)

where c4 and c1 are given in Stevens et al. (2013). One can see immediately
that the Grossmann and Lohse prediction is consistent with the current bound, and
understandably it is closest to the current bound if c0 is ‘small’. It is possible that the
significant difference between (3.38) and the prediction of the Grossmann and Lohse
theory is because the analysis here is not sharp, even in the limit of infinite Pr . The
current result and that in Whitehead & Doering (2011, 2012) indicate the need to
consider the impact of velocity boundary conditions (in this case stress-free) on the
predictions of the Grossmann and Lohse theory.

The Grossmann and Lohse theory is based on the premise that the effective size
and influence of the thermal and viscous boundary layers, and their relationship with
the bulk flow, dictate different regimes for which there are equivalent scaling laws
for the Nusselt and Reynolds numbers. This theory does not depend explicitly on
the flow being three-dimensional, nor does it necessarily require the presence of a
no-slip boundary, although the effects of a viscous boundary layer will clearly be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.289


118 X. Wang and J. P. Whitehead

 

 

N
u

 

1

2

3

4

5

1010
0

6

102

103

104

105

106

107

105 1010 1015

Ra Ra
105 1015

Present bound
(a) (b)

FIGURE 1. Comparison of the asymptotic bound obtained in this paper and Doering &
Constantin (1996) with the theory predicted in Grossmann & Lohse (2000, 2001) and Stevens
et al. (2013). (a) The Ra1/3 bound obtained here for Prandtl numbers satisfying Pr = c0Ra
(the marginal case given by (2.25)) in comparison to the predictions of the Grossmann and
Lohse theory for various values of c0. (b) The equivalent bound (the current result combined
with that in Doering & Constantin 1996) for a variety of Prandtl numbers, assuming c0 = 1.
Plot (b) is not compensated by Raγ as this would unnecessarily detract from the transitions at
the given Prandtl numbers.

different in such a case. In light of the current work and Whitehead & Doering
(2011, 2012), it is worth considering if and how the dimension of the system and
the velocity boundary conditions will affect the resultant theoretical prediction. Further
consideration of these effects may yield insight into how the turbulent boundary
layers (thought to be realized in the ‘ultimate’ state as predicted in Grossmann &
Lohse (2011) and observed in He et al. (2012)) are formed and suppressed, and the
subsequent impact on the heat transport.

The extension of the current result to Gr > c0 is non-trivial and cannot be
accomplished by means of the current methodology, indicating perhaps that such a
result is not possible and that the ‘ultimate’ state as described in Grossmann &
Lohse (2011) holds for Pr . Ra. We note, however, that to date the 5/12 scaling has
been demonstrated in the analysis for stress-free velocities, first predicted in Otero
(2002) for two-dimensional stress-free convection, and in Plasting & Ierley (2005) and
Ierley et al. (2006) for three-dimensional infinite Prandtl number stress-free convection.
But there is no theory that predicts such a scaling and numerical simulations and
experiments have not observed such a state, so it remains to be seen whether this
scaling is a by-product of the analysis or if some physically relevant information can
be gathered from the current derivation. Either way the similarity between the current
result and that obtained in Whitehead & Doering (2012) with the asymptotically
motivated numerical results of Plasting & Ierley (2005) and Ierley et al. (2006) is
indicative that the current result is sharp with respect to the background method.

This statement may be misleading, however, as the current approach does not apply
the background method as traditionally outlined. Instead, following Wang (2008b),
we have not enforced the spectral constraint explicitly, meaning that we allow
the quadratic form to be ‘nearly’ positive definite. The indefinite portion of Q is
then estimated as O(ε) in order to obtain the final bound. Such variations on the
background method may prove useful for additional problems, and although the
current method does not appear conducive to improving upon the bound of Ra1/2
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in three dimensions at O(1) Prandtl number, other modifications of the background
method may yield such insight.

In addition to the derived unique (to stress-free boundaries) scaling law, we note the
appearance of the saturating wavenumber (3.31), also indicated in the numerical and
asymptotic calculations of Plasting & Ierley (2005) and Ierley et al. (2006). Such a
dominant horizontal scale distinct from the size of the boundary layer has not been
observed in the simulations to date, and it remains to be seen if such a scale is
physically important or only a mathematical construct of the variational formulation.
This indicates a dominant horizontal scale that can be used to construct asymptotic
solutions (both numeric and rigorous) akin to either Chini & Cox (2009) or Corson
(2011) that (according to the current analysis) should saturate the bound derived in
this paper. In addition, direct numerical simulations in which forcing is added at this
scale and/or careful analysis of the energy at these scales is investigated will provide
additional insight into the nature of convection between slippery plates.
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Appendix. List of useful inequalities
In this appendix we provide a list of mathematical inequalities that are used in the

body of the text, in particular in § 2. The same notation used in the body of the text
is used here, and the constants are denoted with the same symbol. Constantin & Foias
(1988) and Adams & Fournier (2003) are excellent references for the inequalities
cited below. Note that sufficient smoothness (regularity) is assumed for each of the
following inequalities, so it will not be stated explicitly for each.

(i) Cauchy–Schwarz inequality. For integrable functions f (x) and g(x),∫
Ω

|f (x)g(x)| dx 6 ‖f (x)‖‖g(x)‖. (A 1)

(ii) Poincaré inequality. For a (possibly vector-valued) function u(x) such that either
u|∂Ω = 0 or

∫
Ω
u dx= 0,

‖∇u‖> cp‖u‖ and ‖1u‖> cp′‖∇u‖. (A 2)

(iii) Young inequality. For any real a and b,

ab 6 ap

p
+ bq

q
where

1
p
+ 1

q
= 1. (A 3)

(iv) Gronwall inequality. Let f (t) be defined on the interval [a, b] and let C,D be
absolute constants, where

df (t)

dt
6 Cf (t)+ D. (A 4)

Then

f (t)6 f (a)eC(t−a) − D

C
eaC. (A 5)
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(v) Agmon inequality. For a function u(x, t) there exists a constant cA such that

‖u(t)‖L∞ 6 cA‖∇u(t)‖1/2‖Au(t)‖1/2. (A 6)

(vi) Generalized Hölder inequality. Assume that r ∈ (0,∞) and pk ∈ (0,∞] such that

n∑
k=1

1
pk
= 1

r
. (A 7)

Then, for all sufficiently smooth, measurable functions fk,∥∥∥∥∥
n∏

k=1

fk

∥∥∥∥∥
r

6
n∏

k=1

‖fk‖pk
, (A 8)

where ‖ · ‖pk is the Lpk norm and
∏

is the product operator.

(vii) Sobolev inequalities in three dimensions. For a function u(x, t) there are
constants CS1,CS2 and C such that

‖u(t)‖L3 6 cS1‖∇u(t)‖,
∥∥∥∥∂u(t)∂t

∥∥∥∥
L6

6 cS2

∥∥∥∥∇ ∂u(t)∂t

∥∥∥∥ , (A 9)

and

‖∇u(t)‖2
L4 6 C‖∇u(t)‖1/2‖1u‖3/2. (A 10)

(viii) Elliptic regularity of the Stokes operator. For u(x, t) there exists a constant C
such that

‖1u(t)‖6 C‖Au(t)‖ (A 11)

where A is the Stokes operator defined in the body of the paper; see also
Constantin & Foias (1988).

(ix) Interpolation inequality. For the Stokes operator A and a function u(x, t) we have

‖Au(t)‖6 ‖∇u(t)‖1/2‖A3/2u(t)‖1/2. (A 12)
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