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EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER
METHODS FOR THE STOKES–DARCY SYSTEM∗

WENBIN CHEN†, MAX GUNZBURGER‡ , DONG SUN§ , AND XIAOMING WANG§

Abstract. We propose and study two second-order in time implicit-explicit methods for the
coupled Stokes–Darcy system that governs flows in karst aquifers and other subsurface flow systems.
The first method is a combination of a second-order backward differentiation formula and the second-
order Gear’s extrapolation approach. The second is a combination of the second-order Adams–
Moulton and second-order Adams–Bashforth methods. Both algorithms only require the solution
of decoupled Stokes and Darcy problems at each time-step. Hence, these schemes are very efficient
and can be easily implemented using legacy codes. We establish the unconditional and uniform in
time stability for both schemes. The uniform in time stability leads to uniform in time control of
the error which is highly desirable for modeling physical processes, e.g., contaminant sequestration
and release, that occur over very long time scales. Error estimates for fully discretized schemes using
finite element spatial discretizations are derived. Numerical examples are provided that illustrate
the accuracy, efficiency, and long-time stability of the two schemes.

Key words. Stokes–Darcy systems, backward differentiation formulas, Gear’s extrapolation,
Adams–Moulton and Adams–Bashforth methods, unconditional stability, long-time stability, uniform
in time error estimates, finite element methods, karst aquifers

AMS subject classifications. 35M13, 35Q35, 65N30, 65N55, 76D07, 76S05

DOI. 10.1137/120897705

1. Introduction. Karst is a common type of landscape formed by the disso-
lution of layers of soluble bedrock, usually including carbonate rock, limestone, and
dolomite. Karst regions often contain karst aquifers, which are important sources of
potable water. For example, about 90% of the fresh water used in Florida comes
from karst aquifers [27]. Clearly, the study of karst aquifers is of great importance,
especially because they are seriously threatened by contamination [29].

A karst aquifer, in addition to a porous limestone or dolomite matrix, typically
has large cavernous conduits that are known to have great impact on groundwater flow
and contaminant transport within the aquifer. During high-rain seasons, the water
pressure in the conduits is larger than that in the ambient matrix so that conduit-
borne contaminants can be driven into the matrix. During dry seasons, the pressure
differential reverses and contaminants long sequestered in the matrix can be released
into the free flow in the conduits and exit through, e.g., springs and wells, into surface
water systems. Therefore, an understanding of the interaction between the free flow
in the conduits and the Darcy flow in the matrix is crucial to the study of groundwater
flows and contaminant transport in karst regions.
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under a 111 project grant (B08018), and the Natural Science Foundation of China under grant
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2564 W. CHEN, M. GUNZBURGER, D. SUN, AND X. WANG

The mathematical study of flows in karst aquifers is a well-known challenge due
to the coupling of the flow in the conduits and the flow in the surrounding matrix,
the complex geometry of the network of conduits, the vastly disparate spatial and
temporal scales, the strong heterogeneity of the physical parameters, and the huge
associated uncertainties in the data. Even for a small, lab-size conceptual model
with only one conduit (pipe) embedded in a homogeneous porous media (matrix),
significant mathematically rigorous progress has only recently been achieved. For the
coupled Stokes–Darcy model that includes the classical Beavers–Joseph [6] matrix-
conduit interface boundary condition, see [7, 8, 9]. For various simplified interface
conditions, see, e.g., [7, 17, 25, 30]. Nonlinear interface conditions have also been
proposed for Navier–Stokes/Darcy modeling; see, e.g., [11, 19].

Due to the practical importance of the problem of flow and contaminant transport
in karst aquifers, there has been a lot of attention recently on the development of ac-
curate and efficient numerical methods for the coupled Stokes–Darcy system; see, e.g.,
[10, 17, 30, 36] among many others. The efficiency of the algorithms is a particularly
important issue due to the large scale of field applications. Because of the disparity
of governing equations and physics in the conduit and matrix, domain decomposition
methods (also called partitioned methods by some authors) that only require separate
Stokes and Darcy solves seem natural; see, e.g., [12, 13, 17, 18, 28, 31, 32, 33, 37, 38].
On the other hand, long-time accuracy of the schemes is also highly desirable because
the physical phenomena of retention and release of contaminants takes place over a
very long time scale. Therefore, there is a need to ensure the long-time accuracy of
the discretization algorithms in addition to the standard notion of accuracy on an
order one time scale.

The purpose of this work is to propose and investigate two types of numerical
methods for the coupled Stokes–Darcy system. We discretize the system in time
via either a combination of a second-order backward-differentiation formula and Gear
extrapolation methods or a combination of second-order Adams–Moulton and Adams–
Bashforth methods. These algorithms are special cases of the implicit-explicit (IMEX)
class of schemes [1, 2, 3, 4, 5, 20]. The coupling terms in the interface conditions
are treated explicitly in our algorithm so that only two decoupled problems (one
Stokes and one Darcy) are solved at each time-step. Therefore, these schemes can
be implemented very efficiently and, in particular, legacy codes for each of the two
components can be utilized. Moreover, we show that despite the explicit treatment
of the coupling terms, our schemes are unconditionally stable and long-time stable
in the sense that the solutions remain uniformly bounded in time. The uniform in
time bound of the solution further leads to uniform in time error estimates. This is
a highly desirable feature because one would want to have reliable numerical results
over the long time scale of contaminant sequestration and release. Uniform in time
error estimates for fully discrete schemes using finite element spatial discretizations
are also presented. Our numerical experiments illustrate our analytical results.

Our work can be viewed as a time-dependent noniterative version of the steady-
state domain decomposition work in [13, 17] and as a generalization of the first-order
schemes in [10, 37] that achieve the desirable second-order accuracy without increasing
the complexity. The backward differentiation–based algorithm can be viewed as an
infinite-dimensional version of the scheme presented in [33], but with the additional
important result on time-uniform error estimates. The Adams–Moulton/Bashford
based algorithm is new so far as the Stokes–Darcy problem is concerned. To the best
of our knowledge, our uniform in time error estimates are among the first of their
kind for Stokes–Darcy and related systems.
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SECOND-ORDER METHODS FOR STOKES–DARCY SYSTEM 2565

The rest of the paper is organized as follows. In section 2, we introduce the coupled
Stokes–Darcy system and the associated weak formulation as well as the two second-
order in time schemes. The unconditional and long-time stability with respect to the
L2-norm are presented in section 3. Section 4 is devoted to the stability with respect
to the H1-norm. The H1 estimates are important for the finite element analysis;
this is another new feature of our work, even for first-order schemes. In section 5,
we focus on the error analysis of the fully discretized scheme using finite element
spatial discretizations. Numerical results that illustrate the accuracy, efficiency, and
long-time stability of our our algorithms are given in section 6. We close by providing
some concluding remarks in section 7.

2. The Stokes–Darcy system and two types of IMEX methods.

2.1. The Stokes–Darcy system. For simplicity, we consider a conceptual do-
main for a karst aquifer that consists of a porous media (matrix), denoted by Ωp ∈ R

d,
and a conduit, denoted by Ωf ∈ R

d, where d = 2, 3 denotes the spatial dimension. The
interface between the matrix and the conduit is denoted Γ. The remaining parts of the
boundaries of Ωp and Ωf are denoted by ∂Ωp and ∂Ωf , respectively. See Figure 2.1.

The coupled Stokes–Darcy system governing fluid flow in the karst system is given
by [7, 17]

(2.1)

⎧⎪⎨⎪⎩
S
∂φ

∂t
−∇ · (K∇φ) = f in Ωp,

∂uf

∂t
−∇ · T (uf , p) = f and ∇ · uf = 0 in Ωf ,

where the unknowns are the fluid velocity uf and the kinematic pressure p in the
conduit and the hydraulic head φ in the matrix; the velocity in the matrix is recovered
from up = −K∇φ. In (2.1), f and f denote external body forces acting on the domains
Ωf and Ωp, respectively, and T(v, p) = ν(∇v +∇Tv) − pI denotes the stress tensor.
The parameters appearing in (2.1) are the water storage coefficient S, the hydraulic
conductivity tensor K, and the kinematic viscosity of the fluid ν.

For simplicity, we assume homogeneous Dirichlet boundary conditions for the hy-
draulic head and fluid velocity on the outer boundaries ∂Ωp and ∂Ωf , respectively. On
the interface Γ, we impose the Beavers–Joseph–Saffman–Jones interface conditions
[6, 26, 39]

Ω
p

Ω
f

Γ

∂Ω
p

∂Ω
f

Fig. 2.1. The physical domain consisting of a porous media Ωp and a free-flow conduit Ωf .
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2566 W. CHEN, M. GUNZBURGER, D. SUN, AND X. WANG

(2.2)

⎧⎪⎨⎪⎩
uf · nf = up · nf = −(K∇φ) · nf ,

− τ j · (T(uf , pf ) · nf ) = αBJSJτ j · uf , j = 1, . . . , d− 1,

− nf · (T(uf , pf ) · nf ) = gφ,

where nf denotes the outer unit normal vector for Ωf and {τ j}j=1,2,...,d−1 denotes
a linearly independent set of vectors tangent to the interface Γ. The additional pa-
rameters appearing in (2.2) are the gravitational constant g and the Beavers–Joseph–
Saffman–Jones coefficient αBJSJ .

2.2. Weak formulation. We denote by (·, ·)D and ‖ · ‖D the standard L2(D)
inner product and norm, respectively, where D may be Ωf , Ωp, or Γ. We often
suppress the subscript D if there is no possibility of confusion. We define the spaces

Hf =
{
v ∈ (H1(Ωf )

)d | v = 0 on ∂Ωf \ Γ
}
,

Hp =
{
ψ ∈ H1(Ωp) | ψ = 0 on ∂Ωp \ Γ

}
,

Q = L2(Ωf ), W = Hf ×Hp.

Dual spaces are denoted by (·)′ and duality parings between spaces and their duals
induced by the L2 inner product on the appropriate domain are denoted by 〈· , ·〉.

A weak formulation of the Stokes–Darcy system (2.1) is derived by multiplying
the three equations in that system by test functions v ∈ Hf , gψ ∈ Hp, and q ∈
Q, respectively, then integrating over the corresponding domains, then integrating
by parts the terms involving second-derivative operators, and then substituting the
interface conditions (2.2) in the appropriate terms. The resulting weak formulation is
given as follows [7, 16]: given f ∈ (Hp)

′ and F ∈ (Hf )
′, seek φ ∈ Hp, uf ∈ Hf , and

p ∈ Q, with ∂φ/∂t ∈ (Hp)
′ and ∂u/∂t ∈ (Hf )

′, satisfying

(2.3)
〈〈�ut, �v〉〉 + a(�u, �v) + b(v, p) + aΓ(�u, �v) = 〈〈〈�f , �v〉〉〉,

b(u, q) = 0,

where �u = [u, φ]T , �v = [v, ψ]T , and �f = [f , gf ]T and where (·)t = ∂(·)/∂t. In (2.3),
we have that

(2.4)

〈〈�ut, �v〉〉 = 〈ut,v〉Ωf
+ gS〈φt, ψ〉Ωp , b(v, q) = −(q,∇ · v)Ωf

a(�u, �v) = af (u,v) + ap(φ, ψ) + aBJSJ(u,v),

aΓ(�u, �v) = g(φ,v · nf )Γ − g(u · nf , ψ)Γ, 〈〈〈�f , �v〉〉〉 = 〈f ,v〉Ωf
+ g〈f, ψ〉Ωp ,

where

af (u,v) = ν(∇u,∇v)Ωf
, ap(φ, ψ) = g(K∇φ,∇ψ)Ωp ,

aBJSJ(u,v) = αBJSJ(u · �τ,v · �τ )Γ.

In (2.3), uf , φ, and p are the primary variables; as mentioned, once the hydraulic
head φ is known, one can recover up, the velocity in the porous media, via the Darcy
relation up = −K∇φ.

It can be shown that the bilinear form a(·, ·) is coercive; indeed, we have that [7]

(2.5) a(�u, �u) ≥ (ν‖∇u‖2 + gKmin‖∇φ‖2 + αBJSJ‖u · �τ‖2Γ) ≥ Ca‖∇�u‖2,
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SECOND-ORDER METHODS FOR STOKES–DARCY SYSTEM 2567

where Ca = min(ν, gKmin) > 0 and where Kmin denotes the smallest eigenvalue of K.

We define the norms ‖�u‖a = a(�u, �u)
1
2 and ‖�v‖S = 〈〈�v, �v〉〉 1

2 . We have that ‖�v‖S is
equivalent to the L2-norm, i.e., we have that

(2.6) cs‖�v‖S ≤ ‖�v‖ ≤ CS‖�v‖S.

where cs = min{1, gS} > 0 and CS = max{1, gS} > 0.

2.3. The second-order backward-differentiation scheme (BDF2). The
first scheme we introduce discretizes in time via a second-order backward-differentiation
formula (BDF), where the interface term is treated via a second-order explicit Gear’s
extrapolation formula. We propose the following algorithm: for any �v ∈ W and
q ∈ Q,

(2.7)

〈〈
3�un+1 − 4�un + �un−1

2Δt
, �v

〉〉
+ a(�un+1, �v) + b(v, pn+1) + ast(�u

n+1, �v)

= 〈〈〈�fn+1, �v〉〉〉 − ãΓ(2�u
n − �un−1, �v),

b(un+1, q) = 0,

where the artificial stabilizing term ast(·, ·) is defined as

(2.8) ast(�u, �v) = γf (u · nf ,v · nf )Γ + γp(φ, ψ)Γ

with parameters γf , γp ≥ 0 and ãΓ(�u, �v) is defined as

ãΓ(�u, �v) = aΓ(�u, �v)− ast(�u, �v).

2.4. The second-order Adams–Moulton–Bashforth method (AMB2).
For the second scheme, we combine the second-order implicit Adams–Moulton treat-
ment of the symmetric terms and the second-order explicit Adams–Bashforth treat-
ment of the interface term to propose the following second-order scheme: for any
�v ∈ W and q ∈ Q,

(2.9)

〈〈
�un+1 − �un

Δt
, �v

〉〉
+ a

(
Dα�u

n+1, �v
)
+ b

(
v, Dαp

n+1
)
+ ast

(
Dα�u

n+1, �v
)

= 〈〈〈�fn+ 1
2 , �v〉〉〉 − ãΓ

(
3

2
�un − 1

2
�un−1, �v

)
,

b
(
Dαu

n+1, q
)
= 0,

whereDα denotes the difference operator that depends on a parameter α and is defined
by Dαv

n+1 = αvn+1 +
(
3
2 − 2α

)
vn +

(
α− 1

2

)
vn−1. The stabilizing term ast(·, ·) is

defined as in (2.8).
In the analysis, we have not taken advantage of the stabilizing term, but the

numerical experiments in section 6 demonstrate the stabilizing effects in the sense
that the presence of the stabilizing term relaxes the time-step restriction.

2.5. Efficiency of the schemes. The implemented schemes are highly efficient
because we can decouple the Stokes and Darcy subproblems:

1. given �un, �un−1,
2. set �v = [v, 0] so that all terms involving φ drop out and we only need to use

a fast Stokes solver to obtain un+1;
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3. set �v = [0, ψ] so that all terms involving u drop out and we only need a fast
Poisson solver to obtain φn+1;

4. set n = n+ 1 and return to step 1.
Note that steps 2 and 3 can be solved independently. Moreover, legacy codes can be
used in each of those steps.

3. Unconditional and long-time stability. The goal of this section is to
demonstrate the unconditional and long-time stability, with respect to the L2-norm,
of the two second-order schemes proposed in section 2. We first recall a few basic
facts and some notation that are needed below.

Recall that the G-matrix associated with the classical (BDFZ) is given by

G =

(
1
2 −1
−1 5

2

)
with the associated G-norm given by ‖w‖2G =

(
w, Gw

)
for allw ∈ (L2(Ω))2. The

following identity is well known (see, e.g., [24]): for any vi ∈ L2(Ω), i = 0, 1, 2,

(3.1)

(
3

2
v2 − 2v1 +

1

2
v0, v2

)
=

1

2

(‖w1‖2G − ‖w0‖2G
)
+

‖v2 − 2v1 + v0‖2
4

,

where w0 = [v0, v1]
T and w1 = [v1, v2]

T . We also apply the G matrix to functions
belonging to W: for any w ∈ W2, define |w|2G = 〈w, Gw〉. Then, for any �vi ∈ W ,
i = 0, 1, 2,〈〈

3

2
�v2 − 2�v1 +

1

2
�v0, �v2

〉〉
=

1

2

(|w1|2G − |w0|2G
)
+

‖�v2 − 2�v1 + �v0‖2S
4

,

where w0 = [�v0, �v1]T and w1 = [�v1, �v2]
T .

The G-norms are equivalent norms on (L2(Ω))2 in the sense that there exists
Cl, Cu > 0 such that

Cl‖w‖2G ≤ ‖w‖2 ≤ Cu‖w‖2G and Cl‖w‖2G ≤ |w|2G ≤ Cu‖w‖2G.
The following estimate follows from the basic inequalities. See [14].
Lemma 3.1. Let aγ(·, ·) and ast(·, ·) be defined as in (2.4) and (2.8), respectively.

Then, there exists a constant Cct such that

|ast(�u, �v)|+ |aΓ(�u, �v)| ≤ Cct‖�u‖Γ‖�v‖Γ ∀ �u, �v ∈ W.

For brevity, we introduce the BDF difference operator Dvn+1 = 3
2v

n+1 − 2vn +
1
2v

n−1 and the central difference operator δvn+1 = vn+1 − 2vn + vn−1.

3.1. Unconditional stability of the BDF2 and AMB2 schemes.

3.1.1. Unconditional stability of the BDF2 scheme.
Theorem 3.2. Let T > 0 be any fixed time. Then, the BDF2 scheme (2.7) is

unconditionally stable on (0, T ].
The proof relies on Lemma 3.1, the trace inequality, Young’s inequality, basic

energy estimates, and the utility of the following energy functional:

En = |�wn|2G +
CaΔt

(1 + (C1 + C2)Δt)
‖∇�un+1‖2 + CaΔt

3(1 + (C1 + C2)Δt)
‖∇�un‖2.

The interested reader is referred to [14] for the proof.
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3.1.2. Unconditional stability of the AMB2 scheme. We introduce the
parameters
(3.2)

α1 =
∣∣∣3
2
− 2α

∣∣∣, α2 =
∣∣∣α− 1

2

∣∣∣, β3 = α1 + α2, β1 = 2α− β3, β2 =
1

2
(β1 + β3).

Theorem 3.3. Let T > 0 be any fixed time and let 1/2 < α < 1. Then, the
AMB2 scheme (2.9) is unconditionally stable in (0, T ].

The proof can be found in [14]. Unconditional stability means that the numerical
solution remains bounded (by a constant of the form of ecT ) on any finite time interval
regardless of the size of the time-step.

3.2. Long-time stability of the BDF2 and AMB2 schemes.

3.2.1. Uniform in time estimates for the BDF2 scheme.
Theorem 3.4. Assume that �f ∈ L∞(L2(Ω)) and that the time-step restriction

(3.8) is satisfied. Then, the solution to the BDF2 scheme (2.7) is uniformly bounded
for all time. Specifically, there exist 0 < λ1 < 1, λ2 <∞, and E0 ≥ 0 such that

‖�un‖2 ≤ Cuλ
n
1E0 + λ2.

Proof. Setting �v = �un+1 =
(
un+1, φn+1

)
in the BDF2 scheme (2.7), we have

1

Δt

〈〈
D�un+1, �un+1

〉〉
+ a(�un+1, �un+1) + ast(δ�u

n+1, �un+1)

=
〈〈〈

�fn+1, �un+1
〉〉〉− aΓ(2�u

n − �un−1, �un+1).

From (3.1) and the skew-symmetry of aΓ(·, ·), we obtain

(3.3)

1

2
|�wn|2G − 1

2
|�wn−1|2G +

1

4
‖δ�un+1‖2S +Δta(�un+1, �un+1) + Δtast(�u

n+1, �un+1)

= Δt
(〈〈〈

�fn+1, �un+1
〉〉〉

+ ãΓ(−2�un + �un−1, �un+1)
)
,

Recall that aΓ(�u
n+1, �un+1) = 0. Therefore, by Lemma 3.1,

(3.4)
aΓ(−2�un + �un−1, �un+1)− ast(δ�u

n+1, �un+1)

= ãΓ(δ�u
n+1, �un+1) ≤ Cct

∥∥δ�un+1
∥∥
Γ

∥∥�un+1
∥∥
Γ
.

The trace and Poincaré inequalities imply

(3.5)

∥∥δ�un+1
∥∥
Γ

∥∥�un+1
∥∥
Γ
≤ C2

tr‖δ�un+1‖ 1
2 ‖∇δ�un+1‖ 1

2 ‖∇�un+1‖
≤ C

1
2

SC
2
tr‖δ�un+1‖ 1

2

S (‖∇�un+1‖ 1
2 +

√
2‖∇�un‖ 1

2 + ‖∇�un−1‖ 1
2 )‖∇�un+1‖.

The three terms on the right-hand side can be bounded using Young’s inequalities:

‖δ�un+1‖ 1
2

S‖∇�un+1‖ 3
2 ≤ ε

8
‖∇�un+1‖2 + 54

ε3
‖δ�un+1‖2S ,

√
2‖δ�un+1‖ 1

2

S‖∇�un‖ 1
2 ‖∇�un+1‖ ≤ ε

8
‖∇�un+1‖2 + ε

16
‖∇�un‖2 + 64

ε3
‖δ�un+1‖2S,

‖δ�un+1‖ 1
2

S‖∇�un−1‖ 1
2 ‖∇�un+1‖ ≤ ε

8
‖∇�un+1‖2 + ε

16
‖∇�un−1‖2 + 16

ε3
‖δ�un+1‖2S.
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Then, setting ε = ε0 = Ca

CS

1
2 CctC2

tr

, we deduce from these three inequalities, (3.4), and

(3.5) that
(3.6)

ãΓ(δ�u
n+1, �un+1) ≤ 3Ca

8

∥∥∇�un+1
∥∥2

+
Ca

16
‖∇�un‖2 + Ca

16

∥∥∇�un−1
∥∥2 + 134CS

2C4
ctC

8
tr

C3
a

∥∥δ�un+1
∥∥2
S
.

The forcing term can be bounded as

(3.7)
〈〈〈

�fn+1,un+1
〉〉〉 ≤ 2C2

P

Ca
‖�fn+1‖2 + Ca

8C2
P

∥∥�un+1
∥∥2 .

Combining (3.3) and (2.5) with (3.6) and (3.7), we obtain

|�wn|2G + CaΔt
∥∥∇�un+1

∥∥2 + [1
2
− CS

2C4
ctC

8
tr

C3
a

Δt

] ∥∥δ�un+1
∥∥2
S

≤ 4C2
PΔt

Ca
‖�fn+1‖2 + |�wn−1|2G +

CaΔt

8
‖∇�un‖2 + CaΔt

8

∥∥∇�un−1
∥∥2 .

Therefore, if the time-step restriction

(3.8) Δt ≤ C3
a

536CS
2C4

ctC
8
tr

is satisfied, we deduce

|�wn|2G + CaΔt
∥∥∇�un+1

∥∥2
≤ 4C2

PΔt

Ca
‖�fn+1‖2 + |�wn−1|2G +

CaΔt

8
‖∇�un‖2 + CaΔt

8

∥∥∇�un−1
∥∥2 ,

where Ca(ν, gKmin) and CS(gS) are defined one line below (2.5) and (2.6). Adding
3CaΔt

8 ‖∇�un‖2 to both sides of the above inequality, we obtain

|�wn|2G + CaΔt
∥∥∇�un+1

∥∥2 + 3CaΔt

8
‖∇�un‖2

≤ 4C2
PΔt

Ca
‖�fn+1‖2 + |�wn−1|2G +

CaΔt

2
‖∇�un‖2 + CaΔt

8

∥∥∇�un−1
∥∥2 ,

which is equivalent to

(3.9) En +
Ca

2
Δt
∥∥∇�un+1

∥∥2 + Ca

4
Δt ‖∇�un‖2 ≤ En−1 +

4C2
PΔt

Ca
‖�fn+1‖2,

where En = |�wn|2G + CaΔt
2

∥∥∇�un+1
∥∥2 + CaΔt

8 ‖∇�un‖2.
Utilizing the Poincaré inequality and the equivalence of the G-norm and the L2-

norm, we have

Ca

2

∥∥∇�un+1
∥∥2 + Ca

4
‖∇�un‖2 ≥ Ca

4

∥∥∇�un+1
∥∥2 + Ca

8
‖∇�un‖2 + C2

l Ca

8C2
P

|�wn|2G.
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Therefore, setting C7 = min{C2
l Ca

8C2
P
, 1
2Δt}, we have from (3.9) that

(1 + C7Δt)En ≤ En−1 +
4C2

PΔt

Ca
‖�fn+1‖2.

A simple induction argument leads to

En ≤
( 1

1 + C7Δt

)n
E0 +

4C2
P (1 + C7Δt)

CaC7
max

i
‖�f i‖2.

Recall that ‖�un‖ ≤ CuEn. Hence, the theorem is proved with λ1 = 1
1+C7Δt and

λ2 = Cu
4C2

P (1+C7Δt)
CaC7

maxi ‖�f i‖2.
The following corollary is used in the analysis of the fully discrete BDF2 scheme;

see section 5.1.
Corollary 3.5. In addition to the assumptions of Theorem 3.4, assume that

the second time-step restriction Δt ≤ 3Ca

112C2
sC

2
ctC

4
tr

is satisfied. Then,

(3.10) ‖�un‖2 ≤ Cλn−2
1

(‖�u0‖2 + ‖�u1‖2 +Δt2‖∇�u0‖2 +Δt2‖∇�u1‖2)+ Cλ2.

The interested reader is referred to [14] for the proof of this corollary.

3.2.2. Uniform in time estimates for the AMB2 scheme. We start with
the following estimate.

Lemma 3.6. Let

EΓ = −2aΓ

(
3

2
�un − 1

2
�un−1, �un+1

)
− 2αast

(
δ�un+1, �un+1

)
.

Then, with β1 and β2 defined in (3.2), we have the bound
(3.11)

|EΓ| ≤ 4Ca(β1 − β2)

9
‖∇�un+1‖2 + 2Ca(β1 − β2)

9
‖∇�un‖2

+
Ca(β1 − β2)

9
‖∇�un−1‖2 + (C8 + C9)‖�un+1 − �un‖2S + 2C9‖�un − �un−1‖2S .

Theorem 3.7. Assume that 1/2 < α < 1, �f ∈ L∞(L2(Ωf )) and that the time-
step restriction Δt < 1

C8+3C9
is satisfied. Then, the solution to the AMB2 scheme

(2.9) is uniformly bounded for all time. Specifically, there exist 0 < λ3 < 1, λ4 < ∞,
and E1 ≥ 0 such that

‖�un+1‖2 ≤ CSλ
n
3E1 + λ4.

The interested reader may consult [14] for the proof.
Remark 1. Similarly to Corollary 3.5, in the error analysis, E1 can be taken as

C(|�w0|G +Δt2(‖∇�u0‖2 + ‖∇�u1‖1)) in Theorem 3.7.

4. H1(Ω) stability of the schemes. The purpose of this section is to prove
uniform in time bounds for the solutions to the schemes (2.7) and (2.9) with respect
to the H1(Ω)-norm. This additional estimate is needed for the estimation of finite
element errors for the fluid velocity and hydraulic head with respect to the H1(Ω)-
norm and for the pressure with respect to the L2(Ωf )-norm; see section 5.1.

D
ow

nl
oa

de
d 

03
/1

7/
23

 to
 1

31
.1

51
.2

6.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2572 W. CHEN, M. GUNZBURGER, D. SUN, AND X. WANG

4.1. Uniform in time H1(Ω) bound of the BDF2 scheme. In this subsec-
tion, we assume that the time-step restriction (3.8) holds. We introduce the notation
∂̄�un+1 = 1

Δt(�u
n+1 − �un).

Lemma 4.1. The first-order discrete time derivative of the BDF2 scheme (2.7)
is uniformly bounded in time. Specifically, we have

(4.1) ‖∂̄�un+1‖2 ≤ Cλn1 + Cmax
i

‖∂̄�f i‖2,
where the positive parameter λ1 < 1 is defined in Theorem 3.4.

The proof of this lemma is relatively straightforward. The proof also resembles
the proof for Theorem 3.4 with �f replaced by ∂̄�f . The interested reader is referred to
[14] for more details.

A direct consequence of Lemma 4.1 is the following result, once we realize that
1
ΔtD�u

n+1 = 3
2 ∂̄�u

n+1 − 1
2 ∂̄�u

n and 1
Δtδ�u

n+1 = ∂̄�un+1 − ∂̄�un.
Corollary 4.2. Let �un be the solution to the BDF2 scheme (2.7). Then,

(4.2)

∥∥∥∥ 1

Δt
D�un+1

∥∥∥∥2 + ∥∥∥∥ 1

Δt
δ�un+1

∥∥∥∥2 ≤ Cλn1 + Cmax
i

‖∂̄�f i‖2.

The following technical lemma is useful in deriving the uniform in time H1(Ω)
bound.

Lemma 4.3. Let {an} be a nonnegative sequence that satisfies

an+1 ≤ c1Δt(an + an−1) + c2λ
n + c3 for n = 1, 2, . . .,

where ci, i = 1, 2, 3, are positive numbers and 0 < λ < 1. Moreover, if Δt < 2λ
(1+

√
5)c1

,

then

(4.3) an+1 ≤ c3

1− 1+
√
5

2 c1Δt
+ λn

(
c2

1− 1+
√
5

2λ c1Δt
+ a1 +

√
5− 1

2
a0

)
.

The interested reader is referred to [14] for more details on the proof.
Remark 2. If Δt < λ

(1+
√
5)c1

, then (4.3) implies

an+1 ≤ 2c3 + λn

(
2c2 + a1 +

√
5− 1

2
a0

)
.

Theorem 4.4. The BDF2 scheme (2.7) is asymptotically stable with respect
to the H1(Ω)-norm in the sense that the H1(Ω)-norm of the solution is uniformly
bounded in time.

The proof relies on the previous lemma and corollary. The interested reader is
referred to [14] for details.

4.2. Uniform in time H1(Ω) bound for the AMB2 scheme. In this sub-
section, we assume that an appropriate time-step restriction holds. Utilizing the same
arguments as for Lemma 4.1, we can deduce that the discrete time derivative of the
solution of (2.9) is uniformly bounded in time.

Theorem 4.5. For the AMB2 scheme, we have

‖∂̄�un+1‖2 ≤ Cλn−1
3 + Cmax

i
‖∂̄�f i+ 1

2 ‖2,
where the positive parameter λ3 < 1 is defined in Theorem 3.7. Moreover, the AMB2
scheme is asymptotically stable with respect to the H1(Ω)-norm.

The interested reader is referred to [14] for the proof.
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5. Error analysis. In this section, we study the convergence of the fully discrete
BDF2 scheme, where spatial discretization is effected using finite element methods
(FEMs). A similar study yielding similar results can be done for the AMB2 scheme;
however, for brevity, we omit that study.

Let Hf,h ⊂ Hf , Hp,h ⊂ Hp, and Qh ⊂ Q denote conforming finite element spaces.
Let Wh = Hf,h ×Hp,h. We assume that the mesh is regular and that the parameter
h is a measure of the grid size. We use continuous piecewise polynomials of degrees
k, k, and k − 1 for the spaces Hf,h, Hp,h, and Qh, respectively. See [15] for details
concerning such finite element discretizations. We also assume that the fluid velocity
and pressure spaces Hf,h and Qh satisfy the discrete inf-sup condition necessary for
ensuring the stability of the finite element discretization; see [22].

Definition 5.1. The Stokes-Darcy projection Ph : W×Q→ Wh×Qh is defined
as follows. For any �u ∈ W and p ∈ Q, let Ph�u ∈ Wh and Php ∈ Qh denote the finite
element solution of

a(Ph�u, �vh) + b(vh, Php) + aΓ(Ph�u, �vh) = a(�u, �vh) + b(vh, p) + aΓ(�u, �vh),

b(Phu, qh) = b(u, qh)

for all �vh ∈ Wh and qh ∈ Qh.

It is easy to see that for any �u ∈ W and p ∈ Q, the exist unique Ph�u ∈ Wh

and Php ∈ Qh. Moreover, if we assume that �u ∈ (Hk+1(Ωf ))
d × Hk+1(Ωp) and

p ∈ Hk(Ωf ), then (see, e.g., [8]),

(5.1) ‖�u− Ph�u‖+ h‖∇(�u− Ph�u)‖ ≤ hk+1(‖�u‖Hk+1 + ‖p‖Hk).

Remark 3. The estimate (5.1) and the optimal error estimates derived below as-
sume that �u ∈ (Hk+1)d×Hk+1(Ωp), which requires that the interface Γ be sufficiently
smooth. In this case, the finite elements may need to be modified near the interface,
e.g., by using isoparametric finite element approximations [15]. In any case, in this
paper we assume that the optimal error order of convergence can be obtained for the
steady-state Stokes–Darcy problems using the same grids and finite element spaces.

5.1. Error analysis of the BDF2-FEM scheme. The fully discrete BDF2-
FEM scheme is defined as follows: for n = 0, 1, 2 . . ., seek �un+1

h ∈ Wh and pn+1
h ∈ Qh

such that

(5.2)

1

Δt

〈〈
D�un+1

h , �vh

〉〉
+ a(�un+1

h , �vh) + b(vh, p
n+1
h ) + ast(�u

n+1
h , �vh)

=
〈〈〈

�fn+1, �vh

〉〉〉− aΓ(2�u
n
h − �un−1

h , �vh) + ast(2�u
n
h − �un−1

h , �vh),

b(un+1
h , qh) = 0,

are satisfied for all �vh ∈ Wh and qh ∈ Qh. Note that for all �vh ∈ Wh and qh ∈ Qh,
the exact solution satisfies

(5.3)
〈〈
�ut, �vh

〉〉
+ a(�u, �vh) + aΓ(�u, �vh) + b(vh, p) =

〈〈〈
�f , �vh

〉〉〉
, b(u, qh) = 0.

Theorem 5.2. Assume that the solution of the Stokes–Darcy problem (2.1) is
sufficiently regular in the sense that

�u ∈ H3(0, T ;H1) ∩H2(0, T ;Hk+1),
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that the time-step restrictions (3.8) and Δt ≤ 3Ca

112C2
sC

2
ctC

4
tr

are satisfied, and that the

finite element spaces are chosen so that the projection error bound (5.1) holds. Then,
the solution of the fully discrete BDF2 scheme (5.2) satisfies the error estimate

‖�u(t)− �un
h‖2 ≤ ‖Ph�u(t0)− �u0

h‖2 + ‖Ph�u(t1)− �u1
h‖2 + CΔt(‖∇(Ph�u(t0)− �u0

h)‖2
+ ‖∇(Ph�u(t1)− �u1

h)‖2) + C(Δt4 + h2(k+1)).

Moreover, if the solution of the Stokes–Darcy problem (2.1) is long-time regular in the
sense that

�u ∈W 3,∞(0,∞;H1) ∩W 2,∞(0,∞;Hk+1),

then there exists a constant Ca and a generic constant C independent of Δt, h, or n
such that the solution of the BDF2 scheme (5.2) satisfies the uniform in time error
estimates

(5.4)

‖�u(tn)− �un
h‖2 ≤ Cλn−2

1 (‖Ph�u(t0)− �u0
h‖2 + ‖Ph�u(t1)− �u1

h‖2)
+ CΔt2λn−2

1 (‖∇(Ph�u(t0)− �u0
h)‖2 + ‖∇(Ph�u(t1)− �u1

h)‖2)
+ C(Δt4 + h2(k+1)) ∀n

and

‖∇(�u(tn+1)− �un+1
h )‖2 + ‖p(tn+1)− pn+1

h ‖2
≤ Cλn−2

1 (‖∂̄Ph�u(t1)− ∂̄�u1
h‖2 + ‖∂̄Ph�u(t2)− ∂̄�u2

h‖2)
+ CΔt2λn−2

1 (‖∇(∂̄Ph�u(t1)− ∂̄�u1
h)‖2 + ‖∇(∂̄Ph�u(t2)− ∂̄�u2

h)‖2)
+ C(Δt2 + h2k) ∀n

provided that Δt ≤ Ca.
Proof. Let �en = �u(tn)− �un

h denote the error at the time t = tn. Then, from (5.2)
and (5.3), we have

1

Δt

〈〈
D�en+1, �vh

〉〉
+ a(�en+1, �vh) + b(vh, p(tn+1)− pn+1

h ) + aΓ(�e
n+1, �vh)

− ãΓ(δ�e
n+1, �vh) =

〈〈
ωn+1
1 , �vh

〉〉− ãΓ(δ�u(tn+1), �vh),
(5.5)

b(en+1, qh) = 0,

where ωn+1
1 = −�ut(tn+1) +

1
ΔtD�u(tn+1). Let �ρn = �u(tn) − Ph�u(tn) and �θ

n
=

Ph�u(tn)− �un
h. Then,

�θ
n ∈ Wh and is discretely divergence free, i.e.,

(5.6) b(θn, qh) = 0 ∀ qh ∈ Qh.

Because �en = �θ
n
+ �ρn, the error equation (5.5) can be recast as

1

Δt

〈〈
D�θ

n+1
, �vh

〉〉
+ a(�θ

n+1
, �vh) + aΓ(�θ

n+1
, �vh)− ãΓ(δ�θ

n+1
, �vh)

=
〈〈
ωn+1

1 , �vh

〉〉− ãΓ(δ�u(tn+1), �vh)− b(vh, p(tn+1)− pn+1
h )

− 1

Δt

〈〈
D�ρn+1, �vh

〉〉− a(�ρn+1, �vh)− aΓ(�ρ
n+1, �vh) + ãΓ(δ�ρ

n+1, �vh)

=
〈〈
ωn+1

1 , �vh

〉〉− ãΓ(δ�u(tn+1), �vh)− b(vh, Php(tn+1)− pn+1
h )

− 1

Δt

〈〈
D�ρn+1, �vh

〉〉
+ ãΓ(δ�ρ

n+1, �vh).
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Setting �vh = �θ
n+1

, noting that aΓ(�θ
n+1

, �θ
n+1

) = 0, and using (5.6) results in

(5.7)

1

Δt

〈〈
D�θ

n+1
, �θ

n+1〉〉
+ a(�θ

n+1
, �θ

n+1
)− ãΓ(δ�θ

n+1
, �θ

n+1
) =

〈〈
ωn+1

1 , �θ
n+1〉〉

− ãΓ(δ�u(tn+1), �θ
n+1

)− 1

Δt

〈〈
D�ρn+1, �θ

n+1〉〉
+ ãΓ(δ�ρ

n+1, �θ
n+1

).

Letting �wn = [�θ
n+1

, �θ
n
]T and En = |�wn|2G + CaΔt

2 ‖∇�θn+1‖2 + CaΔt
8 ‖∇�θn‖2 and

following the lines of the proof of Theorem 3.4, we have

(5.8)

En +
Ca

2
Δt
∥∥∥∇�θn+1

∥∥∥2 + Ca

4
Δt
∥∥∥∇�θn

∥∥∥2 ≤ En−1

+ CΔt

(
‖ωn+1

1 ‖2 + ‖∇δ�u(tn+1)‖2 +
∥∥∥∥ 1

Δt
D�ρn+1

∥∥∥∥2 + ‖∇δ�ρn+1‖2
)
.

By Taylor’s theorem with the integral form of the remainder, we have

(5.9) ‖ωn+1
1 ‖2 ≤ CΔt3

∫ tn+1

tn−1

‖�uttt‖2dt ≤ CΔt4‖�uttt‖2L∞(0,tn+1)

and

(5.10) ‖∇δ�u(tn+1)‖2 ≤ CΔt3
∫ tn+1

tn−1

‖∇�uttt‖2dt ≤ CΔt4‖∇�uttt‖2L∞(0,tn+1)
.

Moreover, using (5.1), we have

(5.11)

∥∥∥∥ 1

Δt
D�ρn+1

∥∥∥∥2 ≤ Ch2(k+1)

∥∥∥∥ 1

Δt
D�u(tn+1)

∥∥∥∥2
Hk+1

≤ C
h2(k+1)

Δt

∫ tn+1

tn−1

‖�ut‖2Hk+1dt ≤ Ch2(k+1)‖�ut‖2L∞(0,tn+1;Hk+1)

and

(5.12)
‖∇δ�ρn+1‖2 ≤ Ch2k‖δ�u(tn+1)‖2Hk+1 ≤ Ch2kΔt3

∫ tn+1

tn−1

‖�utt‖2Hk+1dt

≤ Ch2kΔt4‖�utt‖2L∞(0,tn+1;Hk+1).

Combining (5.8)–(5.12), we have

(5.13)

En +
Ca

2
Δt

n+1∑
i=1

∥∥∥∇�θi∥∥∥2 ≤ E0 + C

(
Δt4

∫ tn+1

0

(‖�uttt‖2 + ‖∇�uttt‖2)dt

+ h2(k+1)

∫ tn+1

0

‖�ut‖2Hk+1dt+ h2kΔt4
∫ tn+1

0

‖�utt‖2Hk+1dt

)
.

The desired finite time error estimate follows from this and the assumed bound on
the projection error �ρn.

For the uniform in time L2(Ω) bound, we again use (5.8)–(5.12) to obtain

(5.14)

En +
Ca

2
Δt
∥∥∥∇�θn+1

∥∥∥2 + Ca

4
Δt
∥∥∥∇�θn

∥∥∥2
≤ En−1 + CΔt

(
Δt4‖�uttt‖2L∞(0,∞) +Δt4‖∇�uttt‖2L∞(0,∞)

+ h2(k+1)‖�ut‖2L∞(0,∞;Hk+1) + h2kΔt4‖�utt‖2L∞(0,∞;Hk+1)

)
≤ En−1 + CΔt(Δt4 + h2(k+1)).
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Using the Poincaré inequality and the definition of the G-norm, we have

Ca

2
Δt
∥∥∥∇�θn+1

∥∥∥2 + Ca

4
Δt
∥∥∥∇�θn

∥∥∥2
≥ Ca

4
Δt
∥∥∥∇�θn+1

∥∥∥2 + Ca

8
Δt
∥∥∥∇�θn

∥∥∥2 + C2
l Ca

8C2
P

|�wn|2G.

Then, with C7 defined as in Theorem 3.4, we have from (5.14),

(1 + C7Δt)En ≤ En−1 + CΔt(Δt4 + h2(k+1)).

A simple induction argument then leads to

En ≤
( 1

1 + C7Δt

)n−2

E2 + C(Δt4 + h2(k+1))

≤ Cλn−2
1 (‖�θ1‖2 + ‖�θ0‖2) + Cλn1Δt(‖∇�θ

1‖2 + ‖∇�θ0‖2) + C(Δt4 + h2(k+1)),

where λ1 is defined as in Theorem 3.4. The bound (5.4) then follows from Corol-
lary 3.4.

The uniform in time H1(Ω)-norm error estimate on the velocity and the L2(Ω)
error estimate on the pressure can be derived as well after we combine the technique
used above with techniques from section 4. Indeed, from (5.9) and (5.10) and using
the triangle inequality, we have

(5.15) ‖∂̄ωn+1
1 ‖2 ≤ CΔt

∫ tn+1

tn−2

‖�uttt‖2dt ≤ CΔt2‖�uttt‖2L∞(0,tn+1)

and

(5.16) ‖∇∂̄δ�u(tn+1)‖2 ≤ CΔt

∫ tn+1

tn−2

‖∇�uttt‖2dt ≤ CΔt2‖∇�uttt‖2L∞(0,tn+1)
.

Moreover, by the definitions of Ph, ∂̄, and D,
(5.17)∥∥∥∥ 1

Δt
∂̄D�ρn+1

∥∥∥∥2 ≤ Ch2(k+1)

∥∥∥∥ 1

Δt
∂̄D�u(tn+1)

∥∥∥∥2
Hk+1

≤ C
h2(k+1)

Δt

∫ tn+1

tn−2

‖�utt‖2Hk+1dt ≤ Ch2(k+1)‖�utt‖2L∞(0,tn+1;Hk+1),

and by the triangle inequality and (5.12),

(5.18) ‖∇∂̄δ�ρn+1‖2 ≤ Ch2kΔt2‖�utt‖2L∞(0,tn+1;Hk+1).

We combine (5.15)–(5.18) with the stability proof of Lemma 4.1 with a small modifi-
cation for the initial steps; see Corollary 3.5. As a result, we obtain

(5.19)
‖∂̄�θn+1‖2 ≤ Cλn−2

1 (‖∂̄�θ1‖2 + ‖∂̄�θ2‖2)
+ CΔt2λn−2

1 (‖∇∂̄Ph
�θ
1‖2 + ‖∇∂̄Ph

�θ
2‖2) + C(Δt2 + h2(k+1)).

Note that

(5.20)

∥∥∥∥δ�u(ti)Δt

∥∥∥∥2 ≤ CΔt2‖�utt‖2L∞(0,ti)
,

∥∥∥∥δρi

Δt

∥∥∥∥2 ≤ CΔt2h2(k+1)‖�utt‖2L∞(0,ti;Hk+1).

Combining (5.19) and (5.20) with (5.9) and (5.11) and following the proof of Theo-
rem 4.4, we have from (5.7)
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‖∇�θn+1‖2 ≤ Cλn−2
1 (‖∂̄�θ1‖2 + ‖∂̄�θ2‖2 +Δt2(‖∇∂̄Ph

�θ
1‖2 + ‖∇∂̄Ph

�θ
2‖2))

+ C(Δt2 + h2(k+1)).

After adding the estimate of ‖∇�ρn+1‖ (see (5.1)), we obtain the bound for
‖∇(�u(tn+1)− �un+1

h )‖2.
Remark 4. The uniform in time estimates given above imply that the method

can be used to obtain an approximate solution of the steady-state equations in case
the forcing term is time independent. This follows because the truncation errors listed
in (5.8)–(5.12) vanish for the time-independent problem. Consequently, we have

‖�un
h − �un‖2 ≤ Cλn1 (‖�u0

h − �u0‖2 +Δt‖∇(�u0
h − �u0)‖2)

for the steady-state problem.
In the steady-state case, the methods we study can be viewed as a domain de-

composition method with the discrete time n playing the role of an iteration number;
see [13] for a related scheme. The current scheme also enjoys an exponential rate of
convergence, as does the iterative scheme proposed in [13].

Remark 5. Note that the uniform in time error estimate for the velocity with
respect to the H1(Ω)-norm and the uniform error estimate for the pressure are not
second-order in time. We do not know if this is an artifact of our approach. However,
our numerical experiments in the next section suggest that the long-time conver-
gence rate for the pressure approximation may very well be first-order as the analysis
suggests.

6. Numerical results. Using three numerical examples, we now illustrate the
theoretical results of the previous section.

As was done in previous work [13, 37], we set Ωf = (0, 1) × (1, 2) and Ωp =
(0, 1)× (0, 1), with Ωf and Ωp separated by the interface Γ = (0, 1)×{1}. We choose
the standard continuous piecewise-quadratic finite element space, defined with respect
to the matrix domain Ωp, for approximating the hydraulic head φ. We also choose
the Hood–Taylor element pair, defined with respect to the conduit domain Ωf , i.e.,
continuous piecewise-quadratic and continuous piecewise-linear finite element spaces
for the fluid velocity and pressure approximations, respectively. Uniform triangular
meshes are created by first dividing the rectangular domains Ωp and Ωf into identical
small squares and then dividing each square into two triangles. For illustrating the
short-time properties of our schemes, we set the final time to T = 1; for illustrating
the long-time behavior, we set T = 100.

We use two examples with exact solutions. Example 1 is taken from [37], and
Example 2 is a slight modification of an example in [8]. To illustrate the accuracy of
our schemes, we assume that the error is of the order O(hθ1 +Δtθ2). We set Δt = hθ

and quantify the numerically estimated order of convergence rθ = min(θ1, θθ2) with

respect to h by calculating rθ ≈ log2
‖u2h,θ−uexact‖l2

‖uh,θ−uexact‖l2
. Here, we use the discrete L2-

norm of nodal values to measure errors.
Example 1. We set the exact solution to [37]

uf (x, t) =
(
[x2(y − 1)2 + y] cos t,

[
− 2

3
x(y − 1)3 + 2− π sin(πx)

]
cos t

)
,

pf (x, t) = [2− π sin(πx)] sin
(π
2
y
)
cos t,

φ(x, t) = [2− π sin(πx)][1 − y − cos(πy)] cos t.
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The right-side data in the partial differential equations, initial conditions, and bound-
ary conditions are then chosen correspondingly. As done in [37], we set the parameters
γp = γf = g = S = ν = αBJSJ = 1 and K = I; also, we set α = 0.8 for the AMB2
scheme.

For Table 6.1, we set Δt = h and present results for several values of h; the
results illustrate the second-order in time accuracy for φ, uf , and pf . We also notice
that BDF2 has a significantly smaller error than AMB2, illustrating the advantage
of the former over the latter scheme, at least for this example. For Tables 6.2 and
6.3, Δt is chosen to be a power of h to illustrate the spatial convergence rates. The
results in those tables indicate that the spatial accuracy seems higher than the third-
order suggested by our analysis. The extra half-order of accuracy may be attributed
to superconvergence or superapproximation behaviors; see [12] for a study of this
phenomenon for the steady-state case.

Example 2. To illustrate the long-time behavior of our schemes, we use the
following exact solution that is a slight modification of an example in [8]:

uf (x, t) =
(
[x2y2 + e−y],

[
− 2

3
xy3 + [2− π sin(πx)]

])
[2 + cos(2πt)]

pf (x, t) = −[2− π sin(πx)] cos(2πy)[2 + cos(2πt)]

φ(x, t) = [2− π sin(πx)][−y + cos(π(1− y))][2 + cos(2πt)].

Table 6.1

Relative error and order of accuracy with respect to the spatial grid size h for Example 1 at
t = 1 and with Δt = h.

eφ eu ep
h BDF2 AMB2 BDF2 AMB2 BDF2 AMB2

1/16 5.76e-005 3.43e-003 8.26e-005 1.11e-004 1.15e-002 4.11e-002
1/32 9.53e-006 8.76e-004 1.98e-005 2.74e-005 3.02e-003 1.07e-002
1/64 2.35e-006 2.21e-004 4.85e-006 6.79e-006 7.73e-004 2.71e-003
1/128 6.00e-007 5.55e-005 1.20e-006 1.69e-006 1.96e-004 6.85e-004

ravg 2.20 1.98 2.04 2.01 1.97 1.97

Table 6.2

Same information as in Table 6.1 but for Δt = h3.5/2.

eφ eu ep
h BDF2 AMB2 BDF2 AMB2 BDF2 AMB2
1/8 6.16e-004 6.83e-004 8.14e-005 8.37e-005 2.81e-002 3.04e-002
1/16 5.39e-005 6.46e-005 7.67e-006 7.86e-006 7.71e-003 7.93e-003
1/32 4.70e-006 6.01e-006 6.99e-007 7.16e-007 2.03e-003 2.05e-003
1/64 4.13e-007 5.51e-007 6.26e-008 6.41e-008 5.22e-004 5.24e-004

ravg 3.51 3.43 3.45 3.45 1.92 1.95

Table 6.3

Same information as in Table 6.1 but for Δt = h2.

eφ eu ep
h BDF2 AMB2 BDF2 AMB2 BDF2 AMB2
1/8 6.17e-004 5.82e-004 8.11e-005 8.17e-005 2.78e-002 2.85e-002
1/16 5.40e-005 5.21e-005 7.66e-006 7.69e-006 7.65e-003 7.73e-003
1/32 4.71e-006 4.62e-006 6.99e-007 7.01e-007 2.04e-003 2.03e-003
1/64 4.13e-007 4.09e-007 6.26e-008 6.28e-008 5.22e-004 5.22e-004

ravg 3.52 3.49 3.45 3.45 1.91 1.92
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In this long-time numerical experiment, we set the terminal time T = 100 and
h = 1/64. We choose Δt = 1

128 ,
1

256 for BDF2 and Δt = 1
256 ,

1
512 for AMB2. The

relative errors are plotted in Figures 6.1–6.3. It is clear that although the errors grow
initially, they remain bounded for all time. Moreover, the second-order in time ac-
curacy for the velocity and the hydraulic head are also evident even in this onerous
long-time experiment. The long-time accuracy for the pressure seems to be first-
order in time, in agreement with our uniform in time error estimates. However, this
is in contrast to the short-time second-order in time accuracy for p as recorded in
Table 6.4.
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Fig. 6.1. Relative error for φ in Example 3 for BDF2 (left) and AMB2 (right) up to t = 100
for h = 1/64.
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Fig. 6.2. Same information as for Figure 6.1 but for uf .

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time(s)

R
el

at
iv

e 
E

rr
or

Error of Pressure for BDF

Δ t=1/128
Δ t=1/256

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Time(s)

R
el

at
iv

e 
E

rr
or

Error of Pressure for AMB

Δ t=1/128
Δ t=1/256

Fig. 6.3. Same information as for Figure 6.1 but for p.
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Table 6.4

Relative error and order of accuracy with respect to the spatial grid size h for Example 2 at
t = 1 and with Δt = h.

eφ eu ep
h BDF2 AMB2 BDF2 AMB2 BDF2 AMB2

1/16 2.05e-003 2.95e-002 1.49e-003 1.72e-003 4.88e-002 1.70e-001
1/32 4.36e-004 7.76e-003 4.18e-004 4.26e-004 1.40e-002 4.32e-002
1/64 9.84e-005 1.99e-003 1.09e-004 1.07e-004 3.64e-003 1.10e-002
1/128 2.32e-005 5.05e-004 2.75e-005 2.68e-005 9.29e-004 2.79e-003

ravg 2.15 1.96 1.92 2.00 1.91 1.98

Example 3. To test the sharpness of time-step constraints for long-time stability,
we set f = 0, f = 0 and use the same initial conditions as for Example 1 [37],

uf (x, 0) =

(
[x2(y − 1)2 + y] ,

[
−2

3
x(y − 1)3 + 2− π sin(πx)

])
,

φ(x, 0) = [2− π sin(πx)][1 − y − cos(πy)],

and a consistent initial pressure. For the boundary conditions, homogeneous Dirichlet
boundary conditions are imposed on the outside boundary ∂Ωf \ Γ and ∂Ωp \ Γ. We
set K = 10−6 (the same as in [31] and h = 1/20, but change ν, S, γp, γf ) and observe
the long-time behavior of E = ‖�u‖2 up to time T = 100.

Figure 6.4 indicates that the time-step constraint is between 1/5 and 1/4 for the
BDF2 scheme and between 1/12 and 1/9 for the AMB2 scheme. Here γf = γp = g/5.
This setup is used as the base case for comparisons with subsequent tests.
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Fig. 6.4. Energy E over time t. ν = S = g = αBJSJ = 1, γp = γf = g/5, K = 10−6, and
h = 1/20.
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Fig. 6.5. Energy E over time t. S = 10−6, ν = g = αBJSJ = 1, γp = γf = g/5, K = 10−6,
and h = 1/20.

0 20 40 60 80 100
10

−20

10
0

10
20

10
40

10
60

10
80

10
100

10
120

Δ t=1/14

t

E

BDF
AMB

0 20 40 60 80 100
10

−20

10
0

10
20

10
40

10
60

10
80

10
100

Δ t=1/15

t

E

BDF
AMB

0 20 40 60 80 100
10

−10

10
0

10
10

10
20

10
30

10
40

10
50

10
60

Δ t=1/16

t

E

BDF
AMB

0 20 40 60 80 100

10
−0.4

10
−0.3

10
−0.2

10
−0.1

Δ t=1/18

t

E

BDF
AMB

Fig. 6.6. Energy E over time t. ν = S = g = αBJSJ = 1, γp = γf = g/10, K = 10−6, and
h = 1/20.
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Fig. 6.7. Energy E over time t. ν = 10−1, S = g = αBJSJ = 1, γp = γf = g/5, K = 10−6,
and h = 1/20.

Figure 6.5 shows that the time-step constraint is between 1/14 and 1/12 for the
BDF2 scheme and is between 1/20 and 1/18 for the AMB2 scheme with a smaller
water storativity. Compared with Figure 6.4, it implies that smaller S requires more
restrictive time-step constraints.

Figure 6.6 shows that the time-step constraint is between 1/15 and 1/14 for the
BDF2 scheme and is between 1/18 and 1/16 for the AMB2 scheme with smaller
coefficient for the artificial stabilizing terms. Compared with Figure 6.4, it implies
that stronger stabilization relaxes time-step constraints.

Figure 6.7 shows that the time-step constraint is between 1/60 and 1/58 for the
BDF2 scheme and is between 1/52 and 1/50 for the AMB2 scheme with a smaller ν.
Compared with Figure 6.4, it implies that small ν leads to more restrictive time-step
constraint consistent with our analysis.

7. Concluding remarks. We proposed and investigated two long-time accurate
and efficient numerical methods for coupled Stokes–Darcy systems. The first is a
combination of the BDF2 and the second-order Gear extrapolation method. The
second is a combination of the second-order Adams-Moulton and Adams-Bashforth
methods. Our algorithms are special cases of the IMEX schemes. The interfacial term
that requires communication between the porous media and conduit, i.e., between the
Stokes and Darcy components of the model, is treated explicitly in our algorithms so
that only two decoupled problems (one Stokes and one Darcy) are solved at each time-
step. Therefore these schemes can be implemented very efficiently and, in particular,
legacy codes can be used for each component.

We have shown that our schemes are unconditionally stable and long-time stable
in the sense that solutions remain uniformly bounded in time. The uniform bound in
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time of the solution leads to uniform in time error estimates. This is a highly desirable
feature because the physically interesting phenomenon of contaminant sequestration
and release usually occurs over a very long time scale and one would like to have
faithful numerical results over such time scales. Spatial discretization is effected using
standard FEMs. Time-uniform error estimates for the Darcy hydraulic head and the
Stokes velocity and pressure for the fully discrete schemes are also presented. These
estimates are illustrated by numerical examples. The methods proposed can also
be utilized to approximate steady-state solutions in case the problem data are time
independent. All these features suggest that the two methods have strong potential
in real applications. Extended version of the current paper containing additional
material can be found in [14].

On the other hand, there is still room for improvement. One could design even
higher-order numerical methods. A third-order method was proposed in [10] with-
out analysis. We are currently developing third-order unconditionally stable schemes
based on the Adams–Moulton–Bashforth approach. It is also desirable to use different
and adaptive time-steps for the two regions involved due to the disparate time scales
in the two regions that one sees in practical situations; see, e.g., [34, 35]. Also, the
mortar element method can be naturally adopted and may be useful to efficiently
handle the different spatial scales in the two subdomains; see, e.g., [30, 21].

So far, all methods deal with confined (saturated) karst aquifers. Most aquifers are
unconfined and hence different methodologies involving either two-phase flows or free
boundaries must be considered. Models for unconfined karst aquifers are inherently
nonlinear. Mathematical investigation of unconfined karst aquifers is still in its infancy
and deserves much needed attention.

Last but not least, the application of these methods to the quantification of un-
certainty in flow and contaminant transport would be of great interest in real appli-
cations that feature uncertainty in both the conduit geometry and matrix hydraulic
conductivity.
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