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HEAT TRANSFER ENHANCEMENT BY SUSPENDED PARTICLES IN A
TURBULENT SHEARLESS FLOW

Hamid Reza Zandi Pour1 & Michele Iovieno1

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino

Abstract

Numerical simulations are used to investigate the role of particle inertia and thermal inertia on the heat transfer
in a particle-laden turbulent flow. By using the point-particle model, a wide range of Stokes and thermal Stokes
number have been simulated in a simple configuration where a temperature discontinuity is introduced in a sta-
tistically steady homogeneous and isotropic turbulent flow with a Taylor microscale Reynolds number between
37 and 124. This configuration produces a self-similar evolution of the carrier flow and particle temperature
statistics during which the Nusselt number remains constant. Our results show that the maximum contribution
by particles to the heat flux is achieved at a Stokes number which increases with the ratio between thermal
Stokes and Stokes number, approaching one for very large ratios. Moreover, the maximum increases with the
thermal Stokes to Stokes number ratio and, relatively to the convective heat flux, it reduces as the Reynolds
number increases.

Keywords: particle-laden flows, turbulence, turbulent mixing, heat transfer

1. Introduction
Particle-laden and droplet-laden turbulent flows are very frequent in nature and in industrial applica-
tions and, as such, they have attracted the interest of the scientific community since the pioneering
works by Taylor and Richardson and these flows are still an active research area [1, 2]. In the last
two decades, the possibility to perform numerical simulations due to the ever increasing high perfor-
mance computing capabilities has allowed to obtain significant progresses in the understanding of
the mechanisms behind the observed phenomenology. Even if up to now a Direct Numerical Simula-
tions (DNS) of a complex flow or a high Reynolds number flow are not be possible, still a significant
insight can be obtained from the investigation of simple and idealized archetypal flow configurations.
Indeed, turbulent particle-laden flows are a multi-scale and multi-physics phenomenon and many
aspects of these flows have not yet fully understood. This is particularly evident when the thermal
interaction between the particles and the carrier flow is taken in consideration, because the resulting
flow is the outcome of a non-trivial interaction between particle inertia, particle thermal inertia, heat
transport, and momentum and heat feedback of the particles on the carrier fluid.
In recent years, many works have considered some aspects of the fluid-particle temperature cou-
pling using direct numerical simulations, mainly within the point-particle approach valid for small
sub-Kolmogorov particles, which is a frequent situation in many applications. For example, Zonta
et al. [3] investigated a particle-laden channel flow, with the aim to model the modification of heat
transfer in micro-dispersed fluids, observing that particle inertia can lead to an increase or decrease
of the wall heat flux. Kuerten et al. [4] considered a similar set-up with larger dispersed particles, and
observed a stronger modification of the carrier fluid temperature statistics induced by the presence
of particles. Zamansky et al. [5] considered turbulence induced by the buoyancy was generated by
the heating of particles, analyzing the flow driven by the thermal plumes produced by the heated
particles. In such a case, an increase of particle inertia increased the inhomogeneity of the flow and
the effects of the fluid-particle coupling were enhanced by the tendency of particles to cluster on the
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advected scalar fronts. Kumar et al. [6, 7] examined how the spatial distribution of water droplets
in air is affected by large scale inhomogeneities in the fluid temperature and supersaturation fields,
considering the transition between homogeneous and inhomogeneous mixing. In this situation, the
leading role in the thermal interaction between droplets and air is the release or absorption of the
latent heat of evaporation due to the condensation or evaporation of water vapour. Other works, e.g.
[8] and [9], considered droplet dynamics at a temperature/humidity interface in the absence of mean
shear. Finally, Carbone et al. [10] and Saito et al. [11] have theoretically and numerically investigated
the multi-scale aspects of fluid-particle thermal interaction in homogeneous and isotropic turbulence
and the modulation of the carrier flow temperature by the particle thermal feedback.
The present work aims to extend such works by investigating the fluid-particle thermal interaction in
turbulent mixings in the one-way coupling regime. In particular, we discuss the role of particle inertia
and thermal inertia on the heat transfer in the simplest inhomogeneous flow configuration, where
heat is transferred between two regions at different temperatures by a statistically homogeneous and
isotropic velocity field. We consider that the flow is seeded by a suspension of monodisperse non-
buoyant rigid spherical particles, which are assumed to have sub-Kolmogorov size so that the point-
particle paradigm can be used. This is an archetypal configuration which can help to highlight the
most fundamental consequences of the presence of particles with a finite inertia and thermal inertia.
Moreover, it provides a simple benchmark flow to check the parametrization of turbulent transport in
Reynolds Averaged equations (RANS) or the subgrid modelling in the Large-Eddy Simulation (LES).

2. Method
2.1 Physical model
In this section we present the governing equations of the physical model which have been used
to simulate the dynamics of a particle-laden turbulent flow within the point-particle paradigm. The
Navier-Stokes equations for the carrier fluid are

∇·uuu = 0, (1)

∂tuuu+uuu·∇uuu =− 1
ρ0

∇p+ν∇
2uuu+

1
ρ0

CCCu + fff u, (2)

∂tT +uuu·∇T = κ∇
2T +

1
ρ0cp0

CT , (3)

where uuu(t,xxx) is the fluid velocity, p(t,xxx) is the pressure, T (t,xxx) is the fluid temperature, ρ0 and cp0
are the fluid density and specific heat at constant pressure, ν and κ are the kinematic viscosity and
thermal diffusivity, fff u is a forcing term to keep the flow in a statistically steady state and, finally CCCu

and CT are the particle momentum and heat feedback (see [10]). The temperature field has been
considered a passive scalar, advected by the solenoidal velocity field and subject to the particle
thermal feedback in the two-way regime. The dynamics of heavy (ρp ≫ ρ0) inertial particles, much
smaller than any flow scale, is governed by the following equations

d2xxxp

d t2 =
dvvvp

d t
=

uuu(t,xxxp)− vvvp

τp
,

dθp

d t
=

T (t,xxxp)−θp

τθ ,p
, (4)

where xxxp(t), vvvp(t), and θp(t) are position, velocity and temperature of the p-th particle, respectively.
Here τp and τθ are the momentum and thermal relaxation times, given by

τp =
2
9

ρp

ρ0

R2

ν
, τθ =

1
3

ρpcpp

ρ0cp0

R2

κ
, (5)

where R, ρp, and cpp are the radius, density and specific heat of particles. This particle representation
is appropriate when particle size is much smaller than all dynamically significant flow length scales,
i.e. much smaller than the Kolmogorov length scale, and particle density is much higher than fluid
density, so that all other contributions to the force on particles other than the Stokes drag can be
neglected (see [12]), conditions which are met in many applications where liquid or solid particles are
suspended in gases.
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2.2 Flow configuration
We consider the heat transfer between two regions with different temperatures T1 and T2, uniform
within each region, within a homogeneous and isotropic velocity field which is kept statistically steady
by the body force fff u. The initial temperature step generates a temperature mixing layer which thick-
ens with time. In this situation, two highly intermittent sub-layers bounding a well mixed central part
of the mixing layer between the two regions emerge [13]. While velocity fluctuations are statistically
steady due to the presence of the forcing, from the point of view of the temperature field, this is a
transient problem, where we observe the evolution of the initial step of temperature.
We solve the problem (1-4) in a parallelepiped domain with size L1, L2 = L1, and L3 in directions x1, x2
and x3. The initial temperature is initially equal to T1 in the x3 < L3/2 half domain and initially equal to
T2 in the x4 > L3/2 half domain. Periodic boundary conditions are applied in all directions. In order to
simulate in a consistent way a single temperature mixing layer, the temperature field is decomposed
as

T (t,xxx) = T1 −Γx3 +T∗(t,xxx) (6)

where Γ = (T2 −T1)/L3. Analogously, the particle temperature is decomposed as

θp(t) = T1 −Γxp,3(t)+θ
∗
p(t). (7)

In this way, we can apply periodicity to T∗ and θ ∗
p . With this decomposition, equations 3 and 4 are

modified into

∂tT∗+uuu·∇T∗ = Γu3 +κ∇
2T∗+

1
ρ0cp

CT + fT , (8)

dθ ∗
p

d t
= Γvp,3 +

T∗(t,xxxp)−θ ∗
p

τθ ,p
. (9)

The equations are made dimensionless by using the shorter size of the domain L1 over 2π as a
lengthscale, a velocity scale derived from the imposed kinetic energy dissipation ε, and the temper-
ature difference T1 −T2 between the two regions as a temperature scale. Thus, the dimensionless
domain has a 2π × 2π × 2nπ size, where n is the aspect ratio of the domain. A sketch of the flow
configuration can be inferred from figure 1, where the domain has an aspect ratio equal to 2. The
carrier flow field equations are solved by means of a pseudo-spectral Fourier method for the spatial
discretization, dealiased by means of the 3/2 rule. Forcing is applied of a single wave-number, i.e. to
all wave-vectors with the same modulus, ||kkk|| = k f , by means of a so called deterministic largescale
forcing [6, 10], which in the wavenumeber space takes the form

f̂ff (t,κκκ) = ε
ûuu(t,κκκ)

∑||κκκ||=κ f
||ûuu(t,κκκ)||2 δ (||κκκ||−κ f ), (10)

where ε is the imposed mean dissipation and k f is the forced wave-number. A second order expo-
nential Runge-Kutta time integration method has been used for both fluid and particles, in order to
ensure consistency between the two phases. A recent novel numerical framework [14, 15], based
on inverse and forward Non-Uniform Fast Fourier Transforms with a fourth order B-spline basis, has
been used to interpolate fluid velocity and temperature at particle positions and to compute particle
feedback. The fluid velocity field is initialized by running a simulation of an isotropic flow with no
particles until a statistically steady state is obtained. Then, the flow is seeded by randomly distributed
particles and the initial temperature step is imposed. In order to avoid a discontinuity between the
two halves of the domain, the step is smoothed by means of an hyperbolic tangent, in a way similar
to [9, 13], i.e. the initial temperature is

T (0,xxx) = T1 +
T2 −T1

2

[
1+ tanh

(
a

x3 −L3/2
L3/2

)]
, (11)

where coefficient a is chosen such as to smooth the step over a few grid sizes and thus to avoid the
Gibbs phenomenon when the discrete Fourier transform is carried out. Initial particle velocity and
temperature have been assumed equal to those of the carrier fluid at particle position. As regards
temperature, this is equivalent to assume that particles have resided in the uniform temperature
regions enough to reach thermal equilibrium with the carrier flow.

3
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Table 1 – Dimensionless flow parameters for the numerical simulation.

Simulation S1 S2 S3 S4
Taylor Reynolds number Reλ 37 56 86 124
Prandtl number Pr 0.71 0.71 0.71 0.71
Dissipation rate ε 0.25 0.25 0.25 0.25
Forced wavenumber k f 3 5

√
6

√
3

Kolmogorov length scale η 0.041 0.0153 0.0153 0.0153
Kolmogorov time scale τη 0.188 0.098 0.098 0.098
Taylor micro-scale λ 0.51 0.226 0.29 0.35
Integral length scale ℓ 0.72 0.40 0.74 0.94
Root mean square velocity u′ 0.64 0.59 0.71 0.85
Resolution ∆x/η 1.2 1.6 1.6 1.6

Table 2 – Particle parameters in dimensionless code units.

Particle volume fraction ϕ 2×10−5

Density ratio ρp/ρ0 103

ratio Stθ/St 0.5 ; 1 ; 2 ; 3 ; 4 ; 4.43
Stokes number St 0.1 ; 0.2 ; 0.3 ; 0.5 ; 0.7 ; 0.8 ; 0.9 ; 1 ; 1.2 ; 1.5 ; 2 ; 2.5 ; 3

2.3 Flow parameters
We simulated the heat transfer in this particle-laden flow at four Taylor microscale Reynolds numbers,
ranging from 37 to 124. This has been obtained by varying the grid resolution and the wave number
at the forcing is applied. The main parameters of the simulations are listed in table 1. Therefore, all
simulations are in the low to moderated Reynolds number, but since the mixing of a scalar through a
sharp interface is mainly driven by the large-scales of the flow [[13]], these Reynolds numbers should
be high enough to quantify the heat transfer between the two homogeneous regions in a developed
turbulent flow. In order to allow the temperature mixing layer to develop without being confined by the
domain, an aspect ratio from 2 to 3 of the domain has been used, that is, the dimensionless domain
is 2π in directions x1 and x2 but 4π or 6π in direction x3. Therefore, the parallelepiped domain has been
discretized with 1282 ×384 grid points at Reλ = 37 and with 2562 ×512 grid points at higher Reynolds
numbers, with the same resolution in all directions. Since the code is dealiased through the 3/2 rule,
this implies that the maximum simulated wave-number is N/2 and not N/3, where N is the number of
points in x1 and x2 directions. Note that all convective terms and fluid interpolation at particle position
is computed on the finer grid used to avoid aliasing, i.e. on a 1922×576 grid at Reλ = 37 and 3842×768
grid at higher Reynolds numbers. A particle volume fraction ϕ = 2× 10−5 is used in all simulations.
Two-way coupling is more appropriate at such a volume fraction [16], but, not considering collisions,
particles behave independently one from each other and one-way coupling simulations are possible;
the relatively high volume fraction allows just for a larger statistical ensemble of particles, it is not
meant to represent such a particle concentration.
Particle inertia in a turbulent flow is measured through the Stokes number St = τp/τη , which compares
the particle momentum relaxation time τp to the Kolmogorov time scale τη , while, analogously, particle
thermal inertia is measured through the thermal Stokes number Stθ = τθ/τη . The ratio Stθ/St =
(3/2)(cpp/cp0)Pr, that is the ratio between the momentum and thermal relaxation times, depends only
of the thermal properties of the carrier fluid and suspended particles. For example, in air this ratio is
between 0.5 and 1 for metallic particles and soot, while is it around 2 for organic material particles,
like wood or oils, slightly above two for ice particles and around 4.43 for pure water. Therefore, we
have carried out a set of simulations which cover a wide range of Stθ/St, between 0.5 and 4.43, with
a Prandtl number equal to 0.71, which is representative of particles suspended in air.

4
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Figure 1 – Visualization of the dimensionless fluid temperature t/τ = 3 in a simulation with Reλ = 56
(top), and Reλ = 124 (bottom) Pr = 0.71. Particle volume fraction is 2×10−5 with St = 1 and

Stϑ/St = 4.43.

2.4 Averages
The velocity field is homogeneous and isotropic, while the temperature field in homogeneous only
in directions x1 and x2. Therefore, all averages are taken as plane averages on (x1,x2) planes. The
average on particles have been computed by considering only particles whose position in x3 direction
lays between x3 −∆x and x3 +∆x, where ∆x is the grid spacing in physical space. Since the temper-
ature field is unsteady, no time average is possible. All simulations have been repeated three times
by using uncorrelated different initial velocity fields in order to increase the ensemble and thus obtain
more accurate statistics.

3. Results and discussion
A visualization of the temperature field is shown in figure 1. The temperature interface, which initially
separates the two regions at uniform temperature, is spread by turbulent eddies and a mixing region
with high temperature variance is generated.
The width of the mixing region can be measured by considering the mean temperature distribution of
the carrier flow (Fig. 2(a)): we define the temporal mixing layer thickness δ as

δ (t) =
T1 −T2

max
{∣∣∣ ∂ ⟨T ⟩

∂x3

∣∣∣} (12)

5
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Figure 2 – (a) Time evolution of the dimensionless mean fluid temperature at Reλ = 56; (b) growth of
the mixing layer thickness in one-way coupling simulations for different Reλ .
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Figure 3 – Time evolution of (a) the fluid temperature variance (b) the particle temperature variance
at Reλ = 37 and time evolution of (c) the fluid temperature variance and (d) the particle temperature

variance at Reλ = 56 (one-way coupling simulations at St = 1.0 and Stϑ/St = 4.43).

6



HEAT TRANSFER ENHANCEMENT BY SUSPENDED PARTICLES IN A TURBULENT SHEARLESS FLOW

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

(x3 − L3/2)/L3

〈v
′ 3
ϑ
′ 〉

St = 0.1
0.2
0.5
1.0
1.5
2.0

〈u′
3T

′〉
(a)

 0.1

 1

 0.1  1  10

t/τ

m
ax

〈v
′ 3
ϑ
′ 〉

St = 0.1
0.2
0.3
0.5
0.7
0.8
0.9
1.0
1.2
1.5
2.0
2.5
3.0

〈u′
3T

′〉

t−1/2

(b)

 0.1

 1

 0.1  1  10

t/τ

m
ax

〈v
′ 3
ϑ
′ 〉

St = 0.1
0.2
0.5
1.0
1.5
2.0

〈u′
3T

′〉

t−1/2

(c)

 0.1

 1

 0.1  1  10

t/τ

m
ax

〈v
′ 3
ϑ
′ 〉

St = 0.1
0.2
0.3
0.5
0.7
0.8
0.9
1.0
1.2
1.5
2.0
2.5
3.0

〈u′
3T

′〉
t−1/2

(d)

Figure 4 – Spatial distribution of (a) velocity and temperature correlation at t/τ = 6 and Reλ = 56 and
the maximum heat flux of carrier flow field for (b) Reλ = 37 , (b) Reλ = 56 and (d) Reλ = 86 (all for

different Stokes number in one-way coupling simulations at Stϑ/St = 4.43)

This definition is different from the one used in shearless mixings, but it has the advantage to be
independent from the shape of the mean temperature profile and to not involve any arbitrary definition
of the border of the layer. The mixing layer thickness shows an almost diffusive t1/2 growth (Fig. 2(b))
after an initial transient of about one eddy turnover time ℓ/u′, in agreement with the studies on the
spreading of shearless mixings in a decaying turbulence (e.g. [13]). The initial growth at the lowest
Reynolds number is slower but this simulation had a slightly different initial temperature profile due to
the coarser resolution. Anyway, it still reaches the t1/2 growth regime. After the initial transient before
a t1/2 growth of δ is achieved, during which velocity-temperature correlations are created and particles
cluster according to their inertia, a self-similar stage of evolution is observed, during which all single-
point statistics of the carrier fluid and the suspended particles collapse when properly rescaled. This
implies that position has to be normalized with the thickness δ (t), while the variance of temperature
fluctuations and the correlation between temperature and correlation with the inverse of δ (t) (see
figures 3 and 4).
The correlations between temperature and velocity fluctuations is the most important result because
it is proportional to the heat transfer between the two flow regions at different temperature, whose
quantification is our main aim. The heat flux q̇ in the direction of the temperature inhomogeneity
x3 can be decomposed into the contribution of: thermal diffusion, convection by fluid velocity and
transport associated with the particle motion. All these contributions are maximum in the centre of
the domain, i.e. at the position of the initial temperature step, and, in the self-similar stage, reduce
in time as t−1/2 while the mixing layer grows and the driving mean temperature gradient reduces.
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Figure 5 – (a) Particle motion contribution to the Nusselt number, Nup as a function of the Stokes
number in one-way coupling regime; Nuc is the fluid convection contribution to the Nusselt Number,

ϕ the volume fraction and ξ = ρpcpp/(ρ0cp0) is the ratio between particle and fluid specific heat
capacities. (b) The maximum Nusselt number and its corresponding Stokes number for each

thermal Stokes number and Stokes number ratio. (c) Particle motion contribution to the Nusselt
number, Nup as a function of the Stokes number and Reynolds number. (d) variation of convective

Nusselt number in terms of Taylor Reynolds number Reλ

Inertial particles can carry large temperature differences at long distances, therefore they can give a
significant contribution to the heat transfer.
To quantify the effect of each parameter on the heat transfer we use the Nusselt number, Nu, custom-
ary defined as the ratio of the heat transfer to the thermal diffusion. By using as a length-scale the
mixing thickness δ (t), which is the only length-scale dynamically significative for the heat transfer in
the present flow configuration, the Nusselt number remains constant in the self-similar stage of evo-
lution of the mixing. By using standard dimensional analysis, the Nusselt number Nu, ratio between
the heat transfer and the diffusive heat transfer, can be written as

Nu = Nu(Re,Pr,St,Stϑ ) (13)

The heat flux per unit surface and unit time is given by the sum of heat flux due to diffusion, convection
and particle motions, q̇ = q̇d + q̇c + q̇p, where, from equations (1-4),

q̇d =−λ
∂ ⟨T ⟩
∂x3

, (14)

q̇c = ρ0cp0⟨u′3T ′⟩, (15)
q̇p = ϕρpcp⟨v′3θ

′⟩. (16)
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herefore, the Nusselt number can be written as

Nu = 1+Nuc +Nup (17)

where Nuc and Nup are the convective and particle contributions, given by

Nuc = RePr
−⟨ũ′3T̃ ′⟩
∂ ⟨T̃ ⟩/∂ x̃3

, (18)

Nup = ϕRePr
ρpcpp

ρ0cp0

−⟨ṽ′3θ̃ ′⟩
∂ ⟨T̃ ⟩/∂ x̃3

== ϕRePrξ
−⟨ṽ′3θ̃ ′⟩

∂ ⟨T̃ ⟩/∂ x̃3
(19)

Here, the tilde indicates dimensionless variables, the apex indicate fluctuations, and coefficient ξ =
(ρpcpp)/(ρ0cp0) is the ratio between the specific heat capacities of the particles and the carrier fluid.
In the one-way coupling regime, the carrier fluid temperature is not modified by the presence of
particles, therefore the convective heat flux depends only on fluid properties and on the underlay-
ing turbulence, so that Nuc = Nuc(Re,Pr). The dependence of the convective Nusselt number on
Reynolds number is shown in figure 5(d). Analogously, particle velocity and temperature in the one-
way coupling regime depend on the Stokes and thermal Stokes number but particles do not interact
in any way, directly or indirectly through the carrier fluid, so that ⟨v′3ϑ ′⟩ are not affected by particle
density and, as a consequence, Nup = ϕRePrξ f (St,Stϑ ). Therefore in the one-way coupling regime,
only Nup is affected by particle inertia and thermal inertia, and Nup/Nuc is a useful indicator of the
enhancement of the heat transfer due to the presence of particles. We remark that the existence of a
self-similar stage implies that the Nusselt number does not depend on time, since all fluxes have the
same temporal evolution. The heat flux between is evaluated at the centre of the domain, i.e. at the
plane initially separating the two regions, which is also where the gradient of the mean temperature
of the carrier fluid is maximum. Figure 5(a) shows the particle contribution of particle motion to the
Nusselt number as a function of the Stokes number in the one-way coupling regime for different ratios
between thermal Stokes number and Stokes number at fixed Reynolds number, Reλ = 56, while fig-
ure 5(c) shows the particle contribution to the Nusselt number for different Reynolds numbers but for
a fixed thermal Stokes to Stokes number ratio Stϑ/St = 4.43. When the Stokes number approaches
zero particles behave as passive tracers and, since also the thermal Stokes number approaches
zero, they tend to be also in thermal equilibrium with the local carrier fluid, thus Nup → ϕξNuc in this
limit. The heat flux has a maximum when the Stokes number approaches one, a situation which cor-
responds to the maximum clustering of particles. In the investigated ranges of Stϑ/St, this maximum
is not achieved at St = 1, but at a smaller Stokes number, which increases with Stϑ/St, from around
0.6 when Stϑ/St = 0.5 increasing to almost 1 when Stϑ/St = 4.43, as it is shown in figure 5(b) for the
simulation at Reλ = 56. This trend is present at all Reynolds numbers, suggesting that the maximum
heat transfer due to particles is achieved at St = 1 only in the asymptotic limit for Stϑ/St → ∞. The
maximum increases monotonically with the Stϑ/St ratio, which makes particles with high thermal
capacities able to significantly increase the heat flux. However, since the ratio ξ = (ρpcpp)/(ρ0cp0)
can easily be of order 103 ÷ 104 for liquid or solid particles in a gas, the presence of particles can
significantly enhance the overall heat flux even at moderate concentrations. It is evident, however,
that the heat transfer enhancement due to particles is much more strongly affected by St than by Stϑ
alone, as indicated by the data in figure 5(a,c). Indeed, in the investigated range of particle to fluid
thermal capacity ratio, the maximum particle Nusselt number changes by around 5% for the same
Reynolds number. For St ≳ 1 the particle velocity dynamics becomes increasingly non-local, reduc-
ing clustering and the heat flux. From the investigated range of Stokes number it is not possible to
infer an asymptotic limit for St → ∞. However, in such a limit particle dynamics becomes uncorrelated
from the dynamics of the carrier fluid, therefore their dynamics can be only determined by particle
collisions and one can expect that, in such condition, particles behave like molecules and therefore
the heat transport approaches a diffusive limit, leading again to Nup/(ϕξNuc)→ 1. This is compatible
with present simulations. The rate of approach to such a limit appear to depend, however, from the
Stϑ/St ratio, and is significantly slower for high values of Stϑ/St.
It should be noted that, unlike the Rayleigh-Bénard problem analysed by Park et al. [17], the effect of
preferential concentration and clustering exhibits itself not only in the thermal coupling, but already in
the one-way regime in absence of any modulation of the carrier flow by particles.
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Figure 6 – Probability density function of the particle temperature derivative at t/τ = 4: (a) simulation
at Reλ = 56, (b) simulation at Reλ = 86.

Anyway, when the Reynolds number is increased, particle Nusselt number increases less than the
convective Nusselt number, so that the ratio Nup/Nuc reduced (see figure 5, panels (c) and (d)). By
fitting the data in figure 5(d), one can infer that the maximum particle Nusselt number scales as

maxSt{Nup} ∼ ϕNuc

(
1+12Re−1

λ

)
(20)

We expect these findings to hold, at least qualitatively, also in the two-way coupling regime. However,
since inertial particles tend to preferentially concentrate in the advected scalar fronts, where the
gradient of temperature is large, they act to smooth the temperature gradients, therefore we expect
that particle thermal feedback would lead to a potential reduction of the overall heat flux.
The probability density function of the particle temperature derivative is shown in figure 6 at Reλ

equal to 56 and 86 for three Stokes number when St/Stϑ = 4.43 in the central region of the tem-
perature mixing layer at t/τ = 4, that is, during the self-similar stage of evolution. It is possible to
observe that the shape of this probability density function depends on the particle inertia: when the
Stokes number increases, the probability density function becomes narrower. This can be explained
by observing that, as the Stokes number increases, particles are slower to respond to changes in
the temperature field, producing and effect which is analogous to the observed filtering of velocity
due to their inertia. This implies that, extreme derivatives of the temperature are unlikely to be
present at higher inertia, even if the particle temperature can differ strongly form the local temperature
of the carrier flow. Therefore, intermittency of particle temperature, as measured by the kurtosis,
reduces with the Stokes number. This behaviour is qualitatively analogous of what has been observed
in homogeneous and isotropic turbulence [10], suggesting that, in the self-similar stage, which is
reached in only about one eddy turnover time, the temperature statistics approach the ones in a
homogeneous flow.

3.1 Implications for turbulence modelling
Results of simple flow configuration where all parameters can be independently varied are useful
as a benchmark to validate and improve existing RANS or LES models which include heat transfer.
As regards RANS modelling, in the present flow configuration it is immediate to deduce the model
consistency and model coefficients. As an example, we can use a k − ε eddy diffusivity model,
even if it tends to perform quite poorly in unconfined flows. In such an approach, the heat transport
due to turbulent fluctuations −ρ0cp0⟨ϑ ′uuu′⟩ is modelled as −ρ0cp0κT ∇⟨T ⟩ through the introduction of
a thermal eddy diffusivity is κT = νT/PrT , where νT = cµk2/ε is the eddy kinematic viscosity, cµ a
model coefficient, and PrT a so-called turbulent Prandtl number, which is another model coefficient.
In present flow, since the velocity field is statistically steady and homogeneous, νT is constant both in
space and time, and, as a consequence, also κT if a constant turbulent Prandtl number is assumed.
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This leads to a t1/2 growth of the temperature mixing layer thickness and a t−1/2 reduction of the
heat flux, which is consistent with the results of present simulations. More specifically, in such a
case δ (t) = 2

√
π(κ +κT )t ≃ 2

√
πκT t, when the same definition of δ introduced in (12) is used, while

Nuc = κT/κ, so that it is possible to infer the value of κT , and therefore the model coefficient cµ/PrT ,
from simulations. From the data in figures 2 and 5(d) we can conclude that cµ/PrT is between 0.13
and 0.21, depending on the Reynolds number. This is up to 0.5 times higher than the expected value
by using the most common coefficients, cµ = 0.09 and PrT = 0.6. The discrepancy can be due to the
moderate Reynolds number of the simulation but can also indicate a limitation of the model when
there is no shear.
When particles are represented as a continuum phase in an Eulerian-Eulerian modelling approach,
they are described by a particle number density, a particle mean velocity vvv and a particle mean
temperature ϑ fields, which are a function of space and time. By carrying out RANS averages one
would need to model the turbulent heat fluxes as well, which, in the eddy diffusivity framework, would
imply to write −⟨ϑ ′vvv′⟩ as −κ∗

T ∇⟨ϑ⟩. In the flow we simulated, our result would imply that κ∗
T is constant.

Since κ∗
T/κT = Nup/(ϕξNuc), the data presented in previous section (in particular in panels (a) and

(c) of figure 5) allow to deduce κ∗
T from the local Reynolds number and particle Stokes and thermal

Stokes numbers. A fitting of the curves shown can produce the required model.
A similar analysis can be carried out for any model and also for LES models, even if in such a
case the heat transport cannot be immediately deduced from the model but requires to perform LES
simulations.
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