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SUMMARY 

Viruses are the most abundant biological entities in marine ecosystems and play an essential 

role in global biogeochemical cycles. They have important ecological functions as drivers of 

bacterial populations through lytic infections and contribute to bacterial genetic 

diversification. Unfortunately, their study is severely limited by the difficulty to culture and 

isolate them in lab conditions. Culture-independent techniques such as metagenomics can 

complement culture-based approaches to capture more phage diversity. However, the vast 

majority of viral sequences recovered through these methods are uncharacterized and 

therefore do not provide any information about their interactions with the bacterial 

community, a phenomenon that has been named “viral dark matter”. 

In this thesis, several bioinformatic techniques are applied to both short- and long-read 

metagenomic datasets to recover biological information from marine viral sequences 

contained therein. A pipeline for recovering viral sequences based on a reference genome 

was developed and applied to the study of myophages infecting the alphaproteobacterial 

SAR11 clade, one of the most abundant bacterioplankton groups in surface marine and 

freshwater ecosystems. We were able to recover 22 new genomes which include the first 

genomes of myophages infecting LD12, the SAR11 freshwater clade. These sequences are 

underrepresented in datasets derived from the viral fraction, suggesting a bias of either 

technical or biological nature. Surprisingly, this family of phages code for an operon which 

resembles the secretion system type VIII operon in Escherichia coli. The function of this phage 

operon is still unknown.  

Next, a long-read dataset from the Mediterranean Sea was explored for viral contigs to 

contrast phage recovery between long- and short-read datasets. The analysis revealed that 

while long-read assemblies resulted in viral sequences of better quality, there was a sizable 

amount of intra-clade viral diversity that was not included in the assemblies. This viral 

diversity only found in long reads is even greater than previously thought. This untapped 

diversity could aid biotechnological efforts as evidenced by the discovery of new endolysins. 

Finally, a tool (Random Forest Assignment of Hosts, or RaFAH) for assigning hosts to phage 

sequences obtained from metagenomic datasets was created. The tool is based on a machine 

learning tool trained with phage protein clusters generated de novo. Benchmarking shows 

that RaFAH is on par with other state-of-the-art classifiers and is able to classify phage contigs 

at the level of Kingdom, which makes it the first classifier to accurately detect Archaea viruses 

from metagenomic samples. A feature importance analysis reveals that the protein clusters 

with the most predictive power are those involved in host recognition. 

  



RESUMEN 

Los bacteriófagos (”fagos”) son los organismos más abundantes en los ecosistemas marinos 

y tienen un papel esencial en los ciclos biogeoquímicos globales. Asimismo, influencian la 

evolución de las poblaciones bacterianas que infectan y contribuyen a la diversificación del 

acervo genético bacteriano. Desgraciadamente, su estudio se ve limitado por la dificultad de 

cultivar y aislar estos organismos en el laboratorio. El uso de técnicas que no requieren 

cultivo, como la metagenómica, pueden complementar el cultivo en laboratorio para 

recuperar una mayor diversidad de fagos. Sin embargo, la inmensa mayoría de secuencias 

virales recuperadas mediante metagenómica no pueden ser caracterizadas, por lo que no 

proporcionan ninguna información sobre sus interacciones con la comunidad bacteriana, un 

fenómeno que se ha nombrado “materia oscura viral”. 

En esta tesis se han utilizado múltiples procesos bioinformáticos en colecciones de 

metagenomas de lectura corta y larga para caracterizar las secuencias virales que contienen. 

Se ha desarrollado un procedimiento para recuperar secuencias virales a partir de un genoma 

de referencia y se ha aplicado al estudio de miofagos que infectan al clado SAR11 de las 

Alfaproteobacteria, uno de los grupos de bacterioplankton más abundantes en agua dulce y 

agua salada de superficie. Se consiguió recuperar 22 nuevos genomas que incluyen el primer 

genoma que infecta LD12, el subclado de SAR11 de agua dulce. Estos genomas están poco 

representados en colecciones obtenidas de la fracción viral, lo que sugiere que las afecta un 

sesgo técnico o biológico. Sorprendentemente, esta familia de fagos contiene un operón 

similar al sistema de secreción tipo VIII de Escherichia coli. La función de este operón es aún 

desconocida. 

Asimismo, se contrastó la recuperación de secuencias víricas entre colecciones de lectura 

corta y larga utilizando colecciones obtenidas en el mar Mediterráneo. Los resultados 

muestran que aunque los ensamblajes derivados de las lecturas largas producen secuencias 

virales de mejor calidad, en el proceso se pierde una gran cantidad de diversidad intraclado. 

Esta diversidad es mucho mayor de la recuperada con lecturas cortas, y podría explotarse 

para aplicaciones biotecnológicas, como el descubrimiento de nuevas endolisinas. 

Finalmente, se desarrolló un programa (Random Forest Assignment of Hosts, o RaFAH) para 

asignar hospedadores a secuencias virales obtenidas de colecciones metagenómicas.  El 

programa se basa en el uso de algoritmos de machine learning entrenados con grupos de 

proteínas creados de novo. RaFAH muestra un rendimiento similar a otros clasificadores de 

secuencias y es capaz de clasificar secuencias víricas al nivel taxonómico de Reino, siendo así 

el primer clasificador capaz de detectar fagos que infectan arqueas con precisión. El análisis 

de importancia de rasgo revela que los grupos de proteínas con mayor poder predictivo son 

aquellos involucrados en el reconocimiento del hospedador. 
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1.1  Role of phages on ecology and biogeochemical cycles 
 

1.1.1 Effects of phage predation in biogeochemistry 

Considering that more than 70% of the surface of the Earth is covered in water, it is no wonder 

that marine environments are the most extensive habitats on the planet [1]. Despite being 

invisible to the naked eye, prokaryotic microorganisms constitute over 90% of the living 

biomass found in the ocean [2] and are the driving force behind the biogeochemical cycles 

that take place in this habitat, such as the carbon, nitrogen, sulphur and oxygen cycles [2,3]. 

As an example, up to 20% of the global oxygen production is done by Prochlorococcus, a small 

marine Cyanobacteria [4]. 

Although the study of bacteriophages (viruses that infect bacteria, hereinafter referred to as 

“phages”) from aquatic environments is almost as old as the discovery of phages themselves 

[5,6], the importance of phage in marine ecosystems was underestimated for decades as the 

first studies on viral diversity, based on counts of plaque-forming units, detected few viruses 

able to infect bacteria [7,8]. It was not until the early ‘90s that a series of major discoveries 

forced a change of paradigm. The application of transmission electron microscopy to phage 

enumeration experiments revealed that these organisms were the most abundant members 

of the marine ecosystem, reaching abundances from 107 - 1010 virions per ml of seawater [9]. 

These results were corroborated by epifluorescence microscopy methods a few years later 

[10]. Meanwhile, a parallel study revealed that these phages were actively and successfully 

infecting a significant portion of the microbial community [11]. Intrigued by this discovery, 

scientists proceeded to calculate the rates of viral decay in natural conditions. They found 

that viruses are sensitive to a variety of environmental processes, and in order to maintain 

their population numbers, viruses would need to successfully infect and destroy around 20 - 

40% of the bacterial population daily [12–14]. These discoveries marked the beginning of the 

“third age of phage”, where their position as major drivers of the great planetary 

biogeochemical cycles and their importance as genetic reservoirs was realised [15]. 

Phage-mediated lysis is roughly at the level of grazing by protists and zooplankton as a source 

of prokaryote mortality [16,17]. However, phage-related mortality presents key differences 

that have profound effects on the ecosystem. Consider the marine carbon cycle, in which 

carbon enters the biological pool via photosynthesis, performed to a large extent by bacterial 

autotrophs [18]. Grazing moves nutrients up the trophic levels (bacteria are eaten by larger 

protozoa, which are in turn consumed by larger organisms). By contrast, lysis by phages 

releases dissolved organic matter (DOM), which is recycled mainly by heterotrophic bacteria. 

This process, in which phage lysis redirects the flow of nutrients back into the microbial loop, 

is called the “viral shunt”, and allows for an increase in heterotrophic microbial secondary 

productivity in conditions where nutrient availability limits production [6,19,20] (Figure 1). 

The viral shunt also plays a role in other limiting compounds such as nitrogen, phosphorus, 

sulphur and iron [6,21]. It is important to point out that phage activity also alters the efficiency 

of the biological pump, a process related to the capture of carbon from the surface to the 

deep ocean by the sinking of large particulate aggregates [2,6], but the role of phages in this 

https://paperpile.com/c/xF085o/ndCB
https://paperpile.com/c/xF085o/3ljz
https://paperpile.com/c/xF085o/rVzi+3ljz
https://paperpile.com/c/xF085o/DihX
https://paperpile.com/c/xF085o/ofyh+dubl
https://paperpile.com/c/xF085o/8Djp+vPNZ
https://paperpile.com/c/xF085o/JLn6
https://paperpile.com/c/xF085o/azGg
https://paperpile.com/c/xF085o/5wJO
https://paperpile.com/c/xF085o/5HIe+gPru+igfm
https://paperpile.com/c/xF085o/5XGX
https://paperpile.com/c/xF085o/aLB6+73jI
https://paperpile.com/c/xF085o/ekp7
https://paperpile.com/c/xF085o/dubl+mArC+5aP2
https://paperpile.com/c/xF085o/dubl+98Fw
https://paperpile.com/c/xF085o/dubl+3ljz
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process is not as clear since their activity both detracts and contributes to this event, 

depending on the circumstances [22]. 

 

Figure 1. The marine food web, emphasising the role of the viral shunt in the recycling of 

dissolved organic matter (DOM) and particulate organic matter (POM). [20] 

 

1.1.2 Effects of phage predation in bacterial diversity 

Phage predation also plays a key role in what Hutchinson named “Paradox of the Plankton” 

[23]: Why are we able to find coexisting microbial species that exploit the same resources, 

when laboratory experiments suggest that one species should outcompete the rest?  

Two characteristics of phage predation help untangle this apparent paradox. First, compared 

to grazer predation, which is relatively unspecific [24], phage predation is host specific. 

Phages find themselves in a predicament: they are dependent on their host’s cellular 

machinery to complete their life cycle, but they can only infect a host once, since DNA 

injection into the host is an irreversible process. Therefore, phages are specialised predators 

that are calibrated to both the morphology and the cellular machinery of their host, in order 

to both recognize and exploit it [25]. In fact, the capability of phages to discern their host is 

so specific that it has been used for typing bacteria [26]. Second, phage predation is density-

dependent [27]. Phages do not possess any means of independent locomotion and must rely 

instead on encountering their host by chance. Therefore, the frequency of infection will also 

depend on the abundance of the host in an environment. [28,29]. 

https://paperpile.com/c/xF085o/jOMf
https://paperpile.com/c/xF085o/5aP2
https://paperpile.com/c/xF085o/U5p9
https://paperpile.com/c/xF085o/E08H
https://paperpile.com/c/xF085o/aGf6
https://paperpile.com/c/xF085o/wME0
https://paperpile.com/c/xF085o/IwnF
https://paperpile.com/c/xF085o/5zMs+v5ll
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This dual nature of viral predation makes viruses powerful agents for controlling community 

composition, and results in a predator-prey dynamic named Kill-the-Winner (KtW) [30]. This 

hypothesis proposes that if an environmental change or a new mutation causes one specific 

bacterial species to thrive, it will be selected against, since it will have more encounters with 

its predating phage and successful infection cycles will mean that the number of phages that 

infect this fitter microbe will increase. In this way, predation by phages results in a fluctuating 

selection dynamic in which the fittest strain is selected against, protecting the general 

population against a sweep and maintaining population diversity.  

The advent of genomics and the discovery of the great intra-species diversity in bacterial 

populations, the Kill-the-Winner model has since then expanded into the Constant Diversity 

(C-D) model [31], which both provides a link between predation and genotype and explains 

intra-species diversity. In the later, different clonal lineages in the same population are 

distinct from each other by both their capability to exploit resources and their different 

susceptibility to the population of phages that predate upon them. This predation is believed 

to provide an evolutionary advantage for the population. With phages acting as a control 

agent, the bacterial population avoids a clonal sweep, allowing it to maintain a gene pool that 

will allow the population to better exploit fluctuations in the environment (Figure 2).  

 

Figure 2. Population dynamics under the constant diversity model. A population of bacterial 

strains, with different gene content and phage receptors (R1-R5) is predated by a population 

of phages, each of them recognising a specific receptor. If a change in gene content causes a 

particular strain to be more fit and increase its population, it will be more predated upon, 

avoiding a clonal sweep.  [31] 

 

Last but not least, the inextricable antagonistic relationship between phages and their hosts 

results in a process of reciprocal adaptation and counter-adaptation to each other [32]. The 

first attempt to explain these coevolution dynamics was proposed in the ‘70s in the form of 

https://paperpile.com/c/xF085o/d21V
https://paperpile.com/c/xF085o/59XV
https://paperpile.com/c/xF085o/59XV
https://paperpile.com/c/xF085o/zFtz
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the Red Queen dynamics model, which postulates that both members of an antagonistic 

evolutionary interaction (such as a prey-predator relationship) must continuously change for 

both lineages to survive [33]. Studies based on environmental data suggest that Red Queen 

dynamics explain evolutionary changes at the microdiversity scale, while C-D maintains gene 

pool diversity [34]. 

In addition to driving evolution directly maintaining microbial inter- and intra-species 

diversity, phages also indirectly contribute to the diversity of the bacterial community by 

serving as vectors for horizontal gene transfer (HGT) [35]. Considering their ubiquity and rate 

of infection, phages could arguably be the greatest reservoir of genetic diversity on Earth 

[36,37]. During infection, phages can randomly incorporate bacterial genomes fragments into 

their genomes or in phage capsids [38], which can then be transferred to subsequent hosts 

as phages infect other host cells. These transduction events can even cause the switch from 

a benign microorganism to pathogen: an example would be the filamentous phage CTX, which 

carries the toxin encoding genes responsible for the full virulence of Vibrio cholerae [39]. 

Moreover, various studies show phages from environmental samples containing other 

virulence factors, such as many toxins, antibiotic resistance genes or genes involved in host 

adhesion and invasion [40,41] 

 

 

1.2 Phage genomics 
 

1.2.1 Phage classification 

Phage genomes are composed of either RNA or DNA, which can be single-stranded or double-

stranded. This genetic material is packaged into a proteinaceous capsid that can be polyhedral 

(Microviridae, Corticoviridae, Tectiviridae, Leviviridae and Cystoviridae), filamentous 

(Inoviridae), pleomorphic (Plasmaviridae) or attached to a tail (Caudovirales) [42], the 

molecular machine involved in host recognition and DNA delivery [43,44]. We will focus on 

this last clade, as the vast majority of phage complete genomes (85%) belong to it.  

Traditionally, clades in Caudovirales have been based on tail morphology (Figure 3). 

Podoviridae have short, non-contractile tails, Siphoviridae have long, non-contractile tails, and 

Myoviridae have long, contractile tails [45,46].  

The host recognition module can be found at the distal end of the tail. In some phages this 

region is simple, but in others it has evolved in a complex structure called a baseplate [43,47]. 

In myophages, this structure is of utmost importance since it coordinates host recognition 

with sheath contraction [48]. The interaction between phage and host receptors is mediated 

by Receptor-Binding Proteins (RBPs). These proteins contain domains for recognizing 

bacterial structures found in the cell wall, such as lipopolysaccharides (LPS), transport 

proteins, porins, teichoic acids and peptidoglycan side chains [46,49,50]. Phages typically 

code for two types of RBPs: primary RBPs, which reversibly bind to a primary receptor and 

https://paperpile.com/c/xF085o/vW6Z
https://paperpile.com/c/xF085o/UBRE
https://paperpile.com/c/xF085o/PtGt
https://paperpile.com/c/xF085o/qzn5+gIoX
https://paperpile.com/c/xF085o/DGwo
https://paperpile.com/c/xF085o/zs6W
https://paperpile.com/c/xF085o/qgt6+CL87
https://paperpile.com/c/xF085o/zYNz
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allow the phage movement over the cell wall surface; and secondary RBPs, which bind 

irreversibly and trigger DNA injection [46,48]. 

The minimum genome size in tailed phages is about 19kbp, and the largest genome described 

to date reaches up to 735 kbp [51,52]. Compared to their bacterial hosts, phage genome size 

is influenced by its morphology. Capsid size plays a major role in genome size, both directly 

(the phage genome has to be able to fit inside the capsid) and indirectly (there is an optimal 

genome length for injection efficiency depending on the size of the capsid) [53]. Equally 

important is the tail structure, as different tail structures are capable of successfully delivering 

different amounts of DNA into the host cell. This results in mean genome sizes increasing with 

tail complexity: the mean genome size for Podoviridae is 40kbp, 60kbp for Siphoviridae, while 

Myoviridae, the family with the most elaborate injection mechanism, has larger genomes that 

start at 100kbp and can surpass 500kbp [51,53]. Deviations from this optimal size lead to a 

less efficient DNA injection step, which means phage structure applies an evolutionary 

pressure to either gain or lose DNA independent of gene function or replication fitness. In this 

way, DNA content in phage genomes is not aggressively removed for fitness and can thus 

provide a reservoir of genetic information for potential future use [53,54].  

  

 

 

Figure 3. Representative structures of tailed phages: Podoviridae (Short tail, without tube), 

Siphoviridae (long, non-contractile tail) and Myoviridae (long, contractile tail with sheath). 

[43] 

 

1.2.2 Phage sequence diversity 

Phage proteins are extremely diverse, and two ortholog proteins can share little sequence 

similarity. In fact, most of the coding sequences from phage genomes (ca. 80%) [53] do not 

present any homology to other known proteins, and no gene with orthologous counterparts 
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in all phage genomes has been found that can be used as a reliable marker for phylogenetic 

studies [55,56]. This fact may appear puzzling when we consider the genome size constraints 

and the rigidity of the phage life cycle, which requires the phage to encode functions for host 

takeover, genome replication and virion biosynthesis. It would be expected that these basic 

functions would be extremely conserved and thus easily identifiable.  

This diversity in phage proteins is derived from two main causes [57–59]. First, mutation and 

recombination rates are much higher in phages than in their hosts, causing a sequence 

divergence that might blur the homology signal. This divergence does not affect function, as 

protein function is more conserved than sequence [60], but as function annotation for newly 

identified genes relies on finding a homologous protein whose function is already known 

[61,62], it is possible that two sequences might maintain the same function and be divergent 

enough to not be identifiable. 

Second, phage genomes are dense. Approximately 90% of the phage genome is occupied by 

protein-coding sequences, and the average gene length is lower than that of their hosts 

[63,64]. It is not uncommon for phages to present overlapping genes. Usually the overlaps are 

found between the initiation and termination codons of two different genes, but in some 

cases complete genes are encoded within each other [65,66]. Another form of gene 

compression is site-specific frameshifting to obtain different variants of the same protein 

[67,68]. Gene segments coding for functional domains are shuffled between different genes 

during evolution, resulting in mosaic proteins in a process known as “Domain shuffling”. This 

phenomenon is more prevalent in proteins related to host recognition, but also appears in 

other proteins [69]. These overlapping and frameshifting events complicate the prediction of 

open reading frames from the sequence, resulting in truncated or missing genes.  

Perhaps the most striking feature of phage genomes is their extensive mosaicism. Genetic 

mosaicism refers to the phenomenon where different DNA regions of the genomes have 

distinct evolutionary stories [70–72]. This is easily identifiable when comparing two closely 

related phages, as regions that are almost identical will abruptly transition into others with 

no resemblance [70,73,74]. These regions are often the result of extensive HGT events, which 

have been extensively studied and reported in phages and include a wide variety of molecular 

mechanisms, including homologous (“relaxed”) and non-homologous (“illegitimate”) 

recombination [75–77]. The frequency of recombination events is not equal among phages, 

as evidence suggests they are heavily influenced by their life cycle and host [78].  

Not all genes participate in mosaicism to the same degree. “Core” genes intimately interact 

with each other and are essential to the function of the phage (for example, the genes that 

form the head or the replication machinery), and usually conserve synteny and sequence 

similarity between closely-related phages. Conversely, “non-core” genes can be removed 

from the genome without affecting the function of the phage [53]. The degree of mosaicism 

depends on a multitude of factors, including their replication mode (virulent or temperate), 

their host and their morphological complexity. For example, phages from the Tevenviridae 

clade show large regions of core genes interspersed by hypervariable regions, whose content 

varies wildly from one genome to the next [53]. Localization of these flexible regions is usually 

found in the same place, and it is easily identifiable in recruitment assays for their under-
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recruitment in metagenomes (metaviromic islands) [79]. This is a good way to detect where 

these hypervariable modules are located without the need to compare with other closely 

related genomes. 

What kinds of genes can be found inside these flexible regions? The tail fiber module is the 

only structural region in Caudovirales that is not part of the phage core genome and is in fact 

its most plastic region. Tail fiber proteins are reported to show high variability [54,79] domain 

shuffling and gene fusion are pervasive. Some of these hypothetical proteins contain domains 

related to carbohydrate binding, which make them strong candidates to be RBPs [79]. Flexible 

regions also contain a wide variety of glycosyltransferases. These family of genes are 

expressed during virus replication and serve a variety of purposes. One example can be found 

in the T-even clade of phages, which express glycosyltransferases to modify the nucleotides 

that conform their genome, preventing its digestion by bacterial restriction enzymes [80]. 

Another example can be found among Shigella seroconverting phages, which express 

glycosyltransferases to modify the cell surface of its host and prevent co-infection by 

competing phages [80]. 

 

1.2.3 Auxiliary Metabolic Genes (AMGs) 

The presence of virulence factors in phage genomes has been established for a long time, but 

phages may also include Auxiliary Metabolic Genes (AMGs). These genes allow the phage to 

modulate and expand the metabolic output of their host, increasing their fitness and 

therefore increasing viral propagation [81,82]. AMGs are acquired from the bacterial host, 

but continue to evolve separately from their bacterial orthologs, eventually repurposed to 

improve viral fitness. Evidence of this divergent evolution is that AMGs have reduced gene 

lengths compared to their bacterial counterparts [83], and some of them modify their 

functions to better serve the interests of the phage [83,84].  

AMGs are classified into two distinct classes [85]. Class I AMGs include genes involved in 

central metabolic functions found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

[86], such as photosynthesis and amino acid metabolism. Class II AMGs cover genes with 

peripheral or undefined roles, such as antibiotic resistance and membrane transport. Genes 

involved in common viral processes, such as nucleotide synthesis and protein metabolism, 

are not considered AMGs since their functions directly affect the production of viral progeny, 

instead of acting indirectly by complement host function [85]. 

AMGs increase viral fitness by following two broad strategies. The straightforward approach 

is for AMGs to code for proteins that catalyse for rate-limiting reactions (transaldolase talC) 

[87],  increase the uptake of limiting nutrients (phosphate-binding protein pstS,  ammonium 

transporter amt) [81,88] or accelerate energy production (high light induced protein hli, 

plastoquinol terminal oxidase ptox) [88]. Another example would be proteins required to 

maintain the operation of the host cellular machinery, since host takeover stops host gene 

expression [81]. An example of this would be the proteins forming the photosynthesis 

reaction core (psbA, psbD), which are susceptible to photodamage and must be replaced 

periodically to ensure energy production [89,90]. Alternatively, phages may also code for 
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AMGs that redirect host metabolism towards pathways that promote viral productivity, either 

through manipulation of the expression of host metabolic genes (pyrophosphohydrolase 

mazG) [81] or manipulation of host pathways (Calvin cycle inhibitor cp12) [83]. 

Whilst all previous examples are extracted from cyanophages, AMGs are ubiquitous in phage 

genomes. AMGs have been found in a wide variety of phage families [91,92], including  

Thaumarchaeota viruses [93]. Since AMGs are directly acquired from the host genome, AMG 

distribution is highly correlated with host genera [88]. This correlation has been exploited to 

assign putative hosts to phage genomes that code for certain AMGs, as is the case for 

Actinobacteria phages and the transcription factor whiB [94]. 

Likewise, AMGs are involved in a wide array of metabolic pathways, either related to energy 

production or nutrient acquisition. To this date, AMGs have been found in pathways involving  

methane (methane monooxygenases pmo) [95], sulphur (sulfite reductase dsr, sulfane 

dehydrogenase sox) [96–98],  nitrogen (ammonia transport protein amt, ammonia 

monooxygenase amo, nitrate reductase nar) [93,99,100] , phosphate (ptsS, phosphate uptake 

regulon pho) [101,102], carbohydrate (mannose-6-phosphate isomerase manA, ribose 5-

phosphate isomerase rpiB, glycogen synthase glgA) [85,87], amino acids (cysteine synthase 

cysK/M, S-Adenosylmethionine synthetase metK, N-succinyldiaminopimelate 

aminotransferase dapC) [85,87], nucleotide (purine synthesis operon pur, cobalamin synthase 

cobS) [88] and photosynthetic energy production (hli, psbA) [84,89,90]. Metagenomic 

recruitment analyses suggest that the distribution pattern of AMGs varies according to 

environmental conditions. A correlation between the abundance of some AMGs and 

temperature has been observed [103], and AMGs involved in phosphate metabolism are 

overrepresented in the North Atlantic Subtropical Gyre compared to the richer North Pacific 

Subtropical Gyre [102]. However, not all AMGs are equally abundant in phage genomes, some 

are so prevalent that could be considered part of the core genome (phoH, cobS, mazG), while 

others are more sporadic (talC, ptox). It has been hypothesised that these variances reflect 

viral adaptation to changing environmental conditions [88]. 

 

1.2.4 Phage Life Cycle 

One of the major differences between viruses is their strategy to replicate, with most phages 

classified into virulent or temperate lifestyles. Virulent phages follow what is called the lytic 

cycle. During this cycle, the phage DNA enters the host cell, the cellular machinery is hijacked 

to replicate its genome and assemble new virions, and finally ends with the lysis of the host 

cell and the release of the newly assembled virions [104]. In contrast, temperate phages can 

either carry out a lytic infection or enter a lysogenic cycle, in which the viral genome is 

integrated into the host chromosome. In this latent form, called “prophage”, the virus will 

replicate together with the host genome after each bacterial division. When certain 

conditions are met, the phage is able to excise from the host genome and follow a lytic cycle 

[104]. The conditions that cause temperate phages to switch from lysogenic to the lytic cycle 

are still not fully understood, but the switch has been reported to trigger after changes in the 

physiological state of the host, such as under conditions of stress like radiation, temperature 

or starvation [104]. Interestingly, meta-analyses of viral and bacterial densities in a variety of 
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environments suggest that temperate phages follow what is called the “Piggyback-the-

Winner” strategy, in which phages will follow a lysogenic cycle while conditions for host 

growth are favourable, and switching to lytic infection otherwise [105,106]. Alternatively, 

there is also evidence that lysogenic phages coordinate their lytic cycles using a quorum-like 

system [107,108]. A less common, but widely studied phage life cycle would be the chronic 

infection found in some archaeal viruses and single-stranded DNA filamentous phages from 

the Inoviridae family. In this life cycle, virions are slowly shed from the host cell over a long 

time without obvious cell death [109,110]. 

However, there are no clear-cut divisions in nature. Some temperate phages, like coliphage 

P1, do not integrate into their host genome and exist in a plasmid form (“plasmid prophage”) 

until they need to change into a lytic cycle [111]. Meanwhile, some lytic phages have been 

observed into what has been called a “carrier state”, in which the phage is maintained within 

a host population without a measurable effect in cell growth [112]. We could also include in 

this section the defective bacteriophages, prophages that have lost via mutation the genes 

required to switch into the lytic phase and are therefore unable to complete their life cycle, 

replicating indefinitely in the bacterial genome [109]. 

 

1.2.5 Phage phylogeny 

Historically, phage phylogeny has been based on their morphology, which was in turn derived 

from electron microscopy information. For example, the historical classification for tailed 

phages is based on work from Bradley, Ackermann and Eisenstark from the 70s, which 

classified the Caudovirales in morphotypes A, B and C; corresponding to the Myoviridae, 

Siphoviridae and Podoviridae families respectively [113,114]. Similar work was performed in 

other, well-studied viral groups (Inoviridae, Microviridae, Tectiviridae, etc), resulting in the 

well-known family-level classification system [115], with phylogenetic relationships based on 

the physical characteristics of the virion. 

However, this clear-cut classification was not to last. Already in 2002, Rohwer and Edwards 

illustrated the difficulties of establishing a phage phylogeny based on sequence information 

in their phage proteomic tree paper [116] and highlighting inconsistencies within the 

morphology-based families. This seminal work already identified some key challenges in 

phage phylogeny studies, namely the lack of a universal marker gene and the issues derived 

from rampant HGT and mosaicism. The advent of viral genomics and viral metagenomic 

studies has done nothing but accelerate its collapse. Viral metagenome studies do not allow 

for the morphological characterisation of the recovered sequences, and determining virion 

morphology from sequence is a daunting task [57]. Furthermore, classification based on 

morphology is incompatible with a phylogeny determined from sequence features. For 

example, the genera Lederbergvirus and Myxoctovirus are both classified as Podoviridae, but 

their genomes share no orthologues [115]. Although various subfamilies were added into the 

phage tree of life, it quickly became obvious that these long-established families were not 

monophyletic and did not even fit into the same order [117–119].  
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This paraphyly has been corroborated at a greater scale by a plethora of studies such as the 

previously mentioned phage proteomic tree [116], a concatenated protein phylogeny of 

Caudovirales phages [120], a composite tool combining gene homologies and gene order 

(GRAViTy) [121], a virus domain orthologous groups approach (VDOG) [122] and a variety of 

network-based approaches [118,119,123,124], in which nodes represent phage genomes and 

edges the similarity between them. This latter approach has proven to be a more faithful 

representation of the relationships between the mosaic genomes. Since the first network 

representation of phage phylogeny in 2008 [118], a number of studies using different 

approaches have appeared, such as a bipartite network of shared genes [119] or networks 

based on shared predicted proteins [123,124]. In these network-based representations, 

closely-related phages still group into distinct clusters, which suggests that despite the mosaic 

nature of phages, they still evolve in somewhat isolated gene pools and are thus able to be 

phylogenetically classified. Interestingly, temperate phages are closely interconnected to one 

another, while lytic phages show less connectivity. This reinforces the role of temperate 

phages as the “brokers” of HGT between viruses [51]. Furthermore, the evolutionary 

relationships between phages is also related to their choice of host and the environment they 

inhabit [78]. 

Currently, the International Committee on Nomenclature of Viruses (ICTV) is in the process of 

a major phylogeny overhaul, transitioning into a sequence-based taxonomy, with new criteria 

for the demarcation of new clades. The order Caudovirales has been abolished and the 

subfamilies are being assessed on a case-by-case basis [115]. 

 

 

1.3 The study of marine viruses 
 

1.3.1 Phage culture and isolation 

Phage isolation from environmental samples is still the gold standard for viral identification. 

In this method, an environmental sample is added to a culture of host bacteria, then isolated 

[125]. The advantages of this method are considerable. Co-culture of a phage and its host is 

still the gold standard for establishing host-phage pairing, which is the fundamental piece of 

information on which all further analyses are based. Furthermore, cultures are still the only 

method to comprehensively characterise a virus infection cycle and molecular interactions 

with its host cell.  

Unfortunately, culture-dependent phage isolation is reliant on host cultures, and the vast 

majority of microorganisms either cannot be cultivated in the lab or are remarkably fastidious 

to grow [126,127]. For example, the isolation procedure is dependent on the type of bacterial 

culture available: if the host can be grown on an agar plate, a plaque assay is preferred, but if 

the host can only be grown on liquid medium, it is required to perform a dilution-to-extinction 

assay. This last method is considerably slower, as an epifluorescence microscopy assay is 

required between dilution steps to confirm the lysis of the host [128]. Even when host 

cultures are available, some phages are not virulent enough to be isolated by these methods 
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[129,130] or they require growth conditions different from those of the host [131]. 

Consequently, it is not a surprise that the phages isolated through cultures are those that 

infect fast-growing, copiotrophic, well-studied hosts. For instance, the first marine phages to 

be sequenced infected the heterotroph Pseudoalteromonas [132] and the photoautotrophic 

Synechococcus [133] in the years 1999 and 2002, respectively. In recent years, methods for 

phage isolation have improved and phages have been isolated for fastidious clades such as 

SAR11 [134,135], SAR116 [136], OM43 [137,138] and Roseobacter RCA [139,140]. Still, the 

throughput of culture-based studies significantly lags behind other approaches.  

 

1.3.2 Sequencing-based approaches: a brief primer on DNA extraction 

Opposite to cultures stands sequencing-based approaches, in which DNA from a viral 

population is harvested from an environmental source and then sequenced. The main 

characteristic of this strategy is that virus discovery is uncoupled from virus isolation, as 

genetic material can be sequenced directly from a sample regardless of cultivability [141]. We 

will focus on the recovery of dsDNA phages from seawater samples, since it is the method 

relevant to the datasets used in this work. However, it is important to note that extraction 

and isolation of phages will vary wildly depending on the type of environment sample and the 

type of phages desired [127]. Protocols for these samples have been perfected and 

standardised thanks to decades of research, but protocols for other sample types (such as 

soil) or other virus clades (such as RNA phages) are much less developed [142,143]. 

In phage DNA isolation, the main problem is the extremely small size of phages. Although the 

abundance of phages exceeds that of prokaryotes by more than an order of magnitude, they 

represent only 5% of the total biomass [2]. This is reflected in their DNA content, there is only 

10-17 grams of DNA per virion, compared to 10-15g of DNA per bacteria [144]. This problem is 

compounded by the massive amount of free DNA in the environment, as even if more samples 

are processed to obtain more viral DNA, viral genomes are so small that any degree of 

contamination will overwhelm the viral signal [127].  

Therefore, the first step is to concentrate the viral DNA present in the sample. To this end, 

seawater is sequentially filtered to remove the eukaryotic and prokaryotic fractions by the 

use of 20μm, 5μm, and 0.22μm pore size filters, with the viral fraction remaining in the filtered 

seawater [144,145]. As sample volumes are quite high, it is necessary to concentrate the viral 

DNA even further. The most widespread method is tangential flow filtration, based on the use 

of a filter parallel to the flow of the sample. With this setup, water and particles smaller than 

the pore filter pass through based on diffusion instead of being forced through the filter via 

pressure, resulting in a liquid concentrated sample [146,147]. Although this procedure 

ensures that virions are not damaged, it has a low throughput and results are highly variable 

[148,149]. Other techniques are available, such as iron chloride flocculation [148] and 

polyethylene glycol (PEG) precipitation [150]. These techniques are based on the binding of 

phages to a substrate, from which the virions are then recovered from. The former method is 

considered to better preserve the viral community [151]. If the sample is derived from biofilm, 

an extraction step might be required to remove the extracellular matrix from the sample. 

Contaminants that might muddle viral DNA can be eliminated by a purification step. 

https://paperpile.com/c/xF085o/Xw15+28JZ
https://paperpile.com/c/xF085o/0jD6
https://paperpile.com/c/xF085o/FSbe
https://paperpile.com/c/xF085o/Olac
https://paperpile.com/c/xF085o/gSHv+S2JZ
https://paperpile.com/c/xF085o/IcQM
https://paperpile.com/c/xF085o/90al+WOu4
https://paperpile.com/c/xF085o/2iGi+CbaB
https://paperpile.com/c/xF085o/0mhy
https://paperpile.com/c/xF085o/TkGw
https://paperpile.com/c/xF085o/gkX0+ffzV
https://paperpile.com/c/xF085o/3ljz
https://paperpile.com/c/xF085o/CWvu
https://paperpile.com/c/xF085o/TkGw
https://paperpile.com/c/xF085o/bjot+CWvu
https://paperpile.com/c/xF085o/wHEz+PyJ6
https://paperpile.com/c/xF085o/bndJ+xy05
https://paperpile.com/c/xF085o/bndJ
https://paperpile.com/c/xF085o/Voja
https://paperpile.com/c/xF085o/ddgP


  Introduction 

18 
 

Extraneous DNA can be removed with a treatment with DNase, as phage DNA is protected by 

the capsid [127]. Cellular debris can be removed by a centrifugation step with a sucrose or 

CsCl gradient [152].  

When the concentration and purification steps were not successful, it might be necessary to 

submit the extracted DNA sequences to an amplification process. The first amplification 

procedures were based on fosmid cloning, in which large fragments (up to 100 kbp) from an 

environmental source are cloned in fosmids (forming fosmid libraries), then transfected into 

Escherichia coli cells for natural amplification of the fosmid DNA [145,153]. This is a difficult 

and laborious process that found additional challenges in its application for phages, namely 

the presence of toxic genes (holins, lysozymes) in phage genomes and modified nucleotides 

that could not be synthesised by E. coli [154–156]. Nonetheless, the technique was eventually 

perfected and is still widely in use for the study of viruses, as the size of the insert is often 

large enough to contain entire phage genomes [157,158]. 

Fosmid cloning quickly gave way to simpler, more efficient methods such as Multiple 

Displacement Amplification (MDA). This protocol makes use of Phi29 DNA polymerase, an 

enzyme with strand-displacement activity that enables it to amplify genomic DNA using 

random primers and a single denaturation step [159,160]. However, there is ample evidence 

that this method is heavily biased towards certain types of sequences and thus distorting the 

natural viral community [160–162]. PCR-based methods such as linker amplification, based 

on ligating primers to sheared DNA to perform standard PCR amplification, perform better in 

this regard but still present issues of their own [163]. Improvements in second-generation 

sequencing (so less DNA is required) and the potential for larger reads of third-generation 

sequencing protocols (so shearing of DNA is not desirable) mean that this amplification step 

is ignored in favour of processing more sample. 

1.3.3 First-Generation Sequencing (Sanger Sequencing) 

The first sequencing method was introduced by Sanger et al in 1977 [164] and allowed for the 

sequencing of a 1kb sequence from a single template. By the end of the 2000s, state-of-the-

art sanger sequencers could process 96 templates in a single run [165]. Considering that an 

environmental sample can contain thousands of different organisms, it is clear that these 

kinds of samples are beyond their scope [166].  

Therefore, the first studies of environmental phage diversity were done in reduced DNA 

collections, usually based around the study of genome size or a universal marker gene to 

assess community diversity (“metataxomics”) [167]. As stated previously, phages lack such a 

universal marker, but some early studies were done based on conserved genes [168] or 

structural proteins [169,170] that could target broad subsets of phage communities. These 

studies revealed the massive diversity even within these subgroups. Sequences from cultured 

phages fell within a few defined clusters, but the vast majority of environmental fragments 

fell in new, undefined clades [170,171]. In some cases, the composition of the community was 

significantly different between samples taken only a few metres apart from each other 

[172,173], and even then, identical gene fragments were recovered from different oceans and 

even from freshwater [169]. These results were corroborated by other studies targeting 

different phage populations [174]. 
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In 2002, Breitbart et al. published the first viral metagenomes (“viromes”) from two marine 

samples (surface water and sediment), recovering more than 1,000 viral fragments [175]. At 

the time of publication, the majority of these sequences (ca. 65%) had no significant similarity 

to any known viral genomes. A subsequent analysis of a marine sediment sample by the same 

group reported an even larger uncharacterized diversity [176], with an estimated 1,000,000 

phage genotypes per kg of processed sediment. 

 

1.3.4 Second generation sequencing (Next-Generation Sequencing) 

The early 2000s heralded the arrival of second-generation sequencing technologies, also 

known as Next-Generation Sequencing (NGS) [177]. A variety of platforms were available at 

the start of the decade, but the most widely used ones were Roche 454 pyrosequencing and 

Illumina dye sequencing. Differences between platforms are mostly based on the chemical 

process used in this last step, and are reflected in the sequenced fragments (reads): 454 

pyrosequencing can produce reads up to 800bp, while Illumina dye sequencing produces 

reads of up to 150bp [177]. NGS platforms present two major advantages compared to Sanger 

sequencing, namely the significantly lower cost of per-base and the considerably higher 

throughput [165]. Although the former made previous fosmid and amplicon-based 

experiments cheaper and more efficient, the latter was the real breakthrough, as it was finally 

possible to sequence DNA environmental samples in a process named “shotgun sequencing”, 

in which environmental DNA is randomly sheared into small fragments that are independently 

sequenced [178]. This finally allowed scientists to obtain the genomic content of a large part 

of the microbial community, providing the chance to analyse their composition and their 

metabolic potential.  

It should not be surprising, then, that the study of environmental viruses was revolutionised 

by this technology. A milestone experiment using this technology was carried out in 2006, in 

which the group led by Forest Rohwer sequenced and studied the viral community of four 

distinct oceanic regions (the Sargasso Sea, the Gulf of Mexico, British Columbia coastal waters 

and the Arctic Ocean) using 454 pyrosequencing [179]. From this moment forward, virome 

studies explode in number. This trend can be followed by the number of viral contigs available 

in public databases, with only 84 contigs available in 2010, 35,000 in 2016, 775,000 in 2018, 

and 2,300,000 in 2020 [180]. Not all of these sequences are derived from viromes, however, 

as viral sequences can also be found in the cellular fraction in a variety of shapes:  prophages, 

viral particles attached to cells and giant viruses (such as those from the Nucleocytoviricota 

clade) and cells infected with lytic phages (virocells) [181].  

Without a doubt, the landmark studies of the decade are derived from large-scale sampling 

projects (both spatial and temporal), as they have provided comprehensive, large-scope 

datasets that have allowed researchers to explore viral diversity on a global scale. The first 

large-scale dataset of this kind was the Pacific Ocean Virome, which grouped 32 viromes from 

a variety of locations, depths and seasons in the Pacific Ocean [182]. In the spatial end of the 

axis, two consortia-driven sampling oceanographic expeditions (the French, surface-focused 

Tara Oceans and the Spanish, depth-focused Malaspina) have produced massive datasets (90 

Tara Oceans viromes, 14 Malaspina viromes) [100,183]. In 2019, the second version of Global 
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Ocean Virome (GOV2) was published, adding 40 new viromes from the 2013 Tara Arctic 

expedition [184]. This collection of 184,009 viral populations is the most complete marine 

viral collection to date, spanning viromes from the whole globe (Figure 4). These expeditions 

have revealed that depth, salinity, temperature and oxygen concentration are the main 

drivers of viral community structure in the oceans [183]. On the temporal side of the axis, we 

find the Bermuda Atlantic Time-series Study (BATS), which now includes a dataset with more 

than 10 years of viral abundance in the Sargasso Sea [185]. Nevertheless, smaller-scale 

viromes have also had a large hand in shaping our understanding of marine viral diversity. In 

2013, Mizuno et al. used large insert metagenomic fosmids from a Mediterranean deep 

chlorophyll maximum sample, resulting in a dataset of 208 complete phage genomes [153]. 

This increased the number of complete marine phages in marine databases by an order of 

magnitude [186] and paved the way for the discovery of metaviromic islands a year later [79]. 

As powerful of a tool as it is, shotgun sequencing analyses present several weaknesses. The 

crux of its issues is the small size of the sequenced reads, which require an assembly step to 

obtain sequences large enough to predict protein sequences. Even though assembler 

software has significantly improved, it still has issues assembling repeat regions [187] usually 

resulting in a collection of genome fragments of varying length. With time, the techniques, 

workflows and software employed to manipulate and study NGS datasets have improved 

considerably. An example would be binning, the process of grouping contigs from the same 

lineage based on sequence nucleotide composition and coverage data [189,190], which 

allows researchers to reconstruct Metagenome -Assembled Genomes (MAGs), composite 

genomes that provide insight on the capabilities of a clonal community [190–192]. 

 

 

Figure 4. Sampling stations from Tara Oceans (A) and Tara Arctic (B). Each point in the map 

indicates a sampling site. [100,184] 

 

A similar approach (based on overlapping contigs) has been employed for phage genomes in 

the past, resulting in Metagenome-Assembled Viral Genomes (MAVGs) (Figure 5) [193]. The 

microdiversity in the population is also lost, as assembly produces consensus contigs from the 
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dataset reads. This results in the loss of a large amount of phage diversity: most of the reads 

in a viral metagenomic dataset (>80%) fail to recruit against available phage reference genes, 

both cultivated and uncultivated [100].  

A solution to this particular issue can be found in Single-Amplified Genomes (SAGs), which 

allow for the sequencing of one cell at a time. First, cells from an environmental sample are 

sorted, usually with a flow cytometer, and placed on individual plate wells. DNA from each 

cell is then extracted, amplified and finally sequenced [194]. This approach has been 

extensively used to study bacteria difficult to culture and assemble, with considerable success 

[194–196]. A similar approach has been employed for viruses. In 2017, Martinez-Hernandez 

et al reported the use of Fluorescence-Activated Virus Sorting (FAVS) to recover 2,234 distinct 

virus-like particles from environmental marine samples, out of which 44 were sequenced to 

recover viral SAGs (vSAGs) [197]. One of the recovered vSAGs was vSAG37-F6, a SAR11 phage 

that has been revealed to be the most abundant phage in the oceans [198]. 

 

 

Figure 5. Reconstruction of a Metagenome-Assembled Viral Genome (MAVG), in this case the 

SAR11 myophage MAVG-2. Notice how every section of the genome is covered by at least 

two contigs [193]. 
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1.3.5 Third generation sequencing 

In 2011, Pacific Biosciences (PacBio) commercialised the “Single Molecule Real Time” (SMRT) 

sequencing technology [199], which was followed by the release of a competing long-read 

sequencing technology by Oxford Nanopore (MinION) three years later [200]. Although the 

chemistry behind each platform is different [201,202], both promised read lengths on the 

order of thousands to hundreds of thousands of base pairs, almost three orders of magnitude 

more than the previous generation of sequencers [203]. For metagenomics, these long reads 

would help overcome some of the limitations derived from the assembly step. Longer reads 

would allow for better resolution of genomic regions with repeats and for the recovery of 

abundant, highly diverse microbe populations. 

These larger reads came with trade-offs. These technologies are more expensive, offer less 

throughput than the previous technology, and not least of all, are much more error-prone (on 

the order of 5-15%, compared to 0.1% for Illumina sequencing) [199,204]. A variety of 

methods have been developed to overcome this last hurdle, mainly correction of long reads 

by the use of a short-read dataset or, provided there is a high coverage, comparing the long 

reads against themselves [205,206]. However, the first approach requires to effectively 

sequence the same sample twice and the latter is not feasible for environmental samples, 

which never reach that level of high coverage. Changes in the technology can also help correct 

the error rate. For instance, the development of high-fidelity approaches such as PacBio 

circular consensus sequencing (CCS), which self-corrects by adding adapters at the ends in 

order to circularise and repeatedly sequence the DNA template [207]. 

Although the technology is still in its infancy, the application of long-read sequencing to viral 

metagenomes is particularly exciting, as reads can span several thousands and nucleotides 

and therefore it would be possible to recover complete or almost complete viral genomes 

from a single read. There are already some examples of long-read sequencing applied to the 

study of viromes using the Nanopore sequencing platform. Beaulaurier et al. recovered 1,864 

new complete assembly-free virus genomes from three nanopore datasets [208]. On the 

other hand, Dugdale et al recovered around 2,500 viral contigs from the assembly Nanopore 

and Illumina datasets from the same seawater sample of the Western English Channel [209], 

showing that a hybrid or long read-only assembly improved the recovery of viral contigs and 

their metaviromic islands compared to short read assemblies . 

 

1.3.6 More is less? Viral dark matter 

The widespread adoption of high-throughput DNA sequencing has made the number of phage 

sequences available to increase dramatically. However, with this deluge of new data came 

the realisation that the vast majority (63-93%) of environmental phage sequences cannot be 

assigned a host or functionally annotated [182], and the immense majority of  viral sequences 

found in nature cannot be taxonomically classified [183]. Moreover, each virome dataset adds 

more and more of these unknown sequences to the databases, providing no insight more 

than the huge diversity of the virosphere that seems to be bottomless. These uncharacterized 

sequences have been termed the ‘viral dark matter’ [7,153,210], and our inability to 

characterise them have severely limited our understanding of marine viruses.   
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Here again we encounter the crucial limitation of metagenomic studies: Identifying the 

genome sequence of a novel phage is only the first step towards understanding its role in the 

microbial ecosystem. A phage genome extracted from an environmental sample carries no 

direct information that can link it to its host, especially if it is a novel virus with no significantly 

detectable homologs in genomic databases [211]. Combined with the fact that these are 

usually recovered in a fragmented state, and that the vast majority of viral ORFs also have no 

homologues in protein databases, it is easy to see how viral metagenomic datasets can quickly 

become mere strings of nucleotides, with no information about their function and reducing 

the function of the scientist to that of a mere genome collector [212].  

However, isolation of phages from abundant, difficult-to-culture hosts [134,136,138] and the 

refinement of analysis tools for viral sequences (see below) have allowed the advancement 

in our understanding of viral phage communities. Although this community and its diversity 

is still largely unexplored, a few common patterns have emerged. Viral species are globally 

distributed (everything is everywhere), but the relative abundance of each species is 

restricted by local selection [183,213]. There are also a few general trends: phage community 

composition is linked to bacterial composition, which means it is affected by marine currents 

and water column stratification [214,215]. There is evidence of  niche specialisation between 

photic and aphotic zones, but there is a significant downward flux of viruses, presumably 

driven by particles [183,216], which explains the presence of cyanophages in aphotic marine 

sediments [217,218]. Interestingly, cyanophages that date over 50 years old recovered from 

these sediment samples are still infective, suggesting these sediments could be reservoirs of 

genetic diversity [6]. Furthermore, even with as diverse as marine viruses are, constant phage 

communities can be found. For instance, out of the hundreds of cyanophages sequenced, 

some of them can be grouped into discrete populations, which suggests there are constraints 

to gene transfer between phages [219–221]. These populations are also temporally stable, 

with the same phages found several years apart with the only differences being in the non-

core genome and RBPs [219,220]. 

The abundance of single-stranded DNA and RNA viruses is currently unclear. As TEM 

microscopy is expensive and laborious, current viral quantification assays are based on 

epifluorescence with SYBR green as a staining agent, which insufficiently stains RNA and 

ssDNA molecules [222–224]. Studies employing alternative quantification protocols indicate 

that marine samples are dominated by non-tailed virus particles, but epifluorescence-based 

counts result in higher viral abundances, suggesting that the contribution of ssDNA and RNA 

viruses might not be much [225,226]. Further studies are required to determine the 

contributions of RNA and ssDNA viruses to the marine phage population. 

 

1.3.7 Illuminating viral dark matter: predicting hosts from phage genomes 

Cultivation-independent in vitro assays for host assignment exist, usually based on co-

detection of host and viral marker in a host cell, either with fluorescence markers (PhageFISH) 

[227], droplet digital PCR [228] or physical linkage (epicPCR) [229]. Another method would be 

viral tagging [219,230], based on the fluorescent labelling of phages followed by adsorption 
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to host cells. However, we will not focus on these methods of host identification as they do 

not help identify phages from an already sequenced sample. 

We will focus our attention instead on the analysis of computational signals. As stated 

beforehand, phages and their host have co-evolved through thousands of years. This shared 

history is reflected in the genome sequence of both the phage and its host. Therefore, careful 

analysis of the molecular signals derived from this coevolution can help discern the host of 

these orphan phage sequences [211]. Multiple methods to assign a host have been developed 

over the years, based on a multitude of different genomic signatures. 

Alignment-based approaches are based on finding regions of homology between the phage 

genome and a database of sequences, based on the fact that genetic exchange between viral 

and host genomes is indicative of virus-host associations. When comparing phage genomes 

to host genomes, these regions of sequence similarity reveal different co-evolution processes. 

Large similarity regions usually indicate the presence of a prophage closely related to the 

query phage in the host genome. Small matches require robust search strategies and 

stringent criteria, since they can be attributed to random chance. For example, CRISPR spacers 

are sequences 26-72bp long [231], found in specific regions of the genome and their presence 

implies a successful defence of the bacteria against a closely related phage. Likewise, Phages 

integrating into tRNAs carry a phage attachment site (attP) that is an exact match of a host 

tRNA gene (bacterial attachment site, attB). Therefore, a phage carrying an integrase and a 

putative attP site identical to a host tRNA gene fragment is strong evidence towards that 

phage-host relationship [153]. The gene content of the viral sequences is also of importance, 

as certain genes, specially AMGs or other elements of the flexible genome, can be indicative 

of the host. Examples of these marker genes are photosynthesis genes for cyanophages (psbA 

and hli) [34] or the whiB transcription factor for Actinobacteria [232]. 

Alignment-based methods present high accuracy, but low recall [211,233]. This is due to two 

factors. First, not all phage-host pairs exhibit these signals (for example, not all bacteria 

encode CRISPRs) [234]. Second, predicting power depends on the database used. 

Unfortunately, the number of isolate viral genomes in databases remains limited and is 

heavily biased towards certain clades. For comparison, a paper published in 2015 noted that 

more than 25,000 bacterial and archaeal host genomes are available in NCBI RefSeq, whereas 

only 1,531 of their viruses were entirely sequenced and most (86%) of these derive from only 

3 of 61 known host phyla [235]. MAGs or SAGs derived from the same sample as the phage 

are regularly used to complement the cultured genome databases, but this approach risks 

prediction errors by contamination [236]. 

Alternatively, alignment-free approaches are based on detecting shared sequence 

composition features between phage and host, based on the theory that over time, phages 

adapt their sequence composition to that of their host to make better use of their replication, 

transcription, and translation machinery [237,238]. A variety of similarity measures such as 

GC content, k-mer profiles and codon usage have been suggested over the years [239]. 

Although these methods have the benefit of not needing the presence of a host or a closely-

related phage in the databases, they tend to display a lower accuracy than the former 

approach [211,233]. Co-occurrence of phage and host in a sample is another type of 
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alignment-free signal, as we only expect to find phages in an environment if their host is also 

present. However, this method requires the availability of various metagenomes and viromes 

spaced in time, as the correlation between host and phage abundance is lagged. This reduces 

their applicability to combined studies such as Tara Oceans, where correlation between host 

and phage were used to assign hosts to eight phage sequences [240]. Moreover, these 

correlations can be difficult to interpret, especially in complex communities for which phage–

host correlation patterns vary depending on sampling date or in phage-host relationships with 

unusual infection dynamics. Experimental procedures can also affect the analysis, as phage 

and microbial metagenomes are often isolated and sequenced separately following different 

protocols, which might confound the signal [241]. 

Recently, the more sophisticated host prediction pipelines follow an ensemble approach, in 

which multiple signals (both alignment-free and alignment-based) are evaluated at the same 

time. As evaluating multiple signatures with distinct properties is a significant challenge, this 

task is usually delegated to a machine-learning (ML) algorithm. Although these algorithms can 

process hundreds of different signals at a time, choosing a good set of features is still a crucial 

step to avoid noise. Therefore, ensemble pipelines are distinguished by their chosen set of 

predicting features and their algorithm. Examples of these pipelines include 

BacteriophageHostPrediction, which uses more than 200 features derived from receptor-

binding proteins with a variety of ML algorithms [242], VirHostMatcher-Net, which analyses 

various alignment-free signals with a Markov random field [243]. 

 

 

1.4 The SAR11 clade and its phage 
 

1.4.1 The host: SAR11 clade 

The SAR11 clade of Alphaproteobacteria are a group of aerobic, free-living, 

chemoheterotrophic bacteria [244]. As evidenced by the drab name, they were one of the 

bacterial groups discovered in a famous metataxomic study in the Sargasso Sea. The prefix 

SAR refers to the Sargasso Sea, and SAR11 was the 11th clone in the 16S rRNA genome library 

[244]. Even though the clade passed unnoticed until the appearance of DNA-based surveying, 

direct cell counts by FISH assays reveal that the clade is the most abundant microorganism in 

the sea, with SAR11 cells constituting 20 - 40% of all cells in the epipelagic zone, and around 

20% in mesopelagic and bathypelagic regions [245]. 

The phylogeny of the clade is still a hotly contested debate and could easily be the subject for 

an entire thesis [246–248], but for our purposes, it will suffice to indicate that phylogenomic 

studies reveal the clade to be exceptionally diverse, including various freshwater clades [249], 

and that even in the ocean environment there are multiple ecotypes showing preferences for 

temperature and depth [250–252]. These studies also reveal that surprisingly, the collective 

core genome of the SAR11 clade is extremely conserved across all members, with only subtle 

differences in gene content explaining the adaptation of each ecotype to its ecological niche 

[250,253]. 
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Unlike other microorganisms discovered in the aforementioned study, a subgroup of marine 

strains (the clade Pelagibacterales) were eventually cultured in lab conditions once its unusual 

growth requirements were elucidated [254]. Once cultured, isolated and sequenced, it was 

revealed that the main culprit for these extravagant nutrient requirements was its genome. 

SAR11 bacteria possess dense, very small genomes (ca. 1.34 Mbp) that contain only the bare 

minimum to ensure the reproductive success of the cell [253], with the only exception being 

the hypervariable regions that contain horizontally transferred genes [253,255]. This was one 

of the first examples of what is now defined as a streamlined genome, a genome under a 

selection pressure that favours minimization of cell size and complexity. Examples of this 

streamlining process can be found in various marine taxa, such as the cyanobacteria 

Prochlorococcus [256], Ca. Actinomarinales [257] and the methylotrophic Betaproteobacteria 

clade OM43 [258]. It is believed that this streamlining confers an advantage in nutrient-poor 

environments, where either gathering a larger share of resources or using them more 

efficiently can increase reproductive fitness [259]. As an example, a smaller cell size requires 

fewer building blocks to replicate and results in a larger surface-to-volume ratio, which is 

advantageous for scavenging nutrients from the environment [259].  

This genome reduction has important consequences in its lifestyle. Depending on the SAR11 

strain, various metabolic pathways present gaps (e.g. lack of thiC gene for 4-amino-5-

Hydroxymethyl-2-methylpyrimidine biosynthesis) [260] or are outright missing in some 

strains (e.g. glycolysis pathway) [261]. This is the reason for their unusual growth 

requirements, as the cell must compensate for these incomplete pathways by scavenging 

these specific metabolites from the environment [244]. However, not all metabolic pathways 

are equally affected: SAR11 genomes contain a large metabolic repertoire for the capture and 

oxidation of dissolved organic compounds, particularly the C1 compounds that it uses for 

energy production [262,263]. SAR11 was the first cultured microorganism shown to code for 

a light-dependent proton pump proteorhodopsin [255], which uses light to support ATP 

synthesis in the cell. Surprisingly, the presence of proteorhodopsin has little impact on 

growing cells but instead allows carbon-starved cells to conserve their biomass [264]. The 

reason for this behaviour is still unknown, but it is theorised that organic respiration might be 

incompatible with the proton pump [244]. 

Genes pertaining to regulation pathways are also sacrificed. This clade has lost the vast 

majority of its regulation pathways. For example, the clade only codes for two sigma factors 

and four two-component regulatory systems, compared to seven and 29 in E. coli, 

respectively [244]. Furthermore, the regulation paths that are preserved are simplified 

variations with fewer genes, or have switched to other regulation mechanisms such as 

riboswitches [265,266]. The main consequence of the loss of these regulation capabilities is a 

reduced growth rate, as it has lost the capability to adapt to fluctuations in nutrient 

concentrations. For example, there is a strong correlation between maximal growth rate and 

rRNA operon number [267], and SAR11 cells only code for one rRNA operon [255].  

Considering the capabilities described above, the ecological niche suggested by Giovanonni 

et al. is the oxidation of one-carbon compounds present at low ambient concentrations, 
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where they are highly successful thanks to their high surface-to-area ratio and low cost of 

replication [244]. 

 

1.4.2 The parasites: SAR11 bacteriophages 

Being the most abundant bacteria in the oceans, it is to be expected that the SAR11 bacteria 

are under a lot of pressure by predation of phages. However, their defences against phages 

are also lacking. The only two active defence mechanisms found in the entire clade are a 

predicted CRISPR region in a SAG from the bathypelagic clade Ic [250] and a DNA 

phosphorylation system that might protect against phage lysozymes by modifying the DNA 

backbone [268]. Although their growth rate is not particularly high, the contribution of SAR11 

to bacterial heterotrophic production is greater than its relative abundance, which suggests 

that they would not be able to avoid phage predation. 

However, this does not mean that SAR11 is completely defenceless: All pelagibacter strains 

contain genome region HVR2, a hypervariable region flanked by conserved rRNA genes [269]. 

This region is rich in genes involved in synthesis of cell surface proteins, such as 

glycosyltransferases, sugar isomerases and pilins [253]. Considering the large population size 

and the fact that recombination rates in SAR11 are among the highest ever recorded [270], 

suggests that the SAR11 clade is able to protect against phage-mediated predation by sheer 

abundance. High population densities increase predation by phages but they also increase 

the possibilities of finding other SAR11 cells or their DNA, providing the opportunity for 

genetic recombination by conjugation/transformation [134]. Recombination is a faster way 

to propagate genetic elements in populations than clonal replication, and thus potentially 

offers an advantage with regards to immunity spread [134]. 

As explained previously, SAR11 are notoriously fastidious to cultivate, which significantly 

complicates the task of isolating their phages. Nonetheless, the first four SAR11 phages were 

first isolated from seawater samples in 2013, roughly 10 years after the first axenic SAR11 

cultures were reported (Figure 6) [134]. Over time, the number of isolated phages has slowly 

increased bringing the total number to 44 [135,271–274]. These sequences have been 

supported by several sequences retrieved from a myriad of culture-independent single-cell 

genomic or metagenomic studies, which have allowed to cement the phylogeny of the 

isolates [198,273]. 

The vast majority of isolated phages (41 out of 44) belong to the Podoviridae family and can 

be divided in three distinct clades (all names are tentative): HTVC019P-like, which belong to 

the Autographivirinae subfamily, forming a clade close to the P60-like cyanophages [275]; 

HTVC010P-like, divergent podoviruses [135]; and HTVC023P-like, which include vSAG37-F6, 

the most abundant phage in the marine environment [198,272]. Both HTVC019 and 

HTVC010P-like clades include freshwater members, found by metagenome mining [273]. 

Lysogeny seems to be widespread among all three clades, as evidenced by PCR assays and 

mining of sequences that include hybrid attL and attR sites [271,276]. The attB integration 

site is usually found near a tRNA gene in the host. The remaining three phages belong to the 

Siphoviridae (Kolga phage) [274] and the Myoviridae (HTVC008M, Mosig phage) [134,274], 
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respectively. Both HTVC008M and Mosig belong to the Tevenviridae subfamily and are 

phylogenetically related to other isolated cyanobacteria myoviruses (S-SSM7, P-SSM2, Syn1) 

[134,274], while Kolga is not related to any other known viruses [274]. 

Recruitment analyses show an interesting pattern: while pelagiphages seem to be widely 

distributed in the epipelagic zone across the longitudinal gradient, a few groups are highly 

abundant (HTVC010P-like and HTVC023P-like lytic subgroups), while the rest of phages 

present much lower recruitment values [134,277,278]. An exception to this rule is found in 

some niche-specific sequences, as seen with Pelagipodophage Greip being exclusively found 

in arctic datasets [274]. 

Significant differences were found between the podophages and the myophage in regards to 

burst size (40+ for podophages, less than 10 for the myophage) and latent times (an average 

of 20 hours for podophages, 17 hours for the myophage) [134]. Values for both groups, 

however, are lower than those of their closest neighbours, the cyanophages [279]. 

Nonetheless, the most puzzling difference between isolated phages has to be in their 

infection processes. The first SAR11 phages presented infection dynamics similar to those of 

cyanophages, in which host density in the infected culture falls as a consequence of viral lysis 

[134]. In contrast, other pelagiphage infections result in the host culture growing into a steady 

state, but at a lower cell density than uninfected cultures, with no association to phage 

phylogeny or gene content related to lysogeny [274]. This pattern of infection has also been 

reported in crAssphages cultures isolated from the human gut, with their authors proposing 

that these viruses may only complete the viral cycle in a subset of host cells, while the rest 

present alternate interactions such as pseudolysogeny [274]. The switch from this dormancy 

state to lytic cycle would be controlled by a yet unknown set of genes. This theory would also 

explain the low lytic activity and the decoupled abundances related to their hosts both 

observed in pelagiphages in situ and in production experiments [277]. In fact, SAR11 

prophages recently detected in SAR11 strains NP1 and NP2 have been found to increase virion 

production under carbon-replete conditions in a process that is not accompanied by an 

increase in host cell lysis [276]. 
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Figure 6. Electronic microscopy images of SAR11 phages. a, Pelagipodovirus HTVC011P. b, 

Pelagipodovirus HTVC019P. c, Pelagipodovirus HTVC010P. d, Pelagimyovirus HTVC008M. e, 

Host cell of ‘Candidatus P. ubique’ HTCC1062 infected with HTVC011P immediately before 

lysis. [134] 

 

Like other marine viruses [280,281], pelagiphages show diel cycling. Metatranscriptomic 

datasets from the North Pacific Ocean and the Osaka Bay show that pelagiphage abundance 

and transcriptomic activity closely follows that of its host, with a peak abundance/activity at 

night and a nadir around midday [282]. This pattern has been observed in other heterotrophic 

bacteria, probably as an adaptation to diel cycling of autotrophs in the community 

[281,283,284]. 
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Viruses are the most abundant biological entities in marine ecosystems and play an essential 

role in global geochemical cycles. They have important ecological functions as drivers of 

bacterial populations through lytic infections and contribute to bacterial genetic 

diversification. Unfortunately, their study is severely limited by the difficulty to culture and 

isolate them in lab conditions. Culture-independent techniques such as metagenomics can 

complement culture-based approaches to capture more phage diversity. However, the vast 

majority of viral sequences recovered through these methods are uncharacterized and 

therefore do not provide any information about their interactions with the bacterial 

community (“viral dark matter”). For this reason, it is essential to develop methods that can 

provide context to viral metagenomic data to describe and quantify all biodiversity as well as 

to improve our understanding of the processes of diversification and viral evolution. 

The objectives of this thesis are thus: 

• Develop an approach to detect and extract all viral diversity from metagenomic 

samples, obtain more complete genomes by reassembly and provide context to the 

recovered sequences. 

 

• Application of the previous approach to phages of the order SAR11 Pelagibacterales, 

one of the most ubiquitous lineages of free-living heterotrophic bacteria in the world's 

oceans. 

 

• Evaluate the resolving power of third generation sequencing (long reads, PacBio CCS) 

and compare it with short reads (Illumina sequencing) to study the metagenome of a 

known marine sample from the mixed epipelagic water column of the winter 

Mediterranean with regards to viral recovery. 

 

• Develop bioinformatic tools to explore and discover virus-host interactions. 
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3.1 Viral genome mining 
Two different approaches were followed to obtain viral contigs, depending on the degree of 

specificity desired. To recover Pelagimyophage (PMP) contigs from metagenomic samples, we 

followed the workflow shown in Annex 1:Figure S1A. The reference cultivated PMP genome 

(HTVC008M) [134] and metagenomic PMP sequences MAVG-2, MAVG-4, MAVG-5, and Io7-

C40 [193], were used as bait to comb through a vast quantity of contigs derived from several 

metagenome and virome samples (Annex 1:Table S1) [153,193,285–289]. First, a hidden 

Markov model (HMM) made from an alignment of terL gene sequences was used to identify 

viral contigs larger than 5 kb. The terL gene from the extracted contigs was then used to 

construct a phylogenetic tree (Annex 1:Figure S7A). The position of the terL gene of the 

reference PMP in this tree was then used to recover a set of candidate contigs (Annex 1:Figure 

S1B and Annex 1:Figure S5). At the time this work was made, the closest taxa to PMPs were 

Cyanomyophages (CMPs), which are expected to be present in significant quantities in the 

surveyed metagenomes. To remove all CMP-related contigs from the candidates, two 

collections of gene clusters were built, (i) one of them derived from 28 CMP genomes 

downloaded from the NCBI Refseq database [290] and (ii) another derived from the reference 

PMP genomes. Gene clusters shared between both collections were removed. HMMs built 

from both cluster collections were used to classify the contigs, keeping only those that had at 

least a match to a PMP gene cluster and no matches to any CMP gene cluster (Annex 1: Figure 

S1).  

Conversely, recovery of viral diversity from long-read datasets was performed in two steps. 

Bacteria and archaea viral contigs larger than 1kb were recovered using VIBRANT [291] with 

default parameters. Eukaryotic viruses were recovered via manual curation. Each dataset was 

dereplicated using CD-HIT [292] at 95% identity to remove redundant sequences. Contigs 

were considered unique based on the definition of ‘Viral population’ as described in Gregory 

et al [184], that is, contigs were considered part of the same population if they had hits with 

at least 95% identity and the sum of distinct alignment lengths resulted in a coverage of at 

least 70% across the smallest contig using BLASTN [293]. 

 

3.2 MAVG cross-assembly 
To obtain PMP genomes as complete as possible, the contigs recovered from the sequence 

mining step were subjected to a cross-assembly step. Identical sequences were removed from 

the analysis, always keeping the longer contig if they did not have the same length. Contigs 

were then separated into bins of overlapping contigs based on an all-versus-all comparison 

(Annex 1:Figure S1). Next, bins were assembled manually into MAVGs as described previously 

[193] provided that (i) overlaps between contigs had a nucleotide sequence identity of >99%, 

an alignment length of >1,000 nt, and gaps of <10 nt, (ii) all overlaps were corroborated by 

more than two contigs, and (iii) sample metadata were ecologically coherent for all involved 

contigs (for example, not assembling contigs from freshwater and marine samples together).  
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3.3 Recruitment analysis 
To assess the distribution and abundance patterns of recovered phage sequences, filtered 

raw reads were aligned against a phage genome. By quantifying the number of reads aligned 

to each genome, it is possible to obtain a measurement of abundance of that genome across 

several metagenomic datasets. Genomes were recruited using pblat [294] with a threshold of 

95% nucleotide identity over at least 50 nucleotides. Each read was mapped only to the viral 

contig with the best match. Normalisation was performed by calculating RPKG (reads 

recruited per kilobase of the genome per gigabase of the metagenome) so recruitment values 

could be compared across samples. Marine phages were recruited against a collection of 

datasets that include the Tara Oceans metagenomes [286], GEOTRACES cellular 

metagenomes [285], and a collection of Mediterranean metagenomes [105,193]. For the 

freshwater PMP group PMP-D, genomes were also recruited against the virome data sets they 

were recovered from and against samples from other freshwater environments (Lake Biwa, 

Lake Simoncouche, Lake Kivu, Baltic Sea) [189,295–297].  

Linear metagenomic recruitments (see Annex 1:Figure S3) were performed by alignment of 

reads using BLASTN [293], with a cut-off of 70% nucleotide identity over a minimum alignment 

length of 50 nucleotides. The resulting alignments were plotted using the ggplot2 package in 

R.  

 

3.4 Genome Functional Annotation 
Genes and tRNA sequences were identified using Prodigal [298] in metagenomic mode and 

tRNAscan-SE [299], respectively. As phage protein sequences are extremely divergent, 

functional annotation of predicted features followed a consensus-based approach. Phage 

protein sequences clustered at 30% identity, 50% query coverage using MMSeqs2 [300]. 

Clusters with less than 10 sequences were expanded with MMSeqs2 and the uniclust30 

database [301]. 

Individual proteins in each cluster were annotated against functional annotation databases. 

Proteine were first annotated against the uniref90 database [302], using DIAMOND [303]. A 

second round of annotation was done with the Conserved Domains Database (CDD) [304] 

serving as a general function database, while  pVOGs [305] PHROGs [306] served as phage-

specific databases. Protein alignments were downloaded from their respective databases, 

then converted to Hidden Markov Models (HMMs) using hmmbuild from the HMMER suite 

[307]. For each database, each gene was assigned the best hit with an E-value of at least 10-5 

and a query coverage of at least 50%. Annotations for each cluster were manually curated to 

ensure the annotations were coherent for all proteins in the cluster. In the cases that 

presented discrepancies, the second and third best hits were used to verify the annotation. 

Finally, the remaining clusters without annotation were annotated using HMM vs HMM 

annotation, a much more sensitive procedure. Clusters were finally converted into HMMs 

then compared to the PDB HMM database [308] using the HH-suite3 software suite [309].  
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3.5 Co-occurrence matrix 
In order to analyse the organisation of phage genomes, we constructed a co-occurrence 

matrix, which links genes if they are part of the same operon. Operon determination was 

done as follows: Terminator sequences were predicted using Transterm_HP [310], while early 

promoter sequences were predicted using BPROM [311]. Prediction of middle and late 

promoter sequences was attempted following the steps described previously [312] but was 

unsuccessful in PMP genomes. As prediction of all promoter regions proved unfeasible, genes 

were grouped into operons based on terminator positions and strand changes. These operons 

were then used as the basis for a co-occurrence matrix. Two protein clusters (nodes) were 

linked to each other if they were present in two genomes and were part of the same operon, 

with edge strength representing the number of genome pairs where this was the case. Edges 

with edge strength representing 0.05% of the total were removed from the matrix. The matrix 

was then used to build a network in Cytoscape [313]. The add-on ClusterMaker2 [314] was 

used to separate the co-occurrence network into clusters (MCL algorithm, 2.5 granularity). 

 

3.6 Phylogenetic reconstruction 
Different methods to construct phylogenetic trees were used depending on the evolutionary 

distance between the genomes and the type of sequence information available. If the 

genomes available are reasonably complete and phylogenetically closely related (e.g. 

pertaining to the same family), as was the case for the PMP tree (Annex 1:Figure 1) and the 

nucleocytoplasmic large DNA viruses (NCDLV) tree (Annex 2:Figure S1) a phylogenetic tree 

based on a concatenate of conserved proteins was constructed. Marker proteins common to 

all genomes are found with software such as GET_HOMOLOGUES [315] or 

ncldv_markersearch [316]. For the Tevenviridae tree, the chosen proteins were the large and 

small subunits of terminase, VrlC protein, tail tube monomer gp18, and baseplate wedge 

protein gp8, while the NCDLV tree includes the major capsid protein mcp, DNA Polymerase 

beta subunit PolB, DEAD/SNF2-like helicase SFII, Poxvirus Late Transcription Factor VLTF3 and 

the Packaging ATPase A32. The recovered marker proteins are aligned using a protein aligner 

such as MUSCLE [317] or ClustalOmega [318], then concatenated. The resulting sequences 

are then used as input for a phylogenomic inference software, such as IQ-TREE2 [319] or 

FastTree [320], which will build a phylogenetic tree. Confidence on the tree branches is 

assessed by producing bootstrap replicates by building the tree again after reshuffling 

nucleotides between sequences.  

This approach is not feasible in cases in which genomes are distantly related to each other, as 

the divergence in phage protein sequences results in poor detection of homologues. To 

recover as many homologues as possible, Benler et al. describe the following method [321]. 

Marker viral proteins in the target genomes are detected via hmmsearch [307] against the 

PHROGs database [306] and merged into a single dataset. This dataset is then grouped with 

mmseqs2 [300] into clusters with 50% amino acid identity and a coverage of 70%, which are 

then aligned using ClustalOmega [318] and compared to each other using hhsearch [309]. A 

distance matrix is calculated by calculating distances following the formula -ln(SA,B / min (SA,A, 

SB,B )), where SA,B is the raw score per alignment length. This matrix is then used to build a 
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dendrogram (UPGMA method), which acts as a guide to merge clusters using ClustalOmega 

[318], resulting in larger protein alignments. The resulting protein alignments were filtered to 

remove sites with more than 50% gaps, then used to build trees using phylogenomic inference 

software. 

 

3.7 Protein analysis 
 

3.7.1 Putative endolysin discovery and analysis 

Putative endolysins in the Mediterranean datasets were extracted following the method 

described in Fernandez-Ruiz et al [322]. The predicted proteins from each contig were 

compared against a curated database of endolysins using DIAMOND [303]. Matches were 

classified as putative endolysins if the match had >50% identity, covered at least 30% of the 

query sequence, the alignment was at least 50 aa long and the e-value was at least 10-3. A 

phylogenetic tree including both the reference dataset and new putative sequences was built 

following the method described above (See Phylogenetic reconstruction of viral marker 

proteins). Protein domains were detected by using hmmsearch [307] against the CDD [304] 

and dbCAN2 [323] databases, considering a match as valid if the match had 70% of HMM 

coverage and E-value of at least 10-5. Proteins of the C4 clade were tested for the presence of 

a Signal-Arrest-Release domain following the method explained in Oliveira et al [324].  

3.7.2 Protein isoelectric point determination 

To determine the isoelectric point distribution patterns of the phage genomes, calculations 

of all predicted proteins for both genomes were calculated with the pepstats software from 

the EMBOSS package [325]. The resulting isoelectric point values were plotted using the 

ggplot2 package in R. 

 

3.8 Genomic pairwise comparison 
Average nucleotide identity (ANI) and coverage between a pair of genomes were calculated 

using the Jspecies software with default parameters [326]. 

 

3.9 Statistical testing 
Wilcoxon rank sumStatistical tests were performed using the coin package in R [327]. The 

Effect size for Kruskal-Wallis test was calculated using the rstatix package (https://CRAN.R-

project.org/package=rstatix). 

 

3.10 Host Assignment 
Different host assignment protocols were used depending on the objectives of the study. For 

phage sequences obtained through mining with phage-specific HMMs (See Annex 1:Figure 

S1A), we were only interested in recovering phages that infected SAR11. Therefore, the 
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recovered phages filtered by size (>100 kb), GC content (30 to 35%, which is the GC% range 

of SAR11), the number of proteins matching to SAR11 (>70% of identity), and tRNA gene 

matches to SAR11 (>95% of identity). 

Larger collections of viral contigs were taxonomically annotated following the method 

described in Beaulaurier et al [208]. The predicted proteins from each contig were annotated 

against the NCBI Viral Genomes database [290] using LAST [328]. Viral contigs were annotated 

at the order level if they contained one, three or five or more proteins with top hits to phages 

that infect the same host genus. The choice of threshold seems to only affect the number of 

phages classified, not the community composition (Annex 3:Figure 1).  

Lastly, the GLUVAB database [329] used for training and validation of RaFAH were assigned 

putative hosts using classical approaches. We used three lines of evidence for virus-host 

associations: CRISPR spacers, homology matches, and shared tRNAs. CRISPR spacers were 

identified in the RefSeq genomes as previously described [330]. The obtained spacers were 

queried against the sequences of bona fide viral sequences using BLASTN v2.6.0+ (task blastn-

short, 100% identity, 100% query coverage, no mismatches) [293]. Homology matches were 

performed by querying viral sequences against the databases of prokaryote genomes using 

BLASTN (alignment length ≥ 500bp, identity ≥ 95%, evalue ≤ 0.001) [293]. tRNAs were 

identified in viral scaffolds using tRNAScan-SE [299] using the bacterial models. The obtained 

viral tRNAs were queried against the RefSeq database of prokaryote genomes using BLASTN 

(alignment length ≥ 60bp, identity ≥ 97%, mismatches ≤ 10) [293]. These steps for host 

assignment did not include the prophages in the Genomic Lineages of Uncultured Viruses of 

Archaea and Bacteria (GLUVAB) database, as we were already confident of their host 

assignments.  

All GLUVAB genomes were clustered into viral populations (VPs) on the basis of 95% average 

nucleotide identity and 80% shared genes [183].  For each virus-taxon association signal 

detected (i.e., homology, tRNA, or CRISPR), 3 points were added to the taxon if it was a CRISPR 

match, 2 points if it was a homology match, and 1 point if it was a shared tRNA. The taxon 

that displayed the highest score was defined as the host of the viral population. With this 

approach we ensured that all the genomes in the same VP were assigned to the same host 

and that no sequences had to be excluded due to ambiguous predictions. 

 

3.11 Random Forest input dataset 
To build the input table used to train the random forest model, protein sequences were 

identified in viral genomes using Prodigal  [298] in metagenomic mode. Proteins were then 

clustered using the MMseqs2 software suite into clusters with at least 35% sequence identity 

and an alignment coverage of at least 70% of all proteins [300]. The resulting following Protein 

Clusters (PCs) were aligned with QuickProbs [331] using default parameters, then converted 

into HMMs using the hmmake program from the HMMER suite [307]. The HMMs obtained in 

this way were annotated against the pVOG database [305] using the HH-suite3 software suite 

[309], keeping all annotations with target coverage ≥50% and e-value ≤1−10. 

https://paperpile.com/c/xF085o/8XeE
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https://paperpile.com/c/xF085o/hZ7M
https://paperpile.com/c/xF085o/kq6s
https://paperpile.com/c/xF085o/hZ7M
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Finally, individual viral proteins were mapped to the HMM profiles using the hmmsearch 

program from the HMMER suite [307], keeping all hits with e-value ≤10−5, alignment length 

≥70% for both the viral protein and the HMM, and minimum score of 50. These results were 

parsed into a matrix of viral genomes × PCs in which the values of each cell corresponded to 

the bit score of the best hit of each protein to a given PC, or zero if the protein and the PC did 

not match or if the score of the match was below the aforementioned 50 cutoff. Once the 

matrix of genomes × PC was defined, we calculated Pearson correlation coefficients (r) 

between all possible pairwise combinations of PCs. To remove redundancies, we grouped PCs 

into superclusters if they presented r ≥ 0.9, and only a single PC from each supercluster was 

kept for subsequent analysis. This reduced table of genomes versus PC scores (25,879 

genomes × 43,644 PCs) was used as input to train, validate, and test the random forest 

models. The taxonomic classification of each genus up to the domain level was obtained by 

parsing the NCBI Taxonomy database with a custom script.  

 

3.12 Random Forest model training 
Random forest models were built using the Ranger [332] package in R. The response variable 

was the genus-level host assignment of the viral sequences while the input parameters were 

the scores of viral genomes to each PC. To ensure that the resulting random forests could be 

used for all virus genomes, the multi-class random forests were built with 1,000 trees, 5,000 

variables to possibly split at in each node, and using probabilistic mode. When training the 

models and reporting predictions, we assumed that a virus can only infect a single genus. Due 

to the probabilistic nature of the random forests, all genera are associated with a score (which 

ranges from 0 to 1). The putative host of a viral genome was selected as the taxon with the 

highest probability score yielded by the random forest. Variable importance was estimated 

using the impurity method.  

Three models were built and validated on independent datasets. Models 1 and 2 were used 

as proof-of-principle models, and Model 3 was the definitive model used for testing and which 

is provided to the users and used for all subsequent analyses. Model 1 was trained on Training 

Set 1, which comprised 80% randomly selected non-redundant viral genomes from NCBI 

RefSeq. The performance of this model was evaluated on Training Set 1 and Validation Set 1, 

which comprised the remaining 20% of non-redundant RefSeq genomes. Model 2 was trained 

on Training Set 2, which comprised 100% of the RefSeq genomes, and validated on Validation 

Set 2, which was comprised of genomes from the GLUVAB database that could be assigned to 

a host at the level of genus by the pipeline described above. Finally, Model 3 was built based 

on Training Set 3, which comprised all of the RefSeq viral genomes and the GLUVAB genomes 

that could be assigned to a host at the level of genus (i.e., a combination of Training Set 2 and 

Validation Set 2). In this dataset each genus was represented by a median of three genomes, 

and for 187 out of 617 (30.3%) genera the model was trained with a single genome (Annex 

3:Table S5).  

https://paperpile.com/c/xF085o/TB74
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3.13 Random Forest model testing 
Viral genome completeness is likely to influence the performance of the models. A tool 

trained solely on complete or nearly complete genomes might not be capable of producing 

accurate predictions for the genome fragments that are often obtained with metagenomic 

datasets. Completeness of the 25,879 sequences used to train RaFAH was estimated with 

CheckV [333] which indicated that this dataset encompassed both complete viral genomes as 

well as partial viral contigs. Partial viral genomes were the majority of sequences used to train 

RaFAH. Altogether, the genomes used for training displayed an average completeness of 

53.6% ± 32.3%. According to CheckV, these sequences were classified as complete genomes 

(709 sequences), high-quality genome fragments (5,823), medium-quality genome fragments 

(5,493), low-quality genome fragments (13,707) and not determined (147). 

We used three independent test sets to evaluate the performance of RaFAH Model 3. Test 

Set 1 comprised a non-redundant dataset (95% nucleotide identity and 50% alignment length 

of the shorter sequence) viral genomes retrieved from NCBI Genomes database [290]. We 

took several steps to make sure that Test Set 1 represented a challenging dataset for the 

random forest model by excluding any genomes made public before November 2019 or that 

shared more than 70% of proteins (>70% average AAI) with genomes present in RaFAH Model 

3. These steps resulted in an independent Test Set 1 consisting of 561 (out of the initial 3,427) 

genomes. Host assignment was derived from NCBI Annotation. 

Test Set 2 comprised viral genomes identified in SAGs from marine samples [196]. A total of 

418 viral sequences were extracted from 4,751 SAGs (with completeness ≥50% and 

contamination ≤5% as estimated by CheckM [334]) using VIBRANT [291]. Host assignment 

was derived from the SAGs, as we assumed that the viral sequences in the SAGs infected the 

organisms from which these SAGs were derived, either because they were derived from 

integrated prophages or from viral particles attached or inside host cells. Viruses from SAGs 

that could not be classified were excluded from the precision and recall analyses. 

Test Set 3 comprised a collection of 61,647 viral genomic sequences from studies that 

spanned multiple samples from permafrost [335], marine [336], human gut [321], 

freshwater[94] , soil [142], hypersaline lakes [337], hydrothermal springs (Fredrickson et al., 

unpublished data obtained from IMG/VR  [288]), and sludge bioreactor [338] habitats. These 

sequences were assigned to putative hosts through a classical host-prediction pipeline (See 

“Host assignment”, above). Bootstrap analysis was applied to evaluate the precision of RaFAH 

in this last dataset. We assumed that the hosts predicted by the classical approaches were 

the true hosts of the viral genomes on Test Set 3. Random subsamples representing 20% of 

the full data were generated in 1,000 replicates. Precision was estimated for each replicate. 

 

https://paperpile.com/c/xF085o/IBmH
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4.1 Results derived from the work “Metagenome Mining Reveals Hidden 

Genomic Diversity of Pelagimyophages in Aquatic Environments” 
 

4.1.1 Summary 

In this study, a collection of metagenome and virome datasets (Ca. 45 Gbp) were surveyed to 

recover myophages similar to the SAR11 phage HTVC008M (Pelagimyophages, PMPs). 

Despite being is one of the most abundant bacterioplankton groups in surface waters, only 

15 SAR11 phages have been isolated thus far, and only one of them belongs to the Myoviridae 

family. We recovered 26 new myophages that putatively infect the SAR11 clade, including the 

first that putatively infect Candidatus Fonsibacter (freshwater SAR11) and another group 

putatively infecting bathypelagic SAR11 phylogroup Ic. The recovered genomes have similar 

sizes and maintain overall synteny with HTVC008M despite low average nucleotide identity 

values, revealing high similarity to marine cyanomyophages (CMPs). Contrary to CMPs, PMP 

genomes include a large hypervariable region in the tail structural region that contains genes 

related to the host cell wall. Proteins from freshwater representatives display an isoelectric 

point shift, suggesting an adaptation to freshwater.  Interestingly, 25 of the 26 new sequences 

have been recovered from datasets derived from the cellular fraction and not from the viral 

fraction, which could explain their poor representation in databases. Supporting this theory, 

recruitment analysis of the phages reveal they are widely distributed across marine 

environments but always much more from datasets derived from the cellular fraction, a 

pattern distinct to that of other related phages. A co-occurrence gene network was built to 

analyse the gene content of PMPs, finding some AMGs unique to this group as the 30S 

ribosomal protein S21 and a cluster of curli-related proteins. The function of this last cluster 

is not fully understood. 

 

4.1.2 Genomic features of PMPs 

MAVG completeness was verified either by the presence of identical repeated sequences (>10 

nucleotides) at the 5’- and 3’-terminal regions or by showing a similar synteny and gene 

content to the cultivated PMP HTVC008M [134]. The genome size of the 13 complete 

genomes ranges from 132 to 164 kb (Annex 1:Table 1). To study the relationships of the 

recovered phages, the 31 PMP genomes were compared in a phylogenomic tree using four 

CMP genomes as an outgroup. The five proteins common to all 35 genomes (large and small 

subunits of terminase, VrlC protein, tail tube monomer gp18, and baseplate wedge protein 

gp8) were merged into a concatemer. The phylogenomic tree clustered PMPs into five 

different groups (PMP-A to PMP-E), with group PMP-A containing the reference phage 

HTVC008M (Annex 1:Figure 1). Host assignment within different SAR11 subclades was not 

possible (except for group D [see below]) due to (i) lack of tRNA genes (only 18 genomes had 

them, and the ones present were all under 95% identity to SAR11 known tRNAs), which 

suggests that either we do not have genome representatives for the hosts they infect, or they 

have a broad host range, (ii) similarity of shared proteins provided inconclusive results (same 

identity to distantly related host-groups) and (iii) there is only one report of a CRISPR-cas 

https://paperpile.com/c/xF085o/gSHv
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system in SAR11, which is found only in the bathypelagic ecotype Ic [250]. The enormous 

diversity of the SAR11 clade probably complicates the process of host assignment.  

Annex 1:Figure 2A shows the alignment of two genomes of group PMP-A (one of them the 

pure culture HTVC008M), while alignments of one representative genome from each cluster 

are shown in Annex 1:Figure 2B. Overall, synteny was well preserved in all sequences once 

they were rearranged to start from the major capsid gene (gp23), and all of the sequences 

displayed the characteristic patchwork architecture of the Tevenvirinae subfamily, with 

remarkably conserved core modules (DNA replication and virion structure) separated by 

variable regions, designated as hypervariable [54,339] (Annex 1:Figure 2A and B). The most 

remarkable feature is the presence of a large non syntenic island located in the middle of the 

structural region, always between the VrlC gene and the neck protein gene gp14 (Annex 1: 

Figure 2C). On the basis of its variable character and the presence of tail fibers, we have 

designated this variable region the host recognition cluster (HRC) (Annex 1: Figure 2C). In 

other T4-like phages, this region contains only the tail fiber module [54,340]. This large 

hypervariable region has been already described in CMPs, usually containing several 

structural genes and AMGs [340]. In PMPs, this region is larger (mean HRC size of 44.6 kb 

versus 34.2 kb in CMPs), and contains, along with the expected tail fiber genes, a large number 

of genes seemingly unrelated to the tail fiber module, the most conspicuous of which are 

several glycosyltransferases, typically involved in the synthesis of the O-chain of the 

lipopolysaccharide that is located in the outer layer of the Gram-negative cell envelope 

[80,312] (Annex 1: Figure 2C). In PMPs, 63 out of the 162 lipopolysaccharide (LPS)-related 

proteins found are inside the HRC, while CMP HRCs have more identifiable tail fiber-related 

proteins. However, the latter could be attributed to the fact that CMPs are better represented 

in the sequence databases and are thus easier to annotate. The comparison of the CMP and 

PMP genomes showed strong conservation of all modules, including the HRC (Annex 1:Figure 

3A). However, unlike the latter, in some CMP genomes, the baseplate module is divided by 

another plastic region (Annex 1:Figure 3A). 

The two most similar complete genomes were MAGV3 and MAGV16, found in cluster B 

(average nucleotide identity [ANI] of 72.0% and coverage of 38.6%), although they were 

assembled from the Western Arctic ocean and the Mediterranean Sea, respectively (Fig. 3B). 

In the case of these two, the HRC was much more similar and differed only by the addition of 

some gene cassettes related to radical SAM (S-adenosyl-L-methionine) proteins (Annex 

1:Figure 3B). Their comparison seems to indicate that the divergence of this region is a gradual 

process rather than a complete replacement, as described for replacement flexible genomic 

islands in prokaryotic cells [341]. The genes located downstream from VrlC, which are the tail 

fibers in most genomes, show high similarity, indicating a possible host overlap of these two 

phages. 

 

4.1.3 Recruitment from cellular metagenomes and viromes 

To evaluate the abundance and elucidate possible patterns of distribution of these phages, 

we performed recruitment analysis by comparing each sequence to 395 metagenomes from 

Mediterranean depth profile [105,342], Tara Oceans [343] and Geotraces [285] data sets as 

https://paperpile.com/c/xF085o/HkEM
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https://paperpile.com/c/xF085o/HckS
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well as several freshwater metagenomes (see 2.3 Recruitment analysis). We considered only 

those samples where at least one PMP recruited more than five reads per kilobase of genome 

and gigabase of metagenome (RPKG) with an identity of >95%. PMP genomes showed a wide, 

if uneven, oceanic distribution along the Tara Oceans transect [343] (Annex 1:Table S2). All 

genomes except the freshwater PMP-D group (see below) recruited significantly in several 

marine samples from different geographic regions, with maximum recruitment typically 

found in the 5-to-45-m-depth range. Figure 4A shows the recruitment of both families of 

SAR11 phages (Podoviridae and Myoviridae) and their host in both the cellular and viral 

fractions from Tara Oceans. In addition, we have also included the other most relevant and 

widespread marine group, Cyanobacteria, and their myophages. While the presence of 

podophages was mainly restricted to viromes, both groups of myophages were present in 

both fractions (cellular and viral) (Annex 1:Figure 4A), although pelagimyophage genomes 

recruited significantly more from cellular metagenomes than from viromes. The abundance 

of viral DNA in the cellular fraction indicates that a high number of microbial cells are 

undergoing the lytic cycle, which acts as a natural amplification of viral DNA [153,193]. 

Another interesting observation was that a significant amount of SAR11 DNA was present in 

viromes, probably because some SAR11 cells might be small enough to pass through the 0.2-

μm filter used frequently to retain bacteria (Annex 1:Figure 4A) [244,344]. A latitude transect 

from 50°N to 50°S in the West Atlantic Ocean was analyzed using the Geotraces database 

[285]. However, latitude did not seem to be a significant factor in their distribution (Annex 

1:Table S3). 

The recruitment results as a whole suggest that PMP amplification is biased, as this group of 

genomes always recruited much more from cellular metagenomes than from viromes. The 

nature of this bias (either biological or technical) is still unclear. We also observed significant 

differences in recruitment values between the Mediterranean viromes treated with multiple 

displacement amplification (MDA) and those that had not been amplified (Annex 1:Fig. 4B). 

Although there is no direct evidence of their effect over myoviruses, MDA amplification might 

have played a part in these differential recruitment. MDA has been reported to be biased 

toward certain nucleic acid structures and sequences [161,345]. 

However, we were able to distinguish some groups with different patterns of recruitment. 

One genome of group PMP-A (PMP-MAVG-4) predominantly recruits below 200m in both the 

Geotraces and Tara Oceans data sets, supporting its association to bathypelagic 

Pelagibacterales clade Ic [250] (Annex 1:Figure S2; Annex 1:Tables S2 and S3), although the 

assignment is tentative, since it could not be proven by sequence analysis. Due to the scarcity 

of samples from the deep ocean, we can confirm its presence only in temperate zones of the 

Pacific and Atlantic Oceans (Annex 1:Tables S2 and S3). In Mediterranean samples, it appears 

only in areas below the deep chlorophyll maximum (75 to 90 m) but not at bathypelagic 

depths, probably due to the Mediterranean relatively warm water column, although Ic 

representatives have been detected there (Fig. 4B) [346]. Unique genes to this putatively 

“deep ecotype” include a GMP reductase and various genes involved in heme biosynthesis 

(coprophyrinogen oxidase, porphobilinogen deaminase) as well as a formate dehydrogenase, 

an enzyme that transforms formate into CO2 and 2H⁺ [347]. This could be an adaptation to 

generate a proton gradient in the absence of light, as SAR11 cells can generate it via 

https://paperpile.com/c/xF085o/Ki8i
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https://paperpile.com/c/xF085o/9Tkj
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rhodopsins. Two other PMP-A representatives, MAGV05 and Io7-C40, showed tolerance for 

brackish waters, as demonstrated by their recruitment from Baltic Sea cellular metagenomes 

(Annex 1:Figure 4B). Group D recruits only from freshwater samples, making them the first 

described freshwater myophages of the SAR11 clade (see below) (Fig. 4B). Linear 

recruitments (Annex 1:Figure S3A) showed that although genomes recruit along their entire 

lengths, most of the reads were recruited at more than 99% identity. The genome regions 

that recruit vertically down to 80% identity correspond to the structural and DNA replication-

related genome regions described previously, which are very well conserved among all the 

members of the subfamily [54,312]. The HRC usually underrecruited, indicating the highly 

variable nature of this region (Annex 1:Figure S3A). The same pattern was observed in cellular 

metagenomes and viromes with and without MDA (Annex 1:Figure S3A). 

 

4.1.4 First genomes of PMPs infecting Ca. Fonsibacter 

Genomic analysis of the two genomes in group PMP-D showed that both contained tRNA 

genes with the best match to tRNAs from the recently isolated Candidatus Fonsibacter ubiquis 

LSUCC0530, a member of the LD12 subclade [348]. Metagenomic recruitment showed clear 

evidence that group PMP-D was associated with freshwater samples (Annex 1:Figure 4B). To 

our knowledge, these are the first genomes of myophages that putatively infect Ca. 

Fonsibacter (fonsimyophages). Both are remarkably similar to each other but present 

different degrees of completeness. PMP-MAVG-15 is considered complete, while PMP-

MAVG-20 is lacking the DNA replication module. Recently, a shift toward basic values was 

described in the relative frequency of predicted isoelectric points when comparing freshwater 

and marine microbes [349]. Along these lines, we found a significant difference in PMPs 

infecting Ca. Fonsibacter compared to the reference genome HTVC008M (Annex 1:Figure 

S3B). However, synteny was well preserved between marine and freshwater groups (Annex 

1:Figure S3C). 

Recruitments show the recovered fonsimyophages to be present in various lakes from Canada 

(Erie, Ontario, Simoncouche) in both the cellular and viral fraction (Annex 1:Figure 4B). We 

also found recruitment matches at lower identity (<80%) in other freshwater samples (Lake 

Biwa, Lake Kivu). Linear recruitments for group D phages against freshwater viromes are 

different from those originating from their marine counterparts (Annex 1:Figure S3), showing 

that diversity in fonsimyophages is lower than that of the marine PMPs. This fact might reflect 

the reduced intrapopulation diversity of their host compared to other SAR11 subclades [348]. 

Gene content comparisons between marine or freshwater SAR11 PMPs shed little light on 

possible adaptations to the latter. However, the freshwater genomes do not contain genes 

related to LPS, substrate transport, radical SAM proteins, or the curli operon (see below). 

Nevertheless, it has some unique genes, such as speH (involved in polyamine salvaging), 

various genes involved in lipid biosynthesis (fabF, stearoyl-coenzyme A [CoA] desaturase) and 

a 2OGFeDO superfamily protein, which catalyzes nucleic acid modifications [350,351]. 

Strikingly, some proteins core to all PMPs (peptide deformylase, ribosomal protein S21, and 

aspartyl/asparaginyl beta-hydroxylase) are present in group PMP-D but are different enough 

to be separated in independent protein clusters. 

https://paperpile.com/c/xF085o/Xz32+5PXr
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4.1.5 Comparative genomics  

To maximize our ability to annotate phage proteins, we clustered orthologous genes into 

protein clusters (PCs) and annotated their function following a consensus-based approach 

(see 2.4 Genome Functional Annotation). The PCs with the most differences in abundance 

between PMPs and CMPs have been collected in Annex 1:Table S4. Furthermore, to examine 

the organization of the PCs into operons in both groups of phages, we built a co-occurrence 

matrix (Annex 1:Figure S4A), which links genes if they are in the same operon. Previously 

described methods to detect middle and late promoters in CMPs [312] did not provide 

satisfactory results when applied to PMPs, so we delimited operons by terminators and strand 

changes (see Materials and Methods). The co-occurrence matrix reveals differences in the 

structural organization of the operons containing conserved PCs. While structural operons 

contain only structural or hypothetical proteins, operons containing DNA metabolism genes 

are more diverse, containing AMGs of various types. Furthermore, genes involved in the same 

function are not in the same operon unless they are subunits of the same protein or the 

presence of one is meaningless without the other. An example of this phenomenon would be 

the photosynthesis-related AMGs in CMPs. Photosystem II D1 and D2 subunits are always in 

the same cluster, but the reaction center protein PsbN is not. 

Structural genes. Structural modules are well conserved among both groups of phages, as we 

identified homologs for the majority of typically conserved structural capsid and tail proteins. 

Despite the structural conservation of core components in all Tevenvirinae phages, we were 

unable to identify some conserved but highly divergent proteins, like the tape measure or tail 

fiber proteins. The structural region with the most differences compared to the T4 phage was 

the baseplate. Both groups contain homologs for a large number of the genes involved in the 

internal structure of the baseplate of T4-type phages [48], which is involved in baseplate 

assembly, initiation, and sheath contraction [352]. A remarkable difference is the absence of 

T4 Gp7, which appears to be substituted in both groups of phages by the VrlC protein. VrlC is 

particularly meaningful, as it is considered an integral component of the two-layered 

baseplate structure [353,354], so we can predict that both groups possess this type of 

baseplate. The other regions of the baseplate appear to be less conserved. Within this large 

structural operon, we also found various unidentified structural proteins that contain 

domains linked to carbohydrate-binding and host recognition (specifically, YHYH domains, 

concanavalin A domains, triple collagen repeats, major tropism determinant domains, and 

YadA domains) [79,355–358]. These putative receptor-binding proteins could be part of the 

tail fiber complex or the baseplate, as double-layered baseplates have been reported to 

contain these kind of proteins [353]. Last, the gp5 gene shows a much larger divergence than 

the VrlC protein, with both groups of phages coding for various gp5 PCs. As gp5 is involved in 

cell puncturing and local cell wall degradation [359], we can assume that the differences in 

gp5 PCs are an adaptation to the specific cell wall of the host. 

DNA transcription and translation. Transcription regulation in PMPs seems to be quite similar 

to that of CMPs, with both groups lacking homologs to the T4 genes involved in regulating 

early and middle transcription (alt, modA, modB, asi and motA) [360,361]. Some genomes of 
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group PMP-A code for an homolog of the L12 ribosomal protein, which is the binding site for 

several factors involved in protein synthesis [362], and a tRNA(Ile)-lysidine synthetase, which 

is an uncommon nucleoside usually seen only in tRNA and involved in solving differences 

between the elongation methionine tRNA and isoleucine tRNA [363]. The most significant 

difference between both groups of phages related to the translation process is that the latter 

group codes for a homolog of the 30S ribosomal protein S21. This protein is responsible for 

the recognition of complex mRNA templates during translation and has been described only 

as an AMG in HTVC008M [364,365]. S21 is not part of any specific gene cluster, which, 

assuming the protein follows the same rules as the other AMGs, suggests that no other viral 

factors are required for its functionality. 

Auxiliary metabolic genes. CMPs frequently contain AMGs, homologs of host genes, to modify 

host metabolism during infection [366]. We have analysed the occurrence of this type of 

genes in the PMP genomes and compared it with the occurrence in CMPs (Annex 1:Table S5), 

which have been widely studied [367]. Both groups of phages had the three classic AMGs 

involved in nucleotide biosynthesis (cobS, cobT, both subunits of ribonucleotide reductase) 

[366,368] (Annex 1:Table S5). However, Both PMP-A and PMP-B groups code for the 

adenylate kinase adk, which is involved in the interconversion between adenine nucleotides 

[369], while group C has two different thymidylate synthases and a deoxycytidylate CMP 

deaminase, which provides the substrate for both [370,371] (Annex 1:Table S4). A peptide 

deformylase involved in protein maturation was present in all PMPs in the core genome, 

inside a DNA metabolism operon, while in their cyanobacterial counterparts, it was found 

only in a few and inside the flexible genome, together with the photosystem AMGs [372]. 

We found fewer genes dedicated to regulation in PMPs than in CMPs. Typical CMP regulation 

AMGs such as mazG are absent in PMPs, and regulation genes shared by both groups such as 

the Pho regulon PhoH or Sm/Lsm RNA-binding proteins are more abundant in CMPs than in 

PMPs (Annex 1:Table S5). However, genes related to the sprT family (a gene involved in the 

regulation of the stress factor BolA) are much more prevalent in PMPs than in CMPs. bolA has 

many effects on cell morphology, cell growth, cell division, and biofilm development in the 

stationary phase and under starvation conditions [373]. These differences in regulatory 

proteins are not surprising, since it has been proposed that SAR11 cells are not as tightly 

regulated as cyanobacteria [244]; hence, their regulatory systems would be significantly 

different (as mentioned above, the starvation system mazE/mazG does not exist in SAR11 but 

it is present in picocyanobacteria) [244]. Regulation in SAR11 seems to be less dependent on 

proteins, being directed by riboswitches and other small mRNA (smRNA) molecules instead 

[244]. However, a search of these regulatory mRNAs with the tool Riboswitch Scanner [374] 

found no evidence of their presence in either group of phages. 

Another type of AMG found in PMP genomes are genes related to the production of the O-

chain of bacterial lipopolysaccharides, usually found as part of the HRC, but also distributed 

along the genome in clusters of two or three genes. This category of genes is also found in 

CMPs but is much less abundant. The LPS-related genes are either enzymes involved in the 

synthesis of deoxy-sugars to use as building blocks (rfaE, UDP-glucose 6-dehydrogenase) 

[375,376] or are glycosyltransferases, involved in adding specific sugar residues to a molecule 
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[377]. Glycosyltransferases in bacteriophages are involved in the glycosylation of viral DNA to 

protect against the host restriction-modification systems or in the modification of the O-

antigen chain of the host to protect against coinfection by other phages [80]. Considering that 

the glycosyltransferase family most represented in PMPs is GT8, which is mainly involved in 

LPS biosynthesis [377], and that only one SAR11 genome out of more than 100 sequenced 

thus far codes for a restriction-modification system [248], it seems likely that 

glycosyltransferases in this group are involved in the modification of the O-chain of their host. 

Curli operon. Between the DNA replication and structural modules, there is a hypervariable 

region containing a variable number of genes with little synteny among the different PMP 

representatives (Annex 1:Figure 2A and Figure S2A). Within this variable region, we found 

two homologs of the type VIII secretion system (TSS VIII) present in all PMP groups but the 

fonsimyophages (Annex 1:Figure 2). To our knowledge, this is the first report of phages that 

code for proteins of this secretion system. The co-occurrence network shows that these 

proteins are part of a well-defined operon that includes the proteins CsgF, CsgG, two 

hypothetical proteins and a curli-associated protein. The phylogenetic tree of the PMP and 

bacterial curli proteins clustered closer to the Alphaproteobacteria representatives (Annex 

1:Figure S4B). 

TSS VIII has not been detected in SAR11, but it has been described in other bacterial groups 

[378] as the transporter of curli, surface-associated amyloid fibers mainly involved in adhesion 

to surfaces, biofilm formation, and interaction with host factors and the host immune system 

[379,380]. The two proteins identified as part of the TSS VIII in PMPs are CsgF, an extracellular 

chaperone involved in anchoring curli fibers to the outer membrane [381], and CsgG, which 

form the outer membrane diffusion channel [382]. Both hypothetical proteins in the operon 

are of the same size, similarly to csgA and csgB genes [383], while the curli-associated protein 

is of the same size as CsgE, although no similarity could be detected at the sequence level or 

predicted structural level. Several experiments have shown that the only proteins required 

for curli phenotype expression are CsgA, CsgB, CsgF, and CsgG (CsgE increases almost 20-fold 

the amount of curli released, but it is not essential) [381,384]. Therefore, CsgA and CsgB are 

the only proteins missing in PMPs for the infected cells to express a curli phenotype. 
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4.2 Results derived from the work “Long-read metagenomic improves the 

recovery of viral diversity from complex natural marine samples” 
 

4.2.1 Summary 

In this study, we analysed a single marine sample from offshore Mediterranean waters that 

was sequenced with Illumina and PacBio Sequel II, then assembled twice: first using only the 

Illumina short reads, resulting in the Short Read Assembly dataset (SRa); then a hybrid 

assembly using both the Illumina short reads and the PacBio long reads, resulting in the Long-

Read Assembly dataset (LRa). We decided on the hybrid assembly over a long-read only 

assembly based on previous results (12) . In order to evaluate the possible biases introduced 

by the assembly process, we also analysed the PacBio CCS15 reads (PacBio consensus reads 

created by comparing at least 15 subreads, LR) before assembly.  

Although the sample is derived from the cellular fraction, the presence of replicating viruses 

inside cells during the lytic cycle produces a natural amplification that makes it possible to 

find abundant sequences of viral origin. We have found a major wedge of the expected marine 

viral diversity directly recovered by the raw PacBio circular consensus sequencing (CCS) reads. 

More than 30,000 sequences were detected only in this dataset with no homologous in the 

long- and short-read assembly and ca. 26,000 had no homologues to the large dataset of the 

Global Ocean Virome 2 (GOV2), highlighting the information gap created by the assembly 

bias. No novel major clades of viruses were found, but there was an increase of the intra-

clade genomic diversity recovered by long-reads that produced an enriched assessment of 

the real diversity and allowed the discovery of novel genes with biotechnological potential (e. 

g. endolysins).  

 

4.2.2 Viral sequence recovery and statistics 

First of all, we wanted to compare the efficiency of viral sequence recovery between the three 

datasets (Annex 2:Table 1). The first step in the pre-processing pipeline was to run VIBRANT 

[291] for all those sequences >1kb to determine those in each dataset that were of viral origin. 

Viral sequences turned out to be quite numerous in both datasets, with 5% of the total 

sequences from the SRa and LRa and 2.5% of the LR dataset classified as viral contigs. After a 

step of clustering at 95% sequence identity to remove redundant reads from the LR dataset, 

we recovered a total of 54,082 putative viral sequences (10,979 in SRa, 947 in LRa and 42,156 

in LR) (Annex 2:Table 1). In order to assess if the different assembly methods recovered the 

same viral community, we identified unique sequences in each dataset by comparing the 

three datasets against each other (see Material and Methods). Most sequences from the LRa 

were also found in the SRa, with only 36 unique LRa contigs. Remarkably, while the SRa 

dataset contained a fair number of unique sequences (5,886), most of the unique sequences 

were found in the LR dataset (30,203; 71% of total viral LR sequences), revealing a large 

genomic diversity not recovered by the assemblies. This diversity gap was also present when 

comparing a marker gene such as the terminase large subunit (terL), with the LR dataset 

containing 393 unique terminase genes (clustering at 95% amino acid identity), compared to 
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30 and 2 in the SR and LRa datasets respectively. The GC content showed a light (effect size = 

0.022) but significant (Kruskal-Wallis test, p-value < 10-15) skew towards high GC values when 

PacBio CCS reads were added to the datasets (Annex 2:Table 1). The SRa dataset presented 

an average GC content of 35.45% compared to 36.9% for the LRa and 38.13% for the LR 

(Annex 2:Table 1).  This bias could arise from the fact that assemblies usually only recover the 

core genome. In this sample (marine surface water), SAR11 clade is the most abundant 

organism [204], with an average GC content of 34%. LRs recover more of the flexible genome, 

which can present GC fluctuations compared to the core and would thus explain this variation 

from 34 to 38%. Regarding sequences shared between the three datasets, Annex 2:Table S1 

shows the relationship between contigs that were considered part of the same phage 

(identity over 95%, 70% overlap of the smallest contig). When comparing the ratio of 

recovered sequences between SRa and the combined LRa and LR datasets for shared ones, 

we found that in 2,463 out of 3,316 shared instances (ca. 75%), the LR datasets contained 

longer contigs than their SRa counterpart (Annex 2:Table S1). These results show that the use 

of long reads in assembly result in larger contigs compared to assembly with only SR. 

Next, we were interested in assessing if this novel diversity had been captured by previous 

studies, so we compared the three datasets against the Global Ocean Virome 2 (GOV2) [184], 

the largest database of seawater phages to date (195,728 marine populations, containing 

6,685,706 proteins). This dataset was created from viromes obtained from 145 samples from 

the Malaspina [385], Tara Oceans [183] and Tara Arctic [184] expeditions, therefore 

representing marine phage communities from different environments from all around the 

world. We found 30,997 viral sequences in our whole dataset (SRa, LR and LRa) not found in 

GOV2, with the vast majority (26,766) of these unique sequences belonging to the LR dataset. 

Regarding size and completeness, the hybrid PacBio assembly LRa resulted in the largest viral 

contigs, with a maximum size of 428,169 bp and an average contig size of 32,260 bp (Annex 

2:Table 1). We recovered 24 complete phage genomes (based on circular redundancy at the 

ends) from both assembled datasets (15 in LRa, 9 in SRa). As expected, due to their small 

estimated average size (ca. 5Kb), we were unable to recover any complete genomes directly 

from the LRs. However, we can make an estimated guess of the quality of the remaining 

contigs using VIBRANT’s quality statistics, which classify contigs based on the estimated 

completeness of the genome. If we consider only contigs marked as high quality (70% of the 

estimated phage genome), we found that only 53 (0.4%) of the SRa contigs belonged to this 

category, while in the LRa dataset there were 114 (12.5%) (Annex 2:Table 1). Some complete 

phage genomes were shared by the LRa and SRa datasets. The SRa contigs resulted in a 

maximum contig size of approximately half of that found in LRa (188,349 bp), with an average 

contig size on par with the LR dataset, more than six times smaller than the average in LRa 

(ca. 32Kb) (Annex 2:Table 1). These results, together with the fact that the average protein 

size in all three datasets is similar and the number of proteins recovered from the LR dataset 

are an order of magnitude larger than in the assembled datasets, suggests that PacBio CCS15 

reads could be used for viral protein calling without the need for assembly, as previously 

stated [208]. 
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4.2.3 Putative host prediction 

An important part of the biological significance of viruses depends on knowledge of the host 

they infect. We attempted to assign a host to contigs in all three datasets (SRa/ LRa/ LR). To 

this end, phage contigs were classified against the RefSeq database. We assigned hosts to 

each sequence following the method described in Beaulaurier et al. [208], which was applied 

to phages obtained by Nanopore sequencing. The method is based on protein homology 

against a reference database, assigning a host to a sequence based on the number of best 

hits (See Materials and methods). Annex 2:Figure 1A shows the results at a 3-protein 

threshold, including both all contigs from a dataset and those unique to their specific dataset 

(de-replicated) and before de-replication. Considering the SRa and LR datasets, both unique 

and de-replicated variants presented a similar host assignment rate (ca. 30%) with no 

differences at the taxonomic level suggesting that the differences between the two datasets 

could be beyond the order level. As might be expected, Alphaproteobacteria and 

Cyanobacteria were the most abundant hosts in all three datasets, as they were the most 

abundant groups in the sample [204] and were also the most represented in the reference 

databases (Fig. 1A). The recent addition of various Methylophilales [274] and Flavobacteria 

[386] phage genomes to the reference databases has resulted in a highly increased 

Gammaproteobacteria and Flavobacteria phage count compared to previous analysis of the 

Mediterranean virome [105]. The LRa dataset provided the highest rate of host assignment. 

In the non-de-replicated sample, almost 75% of the contigs had a host assigned, compared to 

a 30% rate for the LR and SRa datasets. This is probably due to the fact that they were, on 

average, larger contigs, and as such contain more information to reliably assign a host. 

However, we were unable to assign host to any of the 36 unique sequences in the LRa dataset 

(3.2% of the total). Host taxonomy was similar to that seen in the previous datasets, the main 

difference being an increase in eukaryotic and archaeal viruses (20% of total contigs), mainly 

Marine Group I Thaumarchaeota (Marthavirus) [387]. 

Comparison between the sequences obtained by assembly (LRa and SRa) also revealed 

differences between the viral groups. As a general rule, LRa contigs were on average larger 

than their SRa counterparts, even if the latter can result in similar maximum size. For example, 

in Alphaproteobacterial phages (Annex 2:Figure 1B), we recovered 52 sequences over 30Kb 

in the SRa dataset, compared to 126 in the LRa dataset. We found a similar case for the 

cyanophages (Annex 2:Figure 1C), where 14 sequences were over 50kb in the SRa dataset 

compared to 68 sequences in the LRa dataset. Special attention deserves the 

Nucleocytoplasmic Large DNA Viruses, (NCLDV, proposed order Megavirales) (Annex 2:Figure 

1D), whose assemblies in the LRa dataset were larger and more numerous (24 sequences over 

20Kb, including the largest contig of 428Kb) than those in the SRa dataset (21 sequences, 2 

over 50Kb, max size 61Kb) . 

To analyse the phylogenomic diversity of the NCLDV sequences found, we used only 

sequences that contained five key markers highly conserved in this type of virus: the major 

capsid protein mcp, DNA Polymerase beta subunit PolB, DEAD/SNF2-like helicase SFII, 

Poxvirus Late Transcription Factor VLTF3 and the Packaging ATPase A32 [316]. Annex 2:Figure 

S1 shows a phylogenetic tree based on a concatenate of these five proteins, including 

reference genomes from RefSeq and the collection of 444 marine NCDLV MAGs from 
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Moniruzzaman et al [316]. The tree shows these new eukaryotic sequences fell into the 

Mimiviridae family (16 sequences) and the Phycodnaviridae family (8 sequences). 

 

4.2.4 Relative abundance in marine samples 

Next, we wanted to analyse whether all the diversity found only in the LR dataset was 

abundant and representative in nature. For that reason, we performed a recruitment analysis 

of SRa/LRa/de-replicated LR viral sequences against the entire Tara Oceans metagenome 

dataset [286]. We considered the presence of a sequence in a metagenomic sample if they 

recruited at least five reads per kilobase of genome and gigabase of metagenome (RPKG), 

with an identity of 95% and a contig coverage of 50%. The results are shown in Annex 2:Figure 

2. Although pelagiphages and cyanophages (viruses that infect Ca. Pelagibacter and 

Cyanobacteria, respectively) show a similar abundance, they present different patterns of 

recruitment. The most cosmopolitan phages are cyanophages, particularly those who infect 

the genus Prochlorococcus. On the other hand, pelagiphages show a more endemic 

distribution, specially pelagimyophages, which tend to recruit only in a few stations at a time 

(in this case, as could be expected, in the Tara stations in the Mediterranean), while 

pelagipodophages tend to appear in more stations (Annex 2:Figure 2). In each of the plots, 

the recruitment means for each dataset were represented as a line, showing that in all three 

cases (Alphaproteobacteria, Cyanobacteria and Other phages) the sequences recovered by LR 

prior to assembly are significantly more abundant than their assembled counterparts 

(Wilcoxon rank sum test, p-value < 10-5). Furthermore, this difference in RPKG was 

accentuated when comparing phages that infect taxa which are typically difficult to assemble, 

such as those infecting Alphaproteobacteria [248]. These results suggest that the de-

replicated (non-redundant) LR sequences represent an untapped and abundant reservoir of 

genomic diversity. 

Since the phage sequences were obtained from the cell fraction, we were interested to know 

if they were abundant and could also be recovered in the viral fraction. To that end, we 

recruited all phage datasets in metagenomes and viromes at different depths obtained at the 

same location from which the sample was collected [105,342]. When comparing the 

recruitment values in both types of samples (Annex 2:Figure 2B), we observed that the vast 

majority of sequences recruited significantly more in the viral fraction at the three depths 

surveyed (Wilcoxon rank sum test, p-value <10-16, for all three depths). Therefore, we can 

confirm that the phage genomes recovered from the cellular fraction are representative of 

the community found in the virion fraction as well, and as such represent a valid method to 

recover the viral diversity of a sample. 

 

4.2.5 New diversity recovered from LR 

Once we discovered that there is a larger amount of viral sequences in LR not contained in 

the other datasets, probably lost in the assembly process, and that is abundant in nature, we 

decided to analyse this diversity. Given that there is no universal marker for analysing viral 

diversity, we use a number of different phage-specific markers (Large terminase subunit terL, 

https://paperpile.com/c/xF085o/bGeF
https://paperpile.com/c/xF085o/xPns
https://paperpile.com/c/xF085o/7KGf
https://paperpile.com/c/xF085o/4SSH+ah11


  Results 

58 
 

replicative DNA helicase dnaB, tail tube protein, major capsid protein, spanin) as well as 

several well-characterised auxiliary metabolic genes (AMGs) (thymidilate synthase thyX, 

Phosphoheptose isomerase gmhA, Ribonucleoside-diphosphate reductase nrdA, 

Ribonucleotide Reductase large subunit, Phosphate starvation-inducible protein phoH). 

We analysed the diversity of these markers in the same sample for the three datasets by 

building phylogenetic trees (Annex 2:Figure 3A, S2, S3) and also by comparing with GOV2 the 

dereplicated sequence distribution (Annex 2:Figure 3B, Annex 2:Table S2). The phylogenetic 

trees showed that none of the clades were composed only of LR-unique proteins, so we can 

conclude that the unique sequences recovered from the LR dataset do not belong to novel 

phage taxa, but to known clades. Comparing the distribution of unique proteins between our 

three datasets, the LR dataset usually contained more unique sequences by an order of 

magnitude compared to the assembled datasets (Annex 2:Table S2). Moreover, the 

percentage of unique variants was always higher in the LR. 

After including the GOV2 dataset in the comparison, it quickly becomes apparent that this 

dataset contained most of the unique sequences (ca. 90% of all unique proteins). This was 

expected considering the vast size and breadth of sampling of the GOV dataset (144 samples), 

it was therefore surprising that a dataset derived from a single sample contains a tenth of the 

diversity, especially considering that the ten proteins selected are conserved proteins in 

phage genomes. Out of this slice of diversity, the vast majority of the unique contigs derive 

from the unassembled LR dataset, as seen in the case of DnaB (149 different proteins versus 

26 in the assembled datasets) and the RrdA (150 versus 19 in assembled datasets) (Annex 

2:Table S2). 

It is important to emphasise that the fact that LR do not reveal novel phage clades does not 

mean that their novelty is not relevant. An example of this would be the endolysins, a 

remarkably diverse group of catalytic enzymes that degrade the cell wall of the host so the 

phage progeny can escape [388]. In recent years, these proteins have awakened increased 

interest for their potential to be used as antimicrobial agents [389,390]. Culture-free 

approaches have been applied to great effect in order to broaden the diversity of endolysins. 

In a previous study [322], 2,628 putative endolysins were retrieved from a collection of 

183,298 assembled viral genomes, pooled from a variety of metagenomic datasets. We 

applied the same pipeline to our samples to evaluate if this novel diversity found by LR would 

also apply to proteins with more diversity than the usual protein markers. 

We recovered 335, 106 and 841 putative endolysins from the SRa, LRa and LR datasets 

respectively, yielding a total of 1,216 new sequences. A phylogenetic tree of the sequences 

(Annex 2:Figure S4) reveals that although most of the sequences are distributed along 

previously described endolysin groups, there were four clades not found in the previous 

endolysin environmental collection, which we will name C1 to C4. An analysis of their domains 

revealed them to be glycoside hydrolases from families 24, 104, 23 and 24, respectively. These 

are lytic transglycosylases that have the well-known α+β lysozyme [391] fold, with differences 

in activity and specificity supposed to be determined by the environment surrounding the 

active site. Each family includes several well-characterised phage lysozymes. No domains 

related to cell wall binding were found. Interestingly, the C4 clade contains a signal-arrest-
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release motif, a mechanism not reported in the original dataset [322]. This motif first directs 

the endolysin to the periplasm by first attaching it to the membrane, where it remains inactive 

until it is released as a soluble active enzyme in the periplasm [392]. No other domains related 

to protein export or cell wall binding were found. 

 

4.2.6 Functional characterization 

Finally, our last question was if there was any functional category more enriched in the LR 

dataset compared to the assemblies. To this end, we analysed the protein content at the level 

of functionality, annotating the proteins against the KEGG [86] and Conserved Domain 

Database (CDD) [304]. Then we compared the number of proteins with each annotation in 

the LR dataset against the proteins found in the assembled datasets. The LR dataset was 

particularly enriched in repeat-containing proteins, such as MORN repeats (37 times higher 

in LR than in the assembled datasets), pentapeptide repeats (26 times higher), Ankyrin 

repeats (10 times higher), and Kelch repeats (9 times higher). Pentapeptide and Kelch repeats 

are widespread through bacterial and viral proteins [393,394], ankyrin repeats have been 

found in a novel AMG which protects the infected bacteria from eukaryotes [395], and MORN 

repeats have been found in bacteriophage endolysins [396]. The appearance of these proteins 

was not surprising, as repeats are the main cause for fragmented assemblies [397]. A similar 

argument could be made for the prevalence of integrases (18 times higher), reverse 

transcriptases (not found in the assembled datasets) and transposases (9 times higher). 

Although these proteins are widespread in phage genomes [398–400], they present a large 

amount of microdiversity, which is also difficult for assemblers to solve [204]. No groups of 

proteins were noticeably less abundant in LR compared to its assembled counterparts. These 

results suggest that long reads can help recover parts of the viral genome difficult to retrieve 

due to assembly bias. 
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4.3 Results derived from the work “RaFAH: Host prediction for viruses of 

Bacteria and Archaea based on protein content” 
 

4.3.1 Summary 

In this study, we apply a machine learning algorithm (Random Forest) to the assignment of 

hosts to complete or fragmented genomes of viruses of Bacteria and Archaea. Previous 

studies have shown that random forest algorithms are suitable for classifying viruses 

according to their hosts and that protein domains can be used to achieve accurate host 

predictions. Based on these findings, we postulate that random forest classifiers could be 

applied to protein content to build a classifier based on identifying combinations of genes 

that are indicative of virus-host associations.  

Through this approach, we were able to design RaFAH (Random Forest Assignment of Hosts), 

a classifier that displays a comparable performance with that of other state-of-the-art 

methods in a wide variety of metagenomic datasets, including various viromes of medical, 

biotechnological and environmental relevance. Importance analysis reveals that the best 

predictors for host assignment are proteins related to virus-host interaction (lysins, tail fiber 

proteins, Rz-like proteins). Furthermore, our analyses led to the identification of 537 

sequences of archaeal viruses representing unknown lineages, whose genomes encode novel 

auxiliary metabolic genes. 

 

4.3.2 Performance of RaFAH against other host prediction software  

We tested the performance of RaFAH and other host-prediction approaches on an 

independent dataset of isolated viral genomes that did not overlap with those used for 

training the models (Test Set 1, composed of RefSeq viral genomes with less than 70% average 

amino acid identity when compared with those in Training Set 3, see 3.10 Host Assignment). 

When using RaFAH and the other tested methods without score or prediction probability 

cutoff (considering as valid all host predictions with no thresholds for their probability value 

or bit score), RaFAH outperformed alignment-independent, hybrid, and alignment-dependent 

approaches for host prediction at every taxonomic level based on the F1 score (Annex 

3:Figure 2A). This difference in performance became gradually more evident from domain to 

genus level. Next, we evaluated how the performance of these tools responded to 

thresholding (i.e., applying a cutoff on their probability value or bit score) and only 

considering predictions that were above the cutoffs. These analyses revealed that homology 

matches, CRISPR and tRNA (the classical approaches) displayed the lowest recall (Annex 

3:Figure 2B) but the highest precision (Annex 3:Figure 2C). HostPhinder and CRISPR displayed 

high precision only at the strictest score cutoffs. As a consequence, these two methods 

displayed very low recall when the highest cutoffs for predictions were established. RaFAH, 

WIsH, and VirHostMatcher-Net displayed higher recall than the other approaches, especially 

at the range of more permissive score cutoffs (0). Yet this higher recall came at the expense 

of lower precision for WIsH and VirHostMatcher-Net. Meanwhile the precision of RaFAH 

outperformed these tools even when no cutoffs were applied. Together, precision, recall, and 
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F1 score suggest that RaFAH can predict more virus-host interactions than the other tested 

approaches while maintaining high precision, particularly for divergent viral genomes that 

escape detection by the classical approaches (Annex 3:Figure S1).  

We evaluated how the similarity among the genomes in Test Set 1 with those used to train 

the model (Training Set 3) affected the performance of RaFAH. For this purpose, we assessed 

how the precision of RaFAH changed by setting a threshold on the maximum allowed average 

amino acid identity (AAI) between the genomes on Test Set 1 and those on Training Set 3. As 

expected, a positive association was observed between these variables (Annex 3:Figure S2), 

meaning that the more similar the testing genomes are to the ones used for training, the more 

likely RaFAH is to correctly predict their hosts at all taxonomic levels. Based on this analysis, 

75% of the class-level host predictions will be correct (precision: ~0.75) for viruses that 

possess <60% AAI to the ones in the database, when no cutoffs on prediction scores are 

applied.  

Host-prediction tools were further validated on a dataset of viral genomic sequences derived 

from marine SAGs, Test Set 2 [196]. These sequences represent an ideal test dataset because 

they are uncultured viruses, not represented in the NCBI database used for training, and can 

confidently be assigned hosts because these viruses were inside or attached to the host cells 

during sample processing. Based on the F1 score, HostPhinder displayed the best 

performance at the levels of domain and class, followed by RaFAH slightly behind (Annex 

3:Figure S3A). Yet at the level of phylum WIsH displayed the best performance, again followed 

closely by RaFAH. At the levels of order, family, and genus, WIsH displayed the highest F1 

scores followed by the combined classical approaches. The recall (Annex 3:Figure S3B) and 

precision (Annex 3:Figure S3C) of RaFAH on Test Set 2 was lower than that obtained for Test 

Set 1. Nevertheless, a negative association between precision and recall as a function of the 

score cutoff was also observed for RaFAH and the other tested tools on Test Set 2 (Annex 

3:Figure S3D). Taken together, these results are evidence that RaFAH also performed well 

when predicting hosts of uncultured viruses from the marine ecosystem. 

 

4.3.3 Performance of RaFAH based on environment 

To test the performance of RaFAH on samples from other habitats, we applied it to predict 

hosts of a dataset of viral genomes obtained from metagenomes of eight different 

ecosystems (Test Set 3, see 3.12 ). For comparison, we also applied the other tested methods 

of host prediction (HostPhinder did not scale to the more than 60,000 genomes in this 

dataset, and analyses did not complete after running for several days). According to the F1 

score, RaFAH outperformed WIsH and VirHostMatcher-Net for this dataset as well (Annex 

3:Figure S4A), due to slightly higher recall (Annex 3:Figure S4B) and precision (Annex 3:Figure 

S4C). RaFAH was also superior when the strictest cutoffs were applied, whereby both 

precision and recall were markedly superior to VirHostMatcher-Net (Annex 3:Figure S4D). On 

this dataset, RaFAH achieved 43.13% precision at the level of genus when no score threshold 

was applied. Bootstrap analysis revealed that this level of precision was consistent across 

1,000 replicates (mean 43.02% ± 2.1%). This result indicates that the precision of RaFAH on 

Test Set 3 was not biased by uneven viral genome diversity among the samples that made up 

https://paperpile.com/c/xF085o/HJO3
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this dataset. When using classical approaches for host prediction, the majority of viruses 

remained unassigned regardless of ecosystem, and the best performance of these 

approaches was among the human gut dataset, in which only about 25% of sequences 

(lengthwise) could be assigned to a host at the level of phylum (Annex 3:Figure 3). Meanwhile, 

when set to the 0.14 cutoff, which yielded 92% phylum level precision on Test Set 1 (Annex 

3:Figure S1) and 90% on Test Set 3 (Annex 3:Figure S4D), RaFAH was capable of predicting 

putative hosts to the majority of viral sequences across all ecosystems except for the 

permafrost dataset, likely because viruses derived from this ecosystem are poorly 

represented in reference databases.  

Interestingly, the host predictions yielded by RaFAH were markedly different across 

ecosystems. Viruses of Proteobacteria were the dominant group in all ecosystems except the 

human gut. As expected, the most abundant targeted hosts of the viruses from each 

ecosystem were the most abundant taxa that reside in those habitats. Viruses of 

Cyanobacteria were the second most abundant group among the marine dataset, a position 

that was occupied by viruses of Actinobacteria and Bacteroidetes among the freshwater 

dataset. Viruses of Firmicutes and Bacteroidetes were the dominant group among the dataset 

of human gut viruses while viruses of Firmicutes, Bacteroidetes, and Actinobacteria were 

among the most abundant among the soil and permafrost datasets. Viruses of Euryarchaeota 

were the second most abundant group among the hypersaline dataset, a position that was 

occupied by viruses of Crenarcheaota in the thermal springs dataset. These results are in 

accordance with the known prokaryote diversity that dwells in each of these ecosystems 

[94,321,335,338,343,401,402].  

 

4.3.4 Effect of genome completeness on host prediction 

We assessed how genome completeness affected the performance of RaFAH. For this 

purpose, we used Test Set 3 as it displayed the necessary range of genome completeness 

values necessary for this purpose, while Test Set 1 was mostly made up of complete genomes 

and Test Set 2 was mostly made up of low-completeness genomes. We assumed that the 

predictions yielded by the combined classical approaches represented the true hosts of Test 

Set 3, although this assumption is likely to lead to an underestimation of the true precision of 

RaFAH. We found weak positive associations (Pearson R2 > 0.6, p < 10 13 for all taxonomic 

levels) between the precision of RaFAH and genome completeness at all taxonomic levels 

(Annex 3:Figure S5A). These curves tended to reach a plateau around ~25%–50% genome 

completeness and increased further for the lower taxonomic ranks (genus, family, and order) 

for genomes that were >85% complete. Coupled with the observations of the performance of 

RaFAH on Test Set 2, we suggest that RaFAH is better suited for viral genomes with 50% or 

more completeness.  

We used Test Set 3 to analyse the relationship between genome completeness, sequence 

length, and RaFAH prediction score across the eight different ecosystems (Annex 3:Figure 

S5B). This revealed a positive correlation between those variables (Pearson R2 = 0.65, p < 2.2e-

16 for the combined set of all ecosystems). Likewise, significant albeit weaker positive 

correlations were also detected between prediction score and sequence length (Pearson R2 = 

https://paperpile.com/c/xF085o/m2fc+Ki8i+jE2H+7Uc6+fN0W+zXUq+ds0O
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0.14, p <2.2e-16), and prediction score and genome completeness (Pearson R2 = 0.11, p <2.2e-

16). We found that regardless of taxonomic level, precision did not consistently increase 

through thresholding for genome length, providing further evidence that shorter sequences 

do not necessarily yield worse predictions (and vice versa) (Annex 3:Figure S5C). These results 

suggest that the precision of RaFAH cannot be explained by genome length/completeness 

alone, likely because RaFAH was trained on a dataset with a majority of genome fragments. 

 

4.3.5 Diversity and AMGs of Archaea viruses 

Based on the finding that RaFaH achieved nearly perfect precision for domain-level host 

predictions, and the fact that viruses of Archaea are under-represented in databases, we 

subsequently focused on the description of these viruses. Few large-scale studies have 

addressed the diversity of uncultured viruses of Archaea, and they focused mostly on marine 

samples. Here, we describe viruses from seven other ecosystems: soil, permafrost, 

freshwater, sludge, hypersaline lakes, thermal springs, and the human gut. Applying RaFAH 

to only eight metagenomic datasets led to the prediction that 537 genomic sequences 

represent viruses of Archaea (prediction score R=0.14). To put this figure in context, there are 

only 96 genomes of viruses of Archaea deposited in the NCBI RefSeq database. We took 

several steps to ensure that these genomes were truly derived from viruses of Archaea and 

consistently found compelling evidence to support our claim. First, these genomes could be 

linked to archaeal genomes either through homology matches or alignment-independent 

approaches, which provided further evidence that 423 out of the 537 genomes (79%) were 

indeed derived from archaeal viruses (Annex 3:Table S2). Second, much like the RefSeq 

genomes of archaeal viruses, these sequences were enriched in Pfam domains annotated as 

exclusive of Archaea, eukaryotes, and their viruses (Annex 3:Figure S6). Third, these genomes 

were enriched in ribosomal binding site motifs that are also enriched among RefSeq viruses 

of Archaea (Annex 3:Figure S7). 

Next, we manually inspected the gene content of the viruses predicted to infect Archaea in 

search of novel auxiliary metabolic genes (AMGs) and new mechanisms of interaction with 

the host molecular machinery. The small number of reference genomes of Archaea and their 

viruses makes it difficult to describe the gene content of the archaeal viruses that we 

discovered because most of their genes have no taxonomic or functional annotation. 

However, we found several sequences containing genes coding for thermosomes, group II 

chaperonins involved in the correct folding of proteins, homologous to their bacterial 

counterparts, GroEL/GroES [403]. Other AMGs found among archaeal viruses were those 

involved in the synthesis of cobalamin cobS, recently associated with Marine Group I (MGI) 

Thaumarchaeota virus infection [387] as well as genes that encoded 7-cyano-7-deazaguanine 

synthase QueC involved in archaeosine tRNA modification [404]. One of the AMGs most 

prevalent among archaeal viral genomes coded for a molybdopterin biosynthesis MoeB 

protein (ThiF family). This family of proteins is involved in the first of the three steps that make 

up the ubiquitination process [405]. This system regulates several cellular processes through 

post-translational modification of proteins such as their function, location, and degradation, 

making it an ideal target from the point of view of viruses to facilitate their replication [406].

https://paperpile.com/c/xF085o/usRy
https://paperpile.com/c/xF085o/sz65
https://paperpile.com/c/xF085o/yOeG
https://paperpile.com/c/xF085o/VWIu
https://paperpile.com/c/xF085o/FyNy
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5.1 The role of the cellular fraction in phage metagenomics 
It has been demonstrated that despite the pore size, the cellular fraction (> 0.2 µm)  contains 

a large amount of phage DNA (ca. 15%) [145,407], which gets roughly translated into 5% of 

assembled contigs in both PacBio and Illumina datasets. It should not be a surprise that the 

origin of this phage DNA differs between the cellular and viral fractions. Phage DNA in the 

viral fraction originates from the virions present in the water, while in the cellular fraction the 

recovered phage DNA likely belongs to cells undergoing the lytic cycle, which produces a 

natural amplification of the sequences. However, other sources are also a possibility, 

including lysogenic viruses (either integrated or as a plasmid) or phages encapsulated in 

virions larger than the filter pore (> 0.2 µm) or attached to the cell. 

These latter possibilities open the door to the proposition that cellular metagenomes could 

contain complementary information missing in viromes. A number of phage genomes could 

then be better represented in the cellular fraction compared to the viral fraction, revealing a 

new slice of viral diversity. Our results in this area are inconclusive. Our comparison of 

recruitment values in metagenomes and viromes of the PacBio metagenomic viruses revealed 

that the vast majority recruit more in the viral fraction. However, we noticed a bias with 

regards to podovirus and myoviruses that infect SAR11 and Cyanobacteria, two of the most 

abundant bacteria in marine environments: CMPs and PMPs are more abundant in the cellular 

fraction, while podophages that infect the same hosts display the inverse recruitment 

pattern. As viral fraction DNA is derived from virions present in the sample, it is reasonable to 

expect that phages with features that allow for their virions to prevail in the environment 

regardless of host abundance (larger burst size, more stable virions, strictly lytic cycle) will be 

overrepresented on viral fraction datasets. The study of phage content in the cellular fraction 

could then help expand our knowledge of phage diversity. 

There is also the matter of DNA extraction amount and its relation to sequencing, especially 

with regards to third-generation platforms. DNA extraction from the viral fraction is an 

arduous process, requiring a large amount of sample (around 200 seawater litres for a single 

Illumina sequencing run) and specialised equipment. The use of DNA amplification techniques 

such as MDA is not a solution as it introduces a noticeable bias on the phage community, as 

it has been reported in this work and many others [160–162]. With PacBio DNA requirements 

being at least an order of magnitude larger than that required for Illumina sequencing [204], 

the study of viruses within the cellular fraction might be a good alternative. 

 

5.2 Metagenome mining and PMP recovery 
The bioinformatic approach developed in this work to recover PMP contigs can be applied to 

other microbes difficult to cultivate but with some isolates already sequenced. Likewise, 

cross-assembly (joining contigs obtained from metagenomes or metaviromes) can help 

reconstruct more complete genomes. In fact, the crAssphage-like family of phages was 

discovered by combining contigs from a plethora of metagenomic gut datasets [408]. Results 

might differ depending on how abundant the host is in the environment. In the case of SAR11, 

its prevalence in surface waters of the ocean and other aquatic habitats played in our favour, 

https://paperpile.com/c/xF085o/bjot+OV4B
https://paperpile.com/c/xF085o/dCZj+6kYK+BcYB
https://paperpile.com/c/xF085o/KLOB
https://paperpile.com/c/xF085o/Rvt5
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and we have been able to uncover a remarkable diversity of viral entities different from the 

cultured reference. Surprisingly, the vast majority of PMPs were recovered from cellular 

fraction (>0.2 µm) datasets, which points to a bias against these genomes in the viral fraction 

datasets. Similar methods could be applied to other relevant, hard to grow microbes with 

recently isolated phages such as the marine methylotrophs clade OM43 of the 

Gammaproteobacteria. It could also be applied to samples from other environments to 

recover similar phages that might have undergone an environmental transition. Such is the 

case of the two recovered PMPs that putatively infect Candidatus Fonsibacter, the SAR11 

freshwater clade. The study of phylogenetically related phages across multiple environments 

can provide an insight into the adaptations needed for successful infection under different 

conditions. 

The pelagibacter phages recovered in this thesis have features that contrast with their host. 

While the SAR11 clade cells are characterised by their small size and the marked streamlining 

of their genomes, myoviruses are large phages with big and complex genomes. In fact, the 

ones described here are even more complex than the classic E. coli phage T4, with a larger 

repertoire of genes in their flexible genome and novel sets of AMGs. A clear example among 

these is the large hypervariable island found near the tail genes, which we have named Host 

Recognition Cluster (HRC) due to the fact that it contains genes annotated as tail fiber proteins 

or genes containing carbohydrate-binding domains. This region is characterised by its under-

recruitment in metaviromic datasets, similar to the metagenomic islands described in 

prokaryotic genomes and the metaviromic islands first described by Mizuno et al. [79]. 

Contrary to other T4-like phages [312], the HRC region in PMPs remarkably includes 

glycosyltransferases, which in phages are usually involved in protection of viral DNA against 

restriction enzymes or in host serotype conversion [80]. Considering that the SAR11 clade 

genomes are not known to code for restriction-modification systems [244], it is more likely 

that these genes are involved in the latter function, using a similar mechanism to those 

already described for other marine and non-marine podoviruses [409–411]. In this, the 

glycosyltransferases coded by the phage modify the polysaccharides forming the O-chain of 

the host cell wall. As these structures are usually the target of phage recognition proteins, a 

change in the host envelope will cause other competing phages to miss the already infected 

host. That these large phages of SAR11 require protection against superinfection events is not 

surprising, given the potentially sharp competition with, for example, SAR11 podophages that 

have much larger burst sizes (42 ± 7 versus 9 ± 2 for the cultured representatives) [134,271]. 

In recent years, the team led by Ben Temperton has made significant progress in the study of 

T4-like marine phages. First, they published the draft genome of phage Mosig, the second 

SAR11 myophage isolated from culture [274]. Their second, and perhaps more interesting 

discovery is the isolation of a new group of T4-like marine phages, named Melnitz [138]. This 

group of phages infects the OM43 clade, a streamlined type I methylotroph of the class 

Gammaproteobacteria. Like the SAR11 clade, it is abundant in coastal ecosystems, with 

abundance peaks coinciding with phytoplankton blooms [138]. Melnitz phages present a 

remarkable similarity to PMPs, both in gene content and synteny, with phylogenetic analysis 

suggesting they are both part of the same clade [138]. Furthermore, the tRNA and two-piece 

tmRNA ssrA genes coded by Melnitz are more similar to those found in SAR11 cells than to 

https://paperpile.com/c/xF085o/sQBo
https://paperpile.com/c/xF085o/Xz32
https://paperpile.com/c/xF085o/KGfZ
https://paperpile.com/c/xF085o/FENx
https://paperpile.com/c/xF085o/IaNC+0VKj+6bzF
https://paperpile.com/c/xF085o/gSHv+rNXi
https://paperpile.com/c/xF085o/UUJO
https://paperpile.com/c/xF085o/WOu4
https://paperpile.com/c/xF085o/WOu4
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their host. Considering that host ranges appear to not overlap between Melnitz and Mosig 

phages, it is suggested that Melnitz recently underwent a host transition from SAR11 to OM43 

[138]. 

The analysis of the genomic content of these phages also reveals other adaptations to their 

streamlined hosts. An example would be the presence of a glutamine riboswitch controlling 

the aforementioned ssrA gene. Riboswitches are a common regulatory mechanism in 

streamlined marine bacteria due to their low metabolic maintenance cost compared to 

protein-encoded operators and repressors [244], and would therefore be expected to find 

them in phage genomes, as they are reliant on controlling the host’s metabolic machinery to 

complete their life cycle. We did not find any instances of riboswitches in our collection of 

PMPs, probably due to the difficulty to detect them in genomes. We expect that further 

research on this field will help elucidate these and other methods phages use to control 

streamlined hosts. 

 

5.3 The phage-encoded curli operon (Type VIII secretion system) 
Perhaps the best example of new AMGs found in PMPs is the phage TSS VIII operon, which 

was first described in this work. In bacteria, this operon is involved in the production and 

secretion of the functional amyloid curli, an integral part of biofilm [379,380]. Compared to 

the E. coli TSS VIII operon, the phage version only includes two out of the four proteins 

involved in curli secretion (CsgG and CsgF). In this way, the phage TSS VIII operon resembles 

those found in Alphaproteobacteria, which usually code for curli subunits CsgF, CsgG and 

CsgH, a CsgC-like protein implicated in amyloid inhibition [378,412]. No homolog of 

CsgH/CsgC has been found in phage operons to this date, but it is not needed for the curli 

phenotype in E. coli [413,414]. 

The origin of the operon in viruses is still unclear, but the recent report of the phage TSS VIII 

operon also being found in OM43-infecting myophages can provide a few clues as to its origin. 

The similarity between the phage CsgF and CsgG proteins and their bacterial homologues 

suggests it is the product of a lateral transfer event, but the curli operon has not been 

described in either of the hosts [244,258]. Considering both phages coding for the operon 

infect hosts in different classes and the comparable synteny between phage and 

Alphaproteobacteria TSS VIII operons, we suggest that the lateral transfer event of the TSS 

VIII operon occurred in an Alphaproteobacteria-infecting phage ancestor, followed by viral 

speciation. 

As stated previously, phage operons only code for CsgG and CsgF, which code for a pore-

forming complex [382] and an extracellular chaperone [381], respectively. CsgG and CsgF 

form an 18-mer heterodimer with 1:1 stoichiometry, in which the CsgG pore spans the entire 

outer membrane and CsgF forms a secondary channel outside the cell that acts as a 

chaperone in curli nucleation [384]. In E. coli, the transport system includes a periplasmic 

accessory protein (CsgE), which increases translocation efficiency of curli but it is not required 

for the curli phenotype [381,384]. The CsgG pore is too narrow to allow for virion exit for the 

cell (the CsgG pore has 40-Å inner diameter, while the HTVC008M capsid diameter is 550 Å) 

https://paperpile.com/c/xF085o/WOu4
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[134,384], which rules out the possibility of the operon acting as a virion release mechanism. 

There are reports of amyloid proteins in eukaryotic viruses, where they play the role of 

inhibiting programmed cell death of their eukaryotic host by sequestering effector proteins 

[415], which both requires the still missing amyloid-forming proteins and does not require the 

presence of the curli transporter. 

Recently, an extensive structural analysis of the operon was performed by Buchholtz et al, in 

which they analyse the 3D structure of the CsgFG complex via de novo modelling using 

AlphaFold2 [416], which sheds more light in the possible function of the operon. 3D structure 

comparison between phage CsgG / CsgF reveal low structural similarity to their bacterial 

homologues. Surprisingly, while phage CsgG maintains a similar structure seen in its bacterial 

counterpart, phage-encoded CsgF presents little structural similarity, including the 

appearance of an extra α-helix and ending in a β-sheet [138]. Based on these results, Buchholz 

et al. conclude the proteins may no longer form a heterodimer, with CsgG retaining its 

function as a pore and CsgF evolving independently to provide an alternative function [138]. 

Another clue towards identifying the operon’s function can be found analysing the genomic 

location of the operon. Genes csgGF are located immediately downstream of thymidylate 

synthase thyX and ssrA and transcription coactivator genes, which are involved in lysis 

regulation in other phages. Therefore, the curli operon could play a putative role in regulation 

of the timing of cell lysis. The unusual lysis curves in SAR11 myophages support this hypothesis 

[274,277]. 

Even with the information available right now, the function of this operon in bacteriophages 

is also a mystery. Based on their results, Buchholz et al. propose two putative functions for 

the operon. First, they argue CsgG is functionally analogous as pinholins, proteins used by 

phage λ to regulate cell lysis [417]. However, the pinholin channel only spans the inner 

membrane, as its function is to activate membrane-bound lysins and allow them to access the 

peptidoglycan layer by membrane depolarization [418]. In contrast, the CsgG pore is situated 

in the outer membrane, as evidenced by the presence of a Sec/SPII signal peptide in phage 

CsgG (SignalP 6.0, probability 0.9966). Pinholins are also a more efficient system for cell lysis, 

as they are arranged in a heptamer configuration and include a regulation domain to trigger 

cell lysis [418]. Considering CsgG maintains the structure of its bacterial homolog, we would 

expect another protein (probably CsgF, given their interaction) to act as the regulatory 

element. In this is case, it would imply that a group of phages that infect cells in nutrient-

starved environments employ a larger (nonamer vs heptamer), two-protein structure to 

perform a function already done by other proteins widespread in bacteriophages, such as 

holins, spanins and Rz-lysis proteins [419]. 

The second function proposed by Buchholz et al. is based on the divergent structure of CsgF, 

where they suggest that CsgF’s position in the CsgGF complex is inverted so that the extended 

α-helices of CsgF point into the periplasm. In this conformation, CsgGF is structurally similar 

to a secretin, a large protein superfamily involved in macromolecule transport across the 

membrane that includes the pIV system in filamentous phages [420,421]. It is important to 

note that the 3D structure of E. coli CsgF produced by Alphafold does not match Cryo-EM 

structures of the same protein [422], which does include the missing β-sheet. Although the 
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possibility of a chronic infection in oligotrophic phages is an exciting proposition, the CsgG 

pore (40-Å inner diameter) is too narrow to allow for myophage virion exit from the cell. While 

filamentous phages have a 70Å diameter [423], the diameter of the HTVC008M capsid is an 

order of magnitude larger. 

We speculated that, in diluted environments such as oligotrophic waters, curli production 

might induce aggregation of potential successive hosts, increasing the chances of the newly 

produced virions of finding a host. However, Buchholz et al. did not observe evidence of 

clumping in their Melnitz phage cultures, neither in cytograms nor TEMs. Nevertheless, the 

case for curli production in bacteriophages is still open. Although the phage TSS VIII operon 

does not include homologs of CsgA or CsgB, it does code for various hypothetical proteins 

that could be their functional equivalents. Such proteins might not be found by sequence 

homology, as the proteins annotated as CsgA and CsgB in databases correspond to those in 

E. coli, and curlin protein homologs are highly variable even among Bacteria, varying in the 

number, position and type of repeat motifs [378]. In fact, we have observed that the TSS VIII 

operon in the cultured SAR11 phage HTVC008M includes 2 hypothetical proteins with the 

aforementioned motifs that conform into the β-sheet-rich secondary structure typical of 

amyloid-forming proteins [424]. Likewise, structural similarity between bacterial and phage 

CsgG is greatest in the periplasmic-facing α-helices of CsgG, which interact with CsgA in the 

bacterial complex [425]. 

 

5.4. PacBio long reads 
Another of the goals of this thesis was to evaluate the suitability of third-generation 

sequencing technologies for viral metagenomics. This study aimed to understand whether the 

third-generation sequencing technology (PacBio) has addressed its characteristic high error 

rate and therefore was suitable for metagenomics, by comparing the phage communities 

recovered with those obtained from an Illumina dataset. With this technical focus in mind, 

we analysed a Mediterranean water column sample, as it is a well-known environment that 

has been extensively studied by multiple approaches, including fosmid cloning [153] and 

Illumina sequencing, both the viral fraction [105] and the viruses from the cellular fraction 

[193]. 

The results obtained here demonstrate once again that it is possible to recover a 

representative sample of the viral community from a cellular fraction metagenomic dataset. 

The benefits of this approach only increase with LR sequencing, not only in terms of DNA 

amount requirements (as stated before, PacBio DNA requirements are an order of magnitude 

larger than those of Illumina), but also with regard to the quality of the viral genomes 

recovered. Most of the viral species (ca. 75%) recovered in this study are either only 

recovered from LR datasets or the quality of the assembled genome is improved by the 

addition of the LR dataset to the assembly. In the case of the Nucleocytoplasmic Large DNA 

Viruses, the improvement is dramatic, with LR assembly resulting in contigs more than six 

times larger than their SRa counterparts. We believe this might be due to the fact that 

eukaryotic genomes have many repeats and other features that make their assembly from 

short-read metagenomes less efficient [426]. 
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This is to our knowledge the first study of viruses extracted from a metagenomic sample that 

was sequenced using PacBio sequencing. Previous studies on the viral community with long-

read datasets used Oxford Nanopore sequencing and applied either a complementary short-

read dataset [209] or a correction based on coverage [208] to compensate for the high error 

rate. As evidenced by the results, PacBio CCS reads achieve an error rate similar to that of 

Illumina without the need for a correction step. However, this technology is more expensive 

and requires both more environmental DNA and of better quality (DNA template length can 

now be a limiting factor on read size, so DNA extraction protocols will also need to adapt to 

recover less fragmented DNA). It is important to note that third-generation sequencing is still 

in its infancy and improvements to the sequencing processes are still possible. As an example, 

Oxford Nanopore recently announced Kit 14 chemistry for Q20+ sequencing, which promises 

error rates similar to those of PacBio CCS. Nonetheless, even if error rate and read length 

issues can be ameliorated through improvements in the sequencing and DNA extraction 

processes respectively, the sizable increase in read length and dataset size means that long 

reads require the development of new pipelines and specialised software suites for their 

analysis. 

The most damning evidence of this claim is our discovery of a large quantity of inter-clade 

diversity present in the long reads that is missing in both short-read and hybrid assemblies, 

laying bare the inadequacies of current assembly methods. There has been an effort in 

developing new assemblers for long-read prokaryote whole genome sequencing, which 

mainly differ in the approach employed to deal with noisy reads [427]. Most of them have 

abandoned the de Brujin graph approach popular in short-read assemblers in favour of 

Overlap Layout Consensus (OLC) algorithms, which can take advantage of the extra read 

length [427]. A recent benchmark paper reveals that while current software can result in 

circularised assemblies, continued development is needed to obtain better, more efficient 

assemblers [427]. A number of hybrid assemblers (assemblers that leverage the value of both 

short- and long-reads to perform the assembly) are also available, but in these assemblers 

long-read data is mostly employed to bridge gaps and resolve repeat regions in the short-read 

assembly [428]. Unfortunately, development of assemblers that can deal with the 

idiosyncrasies of metagenomic datasets is even further behind. For this particular sample, the 

long-read assemblers available (HiCanu and metaFlye) resulted in a lower quality assembly 

(smaller assembly size, smaller mean contig size) that the hybrid assembly produced by 

hybridSPAdes [204]. However, as the long-read sequences only complement the short read 

contigs, there is a large amount of information only found in the long read dataset that does 

not get included into the final assembly. Therefore, we end up with a contig collection that is 

technically better than the short-read assembly but is still subjected to its biases. It is clear 

that more development in the computational tools is needed in order to exploit the 

information contained in long read datasets. 

Even if development of long-read assembly software continues, it could be argued that the 

best way forward for metagenomics involves forgoing the assembly step altogether, as long 

reads are large enough to perform gene calling. This argument is stronger for the analysis of 

phages for two reasons. First, phage genomes are significantly smaller than those of 

prokaryotes, with most bacteriophages ranging from 30 to 250kb [51]. Considering the mean 
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length of long reads is 15kb, a phage genome could be collected in a few overlapping reads 

or even a single read. Second, phage genomes are incredibly diverse. There have been 

multiple reports of short-read assemblies being biased against genomes from microdiverse 

populations [429], and single-cell sequencing confirmed the existence of this unexplored 

phage diversity [197]. Long-read sequencing has proved capable of recovering this lost 

microdiversity, as seen first in the analysis of genome-level nucleotide diversity performed by 

Dugdale et al, which revealed that phage contigs extracted from long reads were three times 

more diverse than those from short-read assemblies [209], and further corroborated by our 

results. With sequencing allowing a more thorough surveying of the viral community than 

single-cell experiments, we expect that as more long-read datasets become available we will 

obtain a more realistic picture of viral diversity. Although our results do not suggest that 

completely new clades of phages will be revealed by long-read sequencing, a more 

comprehensive catalogue of phages that infect the same host will deepen our understanding 

of host-phage interactions. The enhanced recovery of their flexible genome will also provide 

researchers with a larger gene pool from which to extract new genes with biotechnological 

applications. An example of this is the endolysin search performed in this work, in which four 

new clades of endolysins were found, with clade C4 including a motif not found in the previous 

dataset that affects its function. 

 

5.5 RaFAH & Host-phage prediction 
The results of previous studies meant facing viral dark matter once again, it is possible to 

recover a large amount of viral diversity that we know almost nothing about?. Arguably, the 

most critical information to know about a phage is the host(s) it can infect, both from an 

ecological (virus-host interactions are essential to understand the evolution of phages and 

their effect on the microbial community) and a biotechnological perspective (for example, 

phage therapy is based on exploiting these interactions to leverage the bactericidal effects of 

phages in a target host). 

With this motivation, we have developed RaFAH, a new tool that uses a random forest that 

combines protein content features with the speed and flexibility of machine learning. 

Compared to other host prediction software, RaFAH can accurately predict more-host virus 

interactions from large environmental datasets, even for divergent viral genomes that escape 

detection by classical approaches. Furthermore, RaFAH reports accurate host predictions in 

samples from a wide variety of ecosystems and for phages that infect different kingdoms. In 

fact, RaFAH host predictions match the prokaryotic host community in each ecosystem 

sample. Although this agreement between virus and host community composition is to be 

expected, it is seldom observed in studies of viral ecology based on metagenomics because 

classical methods leave the majority of viruses without host predictions. 

A common misconception is that machine learning approaches are fundamentally different 

from alignment-based or alignment-free methods. In fact, machine-learning-based 

approaches are still based on the same biological signals that previous methods employ, just 

transformed into measurable attributes the computer can understand. Therefore, it is not 

surprising that this choice of feature set, not the learning method, is the main factor that 
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determines the resolutive power of the model [430]. For RaFAH, this feature set consisted of 

similarity scores to protein clusters extracted de novo from the training set. The use of marker 

genes and RBPs for host assignment is an approach that has been successfully used to identify 

cyanobacteria-infecting phages and more recently, in a host classifier for phages infecting the 

ESKAPE group (an acronym standing for Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter 

species) [242]. The use of HMMs instead of direct protein-to-protein comparisons allowed us 

to alleviate the sequence divergence found between phage genomes. Perhaps more 

important is the capability of RaFAH to accurately detect phages that infect Archaea, allowing 

for a significant expansion of the archaeal virosphere and shed light on their yet poorly 

understood content of AMGs. Our archaeal AMG analysis in this work is severely constrained 

by protein function predictions, but our results show that viruses in Archaea include AMGs 

also found in bacteriophages, such as those related to nucleotide biosynthesis (cobS), 

maintenance of homeostasis (thermosomes) and post-translational regulation (moeB). 

An advantage of machine learning approaches is that once the prediction model is trained, it 

can be probed for biological insights of the features used. As RaFAH uses protein clusters as 

its predicting features, a feature importance analysis will reveal which proteins are crucial for 

host prediction, which will include these proteins essential to the specific virus-host 

interaction or novel AMGs. When applied to RaFAH, the most important predictor was 

annotated as an Rz-like phage lysis protein (Annex 3:Table S1). Among the protein clusters 

that ranked among the 50 most important were multiple lysins, tail, and tail fiber proteins. 

These proteins are known to determine virus-host range, as they play fundamental roles in 

virus entry and exit and host recognition. In all, these results can provide insight on which 

proteins are relevant to the interactome between host and phage. 

However, even with a carefully-chosen feature set the performance of the model is still 

subjected to the availability of a suitable training set. We are usually therefore constrained to 

making predictions about the small fraction of cellular life with known host-phage links. The 

use of HMMs alleviates but does not solve this problem, as tests show predictions made with 

RaFAH are better the more similar the query genomes are to the training set. The quality of 

the training set will also affect the performance, as the more diverse and complete the 

genomes comprising the training set are, the easier it is to find protein clusters that provide 

discriminatory power. For example, a protein cluster composed of conserved genes such as a 

terminase subunit will not be as useful as a cluster of tail fiber protein, which are specific for 

the cell wall of the target host. An example of such shortcomings can be found in the 

performance of RaFAH in Test Set 2, a dataset of viral genomic sequences derived from 

marine single amplified genomes (SAGs) [196]. Here, RaFAH scored below other classifiers. 

We consider these results to be caused by some features of the training set. First, most of the 

viruses identified in Test Set 2 were derived from single-cell genomes classified as either 

Pelagibacter, Puniceispirillum, Prochlorococcus or Synechococcus. This is expected 

considering these are the most abundant organisms in the ecosystem from which this dataset 

is derived. Nevertheless, this relatively low diversity of taxa has implications for the 

assessment of host-prediction tools. For instance,  the genera Prochlorococcus and 

Synechococcus have no determined taxonomy at the level of class in the GTDB. Therefore, 
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predictions at this level do not count toward precision for these particular taxa and the 

precision of all host-prediction tools displayed a steep decrease at this taxonomic level. 

Second, the majority of bacteriophage genomes in Test Set 2 have very low completeness 

(median 6.85%, estimated by CheckV). The low diversity of hosts and the very low genome 

completeness likely impacted the performance of RaFAH on this dataset, even though RaFAH 

was trained on a dataset with a majority of genome fragments. We speculate that this is due 

to the fact that marker proteins or RBPs are usually located in metaviromic islands that are 

usually missing from short-read assemblies. 

We also performed analysis of the combined effects of the relevant variables and how those, 

together, affected precision, recall, and the F1 score of RaFAH using Test Set 3. Taken 

together, these results demonstrated that the performance of RaFAH on a given genome is 

dependent on ecosystem source, genome completeness, similarity of the genome to those in 

the training dataset, and the taxonomic level being considered (see Annex 3:Table S6). For 

this reason, there is not a single score threshold that is ideal for all use cases. Nevertheless, 

we make the following recommendations. For differentiating between viruses of Bacteria and 

Archaea, RaFAH has nearly 100% precision even at the most permissive cutoff (0), thus for 

this particular purpose it can be applied without threshold. For a broad characterization of 

multiple viral genomes from an ecosystem, permissive thresholds are acceptable. For 

example, to compare viral host prevalences across different metagenomes at the level of 

phylum, we recommend a threshold of 0.14. This yields a precision of approximately 90% 

without sacrificing recall (Annex 3:Figures S1 and S4D), regardless of ecosystem source, 

genome length, completeness, or similarity to the training dataset. At lower taxonomic levels, 

stricter cutoffs are necessary. Users can select cutoffs according to the desired precision 

based on the curves depicted in Annex 3:Figures S1 and S4D. As a rule, longer, more complete 

genomes (Based on our tests, RaFAH is better suited for viral genomes with 50% or more 

completeness) with higher maximum AAI values to genomes in the training set should allow 

more permissive cutoffs. 
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CONCLUSIONS 

 

1. Metagenome mining is a viable approach to increase the diversity of phage genomes 

from highly abundant, difficult-to-culture prokaryotes, as long as there is a reference 

genome available. The use of techniques such as cross-assembly can help mitigate biases 

against some kinds of phage genomes. The application of this method recovered 22 new 

myoviruses infecting SAR11, including the first freshwater representative. 

 

2. Myoviruses infecting SAR11 present a T4-like genomic organization, with the inclusion 

of a large hypervariable region situated between structural operons. This region codes 

for several genes related to the phage-host interaction, such as tail fiber proteins and 

glycosyltransferases. We have designated this variable region the Host Recognition 

Cluster (HRC). 

 

3. Pelagimyophages code for an operon that includes components of the type VIII secretion 

system. This operon is part of the viral flexible genome and in bacteria is related to the 

secretion of functional curli. No system of this kind has been described in his host. The 

function of this operon is still unclear, but it is plausible that it is involved in a response 

to external stimuli. 

 

4. It is possible to recover a representative sample of the phage community from a long-

read sequencing dataset derived from the cellular fraction, and it analysis is a good 

complementary alternative to the study of viral fraction datasets. No differences in 

phage community composition were detected and the recovered genomes in the long-

read dataset are more complete. 

 

5. Direct analysis of long reads revealed a vast phage diversity lost at the level of reads that 

did not lead to the discovery of new phage taxa, but did lay bare a wealth of inter-clade 

diversity. This loss of diversity is lost due to current assembler software not being able 

to fully exploit long-read datasets. 

 

6. Long reads can help recover fragments of the viral genome difficult to retrieve due to 

assembly bias, as demonstrated by the fact that protein clusters predominantly found in 

long-read datasets are enriched in repeat regions and eukaryotic viruses showing a 

dramatic improvement in assembly size. 

 

7. Protein cluster similarity is a suitable feature set to predict hosts in phage genomes 

obtained from metagenomic datasets, alleviating issues derived from phage protein 

divergence and allowing classification of all contigs at the taxonomic level of kingdom. 

However, it is still dependent on a suitable training set to improve over other feature 

sets such as tetranucleotide composition. 

 

8. RaFAH is the first tool that can reliably classify Archaea phages, allowing for a significant 

expansion of the archaeal virosphere. Archaea AMGs follow the same categories as 
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bacterial AMGs, including genes related to nucleotide synthesis (cobS), chaperones 

(thermosomes) and regulation of post-translational modification (moeB).



 

 
 

 

CONCLUSIONES 

 

1. El minado de metagenomas es un método viable para aumentar la diversidad de 

genomas de fagos que infectan a huéspedes procariotas que son abundantes en el 

entorno y difíciles de aislar, siempre y cuando haya disponible un genoma de 

referencia. El uso de técnicas como el cross-assembly pueden ayudar a mitigar los 

sesgos existentes hacia ciertos grupos de fagos. La aplicación de estas técnicas 

permitió la recuperación de 22 nuevos miovirus que infectan a SAR11, incluyendo el 

primer representante de agua dulce. 

 

2.  Los miovirus de SAR11 presentaun una organización genómica tipo T4, con la 

inclusión de una gran región hipervariable situada entre dos operones estructurales. 

Dicha región codifica diversos genes relacionados con la interacción fago-hospedador, 

como las proteínas de la fibra de la cola y glicosiltranferasas.  Hemos denominado a 

esta región la Región de Reconocimiento del Hospedador (HRC, por sus siglas en 

inglés). 

 

3. Los miovirus de SAR11 contienen un operón que incluye componentes del sistema de 

secreción VIII. Este operón es parte del genoma flexible viral y en bacterias está 

relacionado con la secreción de curlina. Este sistema de secreción no ha sido descrito 

en el hospedador. La función de este operón aún no se conoce, pero es posible que 

esté relacionado con la respuesta a estímulos externos. 

 

4. Es posible recuperar una muestra representativa de la comunidad de fagos a partir de 

una set de datos de lectura larga derivada de la fracción celular. Asimismo, su análisis 

es una alternativa complementaria y razonable al estudio de sets de datos de la 

fracción vírica. No se detectaron diferencias en la composición de comunidad vírica y 

los genomas recuperados son más completos. 

 

5. El análisis de las lecturas largas sin ensamblar reveló una gran diversidad de secuencias 

víricas que si bien no escondía nuevos clados virales, sí mostró una gran variación 

intra-clado no encontrada hasta la fecha. Esta pérdida de diversidad se debe a que los 

ensambladores modernos no es capaz de aprovechar la información extra contenida 

en las lecturas largas. 

 

6. Las lecturas largas pueden recuperar regiones del genoma viral difíciles de conseguir 

por culpa de los sesgos de ensamblaje, como demuestra el hecho de que los sets de 

datos de lectura larga están enriquecidos con secuencias repetitivas y virus eucariotas 

mostrando una mejora dramática en tamaño de ensamblaje. 

 

7. La similaridad entre clústeres de proteínas en una propiedad viable para predecir 

hospedadores de genomas víricos obtenidos de muestras metagenómicas, aliviando 

problemas derivados de la divergencia entre proteínas virales y permitiendo la 



   

 
 

clasificación de todas las secuencias a nivel taxonómico de Reino. Sin embargo, se 

requiere un set de entrenamiento adecuado para mejorar los resultados obtenidos 

con otras propiedades, como la composición de tetranucleótidos. 

 

8. RaFAH es la primera herramienta capaz de clasificar de manera fiable los fagos que 

infectan a arqueas, permitiendo una expansión de las colecciones de fagos. Los AMGs 

de fagos de arqueas contienen las mismas categorías que los AMGs bacterianos, 

incluyendo genes relacionados con la síntesis de nucleótidos (cobS), chaperonas 

(termosomas) y la regulación de la modificación post-traduccional (moeB). 
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Metagenome Mining Reveals Hidden Genomic Diversity of
Pelagimyophages in Aquatic Environments

Asier Zaragoza-Solas,a Francisco Rodriguez-Valera,a,b Mario López-Péreza

aEvolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
bLaboratory for Theoretical and Computer Research on Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

ABSTRACT The SAR11 clade is one of the most abundant bacterioplankton groups
in surface waters of most of the oceans and lakes. However, only 15 SAR11 phages
have been isolated thus far, and only one of them belongs to the Myoviridae
family (pelagimyophages). Here, we have analyzed 26 sequences of myophages
that putatively infect the SAR11 clade. They have been retrieved by mining ca. 45
Gbp aquatic assembled cellular metagenomes and viromes. Most of the myophages
were obtained from the cellular fraction (0.2 �m), indicating a bias against this type
of virus in viromes. We have found the first myophages that putatively infect Candi-
datus Fonsibacter (freshwater SAR11) and another group putatively infecting bathy-
pelagic SAR11 phylogroup Ic. The genomes have similar sizes and maintain overall
synteny in spite of low average nucleotide identity values, revealing high similarity
to marine cyanomyophages. Pelagimyophages recruited metagenomic reads widely
from several locations but always much more from cellular metagenomes than from
viromes, opposite to what happens with pelagipodophages. Comparing the ge-
nomes resulted in the identification of a hypervariable island that is related to host
recognition. Interestingly, some genes in these islands could be related to host cell
wall synthesis and coinfection avoidance. A cluster of curli-related proteins was
widespread among the genomes, although its function is unclear.

IMPORTANCE SAR11 clade members are among the most abundant bacteria on
Earth. Their study is complicated by their great diversity and difficulties in being
grown and manipulated in the laboratory. On the other hand, and due to their ex-
traordinary abundance, metagenomic data sets provide enormous richness of infor-
mation about these microbes. Given the major role played by phages in the lifestyle
and evolution of prokaryotic cells, the contribution of several new bacteriophage ge-
nomes preying on this clade opens windows into the infection strategies and life cy-
cle of its viruses. Such strategies could provide models of attack of large-genome
phages preying on streamlined aquatic microbes.

KEYWORDS Fonsibacter, pelagiphages, SAR11, genome-resolved metagenomics,
myophages

In marine ecosystems, bacteriophages (viruses that infect bacterial cells) are extremely
abundant, with an estimated �1010 viral particles per liter of seawater (1, 2). Their

lytic lifestyle is responsible for the mortality of nearly 10% to 50% of the microbial
population per day (3). Therefore, it should not come as a surprise that bacteriophages
are important players in the functioning of the marine microbial ecosystem. For example,
they affect nutrient cycling through the “viral shunt” (4), influence microbial community
composition and diversity (5), and drive host evolution, both by favoring genetic
exchange and by predation pressure. The latter is of special importance as it favors high
diversity at the population level, especially at loci that code for phage resistance traits
(6, 7).
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The SAR11 clade (including the order Pelagibacterales) is one of the most abundant
bacteria in marine ecosystems, constituting approximately 20% to 40% of all planktonic
cells in the oceanic photic zone (8). A particular subclade within SAR11 (LD12) is also
important in freshwaters, lakes, and rivers, although less prevalent (9). Recently, a
representative of this freshwater subgroup was isolated in pure culture and named
Candidatus Fonsibacter ubiquis (9). Considering the facts described above, we would
expect that members of this clade are prime targets for phage predation. To date, only
15 SAR11 phages have been isolated, all belonging to the order Caudovirales (10, 11).
This order of viruses is the most prevalent in aquatic environments and can be divided
into the families Myoviridae, Siphoviridae, and Podoviridae on the basis of their mor-
phological characteristics (12). SAR11 phages belonging to the Podoviridae family are
found more often both in pure culture (10, 11) and metagenomic collections (13–15)
compared to the other two families. Most of these phages belong to the subfamily
Autographivirinae, and it has been suggested that many are temperate phages that use
tRNA genes as integration sites (11). Only one of the isolated SAR11 phages belongs to
the Myoviridae family, and despite the abundance of cultivation�independent meta-
genomic sequencing techniques, only four more myophage genomes have been found
in the form of metagenome assembled viral genomes (MAVGs) (14). This scarcity of
pelagimyophage (PMP) genomes is surprising, since several metagenomic studies from
aquatic environments have shown that T4-like phages constitute the dominant fraction
of the viral community (16–19).

The PMP genomes discovered thus far are all part of the Tevenvirinae subfamily. This
subfamily of double-stranded DNA, contractile-tailed phages owe their name to their
remarkable gene homology and genomic synteny to the well-studied Escherichia
coli-infecting T-even phages, which are represented by T4 (20). Members of this
subfamily have been isolated from a variety of hosts (21–24) and can be clustered into
three phylogenetic groups based on the genetic divergence of the major capsid
protein: Far T4, Near T4, and Cyano T4 (25). PMP HTVC008M is included within the
Cyano T4 group (10), together with viral isolates of Sinorhizobium meliloti (23),
Stenotrophomonas maltophilia (26), and the marine cyanobacteria Synechococcus and
Prochlorococcus spp. (24). The latter group is known as the cyanomyophages (CMPs)
and is the clade most closely related to HTVC008M. CMPs are generalist phages,
successfully infecting hosts from different cyanobacterial species (27), and even genera
(28). All CMPs share a set of core genes related to virion structure, DNA replication, and
auxiliary metabolic genes (AMGs) (24, 29, 30), which are involved in supplementing host
metabolism during infection (31).

Given their large genomes and complex morphology, myoviruses can provide rich
information about their hosts and life cycle. In this study, we analyzed 26 new
sequences of myophages that putatively infect the SAR11 clade retrieved by mining
aquatic metagenomes. This alternative approach to culture-dependent methods has
succeeded in discovering new viruses from uncultured microbes earlier (32, 33). To-
gether, these findings increased sixfold the SAR11 myophage repertoire and allowed us
to discover different PMP clades, including the first myophage specific of the freshwater
genus Ca. Fonsibacter and the bathypelagic SAR11 phylogroup Ic (9, 34). This recovery
effort has increased their genome diversity enough to be able to perform genomic
comparisons with the closest well-studied CMPs to elucidate peculiarities of the PMP
infection model.

RESULTS

Figure S1A in the supplemental material shows the workflow that we used to
recover sequences of myophages that putatively infect the SAR11 clade from several
cellular metagenomic and viromic samples (see Table S1 in the supplemental material).
In the end, we were able to recover 26 new PMP MAVGs that, together with the
reference sequences, add up to 31 genomes (Table 1). Interestingly, 25 of the 26 new
sequences have been recovered from the cellular fraction and not from the viral
fraction, which could explain their poor representation in databases.
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Genomic features. MAVG completeness was verified either by the presence of
identical repeated sequences (�10 nucleotides [nt]) at the 5=- and 3=-terminal regions
or by showing a similar synteny and gene content to the cultivated PMP HTVC008M
(10). The genome size of the 13 complete genomes ranges from 132 to 164 kb (Table 1).
To study the relationships of the recovered phages, the 31 PMP genomes were
compared in a phylogenomic tree using four CMP genomes as an outgroup. The five
proteins common to all 35 genomes (large and small subunits of terminase, VrlC
protein, tail tube monomer gp18, and baseplate wedge protein gp8) were merged into
a concatemer. The phylogenomic tree clustered PMPs into five different groups (PMP-A
to PMP-E), with group PMP-A containing the reference phage HTVC008M (Fig. 1). Host
assignment within different SAR11 subclades was not possible (except for group D [see
below]) due to (i) lack of tRNA genes (only 18 genomes had them, and the ones present
were all under 95% identity to SAR11 known tRNAs), which suggests that either we do
not have genome representatives for the hosts they infect, or they have a broad host
range, (ii) similarity of shared proteins provided inconclusive results (same identity to
distantly related host-groups) and (iii) there is only one report of a CRISPR-cas system
in SAR11, which is found only in the bathypelagic ecotype Ic (34). The enormous
diversity of the SAR11 clade probably complicates the process of host assignment.

Figure 2A shows the alignment of two genomes of group PMP-A (one of them the
pure culture HTVC008M), while alignments of one representative genome from each

TABLE 1 Genomic features for the pelagimyophages analyzed in this study

PMP Group
Mean
igs (bp)a

Length
(bp)

GC
content (%)

No. of
tRNAs

No. of
genes

Complete-
nessb

No. of
matchesc to:

Habitatd

Sample
typee Reference(s)SAR11

PMP
core

HTVC008M A 23.87 147,284 33.45 0 199 Yes (Cu) 9 23 M C 10
Io7-C40 A 21.35 103,430 33.11 2 117 No 11 17 M MG 13
MAVG02 A 25.5 157,661 33.98 0 216 Yes (Al) 10 20 M MG 14
MAVG05 A 21.49 164,624 32.74 2 228 Yes (Al) 15 37 M MG 14
PMP-MAVG-4 A 21.59 179,730 32.04 0 242 Yes (Al) 21 24 M MG 93
PMP-MAVG-12 A 15.54 104,791 33.36 0 131 No 5 20 M MG 92
PMP-MAVG-18 A 23.35 153,977 32.58 1 197 No 17 25 M MG 93
PMP-MAVG-21 A 24.53 135,163 31.59 0 195 No 11 24 M MG 93
PMP-MAVG-25 A 25.56 142,712 31.7 0 204 Yes (Al) 19 24 M MG 93
PMP-MAVG-8 A 14.28 118,694 31.91 0 159 No 13 14 M MG 91
PMP-MAVG-2 B 15.66 139,426 32.4 0 189 No 7 28 M MG 92
PMP-MAVG-3 B 16.98 147,773 32.66 0 200 Yes (Al) 8 23 M MG 14, 92
PMP-MAVG-14 B 18.64 136,460 32.92 2 186 No 11 27 M V 91
PMP-MAVG-16 B 28.57 132,453 32.99 3 179 Yes (TR) 5 25 M MG 93
PMP-MAVG-19 B 24.69 149,077 34.83 2 199 Yes (TR) 9 18 M MG 93
PMP-MAVG-26 B 25.6 142,788 32.48 0 193 No 7 29 M MG 91
PMP-MAVG-1 C 26.18 118,124 33.71 1 154 No 4 11 M MG 41
MAVG04 C 26.64 159,588 34.12 2 211 Yes (Al) 5 12 M MG 14
PMP-MAVG-9 C 21.81 124,621 33.95 1 165 No 6 10 M MG 41
PMP-MAVG-10 C 13 127,706 32.6 0 177 No 8 15 M V 91
PMP-MAVG-17 C 21.52 149,073 34.51 3 200 No 5 13 M MG 93
PMP-MAVG-22 C 15.6 103,989 34.17 0 129 No 2 10 M MG 93
PMP-MAVG-24 C 21.72 116,502 34.74 1 162 No 1 11 M MG 93
PMP-MAVG-15 D 21.52 144,833 31.3 3 193 Yes (TR) 6 6 F V 93
PMP-MAVG-20 D 21.3 122,912 31.08 3 174 No 8 6 F V 93
PMP-MAVG-5 E 26.22 149,934 33.6 3 190 Yes (TR) 4 10 M MG 41
PMP-MAVG-6 E 27.22 135,833 33.58 1 176 No 4 17 M MG 41
PMP-MAVG-7 E 32.87 135,598 33.82 2 171 No 2 14 M MG 41
PMP-MAVG-11 E 27.05 141,312 34.54 1 177 Yes (Al) 5 16 M MG 41
PMP-MAVG-13 E 24.74 155,847 34.2 0 208 Yes (Al) 3 16 M V 91
PMP-MAVG-23 E 19.87 110,977 34.96 2 146 No 4 10 M MG 93
aIgs, intergenic spacer.
bHow completeness was found is shown is parentheses: Cu, cultivated; Al, alignment; TR, terminal repeats.
cProtein matches, based on BLASTN hits with at least 70% similarity and an alignment length between 70% and 130% of the length of the smaller protein.
dM, marine; F, freshwater.
eC, culture; MG, metagenome; V, virome.
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cluster are shown in Fig. 2B. Overall, synteny was well preserved in all sequences once
they were rearranged to start from the major capsid gene (gp23), and all of the
sequences displayed the characteristic patchwork architecture of the Tevenvirinae
subfamily, with remarkably conserved core modules (DNA replication and virion struc-
ture) separated by variable regions, designated as hypervariable (21, 35) (Fig. 2A and B).
The most remarkable feature is the presence of a large nonsyntenic island located in
the middle of the structural region, always between the VrlC gene and the neck protein
gene gp14 (Fig. 2C). On the basis of its variable character and the presence of tail fibers,
we have designated this variable region the host recognition cluster (HRC) (Fig. 2C). In
other T4-like phages, this region contains only the tail fiber module (30, 35). This large
hypervariable region has been already described in CMPs, usually containing several
structural genes and AMGs (30). In PMPs, this region is larger (mean HRC size of 44.6 kb
versus 34.2 kb in CMPs), and contains, along with the expected tail fiber genes, a large
number of genes seemingly unrelated to the tail fiber module, the most conspicuous
of which are several glycosyltransferases, typically involved in the synthesis of the O
chain of the lipopolysaccharide that is located in the outer layer of the Gram-negative
cell envelope (24, 36) (Fig. 2C). In PMPs, 63 out of the 162 lipopolysaccharide (LPS)-
related proteins found are inside the HRC, while CMP HRCs have more identifiable tail

FIG 1 Unrooted phylogenomic tree of concatenated conserved proteins (terminase small subunit, terminase large subunit, tail tube monomer, tail tube
monomer, baseplate wedge protein gp8, and VrlC protein) found in pelagimyophages (PMPs) and in the cyanomyophage outgroup. The reference cultured PMP
is highlighted in red. The size (in kilobases) of each MAVG is shown in parentheses next to each branch, with complete PMP MAVGs marked with solid circles.
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fiber-related proteins. However, the latter could be attributed to the fact that CMPs are
better represented in the sequence databases and are thus easier to annotate. The
comparison of the CMP and PMP genomes showed strong conservation of all modules,
including the HRC (Fig. 3A). However, unlike the latter, in some CMP genomes, the
baseplate module is divided by another plastic region (Fig. 3A).

The two most similar complete genomes were MAGV3 and MAGV16, found in
cluster B (average nucleotide identity [ANI] of 72.0% and coverage of 38.6%), although

FIG 2 Alignment of pelagimyophage genomes (tblastx, 30% identity). (A) Whole-genome alignment of two PMP-A group genomes. The
different modules and hypervariable regions are labeled with black lines over the genomes, while the host recognition module (HRC) is
highlighted in red. (B) Whole-genome alignment of a complete representative of each PMP group. (C) Close-up view of the HRC. Genes
are colored according to their predicted function.
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they were assembled from the Western Arctic ocean and the Mediterranean Sea,
respectively (Fig. 3B). In the case of these two, the HRC was much more similar and
differed only by the addition of some gene cassettes related to radical SAM (S-adenosyl-
L-methionine) proteins (Fig. 3B). Their comparison seems to indicate that the diver-
gence of this region is a gradual process rather than a complete replacement, as
described for replacement flexible genomic islands in prokaryotic cells (37). The genes
located downstream from VrlC, which are the tail fibers in most genomes, show high
similarity, indicating a possible host overlap of these two phages.

Recruitment from cellular metagenomes and viromes. To evaluate the abun-
dance and elucidate possible patterns of distribution of these phages, we performed
recruitment analysis by comparing each sequence to 395 metagenomes from Medi-
terranean depth profile (38, 39), Tara Oceans (40) and Geotraces (41) data sets as well
as several freshwater metagenomes (see Materials and Methods). We considered only
those samples where at least one PMP recruited more than five reads per kilobase of
genome and gigabase of metagenome (RPKG) with an identity of �95%. PMP genomes
showed a wide, if uneven, oceanic distribution along the Tara Oceans transect (40)
(Table S2). All genomes except the freshwater PMP-D group (see below) recruited
significantly in several marine samples from different geographic regions, with maxi-
mum recruitment typically found in the 5-to-45-m-depth range. Figure 4A shows the
recruitment of both families of SAR11 phages (Podoviridae and Myoviridae) and their
host in both the cellular and viral fractions from Tara Oceans. In addition, we have also
included the other most relevant and widespread marine group, Cyanobacteria, and
their myophages. While the presence of podophages was mainly restricted to viromes,
both groups of myophages were present in both fractions (cellular and viral) (Fig. 4A),
although pelagimyophage genomes recruited significantly more from cellular metag-
enomes than from viromes. The abundance of viral DNA in the cellular fraction
indicates that a high number of microbial cells are undergoing the lytic cycle, which
acts as a natural amplification of viral DNA (13, 14). Another interesting observation was
that a significant amount of SAR11 DNA was present in viromes, probably because

FIG 3 Alignment of pelagimyophage and cyanomyophage (CMP) phages (tblastx, 30% identity). Gene modules are labeled
with black lines over the genomes, with the host recognition cluster highlighted in red. (A) Alignment of two CMPs. (C)
Alignment of three PMPs from group PMP-B with a similar HRC.
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some SAR11 cells might be small enough to pass through the 0.2-�m filter used
frequently to retain bacteria (Fig. 4A) (8, 42). A latitude transect from 50°N to 50°S in the
West Atlantic Ocean was analyzed using the Geotraces database (41). However, latitude
did not seem to be a significant factor in their distribution (Table S3).

The recruitment results as a whole suggest that PMP amplification is biased, as this
group of genomes always recruited much more from cellular metagenomes than from
viromes. The nature of this bias (either biological or technical) is still unclear. We also
observed significant differences in recruitment values between the Mediterranean
viromes treated with multiple displacement amplification (MDA) and those that had not
been amplified (Fig. 4B). Although there is no direct evidence of their effect over

FIG 4 Recruitment of pelagimyophages. (A) Relative abundance of PMPs reads in Mediterranean, Geotraces, and Tara Oceans metagenomes and viromes is
shown along with the abundances of SAR11 bacteria, SAR11 podoviruses, and Cyanobacteria and their myophages. The horizontal axis shows the normalized
count of reads per kilobase pair of genome and megabase pair of metagenome (RPKM), while the vertical axis shows the sampling stations (like in reference
33). (B) Heatmap of abundance of PMPs in freshwater and Mediterranean cellular metagenomes and viromes. Normalization of the abundance was performed
by calculating RPKG (reads recruited per kilobase of the genome per gigabase of the metagenome).
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myoviruses, MDA amplification might have played a part in these differential recruit-
ment. MDA has been reported to be biased toward certain nucleic acid structures and
sequences (43, 44).

However, we were able to distinguish some groups with different patterns of
recruitment. One genome of group PMP-A (PMP-MAVG-4) predominantly recruits
below 200 m in both the Geotraces and TARA data sets, supporting its association to
bathypelagic Pelagibacterales clade Ic (34) (Fig. S2 and Tables S2 and S3), although the
assignment is tentative, since it could not be proven by sequence analysis. Due to the
scarcity of samples from the deep ocean, we can confirm its presence only in temperate
zones of the Pacific and Atlantic Oceans (Tables S2 and S3). In Mediterranean samples,
it appears only in areas below the deep chlorophyll maximum (75 to 90 m) but not at
bathypelagic depths, probably due to the Mediterranean relatively warm water column,
although Ic representatives have been detected there (Fig. 4B) (45). Unique genes to
this putatively “deep ecotype” include a GMP reductase and various genes involved in
heme biosynthesis (coprophyrinogen oxidase, porphobilinogen deaminase) as well as
a formate dehydrogenase, an enzyme that transforms formate into CO2 and 2H� (46).
This could be an adaptation to generate a proton gradient in the absence of light, as
SAR11 cells can generate it via rhodopsins. Two other PMP-A representatives, MAGV05
and Io7-C40, showed tolerance for brackish waters, as demonstrated by their recruit-
ment from Baltic Sea cellular metagenomes (Fig. 4B). Group D recruits only from
freshwater samples, making them the first described freshwater myophages of the
SAR11 clade (see below) (Fig. 4B). Linear recruitments (Fig. S3A) showed that although
genomes recruit along their entire lengths, most of the reads were recruited at more
than 99% identity. The genome regions that recruit vertically down to 80% identity
correspond to the structural and DNA replication-related genome regions described
previously, which are very well conserved among all the members of the subfamily (24,
35). The HRC usually underrecruited, indicating the highly variable nature of this region
(Fig. S3A). The same pattern was observed in cellular metagenomes and viromes with
and without MDA (Fig. S3A).

First genomes of PMPs infecting Ca. Fonsibacter. Genomic analysis of the two
genomes in group PMP-D showed that both contained tRNA genes with the best match
to tRNAs from the recently isolated Candidatus Fonsibacter ubiquis LSUCC0530, a
member of the LD12 subclade (9). Metagenomic recruitment showed clear evidence
that group PMP-D was associated with freshwater samples (Fig. 4B). To our knowledge,
these are the first genomes of myophages that putatively infect Ca. Fonsibacter
(fonsimyophages). Both are remarkably similar to each other but present different
degrees of completeness. PMP-MAVG-15 is considered complete, while PMP-MAVG-20
is lacking the DNA replication module. Recently, a shift toward basic values was
described in the relative frequency of predicted isoelectric points when comparing
freshwater and marine microbes (47). Along these lines, we found a significant differ-
ence in PMPs infecting Ca. Fonsibacter compared to the reference genome HTVC008M
(Fig. S3B). However, synteny was well preserved between marine and freshwater
groups (Fig. S3C).

Recruitments show the recovered fonsimyophages to be present in various lakes
from Canada (Erie, Ontario, Simoncouche) in both the cellular and viral fraction (Fig. 4B).
We also found recruitment matches at lower identity (�80%) in other freshwater
samples (Lake Biwa, Lake Kivu). Linear recruitments for group D phages against
freshwater viromes are different from those originating from their marine counterparts
(Fig. S3), showing that diversity in fonsimyophages is lower than that of the marine
PMPs. This fact might reflect the reduced intrapopulation diversity of their host
compared to other SAR11 subclades (9).

Gene content comparisons between marine or freshwater SAR11 PMPs shed little
light on possible adaptations to the latter. However, the freshwater genomes do not
contain genes related to LPS, substrate transport, radical SAM proteins, or the curli
operon (see below). Nevertheless, it has some unique genes, such as speH (involved in
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polyamine salvaging), various genes involved in lipid biosynthesis (fabF, stearoyl-
coenzyme A [CoA] desaturase) and a 2OGFeDO superfamily protein, which catalyzes
nucleic acid modifications (48, 49). Strikingly, some proteins core to all PMPs (peptide
deformylase, ribosomal protein S21, and aspartyl/asparaginyl beta-hydroxylase) are
present in group PMP-D but are different enough to be separated in independent
protein clusters.

Comparative genomics. To maximize our ability to annotate phage proteins, we
clustered orthologous genes into protein clusters (PCs) and annotated their function
following a consensus-based approach (see Materials and methods). The PCs with the
most differences in abundance between PMPs and CMPs have been collected in
Table S4. Furthermore, to examine the organization of the PCs into operons in both
groups of phages, we built a cooccurrence matrix (Fig. S4A), which links genes if they
are in the same operon. Previously described methods to detect middle and late
promoters in CMPs (24) did not provide satisfactory results when applied to PMPs, so
we delimited operons by terminators and strand changes (see Materials and Methods).
The cooccurrence matrix reveals differences in the structural organization of the
operons containing conserved PCs. While structural operons contain only structural or
hypothetical proteins, operons containing DNA metabolism genes are more diverse,
containing AMGs of various types. Furthermore, genes involved in the same function
are not in the same operon unless they are subunits of the same protein or the
presence of one is meaningless without the other. An example of this phenomenon
would be the photosynthesis AMGs in CMPs. Photosystem II D1 and D2 subunits are
always in the same cluster, but the reaction center protein PsbN is not.

(i) Structural genes. Structural modules are well conserved among both groups of
phages, as we identified homologs for the majority of typically conserved structural
capsid and tail proteins. Despite the structural conservation of core components in all
Tevenvirinae phages, we were unable to identify some conserved but highly divergent
proteins, like the tape measure or tail fiber proteins. The structural region with the most
differences compared to the T4 phage was the baseplate. Both groups contain ho-
mologs for a large number of the genes involved in the internal structure of the
baseplate of T4-type phages (50), which is involved in baseplate assembly, initiation,
and sheath contraction (51). A remarkable difference is the absence of T4 Gp7, which
appears to be substituted in both groups of phages by the VrlC protein. VrlC is
particularly meaningful, as it is considered an integral component of the two-layered
baseplate structure (52, 53), so we can predict that both groups possess this type of
baseplate. The other regions of the baseplate appear to be less conserved. Within this
large structural operon, we also found various unidentified structural proteins that
contain domains linked to carbohydrate-binding and host recognition (specifically,
YHYH domains, concanavalin A domains, triple collagen repeats, major tropism deter-
minant domains, and YadA domains) (54–58). These putative receptor-binding proteins
could be part of the tail fiber complex or the baseplate, as double-layered baseplates
have been reported to contain these kind of proteins (52). Last, the gp5 gene shows a
much larger divergence than the VrlC protein, with both groups of phages coding for
various gp5 PCs. As gp5 is involved in cell puncturing and local cell wall degradation
(59), we can assume that the differences in gp5 PCs are an adaptation to the specific
cell wall of the host.

(ii) DNA transcription and translation. Transcription regulation in PMPs seems to
be quite similar to that of CMPs, with both groups lacking homologs to the T4 genes
involved in regulating early and middle transcription (alt, modA, modB, asi, and motA)
(60, 61). Some genomes of group PMP-A code for an homolog of the L12 ribosomal
protein, which is the binding site for several factors involved in protein synthesis (62),
and a tRNA(Ile)-lysidine synthetase, which is an uncommon nucleoside usually seen
only in tRNA and involved in solving differences between the elongation methionine
tRNA and isoleucine tRNA (63). The most significant difference between both groups of
phages related to the translation process is that the latter group codes for a homolog

Pelagimyophage Genomes Retrieved by Metagenome Mining

January/February 2020 Volume 5 Issue 1 e00905-19 msystems.asm.org 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

4 
M

ay
 2

02
2 

by
 1

93
.1

47
.1

43
.2

9.

https://msystems.asm.org


of the 30S ribosomal protein S21. This protein is responsible for the recognition of
complex mRNA templates during translation and has been described only as an AMG
in HTVC008M (64, 65). S21 is not part of any specific gene cluster, which, assuming the
protein follows the same rules as the other AMGs, suggests that no other viral factors
are required for its functionality.

Auxiliary metabolic genes. CMPs frequently contain AMGs, homologs of host
genes, to modify host metabolism during infection (66). We have analyzed the occur-
rence of this type of genes in the PMP genomes and compared it with the occurrence
in CMPs (Table S5), which have been widely studied (67).

Both groups of phages had the three classic AMGs involved in nucleotide biosyn-
thesis (cobS, cobT, both subunits of ribonucleotide reductase) (66, 68) (Table S5).
However, Both PMP-A and PMP-B groups code for the adenylate kinase adk, which is
involved in the interconversion between adenine nucleotides (69), while group C has
two different thymidylate synthases and a deoxycytidylate CMP deaminase, which
provides the substrate for both (70, 71) (Table S4). A peptide deformylase involved in
protein maturation was present in all PMPs in the core genome, inside a DNA meta-
bolism operon, while in their cyanobacterial counterparts, it was found only in a few
and inside the flexible genome, together with the photosystem AMGs (72).

We found fewer genes dedicated to regulation in PMPs than in CMPs. Typical CMP
regulation AMGs such as mazG are absent in PMPs, and regulation genes shared by
both groups such as the Pho regulon PhoH or Sm/Lsm RNA-binding proteins are more
abundant in CMPs than in PMPs (Table S5). However, genes related to the sprT family
(a gene involved in the regulation of the stress factor BolA) are much more prevalent
in PMPs than in CMPs. bolA has many effects on cell morphology, cell growth, cell
division, and biofilm development in the stationary phase and under starvation con-
ditions (73). These differences in regulatory proteins are not surprising, since it has been
proposed that SAR11 cells are not as tightly regulated as cyanobacteria (8); hence, their
regulatory systems would be significantly different (as mentioned above, the starvation
system mazE/mazG does not exist in SAR11 but it is present in picocyanobacteria) (8).
Regulation in SAR11 seems to be less dependent on proteins, being directed by
riboswitches and other small mRNA (smRNA) molecules instead (8). However, a search
of these regulatory mRNAs with the tool Riboswitch Scanner (74) found no evidence of
their presence in neither group of phages.

Another type of AMG found in PMP genomes are genes related to the production
of the O-chain of bacterial lipopolysaccharides, usually found as part of the HRC, but
also distributed along the genome in clusters of two or three genes. This category of
genes is also found in CMPs but is much less abundant. The LPS-related genes are
either enzymes involved in the synthesis of deoxy-sugars to use as building blocks (rfaE,
UDP-glucose 6-dehydrogenase) (75, 76) or are glycosyltransferases, involved in adding
specific sugar residues to a molecule (77). Glycosyltransferases in bacteriophages are
involved in the glycosylation of viral DNA to protect against the host restriction-
modification systems or in the modification of the O-antigen chain of the host to
protect against coinfection by other phages (36). Considering that the glycosyltrans-
ferase family most represented in PMPs is GT8, which is mainly involved in LPS
biosynthesis (78), and that only one SAR11 genome out of more than 100 sequenced
thus far codes for a restriction-modification system (79), it seems likely that glycosyl-
transferases in this group are involved in the modification of the O-chain of their host.

Curli operon. Between the DNA replication and structural modules, there is a
hypervariable region containing a variable number of genes with little synteny among
the different PMP representatives (Fig. 2A and Fig. S2A). Within this variable region, we
found two homologs of the type VIII secretion system (TSS VIII) present in all PMP
groups but the fonsimyophages (Fig. 2). To our knowledge, this is the first report of
phages that code for proteins of this secretion system. The cooccurrence network
shows that these proteins are part of a well-defined operon that includes the proteins
CsgF, CsgG, two hypothetical proteins and a curli-associated protein. The phylogenetic
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tree of the PMP and bacterial curli proteins clustered them closer to the Alphaproteo-
bacteria representatives (Fig. S4B).

TSS VIII has not been detected in SAR11, but it has been described in other bacterial
groups (80) as the transporter of curli, surface-associated amyloid fibers mainly involved
in adhesion to surfaces, biofilm formation, and interaction with host factors and the
host immune system (81, 82). The two proteins identified as part of the TSS VIII in PMPs
are CsgF, an extracellular chaperone involved in anchoring curli fibers to the outer
membrane (83), and CsgG, which form the outer membrane diffusion channel (84).
Both hypothetical proteins in the operon are of the same size, similarly to csgA and csgB
genes (85), while the curli-associated protein is of the same size as CsgE, although no
similarity could be detected at the sequence level or predicted structural level. Several
experiments have shown that the only proteins required for curli phenotype expression
are CsgA, CsgB, CsgF, and CsgG (CsgE increases almost 20-fold the amount of curli
released, but it is not essential) (83, 86). Therefore, CsgA and CsgB are the only proteins
missing in PMPs for the infected cells to express a curli phenotype.

DISCUSSION

The kind of bioinformatic approach utilized here can be applied to other microbes
difficult to cultivate but with some isolates already sequenced. The diversity of se-
quences retrieved indicate that similar methods could provide much more complete
pictures of the biodiversity of viruses infecting relevant but hard to grow microbes such
as SAR11. In this case, its prevalence in superficial waters of the ocean and other aquatic
habitats played in our favor, and we have been able to uncover a remarkable diversity
of viral entities different from the cultivated reference. It seems clear that the amplifi-
cation of PMPs in viromes is negatively affected by one or more biases, with MDA
amplification being a prime suspect, and the same might be true for other myoviruses.
This application of metagenomics complements culture to capture more phage diver-
sity in natural environments (14).

The host cells belonging to the SAR11 clade are characterized by marked stream-
lining of the genomes (8). Myophages, on the other hand, are very large phages with
big and complex genomes. In fact, the ones described here are even more complex
than E. coli phage T4, with a large host recognition hypervariable island and novel sets
of AMGs. They are actually closest to CMPs, a group of myophages whose host range
also includes streamlined microbes (e.g., Prochlorococcus) inhabiting a similar habitat,
an interesting convergence considering the phylogenetic distance between the hosts.
Among the special features of the PMP genomes, it is remarkable that the large
hypervariable region involved in host recognition in addition to several tail fibers, often
contained glycosyltransferases, which might be involved in surface alterations that
could lead to changes in phage recognition, preventing coinfection by other phages
preying on the same host. That these large phages of SAR11 require a change in the
host surface is not surprising, given the potentially sharp competition with, for exam-
ple, SAR11 podophages that have much larger burst sizes (42 � 7 versus 9 � 2 for the
cultured representatives) (10, 11). The genes provided by the phage might induce a
change in the structures responsible for phage recognition and act as a serotype
conversion mechanism to avoid superinfection by other phages (87). Similar mecha-
nisms have been described for other marine and nonmarine podoviruses (88–90).

PMPs are, to our knowledge, the first phages that code for a partial curli-secreting
system. The origin of this operon is unclear, since so far, the TSS VIII secretion system
has not been described in the SAR11 clade. However, its remarkable similarity to the
TSS VIII operon described in Alpha- and Gammaproteobacteria suggests that it is a
product of a lateral transfer event. The function of such a system in viruses is also a
mystery. The only two proteins identified as part of the TSS VIII in PMPs are CsgF and
CsgG, which implies that if no other proteins in the operon are functional, it would code
for only an extracellular chaperone and a pore-forming complex, respectively. The CsgG
pore is too small to allow for virion exit (the CsgG pore has 40-Å inner diameter, while
the HTVC008M capsid diameter is 550 Å) (10, 86), and the only report of functional
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amyloids in viruses was in eukaryotic viruses, where they have the role of inhibiting
programmed cell death of their eukaryotic host by sequestering effector proteins (89),
which does not require the presence of the curli transporter. The simplest explanation
would be that the pore structure might enhance the uptake of larger molecules.
However, this does not explain the presence of CsgF, as it is not needed for the
assembly of CsgG (82, 86) or the other genes present within the operon. Another,
bolder hypothesis would be the involvement of these genes in the production of
myeloid-like fibers. Some of the hypothetical proteins in the curlin cluster could be
functional equivalents of CsgA and CsgB (86). If this were the case, they might induce
aggregation, facilitating the acquisition of new host cells to the released virions. Thus,
the curli gene cluster would act as a capture mechanism by retaining in close proximity
the recently divided cells, that would be successive hosts, leading to a much larger
phage offspring. This strategy could be called “sibling capture,” and would be highly
desirable in diluted environments such as the pelagic habitat in oligotrophic waters.

MATERIALS AND METHODS
Genome mining strategy and output. Following the workflow shown in Fig. S1A in the supple-

mental material, the reference cultivated PMP genome (HTVC008M) (10) and metagenomic PMP se-
quences MAVG-2, MAVG-4, MAVG-5, and Io7-C40 (14), were used as bait to comb through a vast quantity
of contigs derived from several metagenomic and viromic samples (Table S1) (13, 14, 41, 91–94). First, a
hidden Markov model (HMM) made from an alignment of terL gene sequences was used to identify viral
contigs larger than 5 kb. The terL gene from the extracted contigs was then used to construct a
phylogenetic tree (Fig. S7A). The position of the terL gene of the reference PMP in this tree was then used
to recover a set of candidate contigs (Fig. S1B and S5). As mentioned previously, the closest group to
PMPs are CMPs, which are expected to be present in significant quantities in the surveyed metagenomes.
To remove all CMP-related contigs from the candidates, two collections of gene clusters were built, (i)
one of them derived from 28 CMP genomes downloaded from the NCBI Refseq database (95) and (ii)
another derived from the reference PMP genomes. Gene clusters shared between both collections were
removed. HMMs built from both cluster collections were used to classify the contigs, keeping only those
that had at least a match to a PMP gene cluster and no matches to any CMP gene cluster (Fig. S1).

MAVG cross-assembly. The contigs obtained from the genome-mining step were subjected to a
cross-assembly step. Identical sequences were removed from the analysis, always keeping the longer
contig if they did not have the same length. Contigs were then separated into bins of overlapping
contigs based on an all-versus-all comparison (Fig. S1). Next, the bins were assembled manually into
MAVGs as described previously (14) provided that (i) overlaps between contigs had a nucleotide
sequence identity of �99%, an alignment length of �1,000 nt, and gaps of �10 nt, (ii) all overlaps were
corroborated by more than two contigs, and (iii) sample metadata were ecologically coherent for all
involved contigs (for example, not assembling contigs from freshwater and marine samples together).
After this cross-assembly step, we obtained 14,748 sequences with an average length of 28 kb (Fig. S1B).
Finally, contigs recovered were filtered by size (�100 kb), GC content (30 to 35%, which is the GC% range
of the host), the number of proteins matching to SAR11 (�70% of identity), and tRNA gene matches
(�95% of identity).

Recruitment analysis. To assess the distribution and abundance patterns of the recovered PMP
MAVGs, the genomes were recruited using BLASTN (96) against the Tara Oceans metagenomes (40, 91),
Geotraces cellular metagenomes (41), and the Mediterranean metagenomes described previously (14,
39). PMP group PMP-D were also recruited against the virome data sets they were recovered from (97)
and against samples from other freshwater environments (Lake Biwa [98], Lake Simoncouche [99], Lake
Kivu [GOLD Study identifier {ID} Gs0127566], Baltic Sea [100]). Normalization was performed by calcu-
lating RPKG (reads recruited per kilobase of the genome per gigabase of the metagenome) so recruit-
ment values could be compared across samples. For linear metagenomic recruitments, metagenomic
reads were aligned using BLASTN, with a cutoff of 70% nucleotide identity over a minimum alignment
length of 50 nucleotides. The resulting alignments were plotted using the ggplot2 package in R.
Figure 3A (cellular fraction versus viral fraction plot) was plotted following the scripts included in
reference 33.

Phylogenetic tree of the recovered genomes. Common proteins to all 35 genomes were
calculated using the GET_HOMOLOGUES (101) software package. The five common proteins iden-
tified were concatenated and aligned using MUSCLE (102) and a maximum-likelihood tree was then
constructed using RAxML (103) with the following parameters: “-f a” algorithm, 100 bootstrap
replicates, PROTGAMMAJTT model.

Protein isoelectric point determination. To determine the isoelectric point distribution patterns of
the phage genomes, calculations of all predicted proteins for both genomes were calculated with the
Pepstats software from the EMBOSS package (104). The resulting isoelectric point values were plotted
using the ggplot2 package in R.

Genomic pairwise comparison. Average nucleotide identity (ANI) and coverage between a pair of
genomes were calculated using the Jspecies software with default parameters (105).
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Genome annotation. Genes and tRNAs were predicted using Prodigal (106) and tRNAscan-SE (107),
respectively. Functional annotation of predicted genes followed a consensus-based approach. First, the
genes from all PMPs and the reference CMPs were annotated against the uniref90 protein database (108)
(using DIAMOND [109]) and the CDD (110) and pVOG (111) HMM databases (using hmmscan [112]). For
each database, we assigned to each gene sequence the best hit with an E value of at least �10�5 and
an alignment length of between 70% and 130% of the query length. Genes were then clustered using
GET_HOMOLOGUES (101) and the annotations for each cluster were manually curated to ensure that the
annotations were coherent for all genes in the cluster. In the cases where we found discrepancies, the
second and third best hits were used to verify the annotation. Finally, the remaining clusters without
annotation were compared against the PDB HMM database (113) using hhblits (114). Clusters with less
than 10 sequences were first inflated by using the uniclust30 (115) database.

Cooccurrence matrix. Terminator sequences were predicted for both CMP and PMP genomes using
Transterm_HP (116), while early promoter sequences were predicted using BPROM (117). Prediction of
middle and late promoter sequences was attempted following the steps described previously (24) but
was unsuccessful in PMP genomes. Genes that pertain to a protein cluster (obtained in the genome
annotation step) in each genome were then grouped into operons based on terminator positions and
strand changes. These operons were then used as the basis for a cooccurrence matrix. Two protein
clusters (nodes) were linked to each other if they were present in two genomes and were part of the
same operon, with edge strength representing the number of genome pairs where this was the case.
Edges with edge strength representing 0.05% of the total were removed from the matrix. The matrix was
then used to build a network in Cytoscape (118). The add-on ClusterMaker2 (119) was used to separate
the cooccurrence network into clusters (MCL algorithm, 2.5 granularity).

Data availability. Viral sequences presented in this article have been submitted to NCBI and are
available under BioProject accession number PRJNA588231.
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Fig. S1. Genome mining pipeline. (A) Workflow describing the steps used in the genome mining process,
 color-keyed based on the step. (B) Contigs remaining in the analysis after each step, along with the 
average contig size. Each step includes a key to the workflow in (A).
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Fig. S2. Phylogenetic terminase tree. The branch with the reference terminase genes is highlighted
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Table S1. Metagenomic databases samples utilized in this study.

Name Type Habitat Reference Raw size (Gbp)1 Number of contigs > 5kb
GEOTRACES Metagenome Marine [1] 7,152 703,045

HOT / BATS Time Series Metagenome Marine [1] 2,206 225,141
Malaspina Metagenome & Virome Marine [2] 1,302 102,569

IMG/M (Aquatic metagenome subset)2 Metagenome & Virome Marine & Freshwater [3] 13,811 1,196,310
TARA Metagenome & Virome Marine [4], [5] 8,611 851,642

Mediterranean contig collection Metagenome & Virome Marine [6], [7] 1,701 108,453
Global Oceanic Virome (GOV)2 Virome Marine [8] 1,046 109,862

IMG/VR2 Metagenome & Virome Marine & Freshwater [9] 11,837 715,672
(1) Gbp =1,000,000 bp.
(2) Contigs from these datasets were not assembled in house but are instead the ones provided in their respective repositories.
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[1] Biller SJ etal . "Marine microbial metagenomes sampled across space and time." Scientific Data. 2018 Sep 4;5:180176.
[2] Silva G. Acinas et al . "Metabolic Architecture of the Deep Ocean Microbiome." bioRxiv 635680; doi: https://doi.org/10.1101/635680.
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[6] Mizuno CM et al . "Expanding the marine virosphere using metagenomics." PLoS Genetics. 2013;9(12):e1003987.
[7] López-Pérez M et al . "Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters." PLoS Genetics. 2017 Sep 25;13(9):e1007018.
[8] Roux S et al . "Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses." Nature. 2016 Sep 29;537(7622):689-693.
[9] Paez-Espino D et al . "IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes." Nuc. acids res. 2019 J an 8;47(D1):D678-D686



Table S4. Protein clusters (PC) with size > 10 genes and a log fold difference of at least 1. Normalized gene counts were calculated as (Total number of genes in all genomes of the group / total genomes in the group).

Protein ID
Normalized protein count 

(Norm. PMP)
Normalized protein 
count (Norm. CMP) Log(Norm. PMP/Norm. CMP) Category

Putative lipase 0.37 0.00 5.00 Lipid biosynthesis
30S Ribosomal protein S21 0.83 0.00 5.00 DNA translation

5’(3’)-deoxyribonuclease 0.60 0.00 5.00 Nucleotide biosynthesis
Adenine-specific RNA methyltransferase 0.37 0.00 5.00 Methyltransferase

Adenylate kinase 0.37 0.00 5.00 Nucleotide biosynthesis
Adenylate kinase adk 0.37 0.00 5.00 Regulation

Adenylate/Guanylate cyclase catalytic domain w/ CHASE2 domain 0.60 0.00 5.00 Regulation
Baseplate hub subunit gp5 0.60 0.00 5.00 Structural/Baseplate

Cell wall hydrolase 0.43 0.00 5.00 Hydrolase activity
Curlin-associated protein 0.77 0.00 5.00 Cell envelope
DNA end protector protein 0.87 0.00 5.00 DNA packaging

FeCR domain-containing protein 0.60 0.00 5.00 Substrate transport
Glycosyltransferase, family 8 1.03 0.00 5.00 LPS biosynthesis
Glycosyltransferase, family 8 0.60 0.00 5.00 LPS biosynthesis

Iron-Sulfur cluster assembly accesory protein IscA 0.53 0.00 5.00 Fe-S cluster
Iron-Sulfur cluster assembly accesory protein IscU 0.40 0.00 5.00 Fe-S cluster
Molybdenum cofactor biosynthesis protein MoaA 0.60 0.00 5.00 Radical SAM

Peptide-modifying protein SuiA/SuiB 0.57 0.00 5.00 Protein modification
Radical SAM protein + SPASM domain 0.50 0.00 5.00 Radical SAM

T4-like lysozyme 0.43 0.00 5.00 Hydrolase activity
tRNA(Ile)-lysidine synthetase 0.40 0.00 5.00 DNA translation

Type VIII secretion system (T8SS), CsgF protein 0.70 0.00 5.00 Cell envelope
Type VIII secretion system (T8SS), CsgG protein 0.70 0.00 5.00 Cell envelope

VrlC Protein 0.80 0.03 4.68 Structural/Baseplate
Cytidylyltransferase 0.63 0.03 4.34 Other

C-5 cytosine-specific DNA methylase 0.33 0.03 3.42 Methyltransferase
Peptide deformylase 0.60 0.06 3.26 Protein modification

Baseplate wedge subunit gp53 0.87 0.13 2.79 Structural/Baseplate
Ribonuclease H RnaseH 0.77 0.13 2.62 DNA replication

collagen triple repeat domain-containing protein 0.30 0.06 2.26 Cell envelope
Peroxiredoxin-like protein 0.50 0.13 2.00 Cell homeostasis

Tail protein w/ Immoglobulin fold 0.73 0.28 1.38 Structural/Fiber
SprT-like protein 0.43 0.19 1.21 Regulation

2OG-Fe(II) oxygenase superfamily protein 0.27 0.13 1.09 2OG-Fe(II) superfamily
Endonuclease YncB-like 0.40 0.81 -1.02 DNA replication

2OG-Fe(II) oxygenase superfamily protein 0.13 0.28 -1.08 2OG-Fe(II) superfamily
Glutaredoxin 0.63 1.38 -1.12 Cell homeostasis

Ferredoxin-dependent bilin reductase 0.10 0.22 -1.13 Iron metabolism
Protein structurally similar to Sm/Lsm-like RNA-binding proteins 0.77 1.75 -1.19 Regulation

Sm-like domain-containing protein 0.53 1.25 -1.23 Regulation
DNA methylase 0.10 0.25 -1.32 Methyltransferase
Tail tube protein 0.53 1.34 -1.33 Structural/Tail

2OG-Fe(II) oxygenase superfamily protein 0.13 0.34 -1.37 2OG-Fe(II) superfamily
Rnf-Nqr 0.13 0.34 -1.37 Nitrogen metabolism

2OG-Fe(II) oxygenase superfamily protein 0.70 1.88 -1.42 2OG-Fe(II) superfamily
2OG-Fe(II) oxygenase superfamily protein 0.10 0.28 -1.49 2OG-Fe(II) superfamily

Phosphate starvation-inducible protein PhoH 0.30 0.97 -1.69 Regulation
Prolyl-4 hydroxylase 0.13 0.44 -1.71 2OG-Fe(II) superfamily
Prolyl-4 hydroxylase 0.17 0.59 -1.83 2OG-Fe(II) superfamily

FAD-dependent thymidylate synthase ThyX 0.20 0.94 -2.23 Nucleotide biosynthesis
PKHD-type hydroxylase 0.07 0.31 -2.23 2OG-Fe(II) superfamily
Baseplate tail tube cap 0.13 0.66 -2.30 Structural/Tail

2OG-Fe(II) oxygenase superfamily protein 0.20 1.09 -2.45 2OG-Fe(II) superfamily
Ferrochelatase 0.07 0.41 -2.61 Iron metabolism

Baseplate wedge tail fiber connector gp9/gp10 0.07 0.50 -2.91 Structural/Baseplate
Cytitidyltransferase 0.07 0.78 -3.55 Other

6-phosphogluconate dehydrogenase 0.00 0.44 -5.00 Energy metabolism
ABC-type phosphate transport system, periplasmic component PstS 0.00 0.44 -5.00 Substrate transport

Antenna protein CpeT-like 0.00 0.75 -5.00 Photosynthesis
Baseplate wedge initiator w/ Concavalin A-like domain + YHYH domain 0.00 0.47 -5.00 Structural/Baseplate

Baseplate wedge initiator w/ YHYH domain 0.00 0.44 -5.00 Structural/Baseplate
Baseplate wedge subunit gp53 0.00 0.78 -5.00 Structural/Baseplate

cAMP phosphodiesterase 0.00 0.44 -5.00 Regulation
CP12 domain-containing protein 0.00 0.84 -5.00 Energy metabolism

DNA adenine methylase dam 0.00 0.91 -5.00 Methyltransferase
fructose-6-phosphate aldolase TalC 0.00 0.91 -5.00 Energy metabolism

Glucose 6-phosphate dehydrogenase 0.00 0.34 -5.00 Energy metabolism
High light inducible protein 0.00 0.44 -5.00 Photosynthesis
High light inducible protein 0.00 1.53 -5.00 Photosynthesis

LlaGI endonuclease 0.00 0.69 -5.00 DNA replication
Major outer membrane protein OMP1 0.00 0.97 -5.00 Cell envelope

MazE protein 0.00 0.47 -5.00 Regulation
MazG protein 0.00 0.88 -5.00 Other

PA14 domain-containing protein 0.00 0.31 -5.00 Other
Phage tail lysozyme 0.00 0.47 -5.00 Structural/Tail

Photosystem II protein, D1/D2 subunit 0.00 1.59 -5.00 Photosynthesis
Plastocyanin 0.00 0.63 -5.00 Photosynthesis

Plastoquinol terminal oxidase 0.00 0.53 -5.00 Electron transfer
S-adenosylmethionine decarboxylase speD 0.00 0.38 -5.00 Photosynthesis

Tail fiber protein 0.00 0.47 -5.00 Structural/Fiber
Tail fiber protein 0.00 0.50 -5.00 Structural/Fiber

Tail spike protein gp5 0.00 0.50 -5.00 Structural/Baseplate
VrlC protein 0.00 0.75 -5.00 Structural/Baseplate



Table S5. AMGs detected in the analysed genomes

AMG Name Function PMP CMP
Carbamoyltransferase Nucleotide metabolism X X

CobS Cobalamin biosynthesis X X
CobT Cobalamin biosynthesis X X

Ferrochelatase Heme biosynthetic pathway X X
Heme oxygenase Heme degradation X X

Heat shock protein hsp20 Helps refold proteins in stressful conditions X X
Pyrophosphatase MazG Limits the effects of mazEF in response to aminoacid starvation X X

PhoH Phosphate starvation regulon Pho X X
Tryptophan halogenase prnA Degradation of aromatic compounds, antibiotic biosynthesis X X

ABC-type phosphate transport systemPstS Part of PstABC, involved in phosphate import X X
PurM Purine biosynthesis de novo pathway X X

Thioredoxin Redox protein, plays a role in many biological processes X X
Ribonucleotide reductase RNA Provides precursors for DNA synthesis (NTP →  dNTP) X X

Prolyl-4 hydroxylase DNA repair X X
Peroxiredoxin Oxidative stress control X X

Acyl carrier protein acpP Lipid biosynthesis X X
Rnf-Nqr Nitrogen fixation X X

Peptide deformylase Protein maturation X X
Ferredoxin, ISC System Small electron carrier X

Iron-Sulfur cluster assembly protein IscA Scaffold protein for Fe-S cluster biosynthesis X
Iron-Sulfur cluster assembly protein IscU Scaffold protein for Fe-S cluster biosynthesis X
Iron-Sulfur cluster assembly protein SufE Fe-S cluster biosynthesis X

asparagine synthase asnB Synthesis of asparagine from aspartate X
30S ribosomal protein S21 Protein translation, recognition of Shine-dalgarno sequence X

50S ribosomal protein L7/L12 Protein translation, binding site for several factors X
Cytochrome C Electron transport X

Alternative oxidase AOX Electron transfer from reduced ubiquinol to oxygen, forming water X
Stearoyl-CoA desaturase (Delta-9 desaturase) Lipid biosynthesis X

beta-ketoacyl-acyl-carrier-protein synthase II FabF Lipid biosynthesis X
Adenylate kinase adk Nucleotide conversion (NTP + NMP →  2 NDP) X

Cold shock protein CpsA Regulation, involved in RNA folding X
L-lactate permease Substrate transport X

TonB-dependent vitamin B12 receptor Substrate transport X
Vitamin B3 transporter PnuC Substrate transport X

Tripartite tricarboxylate transporter, TctA family Substrate transport X
L-Aspartate-alpha-decarboxylase CoA biosynthesis X

6-phosphogluconate dehydrogenase gnd Pentose phosphate pathway X
cAMP phosphodiesterase Alters gene expression of genes controlled by cAMP X

CP12 Pentose phosphate pathway X
cpeT chromophore lyase Site-selective attachment of cromophores X

Glucose-6-phosphate-1 dehydrogenase zwf Pentose phosphate pathway X
high light inducible protein Collect energy from protons and transfer it to photosystems X

Plastocyanin petE Electron transport between photosystems X
Ferredoxin petF Small electron carrier, part of the photsynthetic system X

Taurine catabolism dioxygenase TauD Part of the photosystem II reaction center X
Photosystem II D2 protein PsbD Part of the photosystem II reaction center X

Plastoquinol terminal oxidase PtoX May have a role in mantaining the reduction state of electron transport chain components X
PurC Purine biosynthesis de novo pathway X
PurH Purine biosynthesis de novo pathway X
PurL Purine biosynthesis de novo pathway X
PurN Purine biosynthesis de novo pathway X
PurS Purine biosynthesis de novo pathway X
PyrE Purine biosynthesis de novo pathway X

S-adenosylmethionine decarboxylase proenzyme SpeD Polyamine biosynthesis X
Transaldolase TalC Pentose phosphate pathway X

Taurine catabolism dioxygenase TauD Sulfur salvage from Taurine X
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Long-Read Metagenomics Improves the Recovery of Viral
Diversity from Complex Natural Marine Samples

Asier Zaragoza-Solas,a Jose M. Haro-Moreno,a Francisco Rodriguez-Valera,a Mario López-Péreza

aEvolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain

ABSTRACT The recovery of DNA from viromes is a major obstacle in the use of
long-read sequencing to study their genomes. For this reason, the use of cellular
metagenomes (.0.2-mm size range) emerges as an interesting complementary tool,
since they contain large amounts of naturally amplified viral genomes from prelytic
replication. We have applied second-generation (Illumina NextSeq; short reads) and
third-generation (PacBio Sequel II; long reads) sequencing to compare the diversity
and features of the viral community in a marine sample obtained from offshore
waters of the western Mediterranean. We found that a major wedge of the expected
marine viral diversity was directly recovered by the raw PacBio circular consensus
sequencing (CCS) reads. More than 30,000 sequences were detected only in this
data set, with no homologues in the long- and short-read assembly, and ca. 26,000
had no homologues in the large data set of the Global Ocean Virome 2 (GOV2),
highlighting the information gap created by the assembly bias. At the level of com-
plete viral genomes, the performance was similar in both approaches. However, the
hybrid long- and short-read assembly provided the longest average length of the
sequences and improved the host assignment. Although no novel major clades of
viruses were found, there was an increase in the intraclade genomic diversity recov-
ered by long reads that produced an enriched assessment of the real diversity and
allowed the discovery of novel genes with biotechnological potential (e.g., endolysin
genes).

IMPORTANCE We explored the vast genetic diversity of environmental viruses by using
a combination of cellular metagenome (as opposed to virome) sequencing using high-
fidelity long-read sequences (in this case, PacBio CCS). This approach resulted in the re-
covery of a representative sample of the viral population, and it performed better
(more phage contigs, larger average contig size) than Illumina sequencing applied to
the same sample. By this approach, the many biases of assembly are avoided, as the
CCS reads recovers (typically around 5 kb) complete genes and even operons, resulting
in a better discovery of the viral gene diversity based on viral marker proteins. Thus,
biotechnologically promising genes, such as endolysin genes, can be very efficiently
searched with this approach. In addition, hybrid assembly produces more complete
and longer contigs, which is particularly important for studying little-known viral
groups such as the nucleocytoplasmic large DNA viruses (NCLDV).

KEYWORDS PacBio CCS long reads, bacteriophage, long-read sequencing,
metagenome, viral diversity, virome

Marine viruses are the most abundant biological entities in oceanic marine envi-
ronments, with an estimated population density of 107 per mL of seawater (1). It

is therefore no wonder that they are critical drivers of ocean biogeochemistry, both via
the release of organic matter as a by-product of their predation upon phytoplankton
and heterotrophic bacteria (2, 3) (viral shunt) and via the manipulation of host metabo-
lism during infection (4, 5).
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During the last 2 decades, the study of the viral community in marine environments
has been driven by metagenomics, thanks to the advances in short-read (SR) sequenc-
ing (6, 7). However, the advent of long-read (LR) sequencing technology, spearheaded
by Oxford Nanopore and Pacific Biosciences (PacBio), has the potential to solve major
issues that have plagued SR sequencing-based studies for years, mainly the low recov-
ery of both high-diversity microbes (8) and the flexible genome (9). Unfortunately, the
high error rate derived from these technologies has delayed their application in meta-
genomics and requires the use of either a complementary short-read data set (10) or
very high coverage (11) to correct these sequencing errors. The development of high-
fidelity approaches such as PacBio circular consensus sequencing (CCS) with an error
rate similar to that of the Illumina system opens a new avenue for the study of prokary-
otic communities in their natural environments. An example of the advantages of this
new technology can be found in a recent work, in which a well-known marine sample
from the Mediterranean water column was analyzed using both SR and LR sequencing
(12). Results suggested that PacBio Sequel II CCS is particularly suitable for cellular meta-
genomics due to its large read size and its low error rate. Reads in LR metagenomes are
large enough to perform gene prediction directly, bypassing the biases inherent in the as-
sembly process. The assembly step is also improved with this kind of sample by using
hybrid assembly of LR and SR, allowing reconstruction of genomes, including the flexible
genome and even streamlined genomes, such as those from Pelagibacterales (12).

The benefits of LR sequencing can be even more pronounced for the study of viruses,
as the size of individual reads may be sufficient to recover complete genomes. There are
already some examples of LR sequencing applied to the study of viromes using the
Nanopore sequencing platform. Beaulaurier et al. recovered 1,864 new complete assem-
bly-free virus genomes from three Nanopore data sets (11). On the other hand, Warwick-
Dugdale et al. recovered around 2,500 viral contigs from the assembly of Nanopore and
Illumina data sets from the same seawater sample of the western English Channel, show-
ing that a hybrid or long-read-only assembly improved the recovery of viral contigs and
their metaviromic islands compared to short-read assemblies (10). These results have
been corroborated in other virome studies using the same technology (13, 14).

However, the study of viromes by LR sequencing is limited by the large amount of
DNA required for this type of technology and the scarcity of viral DNA that can be col-
lected from environmental samples. Therefore, as an alternative to the study of the
virome, we used the viral DNA present in a cellular metagenome (.0.22-mm size
range). A high presence of viral DNA (around 10% to 15%) in marine metagenomes
has been reported (15). The vast majority of this viral DNA likely belongs to cells under-
going the lytic cycle, although other sources might be possible, including lysogenized
viruses (either integrated or as a plasmid) or virions larger than the filter pore
(.0.2 mm) (15). The aim of this study was to compare the efficiency of LR sequencing
for the study of the viral community (with and without an assembly step) with the clas-
sical approach using Illumina (short reads).

RESULTS AND DISCUSSION

To evaluate the viral genomic diversity resolution power of LR metagenomics and
compare it to that of SR sequencing, we analyzed a single marine sample from offshore
Mediterranean waters during winter, when the epipelagic water column was mixed.
The presence of replicating viruses inside cells during the lytic cycle produces a natural
amplification that makes it possible to find abundant sequences of viral origin in the
cell fraction of metagenomic samples. This sample was sequenced with Illumina and
PacBio Sequel II systems and then assembled twice, first using only the Illumina short
reads, resulting in the short-read assembly data set (SRa), and then in a hybrid assem-
bly using both the Illumina short reads and the PacBio long reads, resulting in the
long-read assembly data set (LRa). We decided on the hybrid assembly rather than a
long-read-only assembly based on previous results (12). In order to evaluate the possi-
ble biases introduced by the assembly process, we also analyzed the PacBio CCS15
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reads (PacBio consensus reads created by comparing at least 15 subreads [LR]) before
assembly.

Viral sequence recovery and statistics. First, we wanted to compare the efficiency
of viral sequence recovery between the three data sets (Table 1). The first step in the
preprocessing pipeline was to run VIBRANT (16) for all sequences .1 kb to identify
those in each data set that were of viral origin. Viral sequences turned out to be quite
numerous in both data sets, with 5% of the total sequences from the SRa and LRa and
2.5% of the LR data set classified as viral contigs. After a step of clustering at 95%
sequence identity to remove redundant reads from the LR data set, we recovered a
total of 54,082 putative viral sequences (10,979 in the SRa, 947 in the LRa, and 42,156
in the LR) (Table 1). In order to assess if the different assembly methods recovered the
same viral community, we identified unique sequences in each data set by comparing
the three data sets against each other (see Materials and Methods). Most sequences
from the LRa were also found in the SRa, with only 36 unique LRa contigs. Remarkably,
while the SRa data set contained a fair number of unique sequences (5,886), most of
the unique sequences were found in the LR data set (30,203; 71% of total viral LR
sequences), revealing a large genomic diversity not recovered by the assemblies. This
diversity gap was also present when results for a marker gene, such as that encoding
the terminase large subunit (terL), were compared, with the LR data set containing 393
unique terminase genes (clustering at 95% amino acid identity), compared to 30 and 2
in the SRa and LRa data sets, respectively. The GC content showed a slight (effect
size = 0.022) but significant (Kruskal-Wallis test, P value , 10215) skew toward high GC
values when PacBio CCS reads were added to the data sets (Table 1). The SRa data set
presented an average GC content of 35.45% compared to 36.9% for the LRa and
38.13% for the LR (Table 1). This bias could arise from the fact that assemblies usually
recover only the core genome. In this sample (marine surface water), clade SAR11 is
the most abundant organism (12), with an average GC content of 34%. LRs recover
more of the flexible genome, which can present GC fluctuations compared to the core
and would thus explain this variation from 34% to 38%. Regarding sequences shared
between the three data sets, Table S1 shows the relationship between contigs that
were considered part of the same phage (identity over 95%, 70% overlap of the

TABLE 1 Summary statistics of viral sequence recovery for the short-read assembly (SRa),
long-read assembly (LRa), and raw-read (LR) data sets

Statistic
Illumina assembly
(SRa)

PacBio assembly
(LRa)

PacBio CCS15
reads (LR)

Starting sequences 149,018 19,982 1,535,891
Putative phages (VIBRANT) 10,979 947 50,296
95% identity clustering 10,979 947 42,156
Unique sequencesa 5,886 36 30,203
Nucleotides sequenced (Gb) 23.4 31.0 7.6
Unique sequences/Gbp sequenced 251.53 1.16 3,974
Unique sequences (versus GOV2)b 4,196 35 26,766
No. complete (high quality)c 9 (53) 15 (114) 0 (27)
Min–max sequence length (bp) 1,000–188,349 1,353–428,169 1,011–17,836
Avg sequence length (bp) 4,906 32,260 5,261
Min–max GC content (%) 19.40–65.25 19.56–69.93 14.25–86.03
Avg GC content (%) 35.45 36.9 38.13
Total proteinsd 80,487 41,599 330,157
Unique terminase (terL) proteins 30 2 393
Avg proteins/sequence 7.33 43.92 7.83
Avg protein length (aa) 190.29 223.42 177.9
aSequences not present in the other data sets (BLASTN, 95%; coverage of at least 70% of the smallest sequence).
bSequences not present in the other data sets or the Global Ocean Virome 2.0 (BLASTN, 95%; coverage of at least
70% of the smallest sequence).

cVIBRANT defines a high-quality sequence as one that likely contains the majority of a virus’s complete genome
(;70% completeness).
dValues shown here represent protein numbers after dereplication (CD-HIT, 95% identity).
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smallest contig). When comparing the ratio of recovered sequences between SRa and
the combined LRa and LR data sets for shared ones, we found that in 2,463 of 3,316
shared instances (ca. 75%), the LR data sets contained longer contigs than their SRa
counterpart (Table S1). These results show that the use of long reads in assembly result
in larger contigs than assembly with only SR.

Next, we were interested in assessing if this novel diversity had been captured by
previous studies, so we compared the three data sets against the Global Ocean Virome
2 (GOV2) (17), the largest database of seawater phages to date (195,728 marine popu-
lations, containing 6,685,706 proteins). This data set was created from viromes
obtained from 145 samples from the Malaspina (18), Tara Oceans (6) and Tara Arctic
(17) expeditions, therefore representing marine phage communities from different
environments all around the world. We found 30,997 viral sequences in our whole data
set (SRa, LR, and LRa) not found in GOV2, with the vast majority (26,766) of these
unique sequences belonging to the LR data set.

Regarding size and completeness, the hybrid PacBio LRa resulted in the largest viral
contigs, with a maximum size of 428,169 bp and an average contig size of 32,260 bp
(Table 1). We recovered 24 complete phage genomes (based on circular redundancy at
the ends) from both assembled data sets (15 in the LRa and 9 in the SRa). As expected,
due to their small estimated average size (ca. 5 kb), we were unable to recover any
complete genomes directly from the LRs. However, we can make an estimated guess
of the quality of the remaining contigs using VIBRANT’s quality statistics, which classify
contigs based on the estimated completeness of the genome. When we considered
only contigs marked as high quality (70% of the estimated phage genome), we found
that only 53 (0.4%) of the SRa contigs belonged to this category, while in the LRa data
set there were 114 (12.5%) (Table 1). Some complete phage genomes were shared by
the LRa and SRa data sets. The SRa contigs resulted in a maximum contig size approxi-
mately half of that found in the LRa (188,349 bp), with an average contig size on a par
with the LR data set, more than six times smaller than the average in the LRa (ca. 32
kb) (Table 1). These results, together with the facts that the average protein size in all
three data sets is similar and the number of proteins recovered from the LR data set is
an order of magnitude larger than those from the assembled data sets, suggest that
PacBio CCS15 reads could be used for viral protein calling without the need for assem-
bly, as previously stated (12).

Putative host prediction. An important part of the biological significance of viruses
depends on knowledge of the host they infect. We attempted to assign a host to con-
tigs in all three data sets (SRa, LRa, and LR). To this end, phage contigs were classified
against the RefSeq database. We assigned hosts to each sequence following the
method described by Beaulaurier et al. (11), which was applied to phages obtained by
Nanopore sequencing. The method is based on protein homology against a reference
database, assigning a host to a sequence based on the number of best hits (see
Materials and Methods). Figure 1A shows the results at a 3-protein threshold, including
all contigs from a data set and those unique to their specific data set (dereplicated)
and before dereplication. Considering the SRa and LR data sets, both unique and dere-
plicated variants presented a similar host assignment rate (ca. 30%) with no differences
at the taxonomic level, suggesting that the differences between the two data sets
could be beyond the order level. As might be expected, Alphaproteobacteria and
Cyanobacteria were the most abundant hosts in all three data sets, as they were the
most abundant groups in the sample (12) and were also the most represented in the
reference databases (Fig. 1A). The recent addition of various Methylophilales (19) and
Flavobacteria (20) phage genomes to the reference databases has resulted in a highly
increased Gammaproteobacteria and Flavobacteria phage count compared to previous
analysis of the Mediterranean virome (7).

The LRa data set provided the highest rate of host assignment. In the nonderepli-
cated sample, almost 75% of the contigs had a host assigned, compared to a 30% rate
for the LR and SRa data sets. This is probably due to the fact that they were, on
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average, larger contigs and as such contain more information to reliably assign a host.
However, we were unable to assign a host to any of the 36 unique sequences in the
LRa data set (3.2% of the total). Host taxonomy was similar to that seen in the previous
data sets, the main difference being an increase in eukaryotic and archaeal viruses
(20% of total contigs), mainly marine group I Thaumarchaeota (marthavirus) (21).

Comparison between the sequences obtained by assembly (LRa and SRa) also
revealed differences between the viral groups. As a general rule, LRa contigs were on

FIG 1 (A) Taxonomic affiliations of viral contigs expressed in percentages, separated into those found in that data set (non-unique) and those unique to
that data set (unique). The number in parentheses below each bar is the number of contigs in that category. (B) Distribution of assembled viral contigs
that infect Alphaproteobacteria by contig length and GC content. Circles represent short-read assemblies (Illumina), while diamonds represent hybrid
assemblies (PacBio 1 Illumina). Shapes are colored according to their host. (C) Distribution of assembled viral contigs that infect Cyanobacteria by contig
length and GC content. Orange circles represent short-read assemblies (Illumina), while green diamonds represent hybrid assemblies (PacBio 1 Illumina).
(D) Distribution of viral contigs by contig length and GC content. Circles represent short-read assemblies (Illumina), while green diamonds represent hybrid
assemblies (PacBio 1 Illumina). Shapes are colored according to their host.
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average larger than their SRa counterparts, even if the latter can result in similar maxi-
mum sizes. For example, in alphaproteobacterial phages (Fig. 1B), we recovered 52
sequences over 30 kb in the SRa data set, compared to 126 in the LRa data set. We
found a similar case for the cyanophages (Fig. 1C), where 14 sequences were over
50 kb in the SRa data set compared to 68 sequences in the LRa data set. The nucleocy-
toplasmic large DNA viruses (NCLDV, proposed order Megavirales) (Fig. 1D) deserve
special attention, as their assemblies in the LRa data set were larger and more numer-
ous (24 sequences over 20 kb, including the largest contig of 428 kb) than those in the
SRa data set (21 sequences, 2 over 50 kb; maximum size, 61 kb). We believe this might
be due to the fact that eukaryotic genomes have many repeats and other features that
make their assembly from short-read metagenomes less efficient (22).

To analyze the phylogenomic diversity of the NCLDV sequences found, we used only
sequences that contained five key markers highly conserved in this type of virus: the
major capsid protein (MCP), the DNA polymerase beta subunit (PolB), the DEAD/SNF2-
like helicase SFII, the poxvirus late transcription factor VLTF3, and the packaging ATPase
A32 (23). Figure S1 shows a phylogenetic tree based on a concatenation of these five
proteins, including reference genomes from RefSeq and the collection of 444 marine
NCLDV Metagenome-Assembled Genomes from the work of Moniruzzaman et al. (23).
The tree shows that these new eukaryotic sequences fall in the family Mimiviridae (16
sequences) and the family Phycodnaviridae (8 sequences).

Relative abundance in marine samples. Next, we wanted to analyze whether all
the diversity found only in the LR data set was abundant and representative in na-
ture. For that reason, we performed a recruitment analysis of SRa, LRa, and derepli-
cated LR viral sequences against the entire Tara Oceans metagenome data set (24).
We considered a sequence present in a metagenomic sample if the sequence
recruited at least five reads per kilobase of sequence and gigabase of metagenome
(RPKG), with an identity of 95% and a contig coverage of 50%. The results are shown
in Fig. 2. Although pelagiphages and cyanophages (viruses that infect “Candidatus
Pelagibacter” and Cyanobacteria, respectively) show a similar abundance, they pres-
ent different patterns of recruitment. The most cosmopolitan phages are cyano-
phages, particularly those that infect the genus Prochlorococcus. On the other hand,
pelagiphages show a more endemic distribution, especially pelagimyophages, which
tend to appear in only a few stations at a time (in this case, as could be expected, in
the Tara stations in the Mediterranean), while pelagipodophages tend to appear in more
stations (Fig. 2). In each of the plots, the recruitment means for each data set were repre-
sented as a line, showing that in all three cases (Alphaproteobacteria, Cyanobacteria, and
other phages), the sequences recovered by LR prior to assembly are significantly more
abundant than their assembled counterparts (Wilcoxon rank sum test, P value , 1025).
Furthermore, this difference in RPKG was accentuated when comparison was made with
phages that infect taxa which are typically difficult to assemble, such as those infecting
Alphaproteobacteria (8). These results suggest that the dereplicated (nonredundant) LR
sequences represent an untapped and abundant reservoir of genomic diversity.

Since the phage sequences were obtained from the cell fraction, we were interested
to know if they were abundant and could also be recovered in the viral fraction. To that
end, we recruited all phage data sets in metagenomes and viromes at different depths
obtained at the same location from which the sample was collected (7, 25). When com-
paring the recruitment values in both types of samples (Fig. 2B), we observed that the
vast majority of sequences accumulated significantly more in the viral fraction at the
three depths surveyed (Wilcoxon rank sum test, P value ,10216, for all three depths).
Therefore, we can confirm that the phage genomes recovered from the cellular fraction
are representative of the community found in the virion fraction as well and therefore
represent a valid method for recovering the viral diversity of a sample.

New diversity recovered from LR. Once we discovered that there is a large amount
of viral sequences in LR that is not contained in the other data sets (probably lost in the
assembly process) and that is abundant in nature, we decided to analyze this diversity.
Given that there is no universal marker for analyzing viral diversity, we used a number of
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different phage-specific markers (large terminase subunit [terL], replicative DNA helicase
[dnaB], tail tube protein, major capsid protein, and spanin) as well as several well-charac-
terized auxiliary metabolic genes (AMGs) (thymidylate synthase [thyX], phosphoheptose
isomerase [gmhA], ribonucleoside-diphosphate reductase [nrdA], ribonucleotide reductase
large subunit, and phosphate starvation-inducible protein [phoH]).

We analyzed the diversity of these markers in the same sample for the three data
sets by building phylogenetic trees (Fig. 3A; Fig. S2 and S3) and also by comparing the
dereplicated sequence distribution with GOV2 (Fig. 3B; Table S2). The phylogenetic
trees showed that none of the clades were composed only of LR-unique proteins, so
we can conclude that the unique sequences recovered from the LR data set belong
not to novel phage taxa but to known clades. Comparing the distribution of unique
proteins between our three data sets, the LR data set usually contained more unique
sequences by an order of magnitude compared to the assembled data sets (Table S2).
Moreover, the percentage of unique variants was always higher in the LR.

After including the GOV2 data set in the comparison, it quickly became apparent
that this data set contained most of the unique sequences (ca. 90% of all unique pro-
teins). This was expected, considering the vast size and breadth of sampling of the
GOV data set (144 samples); it was therefore surprising that a data set derived from a
single sample contains a tenth of the diversity, especially considering that the 10 pro-
teins selected are conserved proteins in phage genomes. Out of this slice of diversity,
the vast majority of the unique contigs derive from the unassembled LR data set, as
seen in the case of DnaB (149 different proteins versus 26 in the assembled data sets)
and RrdA (150 versus 19 in assembled data sets) (Table S2).

FIG 2 (A) Relative abundance of viral sequences measured by their recruitment values in metagenomes from
Tara Oceans expeditions for cyanophages, pelagiphages, and other phages. The x axis shows the number of Tara
stations where the contig accumulated over the coverage thresholds, while the y axis shows the combined
recruitment value (in RPKG). Circles represent contigs derived from assembly (green for hybrid assembly, orange
for Illumina assembly), while blue diamonds represent raw PacBio reads. (B) Relative abundance of viral
sequences in viromes (x axis) and metagenomes (y axis) obtained from the same sample at 15, 45, and 60 m,
measured in ln RPKG. Circles represent contigs derived from assembly (green for hybrid assembly, orange for
Illumina assembly), while blue diamonds represent raw PacBio CCS15 reads. SRF, surface; DCM, deep chlorophyll
maximum.
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It is important to emphasize that the fact that LRs do not reveal novel phage clades
does not mean that their novelty is not relevant. An example of this would be the endoly-
sins, a remarkably diverse group of catalytic enzymes that degrade the cell wall of the host
so that the phage progeny can escape (26). In recent years, these proteins have awakened
increased interest for their potential to be used as antimicrobial agents (27, 28). Culture-
free approaches have been applied to great effect in order to broaden the diversity of
endolysins. In a previous study (29), 2,628 putative endolysins were retrieved from a collec-
tion of 183,298 assembled viral genomes, pooled from a variety of metagenomic data sets.
We applied the same pipeline to our samples to evaluate if this novel diversity found by
LR would also apply to proteins with more diversity than the usual protein markers.

We recovered 335, 106, and 841 putative endolysins from the SRa, LRa, and LR data
sets, respectively, yielding a total of 1,216 new sequences. A phylogenetic tree of the
sequences (Fig. S4) reveals that although most of the sequences are distributed among
previously described endolysin groups, there were four clades not found in the

FIG 3 (A) Phylogenetic trees based on the terminase large subunit (TerL) and thymidylate synthase (PhyX).
Branches are colored according to the assigned host, while the color of the outer circle indicates the data set
the contig was obtained from (orange for Illumina assembly, green for PacBio assembly, blue for PacBio CCS15
reads). (B) Venn diagrams showing shared and unique sequences among the three data sets and GOV2 for the
terminase large subunit (TerL) and thymidylate synthase (PhyX). The number inside each intersection leaf
indicates the number of proteins shared by those data sets. In the unique section for each data set, the
number in parentheses is the percentage of unique proteins in that data set compared to the total.
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previous endolysin environmental collection, which we name C1 to C4. An analysis of
their domains revealed them to be glycoside hydrolases from families 24, 104, 23, and
again 24, respectively. These are lytic transglycosylases that have the well-known a1b

lysozyme (30) fold, with differences in activity and specificity thought to be determined
by the environment surrounding the active site. Each family includes several well-char-
acterized phage lysozymes. No domains related to cell wall binding were found.
Interestingly, the C4 clade contains a signal-arrest-release motif, a mechanism not
reported in the original data set (29). This motif first directs the endolysin to the peri-
plasm by first attaching it to the membrane, where it remains inactive until it is
released as a soluble active enzyme in the periplasm (31). No other domains related to
protein export or cell wall binding were found.

Functional characterization. Finally, our last question was if there was any functional
category more enriched in the LR data set than in the assemblies. To answer this, we ana-
lyzed the protein content at the level of functionality, annotating the proteins against the
KEGG (32) and Conserved Domain Database (CDD) (33). Then we compared the number
of proteins with each annotation in the LR data set against the proteins found in the
assembled data sets. The LR data set was particularly enriched in repeat-containing pro-
teins, such as MORN repeats (37 times higher in LR than in the assembled data sets), pen-
tapeptide repeats (26 times higher), ankyrin repeats (10 times higher), and Kelch repeats
(9 times higher). Pentapeptide and Kelch repeats are widespread through bacterial and vi-
ral proteins (34, 35), ankyrin repeats have been found in a novel AMG which protects the
infected bacteria from eukaryotes (36), and MORN repeats have been found in bacterio-
phage endolysins (37). The appearance of these proteins was not surprising, as repeats
are the main cause of fragmented assemblies (38). A similar argument could be made for
the prevalence of integrases (18 times higher), reverse transcriptases (not found in the
assembled data sets) and transposases (9 times higher). Although these proteins are wide-
spread in phage genomes (39–41), they present a large amount of microdiversity, which is
also difficult for assemblers to solve (12). No groups of proteins were noticeably less abun-
dant in LR than its assembled counterparts. These results suggest that long reads can help
recover parts of the viral genome that are difficult to retrieve due to assembly bias.

Conclusions. The results obtained here demonstrate that it is possible to recover a
representative sample of the viral community fraction of the viral community from the
cellular fraction using LR sequencing approaches (e.g., PacBio Sequel II with CCS). This
has already been observed with Illumina data sets (15), but the benefits of this approach
improve with LR sequencing. The amount of DNA required for a PacBio run is at least an
order of magnitude larger than that required for Illumina sequencing, and considering
that DNA extraction from the viral fraction is an arduous process, requiring a large
amount of sample as well as specialized equipment, studying these recovered viral
genomes within the cell size fraction (e.g.,.0.2mm) may be a good alternative. The ben-
efits of LR sequencing for the study of viral sequences are important even compared
with the already-proven advantages for cellular metagenome analysis (12). CCS15 long
reads are the equivalent of the average Illumina contig both in terms of length and reli-
ability and therefore allow similarly reliable gene calling and protein identification.

We have also revealed that viral genomic diversity is even greater than previously
thought. As the discovery of new endolysins demonstrates, this untapped diversity
could aid biotechnological efforts, such as the search for biological agents for medicine
and the application of bio-industry to agriculture or food production.

MATERIALS ANDMETHODS
Viral contig recovery and dereplication. Contigs larger than 1 kb from the three metagenome data

sets were described by Haro-Moreno et al. (12). For the LR data set, we decided to analyze the CCS15
data set, consisting of PacBio long reads that have been resequenced at least 15 times. This process
results in reads with 99.95% base calling accuracy, which is similar to Illumina error rates and results in
accurate gene calling (12). Phage sequence recovery was performed in two steps. Bacteria and archaea
viral contigs were recovered using VIBRANT (16) with default parameters. Eukaryotic viruses were recov-
ered via manual curation. Each data set was dereplicated using CD-HIT (42) at 95% identity to remove
redundant sequences. Contigs were considered unique based on the definition of “viral population” as
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described by Gregory et al. (17); that is, contigs were considered part of the same population if they had
hits with at least 95% identity and the sum of distinct alignment lengths resulted in a coverage of at
least 70% across the smallest contig using BLASTN (43).

Genome annotation. Predicted viral contigs were taxonomically annotated following the method
described by Beaulaurier et al. (11). The predicted proteins from each contig were annotated against the
NCBI Viral Genomes database (44) (downloaded in September 2021) using LAST (45). Viral contigs were
annotated at the order level if they contained one, three, or five or more proteins with top hits to phages
that infect the same host genus. The choice of threshold seems to affect only the number of phages
classified, not the community composition. The contigs were also functionally annotated following a var-
iation of the method described by Zaragoza-Solas et al. (46). Protein alignments were downloaded from
the PHROG (47) and CDD (33) databases and then converted to hidden Markov models (HMMs) using
hmmbuild (48). Protein sequences from the three data sets were annotated against the previously built
HMMs using hmmscan (48). For each database, we assigned to each gene the best hit with an E value of
at least 1025 and a query coverage of at least 50%. Proteins were then clustered at 30% identity and
50% query coverage using MMSeqs2 (49), and the annotations for each cluster were manually curated
to ensure that the annotations were coherent for all proteins in the cluster. All contigs were searched for
the presence of tRNAs using tRNA-scan-SE (50).

Read recruitment. Viral contigs from the SRa and LRa data sets and the unique contigs from the SR
data set were mapped against the Tara Oceans metagenomes using pblat (51), using a cutoff of 95% nu-
cleotide identity over at least 50 nucleotides. Each read was mapped only to the viral contig with the
best match. Normalization was performed by calculating RPKG (reads recruited per kilobase of the ge-
nome per gigabase of the metagenome) so that recruitment values could be compared across samples.

Phylogenetic reconstruction of viral marker proteins. Phylogenetic trees of marker viral proteins
were constructed adapting the method described by Benler et al. (52). Marker viral proteins in the SRa,
LRa, and LR data sets were detected via hmmsearch (48) against the PHROG (47) database (see “Genome
annotation”) and merged into a single data set. This data set was then grouped with mmseqs2 (49) into
clusters with 50% amino acid identity and a coverage of 70%, which were then aligned using
ClustalOmega (53) and compared to each other using hhsearch (48). A distance matrix was calculated by
calculating distances following the formula 2ln[SA,B/min (SA,A, SB,B)], where SA,B is the raw score per align-
ment length. A and B are the different clusters being compared. SA,A and SB,B are the raw alignment score
of those clusters aligned to themselves. This matrix was used to build a dendrogram (unweighted pair
group method using average linkages [UPGMA]), which acted as a guide to merge clusters using
ClustalOmega, resulting in larger protein alignments. The resulting protein alignments were filtered to
remove sites with more than 50% gaps and then used to build trees using FastTree (54) (substitution
matrix, BLOSUM45; James-Taylor-Thornton model).

Phylogenetic reconstruction of eukaryotic viruses. To assess the phylogeny of the contigs catego-
rized as eukaryotic viruses, a concatenation of 5 marker proteins (PolB, SFII, A32, VLTF3, and MCP) was
built. ncldv_markersearch (23) was used to identify and align individual marker proteins, and then a
Python script was used to build the final concatenation. Contigs were included in the concatenation if
they had at least 3 of the 5 marker proteins. A database of 622 NCLDV Metagenome-Assembled
Genomes from the previous study (23) and reference NCLDV from RefSeq (55) were added to the concat-
enation. Finally, a phylogenetic tree was built using IQ-TREE2 (56), using the model VT1F1I1G4 and
producing 1,000 ultrafast bootstraps to assess confidence.

Putative endolysin discovery and analysis. Putative endolysins in the Mediterranean data sets were
extracted following the method described by Fernández-Ruiz et al. (29). The predicted proteins from each
contig were compared against a curated database of endolysins using DIAMOND (57). Matches were classi-
fied as putative endolysins if the match had .50% identity, covered at least 30% of the query sequence,
the alignment was at least 50 aa long and the E value was at least 1023. A phylogenetic tree including
both the reference data set and new putative sequences was built following the method described above
(see “Phylogenetic reconstruction of viral marker proteins”). Protein domains were detected by using
hmmsearch (48) against the CDD (33) and dbCAN2 (58) databases, with a match being considered valid if
it had 70% HMM coverage and an E value of at least 1025. Proteins of the C4 clade were tested for the
presence of a signal-arrest-release domain following the method of Oliveira et al. (59).

Statistical testing. Wilcoxon rank sum tests were performed using the coin package in R (60). The
effect size for Kruskal-Wallis test was calculated using the rstatix package (https://cran.r-project.org/
web/packages/rstatix/index.html).

Data availability. Metagenomic data sets (Illumina reads, MedWinter-FEB2019-I; PacBio CCS reads,
MedWinter-FEB2019-PBCCS15; and PacBio raw reads, MedWinter-FEB2019-PB) are available in the NCBI
BioProject database under accession number PRJNA674982.
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Fig. S1. Phylogeny of the NCLDV obtained in this study together with 444 reference 
genomes from Moniruzzaman et al and the NCDLV genomes present in the RefSeq 
database, using a concatenated of 5 highly conserved marker genes (mcp, VLTF3, A32, 
SFII and PolB). The sections of the tree are colored based on the taxonomic family. A 
red star in a tree branch indicates which sequences have been recovered in this study. 
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Fig. S2. Phylogenetic trees for the DNA helicase (DnaB), major capsid protein (mcp), Tail 
tube protein and Spanin. Branches are coloured according to the assigned host, while the 
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inducible protein (PhoH). Branches are coloured according to the assigned host, while the 
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THE BIGGER PICTURE Viruses that infect Bacteria and Archaea are ubiquitous and extremely abundant.
Recent advances have led to the discovery of many thousands of complete and partial genomes of these
biological entities. Understanding the biology of these viruses and how they influence their ecosystems de-
pends on knowing which hosts they infect. We developed a tool that uses data from complete or frag-
mented genomes to predict the hosts of viruses using a machine-learning approach. Our tool, RaFAH, dis-
played performance comparable with or superior to that of other host-prediction tools. In addition, it
identified hundreds of sequences as derived from the genomes of viruses of Archaea, which are one of
the least characterized fractions of the global virosphere.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Culture-independent approaches have recently shed light on the genomic diversity of viruses of prokaryotes.
One fundamental question when trying to understand their ecological roles is: which host do they infect? To
tackle this issue we developed a machine-learning approach named Random Forest Assignment of Hosts
(RaFAH), that uses scores to 43,644 protein clusters to assign hosts to complete or fragmented genomes
of viruses of Archaea and Bacteria. RaFAH displayed performance comparable with that of other methods
for virus-host prediction in three different benchmarks encompassing viruses from RefSeq, single amplified
genomes, and metagenomes. RaFAH was applied to assembled metagenomic datasets of uncultured vi-
ruses from eight different biomes of medical, biotechnological, and environmental relevance. Our analyses
led to the identification of 537 sequences of archaeal viruses representing unknown lineages, whose ge-
nomes encode novel auxiliary metabolic genes, shedding light on how these viruses interfere with the host
molecular machinery. RaFAH is available at https://sourceforge.net/projects/rafah/.
INTRODUCTION

Viruses that infect Bacteria and Archaea are the most abun-

dant and diverse biological entities on Earth. Because of their

sheer abundance, genomic diversity, and the fact that most

viruses are only found in specific ecological niches, they
This is an open access article und
remain elusive. Culture-independent techniques such as

metagenomics1 have been pivotal in the effort to describe

viral biodiversity. Computational approaches have been

developed to link these novel viruses to putative hosts2 by

identifying genomic signals that are indicative of a virus-host

association.
Patterns 2, 100274, July 9, 2021 ª 2021 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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First, alignment-free methods such as k-mer profiles use

nucleotide composition to predict the host of a viral genome.

Some viruses adapt their oligonucleotide composition to that

of the host they infect, a process that may be driven by the adap-

tation of the codon usage to the translational machinery and

tRNA pool available in the host cell, exchange of the genetic ma-

terial, co-evolution of regulatory sequences, and/or an evasion

of the host defense systems. Hence, by identifying the prokary-

ote genome with the highest significant similarity to a viral

genome, tools that exploit k-mer profiles assume that prokaryote

genome to be the host of the virus in question. Alignment-free

methods (e.g., WIsH) show very high recall (i.e., percentage of

viral genomes linked to a host) but usually have low precision

(i.e., percentage of correct virus-host associations among the

predicted virus-host associations), with reported host-prediction

accuracy for genus-level predictions between 33%and 64%de-

pending on the dataset.2–4 Similarities in k-mer profiles between

viruses can also be used for host prediction following the same

rationale (e.g., HostPhinder).5

Second, there are alignment-dependent approaches to

assess similarity between viral and prokaryote genomes. These

methods assume that genetic information exchange between

viral and prokaryote genomes is indicative of virus-host associ-

ations. Specific genetic fragments, although short, might be

informative for this purpose, such as CRISPR spacers and

tRNA genes, while longer matches such as whole genes or inte-

grated prophages can also provide an indication of virus-host

linkage.2 Both aforementioned approaches are limited by the

fact that they require the genome of the host to be present in

the reference database. That host should contain an active

CRISPR system whose array should contain a spacer targeting

(a close relative of) the phage, allowing identification of a proto-

spacer without toomanymismatches. Alignment-dependent ap-

proaches also require that detectable genetic exchange has

taken place between virus and host. Hybrid approaches

leverage on information from both alignment-free and align-

ment-dependent approaches for host prediction (e.g., VirHost-

Matcher-Net).6

Third, the gene content of viral sequences can be investigated

in search of specific marker genes that are indicative of the host,

such as photosynthesis genes for cyanophages.7 This low-

throughput approach may have high precision, but usually the

recall of such predictions is low and the procedure is extremely

time-consuming.

All of these approaches have been used extensively in viral

metagenomic studies to predict hosts to uncultured viruses.1,7–9

An ideal tool for virus-host prediction should combine the preci-

sion of alignment-dependent methods and the recall of align-

ment-free approaches. Furthermore, it should be independent

of host genomes so as not to be limited by database complete-

ness biases. Previous studies have shown that random forest al-

gorithms are suitable for classifying viruses according to their

hosts10 and that protein domains can be used to achieve accu-

rate host predictions.11,12 Based on these findings, we postu-

lated that random forest classifiers could be applied to protein

content to build a classifier based on identifying combinations

of genes that are indicative of virus-host associations. Through

this approach, we were able to design RaFAH (Random Forest

Assignment of Hosts), a classifier that combined the precision
2 Patterns 2, 100274, July 9, 2021
of manual curation, the recall of alignment-free approaches,

and the speed and flexibility of machine learning (Figure 1).

RESULTS AND DISCUSSION

We tested the performance of RaFAH and other host-prediction

approaches on an independent dataset of isolated viral genomes

that did not overlap with those used for training the models (Test

Set 1, composed of RefSeq viral genomes with less than 70%

average amino acid identity when compared with those in

Training Set 3, see experimental procedures). When using Ra-

FAH and the other tested methods without score or prediction

probability cutoff (i.e., considering as valid all host predictions

with no thresholds for their probability value or bit score), RaFAH

outperformed alignment-independent, hybrid, and alignment-

dependent approaches for host prediction at every taxonomic

level based on the F1 score (Figure 2A). This difference in perfor-

mance became gradually more evident from domain to genus

level. Next, we evaluated how the performance of these tools re-

sponded to thresholding (i.e., applying a cutoff on their probabil-

ity value or bit score) and only considering predictions that were

above the cutoffs. These analyses revealed that homology

matches, CRISPR, tRNA, and combined classical approaches

(i.e., homology matches, CRISPR, and tRNA, see experimental

procedures) displayed the lowest recall (Figure 2B) but the high-

est precision (Figure 2C). HostPhinder and CRISPR displayed

high precision only at the strictest score cutoffs. As a conse-

quence, these two methods displayed very low recall when the

highest cutoffs for predictions were established. RaFAH, WIsH,

and VirHostMatcher-Net displayed higher recall than the other

approaches, especially at the range of more permissive score

cutoffs (0). Yet this higher recall came at the expense of lower

precision for WIsH and VirHostMatcher-Net. Meanwhile the pre-

cision of RaFAH outperformed these tools even when no cutoffs

were applied. Together, precision, recall, and F1 score suggest

that RaFAH can predict more virus-host interactions than the

other tested approaches while maintaining high precision,

particularly for divergent viral genomes that escape detection

by the classical approaches (Figure S1).

We evaluated how the similarity among the genomes in Test

Set 1 with those used to train the model (Training Set 3) affected

the performance of RaFAH. For this purpose, we assessed how

the precision of RaFAH changed by setting a threshold on the

maximum allowed average amino acid identity (AAI) between the

genomes on Test Set 1 and those on Training Set 3. As expected,

a positive associationwasobservedbetween these variables (Fig-

ure S2), meaning that the more similar the testing genomes are to

the ones used for training, the more likely RaFAH is to correctly

predict their hosts at all taxonomic levels. Based on this analysis,

75% of the class-level host predictions will be correct (precision:

~0.75) for viruses that possess <60% AAI to the ones in the data-

base, when no cutoffs on prediction score are applied.

We applied importance analysis to determine which protein

clusters were most relevant for predicting viral hosts using Ra-

FAH. The most important predictor was annotated as an Rz-

like phage lysis protein (Table S1). Among the protein clusters

that ranked among the 50 most important were multiple lysins,

tail, and tail fiber proteins. These proteins are known to deter-

mine virus-host range, as they play fundamental roles in virus



Figure 1. Overview of the strategy used to

train, validate, and test random forest

models

The training and validation sets were composed of

viral RefSeq genome sequences published until

October 2019 and viral genomic sequences derived

from GLUVAB. GLUVAB sequences were clustered

into viral populations (VPs) and assigned putative

hosts through classical approaches (tRNA, homol-

ogy matches, and CRISPR) on a per-population

basis. Coding DNA sequences (CDS) were ex-

tracted from these sets and clustered into ortholo-

gous groups (OGs), aligned, and pressed into a

database of hidden Markov model (HMM) profiles.

Next, CDS were queried against this database to

compute the bit scores of each CDS against each

HMM, from which a matrix of Genomes 3 OG

scores was derived. This matrix was used to train

the random forest model. The performance of the

model was evaluated on the training and validation

sets according to precision and recall. The test sets

comprised viral RefSeq genomes published after

October 2019 (Test Set 1), viral genome fragments

retrieved from marine SAGs (Test Set 2), and met-

agenomes/viromes from eight distinct ecosystems

(Test Set 3). Similarly, CDS were extracted from

these sets and queried against the HMM database

derived from the training set to compute the bit

scores of each CDS against each HMM, fromwhich

the testing matrix of Genomes 3 OG scores was

derived and analyzed through RaFAH. From these

results, the precision, recall, and F1 score of RaFAH

were evaluated on the Test Sets.
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entry and exit and host recognition.13 The fact that these proteins

ranked among the most important for RaFAH predictions is evi-

dence that it learned to predict virus-host associations based on

proteins that are directly involved in virus-host molecular

interactions.

Host-prediction tools were further validated on a dataset of

viral genomic sequences derived from marine single amplified

genomes (SAGs), Test Set 2.14 These sequences represent an

ideal test dataset because they are uncultured viruses, not rep-

resented in the National Center for Biotechnology Information

(NCBI) database used for training, and can confidently be as-

signed hosts because these viruses were inside or attached to

the host cells during sample processing. Based on the F1 score,

HostPhinder displayed the best performance at the levels of

domain and class, followed by RaFAH slightly behind (Fig-

ure S3A). Yet at the level of phylumWIsH displayed the best per-

formance, again followed closely by RaFAH. At the levels of

order, family, and genus, WIsH displayed the highest F1 scores

followed by the combined classical approaches. The recall (Fig-

ure S3B) and precision (Figure S3C) of RaFAH on Test Set 2 was

lower than that obtained for Test Set 1. Nevertheless, a negative

association between precision and recall as a function of the

score cutoff was also observed for RaFAH and the other tested

tools on Test Set 2 (Figure S3D). Taken together, these results

are evidence that RaFAH also performed well when predicting

hosts of uncultured viruses from the marine ecosystem.

Some features of Test Set 2 must be considered when inter-

preting these results. First, most of the viruses identified in

Test Set 2 were derived from single-cell genomes classified as
either Pelagibacter, Puniceispirillum, Prochlorococcus, and Syn-

echococcus. This is expected considering these are the most

abundant organisms at the ecosystem from which this dataset

is derived. Nevertheless, this relatively low diversity of taxa has

implications for the assessment of host-prediction tools. For

instance, the genera Prochlorococcus and Synechococcus

have no determined taxonomy at the level of class. Therefore,

predictions at this level do not count toward precision for these

particular taxa. As a consequence, the precision of all host-pre-

diction tools displayed a steep decrease at this taxonomic level.

This was particularly noticeable for VHM-Net for which all correct

predictions were restricted to the two aforementioned taxa,

which led to 0% precision at the level of class. Second, the ma-

jority of bacteriophage genomes in Test Set 2 have very low

completeness (median 6.85%, estimated by CheckV,15 see

experimental procedures). The low diversity of hosts and the

very low genome completeness (as evaluated below) likely

impacted the performance of RaFAH on this dataset. Third,

because most viral genomes in Test Set 2 belong to four genera,

RaFAH is likely to have its performance hindered due to the num-

ber of phage genomes that infect these genera available in

Training Set 3. Meanwhile, approaches that rely on host ge-

nomes are likely to be hindered by the number of these genomes

available in the reference database.

To test the performance of RaFAH on samples from other hab-

itats, we applied it to predict hosts of a dataset of viral genomes

obtained from metagenomes of eight different ecosystems (Test

Set 3). For comparison, we also applied the other testedmethods

of host prediction (HostPhinder did not scale to the more than
Patterns 2, 100274, July 9, 2021 3
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60,000genomes in thisdataset, andanalysesdidnot completeaf-

ter running for several days). According to the F1 score, RaFAH

outperformed WIsH and VirHostMatcher-Net for this dataset as

well (FigureS4A), due to slightly higher recall (FigureS4B) andpre-

cision (Figure S4C). RaFAH was also superior when the strictest

cutoffs were applied, whereby both precision and recall were

markedly superior to VirHostMatcher-Net (Figure S4D). On this

dataset, RaFAH achieved 43.13% precision at the level of genus

when no score threshold was applied. Bootstrap analysis

revealed that this level of precision was consistent across 1,000

replicates (mean 43.02% ± 2.1%). This result indicates that the

precision of RaFAH on Test Set 3 was not biased by uneven viral

genome diversity among the samples that made up this dataset.

Whenusingclassical approaches for hostprediction, themajor-

ity of viruses remained unassigned regardless of ecosystem, and

thebest performanceof theseapproacheswasamong the human

gut dataset, in which only about 25% of sequences (lengthwise)

could beassigned toahost at the level of phylum (Figure 3).Mean-

while, when set to the 0.14 cutoff, which yielded92%phylum level

precision on Test Set 1 (Figure S1) and 90% on Test Set 3 (Fig-

ure S4D), RaFAH was capable of predicting putative hosts to the

majority of viral sequences across all ecosystems except for the

permafrost dataset, likely because viruses derived from this

ecosystem are poorly represented in reference databases.

Interestingly, the host predictions yielded by RaFAH were

markedly different across ecosystems. Viruses of Proteobacteria

were the dominant group in all ecosystems except the human

gut. As expected, the most abundant targeted hosts of the vi-

ruses from each ecosystem were the most abundant taxa that

reside in those habitats. Viruses of Cyanobacteria were the sec-

ond most abundant group among the marine dataset, a position

that was occupied by viruses of Actinobacteria and Bacteroi-

detes among the freshwater dataset. Viruses of Firmicutes and

Bacteroidetes were the dominant group among the dataset of

human gut viruses while viruses of Firmicutes, Bacteroidetes,

and Actinobacteria were among the most abundant among the

soil and permafrost datasets. Viruses of Euryarchaeota were

the second most abundant group among the hypersaline data-

set, a position that was occupied by viruses of Crenarcheaota

in the thermal springs dataset. These results are in accordance

with the known prokaryote diversity that dwells in each of these

ecosystems.8,16–22 Although this agreement between virus and

host community composition is to be expected, it is seldom

observed in studies of viral ecology based on metagenomics

because classical methods leave the majority of viruses without

host predictions. RaFAH circumvents these issues by providing

an accurate and complete description of viral communities

regarding their targeted hosts.
Figure 2. Performance of RaFAH compared with alignment-free and

classical host-prediction approaches on Test Set 1

(A) F1 score ofmethods when considering all predictions regardless of score at

multiple taxonomic levels.

(B) Association between score cutoff and recall of predictions for each

method.

(C) Association between score cutoff and precision of predictions for each

method. The score cutoffs for HostPhinder, Homology matches, VirHost-

Matcher-Net, and combined classical are shown on the log10 scale. Figure S8

depicts the association between precision and score cutoff of VirHost-

Matcher-Net for score values above the 75th percentile.
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Figure 3. Description of the viromes of eight ecosystems using combined classical host-prediction approaches and RaFaH

For each dataset we calculated the fraction of the assembly predicted to each putative host phylum by each method. Phyla that represent less than 0.5% of the

total assembly are not shown.
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We assessed how genome completeness affected the perfor-

mance of RaFAH. For this purpose, we used Test Set 3 as it dis-

played the necessary range of genome completeness values

necessary for this purpose, while Test Set 1 was mostly made

up of complete genomes and Test Set 2 was mostly made up

of low-completeness genomes. We assumed that the predic-

tions yielded by the combined classical approaches represented

the true hosts of Test Set 3, although this assumption is likely to

lead to an underestimation of the true precision of RaFAH. We

found weak positive associations (Pearson R2 > 0.6, p < 10�13

for all taxonomic levels) between the precision of RaFAH and

genome completeness at all taxonomic levels (Figure S5A).

These curves tended to reach a plateau around ~25%–50%

genome completeness and increased further for the lower taxo-

nomic ranks (genus, family, and order) for genomes that were

>85% complete. Coupled with the observations of the perfor-

mance of RaFAH on Test Set 2, we suggest that RaFAH is better

suited for viral genomes with 50% or more completeness. We

used Test Set 3 to analyze the relationship between genome

completeness, sequence length, and RaFAH prediction score

across the eight different ecosystems (Figure S5B). This revealed

a positive correlation between those variables (Pearson R2 =

0.65, p < 2.2e�16 for the combined set of all ecosystems). Like-

wise, significant albeit weaker positive correlations were also de-

tected between prediction score and sequence length (Pearson

R2 = 0.14, p <2.2e�16), and prediction score and genome

completeness (Pearson R2 = 0.11, p <2.2e�16). We found that

regardless of taxonomic level, precision did not consistently in-

crease through thresholding for genome length, providing further

evidence that shorter sequences do not necessarily yield worst

predictions (and vice versa) (Figure S5C). These results suggest

that the precision of RaFAH cannot be explained by genome

length/completeness alone, likely because RaFAH was trained

on a dataset with a majority of genome fragments.

We also performed analysis of the combined effects of the rele-

vant variables and how those, together, affected precision, recall,

and theF1scoreofRaFAHusingTestSet3. Taken together, these

results demonstrated that the performance of RaFAH on a given

genome is dependent on each of ecosystem source, genome
completeness, similarity of the genome to those in the training da-

taset, and the taxonomic level being considered (see Table S6 at

https://doi.org/10.6084/m9.figshare.14365562). For this reason,

there is not a single score threshold that is ideal for all use cases.

Nevertheless, we make the following recommendations. For

differentiating between viruses of Bacteria and Archaea, RaFAH

has nearly 100% precision even at the most permissive cutoff

(0), thus for this particular purpose it can be applied without

threshold. For a broad characterization of multiple viral genomes

from an ecosystem, permissive thresholds are acceptable. For

example, to compare viral host prevalences across different

metagenomes at the level of phylum, we recommend a threshold

of 0.14. This yields a precision of approximately 90% without

sacrificing recall (Figures S1 and S4D), regardless of ecosystem

source, genome length, completeness, or similarity to the training

dataset. At lower taxonomic levels, stricter cutoffs are necessary.

Users can select cutoffs according to the desired precision based

on the curves depicted in Figures S1 and S4D. As a rule, longer,

more complete genomes with higher maximum AAI values to ge-

nomes in the test set should allow more permissive cutoffs.

Based on the finding that RaFaH achieved nearly perfect pre-

cision for domain-level host predictions, and the fact that viruses

of Archaea are under-represented in databases, we subse-

quently focused on the description of these viruses. Few large-

scale studies have addressed the diversity of uncultured viruses

of Archaea, and they focused mostly on marine samples.23–26

Here, we describe viruses from seven other ecosystems: soil,

permafrost, freshwater, sludge, hypersaline lakes, thermal

springs, and the human gut. Applying RaFAH to only eight meta-

genomic datasets led to the prediction that 537 genomic se-

quences represent viruses of Archaea (prediction score

R0.14). To put this figure in context, there are only 96 genomes

of viruses of Archaea deposited in the NCBI RefSeq database.

We took several steps to ensure that these genomeswere truly

derived from viruses of Archaea and consistently found compel-

ling evidence to support our claim. First, these genomes could be

linked to archaeal genomes either through homology matches or

alignment-independent approaches, which provided further evi-

dence that 423 out of the 537 genomes (79%) were indeed
Patterns 2, 100274, July 9, 2021 5
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derived from archaeal viruses (Table S2). Second, much like the

RefSeq genomes of archaeal viruses, these sequences were en-

riched in Pfam domains annotated as exclusive of Archaea, eu-

karyotes, and their viruses (Figure S6). Third, these genomes

were enriched in ribosomal binding site motifs that are also en-

riched among RefSeq viruses of Archaea (Figure S7).

Next, we manually inspected the gene content of the viruses

predicted to infect Archaea in search of novel auxiliary metabolic

genes (AMGs) and new mechanisms of interaction with the host

molecular machinery. The small number of reference genomes

of Archaea and their viruses makes it difficult to describe the

gene content of the archaeal viruses that we discovered because

most of their genes have no taxonomic or functional annotation.

However, we found several sequences containing genes coding

for thermosomes, group II chaperonins involved in the correct

folding of proteins, homologous to their bacterial counterparts,

GroEL/GroES.27 Other AMGs found among archaeal viruses

were those involved in the synthesis of cobalamin cobS, recently

associated with Marine Group I (MGI) Thaumarchaeota virus

infection26 as well as genes that encoded 7-cyano-7-deazagua-

nine synthase QueC involved in archaeosine tRNA modifica-

tion.28 One of the AMGs most prevalent among archaeal viral

genomes encoded for a molybdopterin biosynthesis MoeB pro-

tein (ThiF family). This family of proteins is involved in the first of

the three steps that make up the ubiquitination process.29 This

system regulates several cellular processes through post-trans-

lational modification of proteins such as their function, location,

and degradation, making it an ideal target from the point of view

of viruses to facilitate their replication.30

In conclusion, we developed a new tool that uses a random

forest classifier based on protein content for virus-host predic-

tion with great potential for studies of viral biodiversity and ecol-

ogy. RaFAH frequently outperformed other methods that we

tested and displayed high accuracy and recall in a dataset of

cultured viruses, which extended to uncultured viruses from a

diverse set of ecosystems. By analyzing metagenomic datasets

from eight different ecosystems, RaFAH allowed for a significant

expansion of the archaeal virosphere and shed light on their yet

poorly understood content of AMGs. Future studies will describe

evenmore uncultured viral sequences, and RaFAHwill likely play

a role on describing their hosts and allowing us to decipher their

ecological roles. The addition of new viruses with predicted or

experimentally verified hosts will allow RaFAH to evolve to iden-

tify viruses for an even larger diversity of hosts, and possibly at

deeper taxonomic levels such as species. Likewise, these ad-

vancements will likely contribute to increasing the accuracy of

RaFAH at all taxonomic levels.
EXPERIMENTAL PROCEDURES
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Materials availability
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Data and code availability

All thedata (viral andprokaryotegenomes) analyzed in this studyare freely avail-

able from public repositories. The data were also made available as part of the

supplemental information. RaFAH and the associated files necessary to run it

are freely available online at https://sourceforge.net/projects/rafah/. In addition,
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we created a Docker container with all the necessary dependencies, scripts,

and files available at https://hub.docker.com/r/fhcoutinho/rafah.

Viral genomes database for model training and validation

Two datasets of viral genomes were used for both training and validating the

random forest models. The first dataset contained the genomes of viruses of

Bacteria and Archaea from NCBI RefSeq available on October 2019, which

comprised 2,668 genomes along with their associated host data (Table S3).

To avoid overestimating precision due to identical and nearly identical ge-

nomes in the database, this dataset was made non-redundant using CD-

HIT31 at a clustering cutoff of 95% identity over 50% alignment of the shorter

sequence. The second dataset comprised the 195,698 GLUVAB genomes.32

GLUVAB is a database of uncultured viral genomes compiled from multiple

studies that covered several ecosystems. Only those sequences classified

as bona fide viruses of prokaryotes in the original publication were used in sub-

sequent analysis (Table S4).

Classical host prediction for GLUVAB genomes

To use GLUVAB genomes for training and validation of the random forest

models, we first had to assign them to putative hosts using classical ap-

proaches. To minimize errors during this step we opted for using only align-

ment-dependentmethods due to their higher precision.2 The RefSeq genomes

of Bacteria and Archaea were used as the reference database. We used three

lines of evidence for virus-host associations: CRISPR spacers, homology

matches, and shared tRNAs. CRISPR spacers were identified in the RefSeq

genomes as previously described.33 The obtained spacers were queried

against the sequences of bona fide viral sequences using BLASTn v2.6.0+

(task blastn-short). The cutoffs defined for these searcheswereminimum iden-

tity of 100%, minimum query coverage of 100%, with no mismatches and

maximum e-value of 1. Homology matches were performed by querying viral

sequences against the databases of prokaryote genomes using BLASTn.34

The cutoffs defined for these searches were minimum alignment length of

500 bp, minimum identity of 95%, and maximum e-value of 0.001. tRNAs

were identified in viral scaffolds using tRNAScan-SE v1.2 35 using the bacterial

models. The obtained viral tRNAs were queried against the RefSeq database

of prokaryote genomes using BLASTn. The cutoffs defined for these searches

were minimum alignment length of 60 bp, minimum identity of 97%, minimum

query coverage of 95%,maximumof 10mismatches, andmaximum e-value of

0.001. These steps for host assignment did not include the prophages in the

GLUVAB database, as we were already confident of their host assignments.

We developed a per-viral population scoring method. First, all GLUVAB ge-

nomes were clustered into viral populations (VPs) on the basis of 95% average

nucleotide identity and 80% shared genes.36 For each virus-taxon association

signal detected (i.e., homology, tRNA, or CRISPR), 3 points were added to the

taxon if it was a CRISPR match, 2 points if it was a homology match, and 1

point if it was a shared tRNA. The taxon that displayed the highest score

was defined as the host of the viral population. With this approach we ensured

that all the genomes in the same VP were assigned to the same host and that

no sequences had to be excluded due to ambiguous predictions.

Protein cluster inference and annotation

Protein sequences were identified in viral genomes using Prodigal37 in meta-

genomic mode. Hidden Markov models (HMMs) for the phage proteins were

built as follows. The 4,701,074 identified proteins were clustered by the cluster

workflow of the MMseqs2 software suite,38 with parameters: 35% sequence

identity and alignment coverage had to cover at least 70% of both proteins.

Protein clusters (PCs) were aligned into multiple sequence alignments

(MSAs) using QuickProbs39 with default parameters, then converted into

HMMs using the hmmake program from the HMMER suite,40 which resulted

in 144,613 HMMs. The HMM profiles were annotated by performing HMM-

to-HMM annotation against the pVOG database41 using the HH-suite3 soft-

ware suite.42 First, the MSAs provided on the pVOGs website and the ones

built in the previous step were converted into the hhsuite proprietary HMM

format using hhmake. The pVOGHHMswere built into an HH-suite3 database,

which was then used to find matches to the phage protein HMMs using

hhsearch. All HMMs could be annotated through this approach, but only

4,578 matches displayed target coverage R50% and e-value %1�10.

mailto:fhernandes@icm.csic.es
https://sourceforge.net/projects/rafah/
https://hub.docker.com/r/fhcoutinho/rafah
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Finally, individual viral proteins were mapped to the HMM profiles using the

hmmsearch program limiting hits to those with e-value %10�5, alignment

length R70% for both proteins, and minimum score of 50. These results

were parsed into a matrix of viral genomes 3 PCs in which the values of

each cell corresponded to the bit score of the best hit of each protein to a given

PC, or zero if the protein and the PC did not match or if the score of the match

was below the aforementioned 50 cutoff. Once the matrix of genomes 3 PC

was defined, we calculated Pearson correlation coefficients (r) between all

possible pairwise combinations of PCs. To remove redundancies, we grouped

PCs into superclusters if they presented r R 0.9, and only a single PC from

each supercluster was kept for subsequent analysis. This reduced table of ge-

nomes versus PC scores (25,879 genomes 3 43,644 PCs) was used as input

to train, validate, and test the random forest models.

Random forest training, validation, and testing

Our rationale was that the machine could learn the associations between

genes and hosts much more efficiently than a human while also using the in-

formation contained in the hypothetical proteins. Hence, random forest

models were built using the Ranger43 package in R.44 The response variable

was the genus-level host assignment of the viral sequences while the input pa-

rameters were the scores of viral genomes to each PC.Multi-class random for-

ests were built with 1,000 trees, 5,000 variables to possibly split at in each

node, and using probabilistic mode. This classification approach ensured

that a single model could be used for all virus genomes. The putative host of

a viral genome was selected as the taxon with the highest probability score

yielded by the random forest. The taxonomic classification of each genus up

to the domain level was obtained by parsing the NCBI Taxonomy database

with a custom script. Next, variable importance was estimated using the impu-

rity method. When training the models and reporting predictions, we assumed

that a virus can only infect a single genus. Due to the probabilistic nature of the

random forests, all genera are associated with a score (which ranges from 0 to

1). Users interested in multi-genera viruses can search for those genomes that

have close or equal scores as preliminary evidence that the viral genome in

question might infect across multiple genera.

Three models were built and validated on independent datasets. Model 1

was trained on Training Set 1, which comprised 80% randomly selected non-

redundant viral genomes from NCBI RefSeq. The performance of this model

was evaluated on Training Set 1 and Validation Set 1, which comprised the re-

maining 20% of non-redundant RefSeq genomes. This process was repeated

for a 10-fold cross-validation. Even without thresholding, these models ex-

hibited high precision for both the training (mean 99.96%±0.026%) and valida-

tion sets (mean 76.47% ± 1.523%) at the genus level. Model 2 was trained on

Training Set 2, which comprised 100% of the RefSeq genomes, and validated

on Validation Set 2, which was comprised of GLUVAB genomes that could be

assigned to a host at the level of genusby the pipeline described above. Finally,

Model 3 was built based on Training Set 3, which comprised all of the RefSeq

viral genomesand theGLUVABgenomes that couldbeassigned toahost at the

level of genus (i.e., a combination of Training Set 2 and Validation Set 2). In this

dataset each genus was represented by a median of three genomes, and for

187 out of 617 (30.3%) genera themodel was trainedwith a single genome (Ta-

ble S5). Models 1 and 2 were used as proof-of-principle models, and Model 3

was the definitivemodel used for testing andwhich is provided to the users and

used for all subsequent analyses.

Viral genome completeness is likely to influence the performance of the

models. A tool trained solely on complete or nearly complete genomes might

not be capable of producing accurate predictions for the genome fragments

that are often obtained with metagenomic datasets. Completeness of the

25,879 sequences used to train RaFAH was estimated with CheckV,15 which

indicated that this dataset encompassed both complete viral genomes as

well as partial viral contigs. Partial viral genomes were the majority of se-

quences used to train RaFAH. Altogether, the genomes used for training dis-

played an average completeness of 53.6% ± 32.3%. According to CheckV,

these sequences were classified as complete genomes (709 sequences),

high-quality genome fragments (5,823), medium-quality genome fragments

(5,493), low-quality genome fragments (13,707) and not determined (147).

We used three independent test sets to evaluate the performance of RaFAH

Model 3. Test Set 1 comprised viral genomes retrieved from NCBI Genomes

database in January 2021. We took several steps to make sure that Test Set 1
represented a challenging dataset for the random forest model so as to assess

its ability to extrapolate. First, we excluded from Test Set 1 any genomesmade

public before November 2019. Second, Test Set 1 wasmade non-redundant at

95% nucleotide identity and 50% alignment length of the shorter sequence.

Third, protein sequences derived from Test Set 1 were compared with the pro-

tein sequences of Training Set 3 using DIAMOND.45 Any genomes that shared

more than 70% of proteins or more than 70% average AAI with any genome

from Training Set 3 were removed from Test Set 1. These steps resulted in an

independent Test Set 1 consisting of 561 (out of the initial 3,427) genomes

with no overlap to the genomes used to train the models.

Test Set 2 comprised viral genomes identified in SAGs from marine sam-

ples.14 A total of 4,751 SAGs (with completeness R50% and contamination

%5% as estimated by CheckM)46 were classified at the level of genus using

BAT.47 This algorithm provides taxonomic affiliations to microbial genomes

based on consensus taxa of proteins matches to the NCBI-nr database.

Next, viral sequences were extracted from the SAGs using VIBRANT,48 which

identified 418 viral sequences. We assumed that the viral sequences in the

SAGs infected the organisms from which these SAGs were derived, either

because they were derived from integrated prophages or from viral particles

attached or inside host cells. Viral sequences for which the host taxon pre-

dicted by RaFAH was the same taxon of the SAG as determined by BAT

were considered as correct host predictions. Viruses from SAGs that could

not be classified were excluded from the precision and recall analyses.

Test Set 3 comprised a collection of 61,647 viral genomic sequences from

studies that spanned multiple samples from permafrost,8 marine,49 human

gut,50 freshwater,19 soil,51 hypersaline lakes,52 hydrothermal springs (Fredrick-

son et al., unpublished data obtained from IMG/VR),53 and sludge bioreactor18

habitats. These sequences were assigned to putative hosts through the clas-

sical host-prediction pipeline described above for the GLUVAB genomes and

also using RaFAH. Bootstrap analysis was applied to evaluate the precision of

RaFAH in thisdataset. For this,weassumed that thehostspredictedby theclas-

sical approacheswere the truehostsof theviral genomesonTestSet3.Random

subsamples representing 20% of the full data were generated in 1,000 repli-

cates. Precision was estimated for each replicate. Also, we estimated the

completeness of viral genomes on Test Set 3 with CheckV15 and analyzed the

association between genome completeness and the precision of RaFAH.

RaFAH was tested on an Intel Xeon Gold 6140 CPU @ 2.30-GHz machine.

Timing calculations were performed using randomly selected genomes of

Test Set 3 using 24 threads in both the training and prediction modes (Fig-

ure S9). These results showed that the time to perform computations varied

exponentially as a function of input genomes. Using 10,000 input genomes,

RaFAH took 184 min to fit models and 495 min to predict hosts.

Comparison with other methods for host prediction

To assess the performance of RaFAH compared with other host-prediction

tools, we assessed the performance of the alignment-free methods Host-

Phinder5 and WIsH,3 the alignment-dependent approaches based on homol-

ogy matches, shared tRNAs and CRISPR spacers (and the three combined

as described above for assigning hosts to GLUVAB genomes), and a hybrid

approach, VirHostMatcher-Net.6 We compared these tools on Test Sets 1,

2, and 3. HostPhinder, VirHostMatcher-Net, and WIsH were run with default

parameters. The classical host predictions (CRISPR, tRNA, and homology

matches) for Test Set 1 were performed using the same parameters described

above for the GLUVAB genomes and for Test Set 3. Three performance met-

rics were evaluated at different taxonomic levels (domain to genus): Recall is

the percentage of viral sequences for which a host was predicted by a given

tool. Each viral sequence that was associated to a host was counted toward

recall, regardless of the host association being correct or not. Recall was

calculated as the number of sequences associated with a host divided by

the total number of sequences in the dataset. For approaches that provided

multiple host predictions for the same viral sequence (i.e., homology matches,

tRNA, and CRISPR), each individual viral sequence counted toward recall only

once. Precision is the percentage of host predictions that were correct. Each

viral sequence that was associated with a host by a given tool was counted to-

ward precision if the host association matched the true host of the sequence.

Precision was calculated as the total of matching host predictions divided by

the total number of predictions. Approaches that provided multiple host pre-

dictions for the same viral sequence counted toward precision if at least one
Patterns 2, 100274, July 9, 2021 7
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of the predictions was correct, but each sequence was counted toward preci-

sion only once. Finally, the F1 score was calculated as the harmonic mean be-

tween precision and recall.

For the approaches that required reference host genomes (i.e., WIsH,

CRISPR, tRNA, and homology matches), the database of host genomes was

the NCBI RefSeq genomes of Bacteria and Archaea and the genomes of Un-

cultured Bacteria and Archaea from the Genome Taxonomy Database.54 To

minimize false positives due to homology between viruses and mobile genetic

elements, we removed all sequences that matched the keyword ‘‘plasmid’’ in

their description field from the database of reference host genomes.

Assessment of archaeal virus-host predictions

To confirm the prediction of 537 genomes predicted by RaFAH as archaeal vi-

ruses, we used Mash v.2.1.55 Mash calculates Jaccard distance between two

genomes based on the number of shared k-mers with a certain length. We

used k-mer sizes from 13 to 20 nucleotides. For each k-mer size we calculated

distances of every phage genomic sequence against all potential host ge-

nomes. This database included 17,134 bacterial genomes and 4,716 archaeal

genomes retrieved from RefSeq and GenBank. For each phage genome, we

selected the potential host with the smallest Mash distance. In addition to

Mash distance, we also calculated Manhattan distances and correlation

scores between phage and host k-mer frequencies using k = 6 as described

in Edwards et al.2 and Ahlgren et al.4 Finally, all 537 phages were used as

BLASTn queries against the whole NR database. For each phage we deter-

mined a potential host by selecting the top-scoring non-viral hit as described

in Edwards et al.2 In addition, we compared the prevalence of ribosomal bind-

ing site motifs (defined by Prodigal37 gene predictions) between viral

sequences predicted to infect Bacteria and Archaea, from both the eightmeta-

genomic datasets and RefSeq viruses. A similar analysis was performed to

compare the prevalence of Pfam domains among these groups. For this anal-

ysis, protein sequences were queried against the Pfam database using

hmmsearch with maximum e-value set to 10�3.
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Supplementary material:

Figure S1: Associations between score cutoff, precision, and recall for RaFAH, the alignment-free

(WIsH  and  HostPhinder),  hybrid  (VirHostMatcher-Net),  and  classical  (CRISPR,  tRNA  and

homology matches) host prediction approaches on Test Set 1. The score cutoffs for HostPhinder,

Homology matches, VirHostMatcher-Net and Combined Classical are shown in the Log10 scale.



Figure S2: Associations between precision and similarity among Test  Set 1 and Training Set 3

genomes. Each panel represents a different taxonomic level. X axis displays the maximum Average

Amino acid Identity (AAI) among genomes of the two sets. Y axis displays the precision of RaFAH.

Points are coloured according to the number of valid predictions (host taxon predicted by RaFAH

for a non “NA/undef/Unknown” host genome in Test Set 1) yielded at each taxonomic level and

AAI cutoff. For this particular analysis all non-redundant genomes in Test Set 1 were used while in

all other instances this dataset was filtered for maximum 70% AAI and 70% matched proteins.



Figure S3: Performance of host prediction tools on Test Set 2: Associations between score cutoff,

precision,  and  recall  for  RaFAH,  the  alignment-free  (WIsH  and  HostPhinder),  hybrid



(VirHostMatcher-Net),  and  classical  (CRISPR,  tRNA and  homology  matches)  host  prediction

approaches. A) F1-score of methods when considering all predictions regardless of score at multiple

taxonomic levels.  B) Association between score cutoff and recall  for  each taxonomic level.  C)

Association between score cutoff and precision for each taxonomic level D) Associations between

precision and recall in function of score cutoff. Figure S8 depicts the association between precision

and score cutoff of VirHostMatcher-Net for score values above the 75th percentile.



Figure S4: Performance of host prediction tools on Test Set 3: Associations between score cutoff,

precision,  and  recall  for  RaFAH,  WIsH  and  VirHostMatcher-Net.  The  hosts  assigned  by  the



combined classical approaches were considered the true hosts of the genomes in Test Set 3. A) F1-

score of methods when considering all predictions regardless of score at multiple taxonomic levels.

B) Association between score cutoff and recall for each taxonomic level. C) Association between

score cutoff and precision for each taxonomic level. D) Associations between precision and recall in

function of score cutoff. Figure S8 depicts the association between precision and score cutoff of

VirHostMatcher-Net for score values above the 75th percentile.



Figure S5: Associations between the performance of RaFAH and genome length/completeness on

Test Set 3 genomes. A) Scatterplot displaying the cutoff for genome completeness (X axis) and



precision  of  RaFAH  (y  axis).  B)  Association  between  genome  legngth  (X  axis)  and  genome

completeness  (Y  axis)  estimated  with  CheckV  across  8  ecosystems  (Panels).  C)  Scatterplot

displaying the cutoff for genome length (X axis) and precision of RaFAH (y axis).



Figure S6: Prevalence of Pfam domains among viruses. Pfam domains were grouped according to

their expected taxonomic ranges (depicted above each panel). Only values derived from scaffolds



with  at  least  5  CDS are  shown to  reduce  noise.  A)  Comparisons  of  Pfam domain  prevalence

between RefSeq viruses of Archaea and Bacteria. The p values of each comparison obtained with

the  Mann-Whitney  test  are  depicted  above  bars.  B)  Pfam domain  prevalence  between  RefSeq

viruses of Archaea and of Bacteria from TestSet3. Notice the different y axes on each panel.



Figure S7: Prevalence of ribosomal binding site (RBS) motifs among viruses. Only values derived

from scaffolds with at  least  5 CDS are shown to reduce noise.  A) Comparisons of RBS motif



prevalence between RefSeq viruses of Archaea and Bacteria.  The  p-values of each comparison

obtained  with  the  Mann-Whitney  test  are  depicted  above  bars.  B)  Comparisons  RBS  motif

prevalence between RefSeq viruses of Archaea and Bacteria and viruses from TestSet3.

Figure S8: Association between precision and score cutoff for VirHostMatcher-Net in Test Sets 1, 2

and 3. All scores below the 75th percentile value were excluded from this analysis.



Figure S9: Timing of RaFAH computation on Training and Prediction modes (Y axis) as a function

of the number of input genomes (X axis). Calculations were performed using randomly selected

genomes of Test Set 3 on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz machine using 24

threads. 

Supplementary  Data  1:  Fasta  file  containing  the  nucleotide  sequences  from NCBI RefSeq and

GLUVAB viruses that made up Training Sets 1, 2, and 3. Due to file size Supplementary Data 1 is

available on Figshare with DOI: https://doi.org/10.6084/m9.figshare.14208500

Supplementary Data 2: Fasta file containing the nucleotide sequences from NCBI RefSeq that made

up  Testing  Set  1.  Due  to  file  size  Supplementary  Data  2 is  available  on  Figshare  with  DOI:

https://doi.org/10.6084/m9.figshare.14210591

Supplementary Data 3: Fasta file containing the nucleotide sequences from SAG derived viruses

that made up Testing Set 2. Due to file size  Supplementary Data 3 is available on Figshare with

DOI: https://doi.org/10.6084/m9.figshare.14208506

Supplementary Data 4: Fasta file containing the nucleotide sequences from metagenome derived

viruses that made up Testing Set 3. Due to file size Supplementary Data 4 is available on Figshare

with DOI: https://doi.org/10.6084/m9.figshare.14210612
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