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We investigate the small porosity asymptotic behavior of the coupled Stokes-
Brinkman system in the presence of a curved interface between the Stokes region 
and the Brinkman region. In particular, we derive a set of approximate solutions, 
validated via rigorous analysis, to the coupled Stokes-Brinkman system. Of 
particular interest is that the approximate solution satisfies a generalized Beavers-
Joseph-Saffman-Jones interface condition (1.9) with the constant of proportionality 
independent of the curvature of the interface.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The coupling of flow and transport in free-zone and those in porous media is ubiquitous in nature, science 
and engineering. These coupled problems are difficult to study due to the disparate time and spatial scales 
(fast in the free-zone, large scale for the porous media), the different physics based on governing equations 
(Stokes system or Navier-Stokes system for the free-zone, Darcy’s equation or its variants for the porous 
media), the associated uncertainty of the porous media, and the coupling of two different systems (see 
Fig. 1). Interested readers are referred to Nield and Bejan’s treatise [30] for more background material.

For flows at relatively small Reynolds number, it is well-accepted that the Stokes system is a valid 
governing system for the free-zone for common Newtonian fluids. On the other hand, Darcy’s equation is 
the extensively used governing law in porous media. The coupling of the two systems at the interface is 
a non-trivial issue. One irrefutable physical interface boundary condition is the continuity of the normal 
velocity which is required for conservation of mass. The other interface boundary conditions needed for the 
well-posedness of the system is less obvious. It was Beavers and Joseph who first proposed the celebrated 
Beavers-Joseph interface boundary condition in their seminal work [5]. They observed that there might be 
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Fig. 1. Schematic domain.

a gap in the tangential velocity at the interface if one neglects a thin transition layer, and the interfacial 
boundary condition that bears their names can be interpreted as the viscous force that resists such a gap is 
linearly proportional to the size of the gap with the constant of proportionality itself positively proportional 
to the viscosity and inversely proportional to the square root of the permeability. Later on, Saffman [31]
argued that the tangential velocity on the porous media side is usually much smaller than that in the free 
flow, hence it is reasonable to omit the tangential component of the porous media flow in the Beavers-Joseph 
interface boundary condition. On the other hand, Jones [24] reasoned that it is better to use the tangential 
component of the normal stress than the normal derivative of the tangential velocity in the free-flow in 
the Beavers-Joseph interface boundary condition. The reduced interface condition is commonly referred to 
as the Beavers-Joseph-Saffman-Jones interface condition (BJSJ), see equation (10c’) of [36] for instance. 
It turns out that the BJSJ interface condition is exactly the Navier slip boundary condition proposed by 
Navier almost 200 years ago [29]. An additional interface boundary condition is needed to complete the 
coupled system. The well-accepted condition within the mathematical circle is the balance of the normal 
component of the normal stress (see the second equation of (1.4)), while the popular condition among 
groundwater study community is the continuity of pressure or hydraulic head, see for instance [6]. We will 
address this discrepancy between the two communities in a separate work. See [28] for a heuristic study 
in this direction. There is a lot of recent attention to the coupled Stokes-Darcy system, see for instance 
[11,7,8,10,12,13,19,26,27] among many others.

In this work, we pay attention to the constant of proportionality in the BJSJ condition. Most researchers 
believe that the constant of proportionality in the BJSJ condition must be a true constant in the sense that 
it is independent of the location on the interface, at least in the case of flat interface as was investigated 
by Beavers and Joseph in their original work. This belief is supported by the mathematical derivation via 
homogenization by Jagers and Mikelic, also for a flat interface [20–23]. (Their rigorous homogenization 
theory approach contains the undesirable assumption that the obstacles/sand particles in the porous media 
do not touch each other.) However, for a curved interface, Dobberschutz [14] argued, also via homogenization 
theory albeit no rigorous theorem was provided, that the constant of proportionality in the BJSJ interface 
condition should depend on the local geometry. Hence there is a controversial here in terms of the dependence 
on the local geometry in the BJSJ interface boundary condition.

Here we are interested in investigating the role of the curvature on the asymptotic behavior near the 
interface and hence provides a clear answer to the dependence on the local geometry (see Lemma 4.1 for 
details). Our approach is the following. Instead of using the Darcy’s equation as the governing equation 
for flows in porous media, we utilize the Brinkman system which is one of the commonly used alternatives 
to the Darcy system if one is interested in retaining the original viscous term in the Stokes flow in the 
porous media [4,30]. In another word, the Brinkman system is considered the “true” system here. With 
the adoption of the Brinkman system which retains the viscous term, it is easy to postulate the interface 
boundary conditions, namely, the continuity of the velocity and the continuity of the normal component 
of the normal stress (balance of force). Heuristically, the viscous term is relatively small when compared 
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to the Darcy damping term at small Darcy number/permeability/porosity. Therefore, we expect to recover 
the Stokes-Darcy system as the leading order non-trivial dynamics at vanishing Darcy number/permeabil-
ity/porosity together with the associated interface boundary conditions. The curved interface necessitates 
the introduction of a curvilinear coordinates as those adopted in earlier works, see for instance [3,35]. (See 
[9] for a related result but with a flat interface.) Due to the renowned Carman-Kozeny empirical formula

Π = Π0
χ3

180(1 − χ)2 (1.1)

which relates the permeability Π to the porosity χ and the reference permeability Π0 [4,30], the small Darcy 
number limit is equivalent to the small porosity number limit if we assume that the reference porosity in 
the Carman-Kozeny relationship is a constant. This is the approach that we take here. Furthermore, we will 
assume for simplicity that

Π = χ3.

This is a valid approximation for small porosity by assuming the reference permeability is 1.
We also remark that the Stokes-Brinkman approach is related to the so-called one-domain approach.
We recall the governing steady state Stokes-Brinkman system in a two-dimensional domain Ω := Ωc∪Ωm. 

The Stokes system in the fluid region Ωc takes the form
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · T (uc, pc) = fc,
∇ · uc = 0,
periodic in x-direction,
uc |Γc

= 0,

(1.2)

and the Brinkman system in the porous media Ωm takes the form
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · T (um, pm) + μm

χ3 um = fm,

∇ · um = 0,
periodic in x-direction,
∂um

∂x2
|Γm

= vm |Γm
= 0,

(1.3)

where T (uc, pc) = 2μcD(uc) − pcI, T (um, pm) = 2μm

χ D(um) − pmI, D(uj) = ∇uj+(∇uj)t
2 , uj = (uj , vj) and 

fj = (fj1, fj2), j ∈ {c, m}. Here we have adopted a popular version of the stress tensor in the porous media 
as presented in the treatise of Nield and Bejan [30]. Other choices are available, see for instance Allaire [1].

The two systems are coupled through the following conditions on the interface Γcm{
uc = um,

ncmT (uc, pc) = ncmT (um, pm),
(1.4)

where the first interface boundary condition represents the continuity of velocity and the second interface 
boundary condition stands for the continuity of normal component of stress tensor while ncm represents the 
unit normal vector at the interface pointing from the free flow zone to the porous media zone, see Fig. 2.

For simplicity, we take μc = μm = 1, assume periodicity in x-periodic, and Ω = Ωc∪Ωm = [−1, 1] ×[−1, 1]
with a curved interface Γcm, upper boundary Γc and lower boundary Γm. To be specific, the interface Γcm

is described by a regular C3 curve: γ = γ(s) = (γ1(s), γ2(s)), where s is the arc-length parameter of 
Γcm, 0 ≤ s ≤ L. The tangential vector fields of Γcm is τ cm = (γ′

1(s), γ′
2(s)) and the unit outward normal 
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Fig. 2. Curvilinear coordinates.

vector of Γcm pointing from Ωc to Ωm is ncm = (γ′
2(s), −γ′

1(s)). Generally speaking, um and uc could 
have boundary layers near the interface Γcm and the boundary of the porous media domain Γm since small 
viscosity is somewhat equivalent to small viscosity in the porous media as we shall see below.

We adopt classical function spaces of fluid mechanics. The definitions of all of our function spaces reflect 
that we are working with a domain which is periodic in the horizontal direction. Hm = Hm

per(Ω), m a 
nonnegative integer, is the Sobolev space consisting of all functions in Ω whose weak derivatives up to order 
m are square integrable and whose weak derivative up to order m −1 are periodic in the horizontal direction, 
with the usual Sobolev norm. For instance,

V = V(Ω) := {v = (v1, v2) ∈ C∞
per(Ω)2 : divv = 0,v |Γc

= 0; ∂v1

∂x2
|Γm

= v2 |Γm
= 0},

H = H(Ω) := the closure of V in L2(Ω), (1.5)

V = V (Ω) := the closure of V in H1(Ω),

where C∞
per(Ω) represents the space of smooth function that is periodic with respect to the horizontal 

variable.
For system (1.2)-(1.4), the existence of weak solutions can be proved in a similar fashion as [2] for instance. 

For completeness, we state it in the following:

Proposition 1.1. Assume (fc, fm) ∈ H(Ω), there exists a unique weak solution (uc, um) ∈ V (Ω) to system 
(1.2)-(1.3) with the interface boundary condition (1.4).

The main purpose of this manuscript is to investigate the asymptotic behavior of the Stokes-Brinkman 
system when the porosity χ approaches zero (equivalent to vanishing Darcy number with other parameters 
fixed). This is a singular perturbation problem involving delicate boundary layer analysis. The main result 
of this manuscript is summarized in the following theorem.

Theorem 1.2. Assume that (fc, fm) ∈ Hk, k > 2 and the compatibility condition

∂x2fm1 |Γm
= ∂x1fm2 |Γm

, (1.6)

then there exists an approximate solution (uapp
j , pappj ) with j ∈ {c, m} defined in (4.2) and (4.3) satisfying 

the following convergence estimates:

‖uc − uapp
c ‖H1(Ωc) ≤ Cχ

3
2 , (1.7)

‖um − uapp
m ‖H1(Ωm) ≤ Cχ2, (1.8)
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where C is a generic constant independent of χ. Furthermore, the approximate solution (uapp
c , pappc ) and 

(uapp
m , pappm ) satisfy the approximated BJSJ interface condition on Γcm

− τ cm · (T (uapp
c , pappc )ncm) = 1

χ2 τ cm · uapp
c + χ2H(x),

ncm · (T (uapp
c , pappc )ncm) = −pappm + χG(x),

(1.9)

where H(x) and G(x) defined in (4.11) are uniformly bounded with respect to χ.

Remark 1.3. If we take T (um, pm) = 2μmD(um) − pmI as suggested by the rigorous homogenization work 
[1], and we set ε = χ

3
2 , then the Brinkman system in the porous media Ωm takes the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · T (um, pm) + μm

ε2 um = fm,

∇ · um = 0,
periodic in x-direction,
∂um

∂x2
|Γm

= vm |Γm
= 0.

(1.10)

In this case the corresponding approximated BJSJ interface condition on Γcm read

− τ cm · (T (uapp
c , pappc )ncm) = 1

ε
τ cm · uapp

c + εĤ(x),

ncm · (T (uapp
c , pappc )ncm) = −pappm + εĜ(x),

(1.11)

where Ĥ(x) and Ĝ(x) are uniformly bounded with respect to ε.

By virtue of (1.9), we easily observe that the leading order behavior of the approximate solutions does 
not depend on the local geometry of the interface. One can perform a similar asymptotic expansion in small 
porosity for the Stokes-Darcy system and arrive at the same asymptotic modulo the internal boundary layer. 
Hence, this theorem suggests that the leading order non-trivial behavior of the coupled Stokes-Brinkman 
system is captured by the coupled Stokes-Darcy system with a BJSJ type interface condition, and the 
constant of proportionality in the BJSJ condition is independent of the local geometry even in the case 
of a curved interface. Therefore, our result is in accordance with classical results but incompatible with 
Dobberschutz’s calculation [14]. Another interesting observation is that we need to adopt the version of 
the Brinkman equation consistent with Allaire’s work under special assumption on the size of the obsta-
cles in order to arrive at the commonly adopted BJSJ condition where the constant of proportionality is 
proportional to χ−3/2 as in (1.11) since Π ≈ χ−3/2 at small porosity.

The rest of the manuscript is organized as follows. In the next section we perform the formal asymptotic 
expansion in small porosity number for the Stokes-Brinkman system. We investigate the solvability of the 
outer problems and the correctors in section 3. Approximate solutions will be constructed in section 4, and 
the rigorous error estimates are presented in section 5. There is a conclusion in section 6. The derivation of 
the boundary layer (inner transition layer) system is included in Appendix A.

2. Formal asymptotic expansions

Before we study the asymptotic behavior, we introduce some preliminaries facts. For any x = (x1, x2)
and some small constant ρ > 0 in Γρ := {x ∈ Ω : dist(x, Γcm) ≤ ρ}, we denote by d(x) the signed distance 
from x to Γcm, i. e. d(x) > 0 when x ∈ Ωc, and d(x) < 0 if x ∈ Ωm, and by P (x) the point on Γcm that is 
the closest to x. Then we denote by s(x) the corresponding arc-length parameter of P (x) on the interface 
Γcm, i.e.,
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γ(s(x)) = P (x), x ∈ Γρ.

From Appendix B of [15], we easily know that P (x) is uniquely defined for any x ∈ Γρ, when ρ is small 
enough, so are d(x) and s(x).

For any x ∈ Γρ, we will use n and τ instead of ncm and τ cm in the next paragraph for simplicity. Then 
we have

γ(s(x)) − x = d(x)n(x). (2.1)

Furthermore, recall that τ (x) = (γ′
1(s(x)), γ′

2(s(x))), n(x) = (γ′
2(s(x)), −γ′

1(s(x))) and |τ | = 1, we easily 
obtain by taking derivatives in (2.1) that

∇xd(x) = −n(x), ∇xs(x) = h(x)−1τ (x), (2.2)

where h(x) = 1 + d(x)κ(s(x)) and κ(s) = γ′
1(s)γ′′

2 (s) − γ′
2(s)γ′′

1 (s) being the (principle) curvature of Γcm. 
Therefore, for any function f(x) and vector field v(x) defined in Γρ, direct computations show that

∇xf = h(x)−1τ (x)∂sf − n(x)∂df,

∇x · v = h(x)−1τ (x) · ∂sv − n(x) · ∂dv.
(2.3)

Here for f(x) defined in Γρ, the corresponding function of (s, d) is still written by f for simplicity and the 
trace of f(x) at the interface Γcm by f(s, 0) throughout the manuscript.

Based on the previous preliminaries, we consider the following Ansatz

uapp
j (t, x) =

l∑
j=0

χi(u(i)
j (t, x) + ũ(i)

j (t, s(x), d(x)
χ

)),

pappj (t, x) =
l∑

j=0
χi(p(i)

j (t, x) + p̃
(i)
j (t, s(x), d(x)

χ
)),

(2.4)

where j ∈ {c, m}. It should be mentioned that (2.4) holds under the assumption that Γρ = Ω. Throughout 
this manuscript, we will assume that Γρ = Ω for simplicity. In the general case when Γρ is a subset of Ω, one 
can introduce a truncation function of d(x) and utilize the stream function to preserve the incompressibility, 
see [18,32–34,25] for an example. Another possible way is to introduce local curvilinear coordinates as 
adopted in [35] for instance.

Define the stretched coordinate η = d(x)
χ and in the new coordinate (s, η) there holds

Δũ(i)
j = 1

χ2 ∂
2
ηηũ

(i)
j − 1

χ

κ∂ηũ(i)
j

h
+ 1

h2 ∂
2
ssũ

(i)
j − χ

ηκ′(s)
h3 ∂sũ(i)

j . (2.5)

We plug (2.4) into (1.2)-(1.4), collect terms of the same order of χ and then get the equation of every order. 
In this section we only present the equations up to the order we will need and the corresponding boundary 
conditions.
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(1) (u(i)
c , p(i)

c ), i ∈ N ∪ {0} are the outer solutions in Ωc. Particularly, (u(0)
c , p(0)

c ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · T (u(0)
c , p

(0)
c ) = fc in Ωc,

∇ · u(0)
c = 0 in Ωc,

periodic in x-direction,

u(0)
c |Γc

= 0,

u(0)
c |Γcm

= 0,

(2.6)

and (u(i)
c , p(i)

c )(i = 1, 2, 3, 4) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · T (u(i)
c , p

(i)
c ) = 0 in Ωc,

∇ · u(i)
c = 0 in Ωc,

periodic in x-direction,

u(i)
c |Γc

= 0,

u(i)
c |Γcm

= ũ(i)
m (s, 0) + u(i)

m (s, 0).

(2.7)

(2) (u(i)
m , p(i)

m ), i ∈ N ∪ {0} are the outer solutions in Ωm. More concretely,

u(i)
m = 0, i = 0, 1, 2, in Ωm, (2.8)

and (u(3)
m , p(0)

m ) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇p
(0)
m + u(3)

m = fm in Ωm,

∇ · u(3)
m = 0 in Ωm,

periodic in x-direction,

∂x2p
(0)
m |Γm

= fm2 |Γm
,

p
(0)
m |Γcm

= p
(0)
c |Γcm

.

(2.9)

And (u(4)
m , p(1)

m ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇p
(1)
m + u(4)

m = 0 in Ωm,

∇ · u(4)
m = 0 in Ωm,

periodic in x-direction,

∂x2p
(1)
m |Γm

= 0,

p
(1)
m |Γcm

= p
(1)
c (s, 0) − p̃

(1)
m (s, 0) − τ · ∂2

sdu
(0)
c (s, 0).

(2.10)

(3) (ũ(i)
c , p̃(i)

c )(s, η) = (ũ(i)
c , ̃v(i)

c , p̃(i)
c )(s, dχ ), i ∈ N ∪ {0} are the correctors to the outer solutions, i.e., the 

Prandtl-type boundary layer in the domain Ω∞
c := (−1, 1) × (0, ∞). In fact, we have

ũ(l)
c = p̃(l)

c = 0, (2.11)

where l = N ∪ {0}.
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(4) (ũ(i)
m , p(i)

m )(s, η) = (ũ(i)
m , ̃v(i)

m , p̃(i)
m )(s, dχ ), i ∈ N∪{0} are the correctors to the outer solutions, i.e., Prandtl-

type boundary layers in the domain Ω∞
m := (−1, 1) × (−∞, 0). To be specific,

ũ(0)
m = ũ(1)

m = 0. (2.12)

And (ũ(2)
m , p̃(0)

m ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂2

∂η2 ũ(2)
m + ũ(2)

m + n∂η p̃(0)
m = 0 in Ω∞

m ,

∂ηũ(2)
m · n = 0 in Ω∞

m ,

∂ηũ(2)
m |Γcm

= ∂du(0)
c (s, 0),

periodic in x-direction,

ũ
(2)
m (s, η) → 0 as η → −∞,

(2.13)

with p̃(0)
m = 0.

Also, (ũ(3)
m , p̃(1)

m ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂2

∂η2 ũ(3)
m + ũ(3)

m + n∂η p̃(1)
m = −κ∂ηũ(2)

m in Ω∞
m ,

n · ∂ηũ(3)
m = −h−1τ · ∂sũ(2)

m in Ω∞
m ,

∂ηũ(3)
m |Γcm

= ∂du(1)
c − n(τ · ∂2

sdu(0)
c )(s, 0),

periodic in x-direction,

ũ(3)
m (s, η) → 0 as η → −∞.

(2.14)

(5) The interface conditions on Γcm are very helpful to build up the relationship between the outer solutions 
and the correctors. We have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(i)
c (s, 0) = ũ(i)

m (s, 0) = 0, i = 0, 1,

u(2)
c (s, 0) = ũ(2)

m (s, 0),

u(i)
c (s, 0) = ũ(i)

m (s, 0) + u(i)
m (s, 0), i = 3, 4,

(2.15)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ηũ(2)
m (s, 0) = ∂du(0)

c (s, 0), p
(0)
c (s, 0) = p

(0)
m (s, 0),

∂ηũ(3)
m (s, 0) = ∂du(1)

c (s, 0) − n(τ · ∂2
sdu

(0)
c )(s, 0),

[p(1)
m + p̃

(1)
m − p

(1)
c ](s, 0) = −τ · ∂2

sdu
(0)
c (s, 0).

(2.16)

The equations in Ωc or Ωm and boundary conditions on γc or γm in (2.6)-(2.11) can be derived directly 
and the details are omitted. The detailed calculations of getting (2.12)–(2.16) will be represented in the 
Appendix. The process of solving these closed systems will be shown in next section.
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3. Solvability of the outer solutions and correctors

In this section, we will state the well-posedness of solutions to the outer systems and the boundary layer 
systems. First, we focus on the outer systems. The corresponding closed systems are given in section 2 and 
then the well-posedness results follow in this section.

(1) (u(0)
c , p(0)

c ) satisfies (2.6).
(2) (u(1)

c , p(1)
c ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · T (u(1)
c , p

(1)
c ) = 0,

∇ · u(1)
c = 0,

periodic in x-direction,

u(1)
c |Γc

= 0,

u(1)
c (s, 0) = 0.

(3.1)

From the above system, we easily deduce that

u(1)
c = p(1)

c = 0.

In fact, we mention that p(1)
c is a constant according to the system (3.2). For simplicity, we take p(1)

c = 0.
(3) (u(2)

c , p(2)
c ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · T (u(2)
c , p

(2)
c ) = 0,

∇ · u(2)
c = 0,

periodic in x-direction,

u(2)
c |Γc

= 0,

u(2)
c (s, 0) = ∂du(0)

c (s, 0).

(3.2)

(4) (u(3)
c , p(3)

c ) satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · T (u(3)
c , p

(3)
c ) = 0,

∇ · u(3)
c = 0,

periodic in x-direction,

u(3)
c |Γc

= 0,

u(3)
c (s, 0) = ∂du(1)

c (s, 0) − 2n(τ · ∂2
sdu

(0)
c )(s, 0) + u(3)

m (s, 0).

(3.3)

It is then easy to deduce from Theorem 1.1 and Theorem 5.2 of [16] that

Theorem 3.1. Given fc ∈ Hk(Ωc) for some given k, there exists a strong solution (u(0)
c , p(0)

c ) to (2.6) and then 
get solutions (u(i)

c , p(i)
c )(i = 2, 3) to (3.2) and (3.3), respectively. Furthermore, it follows that (u(0)

c , p(0)
c ) ∈

Hk+2(Ωc) ×Hk+1(Ωc) and (u(2)
c , p(2)

c ) ∈ Hk+1(Ωc) ×Hk(Ωc) and (u(3)
c , p(3)

c ) ∈ Hk(Ωc) ×Hk−1(Ωc).

(5) (u(3)
m , p(0)

m ) satisfies (2.9).
Now we are in the position to solve the system (2.9). Specifically, applying ∇ · u(3)

m = 0 to the first 
equation of (2.9), then we arrive at
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δp
(0)
m = ∇ · fm,

p
(0)
m |Γcm

= p
(0)
c (s, 0),

periodic in x-direction,

∂x2p
(0)
m |Γm

= fm2 |Γm
.

(3.4)

For the above elliptic system, we easily obtain the solvability and regularity as the classical theory of 
[17]. We will summarize it below.

(6) (u(4)
m , p(1)

m ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇p
(1)
m + u(4)

m = 0,

∇ · u(4)
m = 0,

periodic in x-direction,

∂x2p
(1)
m |Γm

= 0,

p
(1)
m |Γcm

= p
(1)
c (s, 0) − p̃

(1)
m (s, 0) − τ · ∂2

sdu
(0)
c (s, 0).

(3.5)

For system (3.5), we have the same technique to deal with as the above (2.9). Then we arrive at the 
following theorem:

Theorem 3.2. Given fm ∈ Hk(Ωm) for some given k, there exists a strong solution (u(3)
m , p(0)

m )) ∈ Hk(Ωm) ×
Hk+1(Ωm) to system (2.9). Also, there exists a strong solution (u(4)

m , p(1)
m )) ∈ Hk−1(Ωm) ×Hk(Ωm) to system 

(3.5).

The following boundary condition on Γm will ensure the boundary condition in (4.5) of the approximate 
solution defined in (4.3).

Proposition 3.3. If the compatibility condition (1.6) holds, then

∂x2u
(3)
m |Γm

= v(3)
m |Γm

= 0. (3.6)

Proof. Due to (2.9) and

∂x2p
(0)
m |Γm

= fm2 |Γm
,

one has

v(3)
m |Γm

= 0. (3.7)

It follows from (1.6) and (2.9) that

∂x2u
(3)
m |Γm

= ∂x2fm1 |Γm
−∂x2x1p

(0)
m |Γm

= ∂x2fm1 |Γm
−∂x1fm2 |Γm

= 0. (3.8)

Hence we end the proof of this proposition. �
Second, we are ready to investigate the boundary layer systems satisfied by ũ(2)

m and ũ(3)
m .

(7) (ũ(2)
m , p̃(0)

m ) satisfies (2.13).
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By using p̃(0)
m ≡ 0 we get −∂2

ηηũ
(2)
m + ũ(2)

m = 0 with the corresponding boundary conditions and then can 
write the formula of solutions as the following

Theorem 3.4. Assume that fc ∈ Hk(Ωc) for some given k. Then there exists ũ(2)
m ∈ Hk+ 1

2 (Ω∞
m ) with the 

form of
⎧⎨
⎩

ũ(2)
m (s, η) = ∂du(0)

c (s, 0) eη,

p̃
(0)
m (s, η) = 0.

(3.9)

(8) (ũ(3)
m , p̃(1)

m ) satisfies (2.14).

Similarly we can write the formula of the solutions as

Theorem 3.5. Assume that fc ∈ Hk(Ωc) for some given k, then there exists ũ(3)
m ∈ Hk− 1

2 (Ω∞
m ) with the form 

of
⎧⎪⎨
⎪⎩

ũ(3)
m (s, η) = κ

2∂du
(0)
c ηeη + Aeη,

p̃(1)
m (s, η) = 0,

(3.10)

where

A = ∂du(1)
c (s, 0) − 2n(τ · ∂2

sdu(0)
c )(s, 0).

4. Approximate solutions

With the outer solutions and correctors (u(i)
j , p(i)

j ), (ũ(i)
j , p̃(i)

j ), j ∈ {c, m} and i ∈ N ∪{0} in hand, we are 
now in a position to construct approximate solutions with the given Ansatz (2.4).

Before that, we first introduce a cut-off function to ensure that the approximate solutions uapp
j , j ∈ {c, m}, 

given below, satisfying the boundary conditions as the original system (1.2)-(1.3). Let 	(z) be a smooth 
cut-off function with

	(z) =
{

0, z ∈ [−3
4 ,−1],

1, z ∈ [−1
4 , 0].

(4.1)

Then we define the modified approximate solutions as

uapp
c (s, d) = u(0)

c (s, d) + χu(1)
c (s, d) + χ2u(2)

c (s, d) + χ3u(3)
c (s, d),

pappc (s, d) = p(0)
c (s, d) + χp(1)

c (s, d) + χ2p(2)
c (s, d),

(4.2)

and

uapp
m (s, d) = χ2	(d)ũ(2)

m (s, d
χ

) + χ3(u(3)
m (s, d) + 	(d)ũ(3)

m (s, d
χ

)),

pappm (s, d) = p(0)
m (s, d) + χp(1)

m (s, d),
(4.3)

where we used the facts that ũ(i)
c = p̃

(j)
c = ũ(0)

m = ũ(1)
m = u(j)

m = p̃
(0)
m = p̃

(1)
m = 0 with i = 0, 1, 2, 3 and 

j = 0, 1, 2 from (2.11), (2.12), (3.9) and (3.10), respectively.
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Then utilizing the above mentioned system of (u(i)
c , p(j)

c ), i = 0, · · · , 3 and j = 0, 1, 2 and also 
(u(3)

m , ũ(2)
m , ũ3

m, p(0)
m , p(1)

m ), and (3.6) we find that (uapp
c , pappc ) and (uapp

m , pappm ) satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · T (uapp
c , pappc ) = fc in Ωc,

∇ · uapp
c = 0 in Ωc,

uapp
c |Γc

= 0

(4.4)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∇ · T (uapp
m , pappm ) + 1

χ3 uapp
m = fm + gerr

m in Ωm,

∇ · uapp
m = χ3w(x) in Ωm,

∂x2u
app
m |Γm

= vappm |Γm
= 0

(4.5)

and the interface conditions on Γcm

⎧⎨
⎩

uapp
c (s, 0) = uapp

m (s, 0),

ncmT (uapp
c , pappc ) = ncmT (uapp

m , pappm ) − γerr,
(4.6)

where

w(x) = 	(d)h−1τ · ∂sũ(3)
m + 	′(d)n · ũ(3)

m , (4.7)

gerr
m = χ(−∇p(1)

m − h−1τ∂sp̃
(1)
m − 1

h2 ∂
2
ssũ(2)

m − 	(d)κ∂ηũ
(3)
m

h

+ 2χ2(	′(d)∂ηũ(3)
m ) + χ2(Δu(3)

m + Δ	(d)ũ(3)
m + ηκ′(s)

h2 ∂sũ(2)
m − 	

h2 ∂
2
ssũ(3)

m ) + χ3	(d)ηκ
′(s)
h2 ∂sũ(3)

m , (4.8)

γerr = χ2p(2)
c n. (4.9)

The following lemma shows, as we mentioned after Theorem 1.2, the leading order system of the approx-
imate solutions we constructed here is inconsistent with the result of Dobberschutz [14], i.e., it does not 
depend on the geometry of the interface.

Lemma 4.1. Given (fc, fm) ∈ Hk(Ωc) × Hk(Ωm) for some give k, then (uapp
c , pappc ) ∈ Hk × Hk−1 and 

(uapp
m , pappm ) ∈ Hk− 1

2 ×Hk. Moreover,

− τ cm · (T (uapp
c , pappc )ncm) |Γcm

= 1
χ2 τ cm · uapp

c |Γcm
+χ2H(x),

ncm · (T (uapp
c , pappc )ncm) |Γcm

= −pappm |Γcm
+χG(x),

(4.10)

where
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H(x) = −κ(τ · ∂du(0)
c )(s, 0) + τ · ∂du(2)

c (s, 0)

− χκ(τ · ∂du(1)
c )(s, 0) − χ(n · ∂su(3)

m )(s, 0)

+ χ(τ · ∂du(3)
c (s, 0) + 2χ∂s(τ · ∂2

sdu(0)
c )(s, 0) ∈ Hk− 3

2 (Γcm),

G(x) = −2(τ · ∂2
sdu(0)

c )(s, 0) + 2χ(τ · ∂2
sdu(0)

c )(s, 0)

− χp(2)
c (s, 0) − 2χ2(τ · ∂su(3)

c )(s, 0) ∈ Hk− 3
2 (Γcm).

(4.11)

Proof of Lemma 4.1. According to the definition of (4.2), (4.3) and (4.11), we easily get the regularity of 
(uapp

c , pappc ), (uapp
m , pappm ) and H, G respectively. Now we aim to show (4.10). For clearness, we divide the 

proof in the three steps.
Step I: We first prove that

(n · ∂su(2)
c )(s, 0)

= ∂s(n · ∂du(0)
c )(s, 0) + κ(τ · u(2)

c )(s, 0) (4.12)

= ∂s(τ · ∂su(0)
c )(s, 0) + κ(τ · ∂du(0)

c )(s, 0)

= κ(τ · ∂du(0)
c )(s, 0).

In fact, in the first equation, we utilize the fact that u(2)
c (s, 0) = ∂du(0)

c (s, 0) and that ∂sn = −κτ , where 
κ is the curvature of Γcm. In the second equation, we use the divergence free condition of u(0)

c , i.e., h−1τ ·
∂su(0)

c −n · ∂du(0)
c = 0 and h |Γcm

= 1. Utilizing that u(0)
c (s, 0) = 0, we easily ∂su(0)

c (s, 0) = 0, which implies 
the last equation in (4.12).

Using the similar technique to get (4.12) and the last equation of (3.3), we can prove that

(n · ∂su(3)
c )(s, 0)

= ∂s(n · u(3)
c )(s, 0) + κ(τ · u(3)

c )(s, 0)

= ∂s(n · ∂du(1)
c (s, 0)) − 2∂s(τ · ∂2

sdu(0)
c (s, 0))

+ κτ · ∂du(1)
c (s, 0) + (n · ∂su(3)

m )(s, 0)

= −2∂s(τ · ∂2
sdu(0)

c ) + κτ · ∂du(1)
c (s, 0) + (n · ∂su(3)

m )(s, 0). (4.13)

Step II: Now we focus on the left hand side of (4.10). First,

τ cm · (T (uapp
c , pappc )ncm) |Γcm

= [h−1n · ∂suapp
c − τ · ∂duapp

c ] |Γcm

= [h−1n · ∂su(0)
c − τ · ∂du(0)

c ] |Γcm
+χ[h−1n · ∂su(1)

c − τ · ∂du(1)
c ] |Γcm

+ χ2[h−1n · ∂su(2)
c − τ · ∂du(2)

c ] |Γcm
+χ3[h−1n · ∂su(3)

c − τ · ∂du(3)
c ] |Γcm

.

(4.14)

Then utilizing the boundary condition that u(l)
c (s, 0) = 0, l = 0, 1, and the divergence free conditions 

h−1τ · ∂su(l)
c −n · ∂du(l)

c = 0, we derive the relationship: n · ∂du(l)
c (s, 0) = 0, which ensure that the equation 

(4.14) has the following concise form:
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τ cm · (T (uapp
c , pappc )ncm) |Γcm

= −(τ · ∂du(0)
c )(s, 0) − χ(τ · ∂du(1)

c )(s, 0)

− χ2(τ · ∂du(2)
c )(s, 0) + χ2κ(τ · ∂du(0)

c )(s, 0)

+ χ3κ(τ · ∂du(1)
c (s, 0)) + χ3(n · ∂su(3)

m )(s, 0)

− χ3(τ · ∂du(3)
c )(s, 0) − 2χ3∂s(τ · ∂2

sdu(0)
c )(s, 0),

(4.15)

where we utilized (4.12) and (4.13) on the right hand of (4.15).
Secondly,

τ · uapp
c |Γcm

= (τ · u(0)
c )(s, 0) + χ(τ · u(1)

c )(s, 0) + χ2(τ · u(2)
c )(s, 0) + χ3(τ · u(3)

c )(s, 0)

= χ2(τ · ∂du(0)
c )(s, 0) + χ3(τ · ∂du(1)

c )(s, 0).
(4.16)

Then from (4.15) and (4.16), we conclude that

−τ cm · (T (uapp
c , pappc )ncm) |Γcm

= 1
χ2 τ · uapp

c |Γcm
+χ2H(x).

Similarly, by utilizing the boundary condition u(l)
c (s, 0) = 0, l = 0, 1 and the divergence free condition 

(n · ∂dul
c)(s, 0) = 0, l = 0, 1, and also using the equations of (2.9)4 and (2.16)3, we easily verify that

ncm · (T (uapp
c , pappc )ncm) |Γcm

+pappm |Γcm

= [2n2
1∂1u

app
c + 2n1n2(∂1v

app
c + ∂2u

app
c ) + 2n2

2∂2v
app
c − pappc + pappm ] |Γcm

= 2(n · ∂du(0)
c )(s, 0) + (p(0)

m − p(0)
c )(s, 0) + 2χ(n · ∂du(1)

c )(s, 0)

+ χ(p(1)
m − p(1)

c )(s, 0) + 2χ2(n · ∂du(2)
c )(s, 0) − χ2p(2)

c (s, 0) + 2χ3(n · ∂du(3)
c )(s, 0)

= −2χ(τ · ∂2
sdu(0)

c )(s, 0 + 2χ2(τ · ∂2
sdu(0)

c )(s, 0) − χ2p(2)
c (s, 0) − 2χ3(τ · ∂su(3))(s, 0)

= χG(x).

(4.17)

There we end the proof. �
5. Error estimates

In this section, we intend to complete the proof of our main result Theorem 1.2. In fact, the well-
posedness of approximate solutions satisfying the BJSJ interface condition (1.9) have been verified in the 
previous sections. Now we are in the position to deal with the convergence rate of the error solution. Namely, 
we intend to prove the energy estimate of the error solution and derive the corresponding convergence rate 
about the parameter χ.

Noticing that the approximate solutions uapp
m in (4.5) lose the divergence free condition, which will in 

turn lead to the lost of the error solution. Motivated by [18], we introduce another function ψ(x) satisfying 
the following system

{
Δψ = w(x) in Ωm,

ψ |Γcm
= ∂x2ψ |Γm

= 0,
(5.1)
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where w(x) is defined in (4.7). The existence and regularity of ψ can be obtained by the standard elliptic 
theory, see [17] for instance. More precisely, we have

‖ψ‖H2(Ωm) ≤ C‖w(x)‖L2(Ωm)

≤ Cχ
1
2 (‖∂sũ(3)

m ‖L2(Ω∞
m ) + ‖ũ(3)

m ‖L2(Ω∞
m ))

≤ Cχ
1
2 ,

(5.2)

where we used ‖ũ(3)
m ‖L2(Ωm) ≤ Cχ

1
2 ‖ũ(3)

m ‖L2(Ω∞
m ) and C is a generic constant, independent of χ. Similarly, 

we have

‖ψ‖H3(Ωm) ≤ C‖w(x)‖H1(Ωm) ≤ Cχ− 1
2 . (5.3)

Now we define F = (F1, F2) := ∇ψ, then we derive that ∇ · F = w(x) satisfying ∂x2F1 |Γm
= F2 |Γm

= 0
with the regularity estimate

‖F ‖H1(Ωm) ≤ C‖ψ‖H2(Ωm) ≤ Cχ
1
2 ,

‖F ‖H2(Ωm) ≤ C‖ψ‖H3(Ωm) ≤ Cχ− 1
2 .

(5.4)

Moreover, out of the following need we extend (one can refer to Theorem 7.25 in [17]) F from Ωm to Ω such 
that F

∣∣
Γc

= 0 and

‖F ‖H1(Ω) ≤ C‖F ‖H1(Ωm) ≤ Cχ
1
2 ,

‖F ‖H2(Ω) ≤ C‖F ‖H2(Ωm) ≤ Cχ− 1
2 .

(5.5)

Next we define the modified error functions for j ∈ {c, m},

uerr
c = uc − uapp

c ,uerr
m = um − uapp

m − χ3F , perrj = pj − pappj . (5.6)

For simplicity, we also use the notation for j ∈ {c, m}, uerr
j = (uerr

j , verrj ). Then the error solution 
(uerr

j , perrj ), j ∈ {c, m} respectively satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · T (uerr
c , perrc ) = 0,

∇ · uerr
c = 0,

uerr
c |Γc

= 0,

(5.7)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · T (uerr
m , perrm ) + 1

χ3 uerr
m = −ĝerr

m ,

∇ · uerr
m = 0,

∂uerr
m

∂x2
|Γm

= verrm |Γm
= 0

(5.8)

with the interface condition on Γcm
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⎧⎨
⎩

uerr
c (s, 0) = uerr

m (s, 0) + χ3F ,

n · T (uerr
c , perrc )(s, 0) = n · T (uerr

m , perrm )(s, 0) + γ̂err(s, 0),
(5.9)

where

ĝerr
m = gerr

m − χ2ΔF + F , (5.10)

and

γ̂err = γerr + 2χ2n ·D(F ). (5.11)

Recall that γerr is defined in (4.9), then the order of γ̂err about χ in (5.11) is O(χ2), which is crucial 
to derive the error estimate in the following Theorem. Otherwise, the decay rate of Duerr

c will be worse.
In order to prove Theorem 1.2, noting (5.5) and the definition of the error function (5.7), we only need 

to prove the following theorem.

Theorem 5.1. We have

‖Duerr
c ‖L2(Ωc) ≤ Cχ

3
2 , ‖uerr

m ‖L2(Ωm) ≤ Cχ3, ‖Duerr
m ‖L2(Ωm) ≤ Cχ2,

here C is a generic constant independent of χ.

Proof. Multiplying (5.7) by uerr
c and (5.8) by uerr

m and integrating by parts leads to

−
∫

Γcm

(
n · T (uerr

c , perrc )
)
· uerr

c ds + 2
∫
Ωc

|D(uerr
c )|2dx = 0,

and ∫
Γcm

(
n · T (uerr

m , perrm )
)
· uerr

m ds + 2
χ

∫
Ωm

|D(uerr
m )|2dx + 1

χ3

∫
Ωm

|uerr
m |2dx =

∫
Ωm

ĝerr
m · uerr

m dx.

By adding the above two equalities together and using (5.9) we can get

2
∫
Ωc

|D(uerr
c )|2dx + 2

χ

∫
Ωm

|D(uerr
m )|2dx + 1

χ3

∫
Ωm

|uerr
m |2dx

=
∫

Γcm

n · [T (uerr
c , perrc ) − T (uerr

m , perrm )] · uerr
m ds

+ χ3
∫

Γcm

n · T (uerr
c , perrc ) · F −

∫
Ωm

ĝerr
m · uerr

m dx

=
∫

Γcm

γ̂erruerr
m ds + χ3

∫
Γcm

n · T (uerr
c , perrc ) · F −

∫
Ωm

ĝerr
m · uerr

m dx (5.12)

=
∫

Γcm

γ̂erruerr
c ds + χ3

∫
Γcm

γ̂err · F ds−
∫

Ωm

ĝerr
m · uerr

m dx + χ3
∫

Γcm

n · T (uerr
c , perrc ) · F dx

:= I1 + I2 + I3 + I4.
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Now we are at the stage to prove from I1 to I4 in (5.12). First, utilizing the Trace inequality, Poincare 
inequality and the Young inequality and recalling the equality (4.9), we easily find

I1 =
∫

Γcm

γ̂erruerr
c ds

= χ2
∫

Γcm

[p(2)
c n + 2n ·D(F )] · uerr

c ds

≤ 1
2

∫
Ωc

|D(uerr
c )|2dx + χ4(‖p(2)

c ‖2
L2(Γcm) + ‖DF ‖2

L2(Γcm))

≤ 1
2

∫
Ωc

|D(uerr
c )|2dx + χ4‖F ‖2

H1(Ωc) + Cχ4,

≤ 1
2

∫
Ωc

|D(uerr
c )|2dx + Cχ3, (5.13)

where we use the inequality (5.5).
Similarly, we derive that

I2 = χ3
∫

Γcm

γ̂err · F ds

≤ χ3‖uerr
c ‖L2(Γcm)(‖p(2)

c ‖L2(Γcm) + ‖∇F ‖L2(cm))

≤ 1
2‖Duerr

c ‖2
L2 + Cχ5. (5.14)

As for I3 one has

I3 =
∫

Ωm

ĝerr
m · uerr

m dx

≤ 1
2χ3

∫
Ωm

|uerr
m |2dx + χ3

∫
Ωm

|ĝerr
m |2dx

≤ 1
2χ3

∫
Ωm

|uerr
m |2dx + χ3(‖gerr

m ‖2
L2 + χ3‖F ‖2

H2 + ‖F ‖2
L2)

≤ 1
2χ3

∫
Ωm

|uerr
m |2dx + Cχ4. (5.15)

It follows from (5.7)1, F1
∣∣
Γc

= F2
∣∣
Γc

= 0 and integration by parts that

I4 = χ3
∫

Γcm

ncm · T (uerr
c , perrc ) · F ds

= −χ3
∫
Γc

nc · T (uerr
c , perrc ) · F ds + χ3

∫
Ωc

T (uerr
c , perrc ) · ∇F dx
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= χ3
∫
Ωc

T (uerr
c , perrc ) · ∇F dx

≤ χ3‖∇F ‖L2(Ωc)(‖Duerr
c ‖L2 + ‖perrc ‖L2)

≤ Cχ3‖F ‖H1(Ωc)‖Duerr
c ‖L2(Ωc)

≤ 1
2‖Duerr

c ‖2
L2(Ωc) + Cχ7, (5.16)

where we assume that 
∫
Ωc

perrc dx = 0 and utilize the generalized Poincaré inequality from [16] and (5.7), 
then we arrive at

∥∥perrc

∥∥
L2(Ωc)

≤ C
∥∥∇perrc

∥∥
H−1(Ωc)

≤ C
∥∥Duerr

c

∥∥
L2(Ωc)

.

With the help of (5.13)-(5.16) one has
∫
Ωc

|D(uerr
c )|2dx + 2

χ

∫
Ωm

|D(uerr
m )|2dx + 1

2χ3

∫
Ωm

|uerr
m |2dx (5.17)

≤ χ3
∫

Ωm

|ĝerr
m |2dx + Cχ4. (5.18)

By means of the explicit formula of ĝerr
m in (5.10), it easily reduces that

χ3
∫

Ωm

|ĝerr
m |2dx ≤ Cχ3, (5.19)

where we used the uniform estimate of ‖F ‖H2(Ωm) in (5.4).
At the end, (5.17) and (5.19) immediately imply

‖Duerr
c ‖L2(Ωc) ≤ C

(
χ3‖ĝerr

m ‖L2(Ωm) + χ4) 1
2 ≤ Cχ

3
2 ,

‖uerr
m ‖L2(Ωm) ≤ C

(
χ6‖ĝerr

m ‖L2(Ωm) + χ7) 1
2 ≤ Cχ3,

‖Duerr
m ‖L2(Ωm) ≤ C

(
χ4‖ĝerr

m ‖L2(Ωm) + χ5) 1
2 ≤ Cχ2.

Therefore, we easily complete the proof of the theorem. �
At the end, we want to verify that the accurate solution of the coupled Stokes-Brinkman system satisfies 

the generalized Beaver-Joseph-Saffman-Jones interface boundary condition at the curved interface as the 
approximate solution in Lemma 4.1.

Theorem 5.2. For the error solution (uerr
c , perrc ), we have

∥∥∥∥τ cm · (T (uerr
c , perrc )ncm) + 1

χ2 τ cm · uerr
c

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ

1
2 . (5.20)

Moreover, the accurate solution (uc, pc) of Stokes-Brinkman system satisfies
∥∥∥∥τ cm · (T (uc, pc)ncm) + 1

χ2 τ cm · uc

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ

1
2 . (5.21)
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Here C is a generic constant independent of χ.

Proof. Firstly we focus on the proof of (5.20). In step 1, we prove that
∥∥∥∥T (uerr

c , perrc )ncm

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ

3
2 . (5.22)

For any q ∈ H
1
2 (Γcm) which is x-periodic, we extend q to Ωc ∪ Γc ∪ Γcm such that

q ∈ H1(Ωc), q
∣∣
Γc

= 0.

Then with the help of (5.7)1 we have

∫
Γcm

(
T (uerr

c , perrc )ncm

)
· qds =

∫
Ωc

((
∇ · T (uerr

c , perrc )
)
· q +

(
T (uerr

c , perrc ) : ∇q
))

dx

=
(
T (uerr

c , perrc ) : ∇q
))

dx, (5.23)

which immediately implies
∥∥∥∥(T (uerr

c , perrc )ncm

∥∥∥∥
H− 1

2 (Γcm)
≤

∥∥∥∥T (uerr
c , perrc )

∥∥∥∥
L2(Ωc)

≤ 2
∥∥∥∥D(uerr

c )
∥∥∥∥
L2(Ωc)

+
∥∥∥∥perrc

∥∥∥∥
L2(Ωc)

. (5.24)

Assuming that 
∫
Ωc

perrc dx = 0 and using the generalized Poincaré inequality of [16] lead to

∥∥perrc

∥∥
L2(Ωc)

≤ C
∥∥∇perrc

∥∥
H−1(Ωc)

≤ C
∥∥uerr

c

∥∥
H1(Ωc)

≤ Cχ
3
2 .

In step 2, we prove
∥∥∥∥uerr

c

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ3. (5.25)

Based on the similar arguments in (5.23)-(5.24), the first interface condition in (5.9), ∇ · uerr
m = 0 and 

Theorem 5.1, one has

‖uerr
c ‖L2(Γcm) = ‖uerr

m ‖L2(Γcm) + χ3‖F ‖L2(Γcm)

≤ C‖uerr
m ‖

1
2
L2(Ωm)‖Duerr

m ‖
1
2
L2(Ωm) + χ3‖F ‖H1(Ωm)

≤ Cχ
5
2 .

It follows from (5.22) and (5.25) that
∥∥∥∥τ cm · T (uerr

c , perrc )ncm

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ

3
2 ,

∥∥∥∥τ cm · uerr
c

∥∥∥∥
H− 1

2 (Γcm)
≤ Cχ

5
2 ,

which completes the proof of (5.20).
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Secondly, we will prove (5.21). From (4.10) and ‖H(x)‖L2(Γcm) = O(1) one gets

‖τ cm · (T (uapp
c , pappc )ncm) + 1

χ2 τ cm · uapp
c ‖L2(Γcm) ≤ Cχ2,

which combined with (5.20) imply the result of (5.21).
Consequently we complete the proof of this theorem. �

6. Conclusion

We have derived the asymptotic behavior of the Stokes-Brinkman system with a curved interface at 
the physically important small porosity number regime. The expansion involves a boundary layer near the 
interface which renders the approximation a singular one. The asymptotic expansion is rigorously verified 
via energy methods. The explicitly constructed approximate solutions suggest that the leading order non-
trivial behavior of the coupled Stokes-Brinkman system is independent of the curvature of the interface, 
at least in terms of a generalized Beavers-Joseph-Saffman-Jones interface boundary condition. Our work is 
the first of this kind with a curved interface. Furthermore, we observed that the exact scaling in terms of 
the dependence on the porosity in the BJSJ condition can be recovered if we adopt Allaire’s version of the 
Brinkman system. Rigorous convergence of the leading order non-trivial solution to that of the Stokes-Darcy 
system with appropriate BJSJ interface condition will be furnished in a subsequent manuscript.
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Appendix A. Derivation of the boundary layer system

A.1. Derive of system (2.12)–(2.16)

Here we derive the boundary layer system (2.12)–(2.16). First, we insert the ansatz (2.4) into (1.3) and 
collect different orders of χ, we arrive at

⎧⎪⎨
⎪⎩

− ∂2

∂η2 ũ(0)
m + ũ(0)

m = 0,

∂ηũ(0)
m · n = 0,

(A.1)

and ⎧⎪⎨
⎪⎩

− ∂2

∂η2 ũ(1)
m + ũ(1)

m = −κ∂ηũ(0)
m ,

h−1τ · ∂sũ(0)
m + ∂ηũ(1)

m · n = 0,
(A.2)

and
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⎧⎨
⎩

− ∂2

∂η2 ũ(2)
m + ũ(2)

m + n∂ηp̃(0)
m = ∂2

ssũ
(0)
m − κ∂ηũ(1)

m + κη∂ηũ(0)
m ,

n · ∂ηũ(2)
m = −h−1τ · ∂sũ(1)

m ,
(A.3)

and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂2
ηηũ

(3)
m + ũ(3)

m + n∂η p̃(1)
m = −h−1κ(∂ηũ(2)

m + η∂ηũ(1)
m )

+h−2(∂2
ssũ

(1)
m + η∂2

ssũ
(0)
m ) + h−2ηκ′(s)∂sũ(0)

m − h−1τ∂sp̃
(0)
m ,

n · ∂ηũ(3)
m = −h−1τ · ∂sũ(2)

m .

(A.4)

Next we verify first half of (2.12), i.e.,

ũ(0)
m = 0. (A.5)

In fact, according to the fact that n only depends on s, independent of η, we substitute the divergence free 
condition (A.1)2 to (A.1)1, then we easily derive that

n · ũ(0)
m = 0, (A.6)

which implies that

ṽ(0)
m = 0 in Ω∞

m .

Utilizing (A.13)1 and (A.1)2, we deduce that

∂ηũ(0)
m (s, 0) = 0. (A.7)

With the help of equation ũ(0)
m (x, z) of (A.1)1, which is

−∂2
ηηũ(0)

m + ũ(0)
m = 0,

the boundary condition (A.7) and the decay property of ũ(0)
m (s, η), i.e., ũ(0)

m (s, η) → 0 as η goes to −∞, we 
easily derive that

ũ(0)
m = 0 in Ω∞

m . (A.8)

Therefore it guarantees (A.5). A similar technique can be applied to (A.2) to derive the second half of (2.12), 
i.e.,

ũ(1)
m = 0. (A.9)

We leave the details to the interested reader.
Now we claim that

p̃(0)
m = 0

and system (2.13) of ũ2
m. First we will return to system (A.3) with ũ(0)

m = ũ(1)
m = 0, then (A.3) has the new 

form as
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⎧⎪⎨
⎪⎩

− ∂2

∂η2 ũ(2)
m + ũ(2)

m + n∂η p̃(0)
m = 0,

n · ∂ηũ(2)
m = 0.

(A.10)

Then by means of the divergence free condition (A.10)2, differentiating (A.10)1 with respect to η-variable, 
and multiplying by the normal vector n, then using again the divergence free condition, we have

∂2
ηηp̃

(0)
m = 0.

Moreover, with the help of the decay condition of p̃0
m, we verify that

p̃(0)
m = 0, (A.11)

which finally complete (2.12). Then we easily verify the validity of (2.13).

A.2. Derive the interface condition on Γcm

Applying the ansatz (2.4) into (1.4), comparing the order of χ and noting (2.6), (2.11) and (2.12), we 
directly obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(0)
c (s, 0) = ũ(0)

m (s, 0) = 0,

u(1)
c (s, 0) = ũ(1)

m (s, 0) = 0,

u(2)
c (s, 0) = ũ(2)

m (s, 0),

u(i)
c (s, 0) = u(i)

m (s, 0) + ũ(i)
m (s, 0), i ≥ 3,

(A.12)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ηũ(0)
m (s, 0) = 0,

∂ηũ(1)
m (s, 0) = 0,

∂ηũ(2)
m (s, 0) = ∂du(0)

c (s, 0),

(A.13)

and for i ≥ 3,

∂ηũ(i)
m (s, 0) = −(n · ∂ηũ(i−1)

m (s, 0))n − τ (n · ∂sũ(i−2)
m (s, 0))

− τ (n · ∂su(i−1)
m (s, 0)) − ∂du(i−1)

m (s, 0)

− n(n · ∂du(i−1)
m (s, 0)) + (p(i−2)

m + p̃(i−2)
m )(s, 0)n

+ τ (n · ∂su(i−2)
c (s, 0)) + ∂du(i−2)

c (s, 0) (A.14)

+ n(n · ∂du(i−2)
c (s, 0)) − np(i−2)

c (s, 0).

In particular, when i = 3, we have that

∂ηũ(3)
m (s, 0)

= −n[n · ∂ηũ(2)
m (s, 0) + n · ∂du(2)

m (s, 0) − n · ∂du(1)
c (s, 0)]

− τ · [n · ∂sũ(1)
m (s, 0) + n · ∂su(2)

m (s, 0) − n · ∂su(1)
c (s, 0)]

+ (p(1)
m (s, 0) + p̃(1)

m (s, 0) − p(1)
c (s, 0))n

+ ∂du(1)
c (s, 0) − ∂du(2)

m (s, 0).

(A.15)
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Noting that ũ(2)
m (s, η) = ∂du(0)

c (s, 0)eη by (3.9), we then have

n · ∂ηũ(2)
m (s, 0) = n · ∂du(0)

c (s, 0). (A.16)

Using the divergence-free condition of u(0)
c and u(1)

c , we obtain that on Γcm

τ · ∂su(0)
c (s, 0) + n · ∂du(0)

c (s, 0) = 0,

τ · ∂su(1)
c (s, 0) + n · ∂du(1)

c (s, 0) = 0.
(A.17)

Applying the fact that u(i)
c (s, 0) = 0(i = 0, 1) to (A.17), we easily know that

n · ∂dui
c(s, 0) = 0, i = 0, 1. (A.18)

Submitting (A.16) and (A.18) into (A.15) lead to

∂ηũ(3)
m (s, 0) = ∂du(1)

c (s, 0) + (p(1)
m (s, 0) + p̃(1)

m (s, 0) − p(1)
c (s, 0))n, (A.19)

here we have used ũ(1)
m = u(2)

m = 0.
It follows from n · ∂ηũ(3)

m (s, 0) = −h−1τ · ∂sũ(2)
m (s, 0) = −τ · ∂2

sdu
(0)
c (s, 0), (A.18) (i = 1) and (A.19) that

p(1)
m (s, 0) + p̃(1)

m (s, 0) − p(1)
c (s, 0) = −τ · ∂2

sdu(0)
c (s, 0) (A.20)

which and (A.19) imply that

∂ηũ(3)
m (s, 0) = ∂du(1)

c (s, 0) − n(τ · ∂2
sdu(0)

c )(s, 0). (A.21)
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