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Optimal Adaptive Output Regulation of Uncertain Nonlinear Discrete-time
Systems using Lifelong Concurrent Learning

R. Moghadam, Member, IEEE, B. Farzanegan, S. Jagannathan, Fellow IEEE, and P. Natarajan

Abstract— This paper addresses neural network (NN) based
optimal adaptive regulation of uncertain nonlinear discrete-time
systems in affine form using output feedback via lifelong concurrent
learning. First, an adaptive NN observer is introduced to estimate
both the state vector and control coefficient matrix, and its NN
weights are adjusted using both output error and concurrent
learning term to relax the persistency excitation (PE) condition.
Next, by utilizing an actor-critic framework for estimating the value
functional and control policy, the critic network weights are tuned
via both temporal different error and concurrent learning schemes
through a replay buffer. The actor NN weights are tuned using
control policy errors. To attain lifelong learning for performing
effectively during multiple tasks, an elastic weight consolidation
term is added to the critic NN weight tuning law. The state
estimation, regulation, and the weight estimation errors of the
observer, actor and critic NNs are demonstrated to be bounded
when performing tasks by using Lyapunov analysis. Simulation
results are carried out to verify the effectiveness of the proposed
approach on a Vander Pol Oscillator. Finally, extension to optimal
tracking is given briefly.

I. INTRODUCTION

One of the major research thrusts in the control community has
been optimal control of dynamical systems. The optimal control
policy can be derived by using the Hamiltonian-Jacobi-Bellman
(HJB) equation for an affine nonlinear system. Nevertheless, a
closed-form solution [1] does not exist for the HJB equation,
even for nonlinear systems with known dynamics. Therefore,
iterative methods using adaptive dynamic programming (ADP)
have been introduced to solve both the HJB equation and the
optimal control policy.

The approximate dynamic programming (ADP) is a powerful
framework to find the optimal control policy in a forward-in-time
manner for nonlinear systems with unknown dynamics [2], [3].
Several iterative optimal adaptive control (OAC) techniques using
ADP were reported mainly for regulation [4], [5]. The
convergence of iterative methods to finding a solution to the HJB
equation for nonlinear systems is shown when the number of
iterations tends to infinity [1] which appears to be a bottleneck in
the real-time implementation. Despite the drawback of iterative
methods, traditional ADP framework using neural networks (NN)
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has been employed to generate an approximate optimal regulation
policy online for uncertain nonlinear systems.However, a
persistent excitation condition (PE) is needed for the convergence
of critic NN weights and control policy.

In concurrent learning method for continuous-time system [6],
[7], current and historical data, which is stored in a buffer,
simultaneously are utilized to fulfill the PE requirement [8]. In
[9], an OAC technique with concurrent learning were introduced
for discrete systems (DT) without the proof of convergence and
stability. In all regulation efforts [4], [5], single layer NN
with the appropriate selection of basis functions and state
measurements has been utilized. In contrast, an approximate
optimal adaptive regulator (OAR) for unknown nonlinear DT
systems using traditional adaptive output feedback control
approach is not investigated.

Thus, the OAR for uncertain nonlinear DT systems in affine
form is presented. First, an adaptive single-layer NN observer to
estimate the state vector is introduced whose weights are
adjusted using both measured output error and concurrent
learning to relax PE. Next, the optimal value functional is
expressed in relation to a cost-to-go function of the estimate state
vector. By using the recursive Bellman equation, defined in terms
of the value functional, and through stationarity condition, the
optimal control input is derived.

The proposed OAR scheme relaxes the need for internal
dynamics and control coefficient matrix. The NN weights of the
actor NN are updated through control input errors. The weights
of the critic NN are tuned through temporal difference error
(TDE) which is generated using estimated state vector of the
observer. Next, in order to achieve lifelong learning under
multiple tasks, the elastic weight consolidation (EWC) term is
added to the critic NN weight tuning law. Subsequently, the
overall closed-loop stability of the NN-based OAR scheme is
demonstrated by using lifelong concurrent learning. In other
words, three single-layer NNs–observer, critic and actor are
employed for the control design.

Notation. The natural and real numbers are R and N,
respectively. I is an identity matrix with proper dimensions and
∥.∥ denotes the Euclidean norm. The transpose of the matrix A,
is given by AT and rank(A) denotes the rank of the matrix A.
The λmin(A) and tr(A) denote the minimum eigenvalue and
the trace of the matrix A, respectively.

II. ADAPTIVE DISCRETE-TIME ESTIMATION USING
CONCURRENT LEARNING

In this section, the adaptive parameter estimation problem of
DT systems is provided using concurrent learning. Consider the
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general form of a DT system as [10]

y(k + 1) = θTϕ(k) , (1)

where y(k) ∈ Rn is the system output, u(k) ∈ Rn is the
control input, and θ ∈ Rn×m and ϕ(k) = ϕ(y(k)) ∈ Rm

denote the system parameter matrix and regressor, respectively.
Let the estimated output be defined as

ŷ(k + 1) = θ̂(k)Tϕ(k) , (2)

where θ̂(k) is the estimation parameter matrix and e(k) =
y(k)− ŷ(k) is the output estimation error. Using (1) and (2),
the dynamics of the output estimation error becomes

e(k + 1) = θ̃(k)Tϕ(k) , (3)

with θ̃(k) = θ − θ̂(k) as the parameter estimation error matrix.
The traditional update law for parameter estimation is given as
[10]

θ̂(k + 1) = θ̂(k) + αϕ(k)eT (k + 1) , (4)

which makes the parameter estimation error matrix, θ̃, and the
output estimation error, e(k), are UUB if the PE condition is
satisfied. The PE condition provided in [10] is listed as follows.
Definition 1. An input sequence x(k) is said to be persistently
exciting, if there are λ > 0 and an integer k1 ≥ 1 such that

λmin

[∑k1+k−1

k=k0

x(k)xT (k)

]
> λ ,∀k0 ≥ 0 (5)

Note that the parameter tuning law (4) employs only
instantaneous information available for adaptation. However, if
the tuning law uses recorded data concurrently with current data
for adaptation, and if the recorded data were sufficiently rich,
then intuitively it should be possible to guarantee parameter
convergence without requiring persistently exciting ϕ(k). A
concurrent learning algorithm is presented for adaptive
parameter identification that builds on this intuitive concept. Let
j ∈ {1, 2, ...p} denote the index of a stored data point yj , let
ϕ(y(kj)) or ϕ(kj) denote the regressor vector evaluated at
point ys, let ϵj = θ̃(k)Tϕ(kj), then, the concurrent learning
scheme is given as

θ̂(k + 1) = θ̂(k) + αϕ(k)eT (k + 1) + α

p∑
j=1

ϕ (kj) ϵ
T
j , (6)

Using (6) and (3), the parameter estimation error dynamics
can be found as

θ̃(k+1) = (I−αϕ(k)ϕ(k)T )θ̃(k)−α

p∑
j=1

ϕ(kj)ϕ(kj)
T θ̃(k)

(7)
which can be written as

θ̃(k+1) = (I−αϕ(k)ϕ(k)T−α

p∑
j=1

ϕ(kj)ϕ(kj)
T )θ̃(k) , (8)

Note that the extra term from concurrent learning for relaxing
the PE is proposed for continuous-time systems and it is similar
to the one from [10]. The main difference being the construction
of this term using linear independence condition of the stored

data which characterizes its richness [6]. This is now given for
DT systems.
Condition 1. [6] The recorded data has as many linearly
independent elements as the dimension of ϕ(k). That is, if
Z = [ϕ (y1) , . . . .ϕ (yp)], then rank(Z) = m.

This condition requires that the stored data contain sufficiently
different elements to form a basis for the linearly parameterized
uncertainty. This condition differs from the condition on PE ϕ(k)
in the following ways: 1) This condition applies only to recorded
data which is a subset of all past data, whereas PE applies to
how ϕ(k) should behave in the future; 2) This condition is
conducive to online monitoring since the rank of a matrix can be
determined online; 3) It is always possible to record data such
that condition 1 is met when the system states are exciting over
a finite time interval; 4) It is also possible to meet this condition
by selecting and recording data during a normal course of
operation over a long period without requiring PE. Using
Lyapunov stability theorem, it can be shown that condition 1 is
sufficient to guarantee global exponential parameter convergence
for concurrent learning update law.

To this end, consider the Lyapunov candidate function
as L(θ̃) = trace{θ̃(k)T θ̃(k)} with the first difference
as ∆L(θ̃) = trace{θ̃(k + 1)T θ̃(k + 1) − θ̃(k)T θ̃(k)}.

Defining Γ = I − α
(
ϕ(k)ϕ(k)T +

∑p
j=1 ϕ(kj)ϕ(kj)

)T

and substituting (8) gives∆L(θ̃) = trace{θ̃(k)TΓTΓθ̃(k)−
θ̃(k)T θ̃(k)}. After some manipulations, one has ∆L(θ̃) ≤
−trace{θ̃(k)T

(
I − ∥Γ∥2

)
θ̃(k)} which can be written as

∆L(θ̃) ≤ −λmin

(
I − ∥Γ∥2

)
L(θ̃). Since according to

Condition 1, α
∑p

j=1 ϕ(kj)ϕ(kj) > 0, then, (I − ∥Γ∥2)
is a positive definite matrix as long as 0 ≤ α ≤ 2 for all k.
Now, from Theorem 5.7 in [11], θ̃ = 0 becomes exponentially
stable which from (8) results in the exponential stability of the
parameter estimation error. This concurrent learning term for DT
systems will be included as part of the regulator.

III. PROBLEM FORMULATION

The OAR is formulated for an uncertain affine nonlinear DT
system given by{

x(k + 1) = f(x(k)) + g(x(k))u(k)

y = Cx(k)
, (9)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control
input vector and y(k) ∈ Rp denotes the state vector. The matrix
C ∈ Rp×n is the known output matrix, f(x(k)) ∈ Rn denotes
the internal dynamics which is considered uncertain and
g(x(k)) ∈ Rn×m represents the control coefficient matrix,
which is treated known, such that ∥g(x(k))∥F ⩽ gM with gM
is a positive constant.

The regulator aims at computing the optimal policy u∗(k)
that minimizes the infinite horizon value functional, i.e. J(x(k)),
defined as a function of the system state and the control input, as

J(x(k)) =

∞∑
i=k

L(x(k + i), u(k + i)), (10)

2006
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with L(x(k), u(k)) = x(k)TQx(k) + u(k)TRu(k), given
Q ∈ Rn×n and R ∈ Rm×m as a positive semi-definite and
positive definite matrices, respectively, being the cost-to-go
function. The discounted value functional (10) can be written as
a recursive Bellman equation given by

J(x(k)) = L(x(k), u(k)) + J(x(k + 1)) . (11)

By applying the Bellman’s optimal principle, optimal
value functional, J∗(x(k)), is not a function of time though
it must satisfy the discrete-time HJB equation such that
J∗(x(k)) = min

u(k)
(L(x(k))) + J∗(f(x(k)) + g(x(k))u(k)).

The optimal value functional, J∗(x(k)), is a solution to
the fixed point DT HJB equation. The optimal control
policy u∗(x(k)) that minimizes J∗(x(k)) can be obtained
by using the stationarity condition as ∂J∗(x(k))/∂u(k) =
2Ru(k) + g(x(k))T∂J∗(x(k + 1))/∂(x(k + 1)) = 0 which
results in

u∗(k) = −1

2
R−1g(x(k))T

∂J∗(x(k + 1))

∂(x(k + 1))
. (12)

The optimal control policy (12) is given in terms of the state
vector, x(k + 1), and the optimal value functional, J∗(x(k)).
However, the optimal control input cannot be computed, even if
the full system state vector is available, as the gradient of the
value functional with respect to x(k + 1) is unavailable due to
the future value of the state vector [12].

Further, since finding a closed-form solution to the DT HJB
equation, i.e. J∗(x(k)), is difficult, this article proposes a novel
learning scheme for seeking an approximate solution of the value
functional Ĵk(x(k)) to the DT HJB equation by using estimated
state vector obtained from a NN observer. This estimated value
functional is in turn used to generate the estimated optimal
policy. Thus, the need for the full state availability is relaxed
through a novel observer introduced in the next section.
Fact. When the optimal control policy is asserted on
(9), the closed-loop system will be bounded such that
∥f(x(k)) + g(x(k))u∗(x(k))∥ ⩽ k̄ given a known constant k̄
[12].
Remark 1. The above fact is not restrictive since the optimal
control input must ensure closed-loop stability for a nonlinear
system [12]. The above fact is used to show boundedness.

The value functional that is expressed by (10) can be
approximated by using critic NN with two-layers as

J(x(k)) = wT
c σc(x(k)) + εjk , (13)

where wc is the critic NN weights, εjk is the NN reconstruction
error considered to be bounded and σc is the NN activation
functions. Similarly, the optimal control policy given by (12)
with actor NN based approximator is given by

u(x(k)) = wT
a σa(x(k)) + εuk , (14)

where wa represents the actor NN weights with εuk as the NN
functional reconstruction error and σa as the activation function.
For simplicity σ(x(k)) will be shown as σ(k). In the above
formulation, the state vector availability is assumed whereas in

the next section, the estimated state vector from a novel observer
is considered after stating the assumption.

Assumption 2. The weights and the reconstruction errors
of both critic and actor NN are upper bounded [10] such
that ∥wc∥ ⩽ wcM , ∥wa∥ ⩽ waM , |εjk| ⩽ εjM , |εuk| ⩽ εuM
where wcM ,waM ,εjM ,εuM are positive constants. Moreover,
the gradient of the NN reconstruction errors are bounded above
as ∥∂εjK/∂x(k + 1)∥F ⩽ ε

′

jM [12].

IV. OPTIMAL ADAPTIVE OUTPUT FEEDBACK
CONTROL

The OAC of the nonlinear DT system (9) by using concurrent
learning is introduced, in this section. Two NNs are employed:
one NN acting as the critic and another NN as an actor to
approximate the value functional and optimal control policy,
respectively. A novel weight tuning law incorporating the
concurrent learning is proposed for the critic NNs to relax the
need of PE condition. In addition, one has to ensure the
closed-loop stability and boundedness of the value functional. To
guarantee the convergence of the critic NN weights to the ideal
values, the PE condition should be satisfied.

A. Observer Design

The dynamics of the nonlinear system (9) can be reformulated{
x(k + 1) = Ax(k) + F (x(k)) + g(x(k))u(k)

y(k) = Cx(k)
(15)

where A ∈ Rn×n is a Schur matrix such that (A,C) is
observable, and F (x(k)) = f(x(k))−Ax(k). As shown in
[13], NN can be utilized as an effective method in the
estimation of nonlinear systems due to its online learning
capability. Therefore, using the universal approximation property
[10], the system dynamics (15) can be represented by using
NN on a compact set Ω as x(k + 1) = Ax(k) + F (x(k)) +
g(x(k))u(k) = Ax(k)+WT

F σF (x(k))+WT
g σg(x(k))u(k)+

εFk + εgku(k) = Ax(k) +
[
εFk εgk

] [ 1
u(k)

]
+[

WF Wg

] [σF (x(k)) 0
0 σg(x(k))

] [
1

u(k)

]
which can be

written as

x(k + 1) = Ax(k) +WTσ(x(k))ū(k) + ε̄(k) (16)

where W =
[
WF Wg

]
∈ Rl×n, σ(x(k)) =[

σF (x(k)) 0
0 σg(x(k))

]
∈ Rl×(1+m),ū(k) =

[
1

u(k)

]
∈

R(1+m) and ε̄(k) =
[
εFk εgk

]
ū(k) ∈ Rn, with l as

the number of neurons. Additionally, the target NN weights,
activation function and reconstruction error are assumed to be
bounded as ∥W∥ ≤ WM , ∥σ(x(k))∥ ≤ σM and ∥ε̄(k)∥ ≤ ε̄M ,
where WM , σM and ε̄M are positive constants. Since the states
of the system are not measurable, the following observer is
defined as [14]

x̂(k + 1) = Ax̂(k) + Ŵ (k)Tσ (x̂(k)) ū(k)

+L (y(k)− Cx̂(k))

ŷ(k) = Cx̂(k)

(17)
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where Ŵ (k) is the estimated value of the target NN weights W
at each time step k, x̂(k) is the estimated system state, ŷ(k) is
the estimated output and L ∈ Rn×p is the observer gain matrix to
be designed. Using (16) and (17), the state estimation error can
be expressed as x̃(k+ 1) = x(k + 1)− x̂(k+ 1) = Acx̃(k) +
W̃ (k)Tσ (x̂(k)) ū(k)+WT σ̃ (x(k), x̂(k)) ū(k)+ ε̄(k) which
can be written as

x̃(k + 1) = Acx̃(k) + W̃ (k)Tσ (x̂(k)) ū(k) + ε̄Ok, (18)

where Ac = A− LC is the closed-loop matrix, W̃ (k) =
W −Ŵ (k) is the NN weight estimation error, σ̃ (x(k), x̂(k)) =
σ (x(k))−σ (x̂(k)) and ε̄Ok = WT σ̃ (x(k), x̂(k)) ū(k)+ε̄(k)
are bounded terms due to the bounded values of ideal NN
weights, activation functions and reconstruction errors. The
control input is also bounded for identification whereas this is
relaxed when it is combined with control. To relax the PE
condition, a novel concurrent learning based tuning update law is
proposed for the NN weights as

Ŵ (k + 1) = (1− αI) Ŵ (k) + βσ (x̂(k)) ū(k)ỹ(k + 1)TΥT

+ β
∑p

j=1
σ (x̂(kj)) ū(kj)ỹ(kj + 1)TΥT

(19)

where αI > 0, β > 0 are the tuning parameters, ỹ(k + 1) =
y(k + 1)− ŷ(k + 1) is the output error, and Υ ∈ Rn×p is a
design matrix. Note that the first term in (19) guarantees the
stability of the observer weight estimation error, while the second
term (19) uses the output estimation error to update the observer
NN weights. The third term belongs to the concurrent learning
which uses a set of system outputs. The design parameters such
as observer gain have to be carefully designed to ensure faster
convergence of the observer to the system. Next, using (19), the
NN weight estimation error can be written as

W̃ (k + 1) = W − Ŵ (k + 1) =

(1− αI) W̃ (k) + αIW − βσ(k)ū(k)ỹ(k + 1)TΥT

− β
∑p

j=1
σ(kj)ū(kj)ỹ(kj + 1)TΥT

(20)

which by using the state estimation error (18) yields

W̃ (k + 1) = (1− αI) W̃ (k) + αIW − βΓ(k)W̃ (k)CTΥT

− βΞ(k)x̃(k)AT
c C

TΥT − βΞ(k)ε̄TOkC
TΥT

(21)

with Γ(k) = σ(k)ū(k)ū(k)Tσ(k)T −∑p
j=1 σ(kj)ū(kj)ū(kj)

Tσ(kj)
T and Ξ(k) = σ(k)ū(k) −∑p

j=1 σ(kj)ū(kj).
Theorem 1: (Boundedness of the observer error). Let the

nonlinear system (9) be controllable and observable and the
system output, y(k) ∈ Ωy , be measurable. Let the initial NN
observer weights Ŵ (k) be selected from the compact set ΩOB

which contains the ideal weights W . Given an initial admissible
control input, u0 ∈ Ωu and bounded input for all time, let the
proposed observer be given by (17) and the update law for
tuning the NN weights be given by (19). Then, the observer
error x̃(k) and the NN weight estimation errors W̃ (k) are
uniformly ultimately bounded (UUB).

Remark 1: The boundedness of the control input assumption
in the above theorem is necessary here since the control design
is not done yet. This assumption is relaxed next.

B. Value Function Approximation

In this subsection, a critic NN utilizes to estimate the value
functional and its weights are tuned using TDE. Next, the
boundedness of the value functional is shown by constructing a
Lyapunov function and using its first difference. To guarantee the
convergence of the critic NN weights, the recent transition
samples are stored in an experience replay buffer and also
presented to the update law as part of concurrent learning [8].
Since it is assumed that the state of the system is not available,
the observer state will be used in the calculation.

Let the value functional that is estimated in the form of a
critic NN be given by

Ĵk(x̂(k)) = ŵT
c σc(k) (22)

where Ĵk(x̂(k)) is the estimated value functional and ŵT
c is the

estimated critic NN weights. Note that σc(k) is σc(x̂(k)).
Using the estimated value functional (22) in (11) results in the
following TDE

ETD(k) =L(x̂(k − 1), u(x̂(k − 1)))

+ ŵT
c ∆σc(k − 1)

, (23)

where ∆σc(k−1) = σc(k)−σc(k−1). Using (13) in (11) gives
L(x̂(k−1), u(x̂(k−1))) = wT

c σc(k−1)−wT
c σc(k)−∆εjk

where ∆εjk = εjk − εjk−1 which by replacing in (23) yields

ETD(k) = ŵT
c ∆σc(k − 1)− wT

c ∆σc(k − 1)−∆εjk (24)

Let the critic weight estimation error be defined as
w̃c = wc − ŵc, then, the TDE (23) becomes ETD(k) =
−w̃T

c (k)∆σc(k − 1) − ∆εjk. Using the gradient-descent
scheme, the traditional critic update law can be expressed as [10]

ŵc(k + 1) = ŵc(k)−
αJ∆σc(k)E

T
TD(k)

∆σT
c (k)∆σc(k) + 1

(25)

where αJ is a constant learning rate. Note that when using the
update law (28), the estimated critic NN weights converge to
their actual values, i.e. ∥ŵc − w∥ → 0, if and only if ∆σc(k)
is persistently exciting [10]. In the next section, the concept of
concurrent learning [6] is utilized for the critic NN update law in
order to relax the need of PE condition.

It is worth noting that the improved update law minimizes
both the instantaneous TDE and the TDE associated with the
stored transition error. The samples are stored in a history stack.
To collect data online in the history stack, we evaluate
values of σc(k) and L(x̂(k), u(k) at the recorded time tr as
∆σcr = σc(tr)− σc(tr − 1) and Lr = L(x̂(tr), u(tr)). Thus,
the TDE at the recorded time tr is defined as

ETDr(tr) = Lr + ŵT
c ∆σcr (26)

The tendency of the learned model to catastrophically forget
existing information when learning from novel observation is the
main reason to utilize lifelong learning in the proposed update
laws. Since critic NN approximates the cost functional which in
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turn is used by the actor NN to compute the control policy, the
lifelong functionality is introduced only for the critic NN. Here,
the NN weights of the critic network are updated to minimize
the following performance measure

Ec =
1

2
ETD(k)

2
+

λw

2
||ŵc − ŵ⋆

c ||2Fw
(27)

where λw set the relevance of the old tasks with respect to the
new one, Fw is the fisher information matrix, and ŵ⋆

c is the
weights at the end of the previous tasks. The second term in (27)
is added to the performance measure to reduce large changes in
ŵc when learning a new task. Therefore, the proposed novel
critic NN weight update law is given by

ŵc(k + 1) = ŵc(k)−
αJ∆σc(k)E

T
TD(k)

∆σT
c (k)∆σc(k) + 1

− αJ

n∑
j=1

∆σcjE
T
TDj

∆σT
cj∆σcj + 1

− αJλwFw(ŵc(k)− ŵ⋆
c )

(28)

where αJ is a constant learning rate and the index j stands for
the jth sample data (j = 1, . . . , n), stored in the history stack.
Let the history stack be defined as

Z = [∆σ̄1, . . . ,∆σ̄l] (29)

where ∆σ̄j = ∆σcj/(∆σT
cj∆σcj + 1). Therefore, Z in the

recorded data includes as many linearly independent elements as
the number of neurons in (22), i,e. rank(Z) = m. The number
of samples in the history stack is a fixed value n > m.

Theorem 2: Let u0(k) be any initial admissible control
policy defined in a compact set. Let the critic NN weights with
the experience replay tuning law be given as (28). If the history
stack matrix Z is full rank, then, the estimated value functional
(22) becomes bounded as the critic weight estimation error w̃c

converges to the residual set Rsw = {w̃c| ||w̃c|| ≤ cw} with
constant cw > 0.

C. Optimal Control Policy Approximation

A single layer NN is deployed for the actor network in order
to obtain optimal policy by using the approximated value
functional from the critic NN. The approximated control policy
can be written as

û(x̂(k)) = ŵT
a σa(k) (30)

where ŵa is the estimated weights. Next, define the control input
error which is the difference between the estimated control input
(30) and the control input that minimizes the estimated cost
function (22), which can be written as

ũ(k) = ŵT
a σa(k) +

1

2
R−1ĝ (x̂(k))

T ∂σc(k + 1)
T

∂x(k + 1)
ŵc (31)

where ĝ(k) = WT
g σg(x̂(k)). Substituting (13) and (14) in

(12) yields

wT
a σa

(
vTa σ(x̂(k))

)
+ εuk = −1

2
R−1g(k)T

∂σc(k + 1)T

∂x(k + 1)
wc

− 1

2
R−1g(k)T

∂εjk+1

∂x(k + 1)

.

(32)

Employing (32) in (31) renders ũ(k) = ŵT
a σa(k) −

wT
a σa(k)−εuk+1/2R−1ĝ(k)T∂σc(k + 1)T /∂x(k + 1)ŵc−

1/2R−1g(k)T∂σc(k + 1)T /∂x(k + 1)wc −
1/2R−1g(k)T∂εjk+1/∂x(k + 1). Let the actor weight and the
input matrix g estimation error be defined as w̃a = wa − ŵa

and g̃ = g − ĝ, respectively. Adding and subtracting
1/2R−1ĝ(k)T∂σc(k + 1)

T
/∂x(k + 1)wc(k), gives

ũ(k) = −w̃T
a (k)σa(k)− ε̃uk

− 1

2
R−1ĝ(k)T

∂σc(k + 1)
T

∂x(k + 1)
w̃c(k)

− 1

2
R−1g̃(k)T

∂σc(k + 1)
T

∂x(k + 1)
wc(k)

, (33)

where ε̃uk = (1/2)R−1g (x(k))
T
(∂εjk+1/∂x(k + 1))+ εuk.

Realizing that the control input error ũ(x(k)) is measurable, the
weight tuning laws for the actor NN is selected as follows

ŵa(k + 1) = ŵa(k)−
αuσa(k)ũ

T (k)

σa(k)Tσa(k) + 1
(34)

where 0 < αu < 1. Using (34), the actor NN weight
estimation error dynamics becomes w̃a(k + 1) = w̃a(k) +
αuσa(k)ũ

T (k)/σa(k)
Tσa(k) + 1.

Theorem 3: (Estimated optimal control boundedness) Let
u0(k) be an initial admissible control policy for (9) with value
functional defined as (10). The critic NN weight update rules are
given by (28), and the actor NN weights are tuned by (34).
Then, under the PE condition on the actor NN, the positive
constants αu and αJ exists such that the augmented state x(k),
critic NN weight estimation error,w̃c,ṽc and weight estimation
errors of the actor, ṽa, and w̃a, are all UUB with the bounds
given by ∥w̃c∥ ≤ b′wc

,∥ṽc∥ ≤ b′vc , ∥w̃a∥ ≤ b′wa
, ∥ṽa∥ ≤ b′va

for positive constants b′wc
, b′vc , b′wa

and b′va . This assures, the
closeness of the actual control input to its optimal value.

Remark 2: Notice that in the above theorem, the need for the
boundedness of the control input in Theorem 1 is relaxed and
demonstrated during the proof provided an initial admissible
control input is selected.

V. SIMULATION RESULTS

Consider the Van der Pol oscillator [14] dynamics as
ẋ1 = x2, ẋ2 = (1 − x2

1)x2 − x1 + u, y = x1 which can
be discretized by a sampling interval of T = 10ms as
x1(k + 1) = x1(k) + Tx2(k), x2(k + 1) = x2(k) + T ((1−
x2
1(k))x2(k)− x1(k) + u(k)), y(k) = x1(k). The desired set

point, here it is trajectory, for different tasks is described
by xd(t) = [0, 0]T , 0 < t ≤ 40, xd(t) = [0.1, 0]T , 30 < t ≤
60, xd(t) = [0, 0]T , 60 < t ≤ 100. The penalty matrices of the
quadratic function value in (10) are selected as Q = 10I2 and
R = 0.1. The initial values for the state vector is given by
x0 =

[
−0.02 0.005

]T
, and the initial admissible control

input is given by u0 = −5e2 + e21e2 where e1 = x1 − xd1
and

e2 = x2 − xd2
. The observer NN is composed of 20 neurons in

the hidden layer with sigmoid activation functions and the
weights of NNs are randomly initialized. The learning rates
β and the damping factors αI are chosen as β = 50 and
αI = 0.5. Moreover, the actor and critic NNs are composed of
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20 and 15 neurons in the hidden layer with sigmoid and
polynomial activation functions, respectively. The design
parameters are selected as αu = 0.11 and αJ = 0.06. The NN
weights are initialized at random in the interval [0, 1] and
[−0.1, 0.1] for critic and actor NN, respectively.
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Fig. 1: The controller performance for the Van der Pol oscillator.
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Fig. 2: Regulation errors for the Van der Pol oscillator.

Figs. 1 through 3 show the performance of the proposed
approach with the lifelong learning (LL) term in (28), and
results are compared with [3] without using the lifelong learning
technique. A random noise is utilized for 100-time instants with
the estimated control policy to ensure the PE condition is
satisfied for the third case. Note that PE condition is not required
in the proposed controller approach for the critic NN whereas
external noise is injected for the actor.

Remark 3: Note that the proposed method can be
easily extended to optimal tracking by using the
augmented system in [2]. To this end, different tra-
jectories are defined at time instants as r(k) =
e(−k/4)[sin(k), cos(k) − 1/4sin(k)]T , 0 < k ≤ 3000,
r(k) = e(−k/4)[sin(2k), 2cos(2k) − 1/4sin(2k)]T , 3000 <
k ≤ 6000 and r(k) = e(−k/4)[sin(k), cos(k) −
1/4sin(k)]T , 6000 < k ≤ 1000 are considered for this
scenario. In Fig. 4, the state and reference trajectories are
depicted for three different cases where in the first case, the
lifelong learning term in (28) is considered for completely
unknown dynamic system while in the second case, the lifelong
learning term is considered for the partially unknown dynamic
system, and for the last case, the results are considered without
the lifelong learning term for the partially unknown dynamic
system. As can be seen in Fig. 4, the LL method enables faster
convergence.

VI. CONCLUSION

An online OAR scheme for nonlinear DT system with
uncertainties is introduced. The NN observer is able to estimate
the state vector which is subsequently employed in the OAR
design. The critic NN weight tuning using TDE and actor NN
weight tuning using control input errors appears to generate an
acceptable performance though the stability analysis is involved.
In the proposed learning scheme for tuning the weights for the
critic NN to relax PE, the experience replay buffer based term
from concurrent learning is incorporated.
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Fig. 3: The control input û and TDE ETD.
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Fig. 4: The controller performance for the Van der Pol oscillator.
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