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Abstract
In order to grow in any given environment, bacteria need to collect information about the medium
composition and implement suitable growth strategies by adjusting their regulatory and metabolic
degrees of freedom. In the standard sense, optimal strategy selection is achieved when bacteria
grow at the fastest rate possible in that medium. While this view of optimality is well suited for cells
that have perfect knowledge about their surroundings (e.g. nutrient levels), things are more
involved in uncertain or fluctuating conditions, especially when changes occur over timescales
comparable to (or faster than) those required to organize a response. Information theory however
provides recipes for how cells can choose the optimal growth strategy under uncertainty about the
stress levels they will face. Here we analyse the theoretically optimal scenarios for a coarse-grained,
experiment-inspired model of bacterial metabolism for growth in a medium described by the
(static) probability density of a single variable (the ‘stress level’). We show that heterogeneity in
growth rates consistently emerges as the optimal response when the environment is sufficiently
complex and/or when perfect adjustment of metabolic degrees of freedom is not possible (e.g. due
to limited resources). In addition, outcomes close to those achievable with unlimited resources are
often attained effectively with a modest amount of fine tuning. In other terms, heterogeneous
population structures in complex media may be rather robust with respect to the resources
available to probe the environment and adjust reaction rates.

1. Introduction

The standard theoretical viewof bacterial growth pos-
its that, in any growth medium, cells are capable of
adjusting their metabolic degrees of freedom (i.e. the
rates of metabolic reactions) within bounds dictated
by thermodynamic and regulatory constraints (e.g.
enzyme expression levels, reaction free energies, etc)
so as tomaximize their growth rate [1]. Besides evolu-
tionary considerations, such a picture is supported by
the fact that the expression levels of certain metabolic
enzymes and of basic macromolecular machines like
ribosomes actually appear to be tuned for growth-rate
maximization in bacterial populations [2, 3]. On the
other hand, the significant cell-to-cell variability in
growth rates observed in experiments [4–8], together
with the fact that constraints arising outside meta-
bolism suffice to explain a large batch of empirical

facts without assuming any growth-rate optimization
[9, 10], appears to call for deeper insight into the
notion of ‘optimality’ for bacterial growth.

Recent work has shown that the relationship
between population growth and cell-to-cell variabil-
ity is well described by a Maximum Entropy (Max-
Ent) theory leading to a variable trade-off akin to
the usual energy-entropy balance in statistical phys-
ics. More specifically, E. coli populations growing
in carbon-limited media realize a close-to-optimal
fitness-heterogeneity trade-off in rich media [11],
while they seem to be less variable or slower-growing
than optimal in poorer growth conditions [12].Meta-
bolic fluxes likewise appear to be better captured by
accounting for such a trade-off than by a standard
optimality assumption [13]. In each case, the bal-
ance between growth and variability is described by
a finite (medium-dependent) ‘temperature’, where a
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zero-temperature (resp. infinite-temperature) limit
corresponds to maximal growth (resp. maximal vari-
ability). Save for a few general ideas derived from
broad-brush models [14], what determines the ‘tem-
perature’ (i.e. the fitness-heterogeneity balance) of
actual microbial systems is still unclear.

High variability can naturally arise from unavoid-
able inter-cellular differences in gene expression levels
or regulatory programs (e.g. cell cycle) [15]. In mod-
els of metabolism, this would lead, at the simplest
level, to cell-dependent changes in the constraints
under which growth is optimized. In this respect, cell-
to-cell heterogeneity might be interpreted as ‘optim-
ality plus noise’, and the ‘temperature’ described
above would quantify, in essence, the noise strength.
Importantly, though, there might be an inherent
advantage in maintaining a diverse population, espe-
cially in environments that fluctuate (due e.g. to nat-
ural variability) or when cells have imperfect inform-
ation about their growthmedium (due e.g. to limits in
precision caused by the high costs cells face to main-
tain and operate a sensing apparatus). These factors
are not usually included in standard models of meta-
bolic networks, which therefore cannot address the
fitness benefits of heterogeneity.

The problem of growth maximization clearly
becomes more subtle under uncertainty about envir-
onmental conditions, as the straightforward optim-
ization that can be carried out in a perfectly known
medium is no longer an option. Recipes for select-
ing the optimal growth strategy in uncertain environ-
ments are, however, provided by information theory.
Theoretical work aimed at understanding how effi-
ciently populations can harvest, process and exploit
information about variable or unpredictable media
has indeed shown that bet-hedging (i.e. maintaining
a fraction of slow-growing cells even in rich media or
sustaining a lower short-term growth to ensure faster
long-term growth) can yield significant fitness gains
in a wide variety of situations [16]. Biological implic-
ations of these results have been explored against sev-
eral backdrops [17–19], albeit never specifically in the
context of metabolism.

In this paper, inspired by the above studies as
well as by [20, 21] (chapter 6), we look at a minimal,
experiment-derived mathematical model to charac-
terize optimal metabolic strategies for growth in
uncertain environments, focusing for simplicity on
static environments defined by the probability dens-
ity of a single variable (the ‘stress level’). Optimal
strategies are parametrized by a ‘temperature’ that
modulates the amount of information they encode
about the growth medium or, loosely speaking, how
precisely cells can match their phenotype to the
external conditions in order to foster growth. We will
show explicitly that, when the medium is sufficiently
complex, optimal populations acquire a non-trivial
phenotypic organization even when the metabolic

strategy encodes the maximum possible amount of
information about the external conditions. A broad
spectrum of behaviours is uncovered upon vary-
ing the structure of the environment. Remarkably,
however, the emerging scenarios are often robust to
changes in the ‘temperature’. This suggests that meta-
bolic networks may yield outcomes close to glob-
ally optimal ones (at least in an information-theoretic
sense) even when resources to probe the environment
and adjust metabolic reactions are limited.

2. Results

2.1. Model of metabolism and growth
We consider a coarse-grained model of microbial
growth metabolism in which each cell’s metabolic
strategy is described by just two quantities, namely
the specific uptake (or inverse growth yield) q, quan-
tifying the nutrient intake required to grow per unit
of growth rate, and the biosynthetic expenditure ϵ,
quantifying the proteomemass fraction to be devoted
to metabolic enzymes per unit of growth rate. (In
more detailed models of metabolic networks, the
former quantity relates to the rate at which the lim-
iting nutrient is imported, while the latter is propor-
tional to a weighted sum of the absolute values of
the fluxes through metabolic reactions [20, 22].) For
E. coli growing in carbon-limited media it has been
argued that, for given q and ϵ, the growth rate µ is
well described by the formula [20]

µ≃ ϕ

w+ sq+ ϵ
, (1)

where s⩾ 0 represents the level of nutritional stress
to which the organism is subject, while ϕ> 0 and
w> 0 are constants representing respectively the frac-
tion of proteome devoted to constitutively expressed
proteins and the proteome share to be allocated to
ribosome-affiliated proteins per unit of growth rate.
(For glucose-limited E. coli growth,ϕ≃ 0.48 andw≃
0.169 h [9].) For our purposes, s can be assumed to be
inversely proportional to the carbon level as argued in
[22] (so s≪ 1 and s≫ 1 for carbon-rich and carbon-
poor environments, respectively).

Let us assume that the stress level s in (1) is a
homogeneous parameter whose value is controlled
externally. If µ were to be maximized, the quantity
sq+ ϵwould have to beminimized. In carbon-limited
E. coli growth, however, q and ϵ are subject to a trade-
off such that high q implies low ϵ and vice versa [20].
Metabolic states withminimal biosynthetic expendit-
ure are hence favoured in rich environments (small
s), while states of minimal nutritional requirements
prevail in poor media (large s). To make a con-
crete model, we draw inspiration from the fermenta-
tion/respiration duality that again characterizesE. coli
growth in carbon-limited media and assume that the
organism can regulate q and ϵ between two extreme
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strategies, denoted by indices F and R, respectively,
distinguished by the fact that qF > qR (i.e. the spe-
cific nutrient requirements of F are higher than those
of R) and ϵR > ϵF (i.e. the specific expenditure for
R is higher than for F). (Estimated values of the
specific nutrient intake and the specific proteome
mass fraction devoted to metabolic enzymes required
for E.coli to grow on lactate under fermentation are
qF ≃ 8 glac/gDW and ϵF ≃ 0.3 h, respectively; the cor-
responding quantities under respiration are instead
given by qR ≃ 5 glac/gDW and ϵR ≃ 0.6 h [20]. In this
work, we choose the representative values qF = 10,
ϵF = 0.1, qR = 1, ϵR = 1, omitting the units as the spe-
cifics of the carbon source are immaterial for us. Nev-
ertheless, with these choices the growth rate µ can be
interpreted to be measured in 1/h.) We then describe
the trade-off between q and ϵ by assuming that both
depend on a single variable x whose value ranges
between 0 and 1, such that

q(x) = qR +(qF − qR)(1− x)ν , (2)

ϵ(x) = ϵF +(ϵR − ϵF)x
ν , (3)

where ν > 1 is a constant. The growth rate of the
organism will then be given by

µ(x, s) =
ϕ

w+ sq(x)+ ϵ(x)
. (4)

By taking the derivative of µ(x, s) over x at fixed s, one
finds that, for any given q(x) and ϵ(x), µ is maximum
when

s
∂q

∂x
+

∂ϵ

∂x
= 0. (5)

If q(x) and ϵ(x) are given by (2) and (3), themaximum
is achieved for x= x̂(s), with

x̂(s) =
sn

sn + snc
, sc =

ϵR − ϵF
qF − qR

, n=
1

ν− 1
. (6)

This means that media with s≪ sc can be considered
to be rich, while media with s≫ sc are effectively
poor. (With our choices for the parameters, sc = 0.1.)
In turn, if µ is maximized, strategy F (i.e. x= 0) will
be used in rich environments (where ϵ should be as
small as possible) while strategy R (i.e. x= 1) will
be used in poor ones (where q should be as small
as possible), as shown in figure 1. As one modulates
the stress level between these two extremes, growth
is maximized by intermediate values of x (i.e. by
strategies that use both F and R). Other choices gen-
erically lead to slower growth.

Notice that the q− ϵ trade-off gets stronger as
ν approaches 1, when the corresponding optimal
strategy is a step-like function. Conversely, it gets
weaker and weaker as ν increases. For sakes of
simplicity, in the following we shall always use the

value ν = 3/2, which qualitatively reproduces the
trade-off reconstructed from empirical data [20]. A
discussion of how results depend on ν (including the
issue of why a specific value of νmay be evolutionarily
preferred) is deferred to future work.

2.2. Optimizing growth in random environments:
theoretical framework
Consider a microbe whose growth rate depends on x
and s as in (4). For any fixed s, the cell can maxim-
ize µ by setting x= x̂(s) (see (6)). Suppose, however,
that s is a random variable with a prescribed prob-
ability density p(s). In this case, cells face an uncer-
tainty about the exact value of s they will encounter,
although they have knowledge of the ensemble of
environmental conditions in which they live (i.e. of
p(s)). What is the optimal choice for x in this situ-
ation? The most sensible measure of performance is
now arguably given by the mean growth rate

⟨µ⟩=
ˆ

dsp(s)

ˆ
dxp(x|s)µ(x, s), (7)

whose value depends on the conditional distribution
p(x|s) that describes the stochastic rule used by the cell
to select x for any s. The question of optimality there-
fore concerns the optimal choice of p(x|s). It turns out
that this choice depends on the amount of informa-
tion about s that is encoded in x. In particular, if

I=

ˆ
dsp(s)

ˆ
dxp(x|s) log2

p(x|s)
p(x)

, (8)

denotes the mutual information of x and s (in bits),
and

p(x) =

ˆ
dsp(s)p(x|s), (9)

then the optimal p(x|s) is given by the solution of

max
p(x|s)

⟨µ⟩ subject to I= constant, (10)

i.e. (see appendix and [21])

p⋆(x|s) = p⋆(x)

N(s,β)
eβµ(x,s), (11)

where

N(s,β) =

ˆ
dxp⋆(x)eβµ(x,s), (12)

while the ‘inverse temperature’ β is a Lagrange mul-
tiplier and p⋆(x) denotes the probability density of x
corresponding to the optimal choice. Equation (11)
has a rather straightforward interpretation. When
β→ 0 (‘infinite temperature’), the choice of x
becomes independent of s, which implies I= 0. As
β increases, I increases (i.e. cellular responses encode
more and more information about the environment)
and p⋆(x|s) tends to get more and more sharply
peaked around x̂(s). For β →∞ (‘zero temperature’),
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Figure 1. Representative scenarios for q(x) vs ϵ(x) (equations (2) and (3), left plots in each panel) with the corresponding fitness
landscape µ(x, s) (right plots), for ν= 1.01 (panel (a)), 2 (b), 4 (c) and 8 (d). The values of x that maximize µ for each s, i.e. x̂(s)
(equation (6)), are represented by a magenta line. The constants characterizing the R and F strategies are set to qF = 10, qR = 1,
ϵF = 0.1 and ϵR = 1.

in particular, one gets p⋆(x|s)≃ δ[x− x̂(s)], so that
cells respond to each instance of s by exactly choosing
the value of x that maximizes µ. Such an ‘infinite-
precision’ response requires I to be maximal. In other
terms, the higher I, the higher ⟨µ⟩. (Conversely, as β
becomesmore andmore negative, p⋆(x|s) tends to get
more and more sharply peaked around the value of
x that minimizes growth for any s. For sake of clarity,
we shall however limit the following analysis to the
case β > 0.) β is therefore a parameter by which one
interpolates between the case of optimal response to
any environmental cue and that in which the cell’s
metabolic strategy is completely insensitive to s. Note
that, at optimality, the mean growth rate and mutual
information given by

⟨µ⟩⋆ =
ˆ

dsp(s)

ˆ
dxp⋆(x|s)µ(x, s), (13)

I⋆ =

ˆ
dsp(s)

ˆ
dxp⋆(x|s) log2

p⋆(x|s)
p⋆(x)

, (14)

are both functions of β and are related by

I⋆ =
β

ln2
⟨µ⟩⋆ −⟨log2N(s,β)⟩⋆. (15)

For different choices of p(s) and β one can solve
equations (9), (11) and (12) numerically by itera-
tion from an initial guess. Starting (iteration n= 0)
from uniform guesses for p(x) and p(x|s), we iterated
equations (12), (9) and (11) up to numerical conver-
gence, which we assumed to be achieved when

max
x

|p(n)(x)− p(n−1)(x)|< σ and (16)

max
x

|p(n)(x|s)− p(n−1)(x|s)|< σ, (17)

where the index n denotes the iteration step while σ a
numerical precision threshold. (AMatlab code imple-
menting the above procedure is available fromhttps://
github.com/anna-pa-m/OptMetStrategy.) Solutions
will clarify how optimal metabolic strategy and pop-
ulation structure change with β, i.e. with the amount
of information about the environment encoded in x,
in any given environmental condition (described by
the chosen p(s)).

Before moving on, we note that the above set-
ting suggests how an ‘optimal’ value of β may arise
in this scenario. It is indeed reasonable to think
that I⋆ is directly related to the quantity of cellu-
lar resources devoted to probing the environment
and tuning metabolic reactions, and, in turn, that
higher costs for sensing and metabolism may negat-
ively affect the fitness if resources are limited. If one
assumes for simplicity that such a cost reduces the
growth performance by a constant amount c per bit of
information encoded, the fitness faced by the organ-
ism can be written as

F = ⟨µ⟩⋆ − cI⋆. (18)

One easily sees that, contrary to ⟨µ⟩⋆ and I⋆ (both of
which increase steadily with β),F is maximumwhen
c= ∂ ⟨µ⟩⋆ /∂I⋆, i.e. for

β = β⋆ ≡ ln2

c
. (19)

In other terms, the costs associated with sensing and
adjusting metabolism can lead to the existence of an
optimal value of β, i.e. of an optimal level of trade-off
between ⟨µ⟩ and I, such that (expectedly) higher
values of F are possible only if the cost of encod-
ing information about the environment in metabolic
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Figure 2. (a) Probability density of the stress level s in a controlled environment with s0 = 0.6> sc (top) and corresponding
fitness landscape (bottom). Magenta line: growth-maximizing value of x for each s. (b) Optimal choice for p⋆ (x|s) for different
values of β. Magenta line: growth-maximizing value of x for each s. Green line: mean value of x for the optimal growth strategy as
a function of s. (c) Marginal probability density p⋆ (x) for different values of β. (d) Growth rate distribution at optimality,
p⋆ (µ|β), for different values of β. (e, top) Several stress distributions centered at different values of s0. (e, bottom) Behavior of
the quantity ⟨1− x⟩⋆ as a function of the fitness for several values of β and s0 (for fixed β, the fitness increases as s0 decreases). A
value of ⟨1− x⟩⋆ ≃ 0 indicates a strong preference for R (respiration); a value of ⟨1− x⟩⋆ ≃ 1 points instead towards massive use
of F (fermentation).

strategies gets smaller. (A similar idea was discussed
in a different context in [13].)

2.3. Tightly controlled stress levels
We start from the simple case where the stress level
s is tightly regulated, as in a lab setting where the
nutrient level is externally controlled with high pre-
cision. Specifically, we assume that p(s) is uniform
and centered at a value s0, and that s can only vary
by 5% with equal probability around s0 (figure 2(a),
top panel). The ensuing landscape of µ(x, s) is shown
in figure 2(a), bottom panel. One sees that, with our
choice of s0 (s0 > sc, see (6)), growth is maximized for
x≃ 1 (R strategy) for all values of s (magenta line in
figure 2(a)). Figure 2(b) reports the optimal strategy
p⋆(x|s) computed numerically for five different val-
ues of β. As expected, the distribution concentrates
around the growth-maximizing value of x for large
enough β, while it becomes more and more uniform
over the [0,1] interval (with the mean x, green dashed
line, getting closer and closer to 1/2) as β approaches
zero. This gradual shift is also clearly visible in the
behaviour of p⋆(x), representing the distribution of
metabolic strategies at optimality (figure 2(c)). Cor-
respondingly, the growth-rate distribution p⋆(µ|β),
which can be obtained numerically as

p⋆(µ|β) =
ˆ

dsp(s)

ˆ
dxp⋆(x|s)δ[µ(x, s)−µ],

(20)

is bimodal for small β but then tends to get more and
more concentrated around the maximum achievable

values ofµ(x, s) asβ increases (figure 2(d)). The resid-
ual variability seen at large β reflects the fact that the
stress level can only be known up to a finite precision
(see figure 2(a), top panel).

It is instructive to visualize together the res-
ults of a series of box-like environments p(s) with
different values of s0, from very low to very high
(see figure 2(e), top panel), a setup that mim-
ics an ensemble of experiments performed at dif-
ferent, exogenously controlled nutrient levels. As
soon as β is large enough, the mean response
of the system (i.e. the mean value of x) changes
from x≃ 0 (F strategy) in lower-stress media (faster
growth) to x≃ 1 (R strategy) in higher-stress media
(slower growth), see figure 2(e), bottom panel. This
scenario recapitulates qualitatively the well-known
respiration-fermentation crossover marked by the
onset of acetate excretion that is observed in exper-
imental E. coli populations [23]. Noticeably, how-
ever, it appears already for values β well below the
reference scale given by 1/µmax (with µmax the fast-
est growth rate achievable in this medium, approx-
imately equal to 1/4 in this case). Only for values
of β much smaller than this does the crossover not
develop. In other terms, in these simple environ-
ments, the crossover appears to be a feature of the
optimal stochastic response p⋆(x|s) that is extremely
robust over β.

2.4. Exponentially distributed stress levels
We now turn to the case in which the stress level
is exponentially distributed. Specifically, we assume
that p(s)∝ exp(−s/s0) on the interval [smin, smax]

5



Phys. Biol. 20 (2023) 036001 A P Muntoni and A De Martino

Figure 3. (a) Probability density of the stress level s in the ‘exponential environment’ (top) p(s)∝ e−s/s0 for s0 = 0.5,
s ∈

[
5 · 10−3,5 · 100

]
and corresponding fitness landscape (bottom). Magenta line: growth-maximizing value of x for each s.

(b) Optimal choice for p⋆ (x|s) for different values of β. Magenta line: growth-maximizing value of x as a function of s. Green
line: mean value of x for the optimal choice rule at different values of s. (c) Marginal probability density p⋆ (x) for different values
of β. (d) Growth rate distribution at optimality, p⋆ (µ|β), for different values of β. (e, top) Overall fitness F (equation (18)) as a
function of β for several values of the information cost-per-bit c. (e, bottom) Optimal value of β (β⋆) versus c: numerical results
(markers) vs theoretical prediction (equation (19), dashed line).

(figure 3(a), top panel). The corresponding fitness
landscape µ(x, s) is shown in figure 3(a), bottom
panel, along with the growth-maximizing curve x=
x̂(s) (magenta line). One sees that x̂(s) now shifts con-
tinuously from 0 (F strategy) to 1 (R strategy) as the
stress level increases. Figure 5(b) shows instead the
optimal growth strategy p⋆(x|s) for different values of
β, with the green line representing the mean value of
x at each s. As expected, for small enough β, p⋆(x|s) is
roughly uniform over [0,1]. Upon increasing β, how-
ever, the distribution acquires a structure that more
andmore closely concentrates around x̂(s). The qual-
itatively correct crossover is however already observed
at values of β of the order of 1/µmax. In turn, the
distribution of x at optimality, p⋆(x), acquires a very
strong bimodal character as β increases (figure 3(c)).
This clearly indicates that the coexistence of two sub-
populations of fermenters (x≃ 0) and respirators
(x≃ 1) provides the optimalmetabolic response even
in presence of limited resources to encode informa-
tion about the environment intometabolic strategies,
giving a quantitative representation to bet-hedging in
the present model. Correspondingly, the growth-rate
distribution (figure 3(d)) consistently displays large
variability with a surprisingly weak dependence on β.
Note that no bimodality is observed in p⋆(µ|β) des-
pite the bimodality of p⋆(x).

It is important to remark that large fluctu-
ations persist even in the β →∞ limit, when the
information about the stress levels encoded in the
metabolic strategy is maximal. In other terms, the
globally optimal growth strategy (β →∞) in an
exponentially-distributed medium requires a large

degree of heterogeneity in growth rates. To bet-
ter visualize the robustness of these outcomes with
respect to β, we display in figure 3(e) the re-scaled fit-
ness F defined in (18) as a function of the ‘inverse
temperature’. As anticipated, F has a maximum at
intermediate value of β, related to the cost-per-bit
c of encoding information as shown in (19) (bot-
tom panel): higher costs imply lower optimal values
of β. Noticeably, though, with the realistic paramet-
ers we used, the maximum of the fitness function is
extremely flat. This suggests that, at least in principle,
metabolic networks could be capable of generating
optimal growth profiles that are robust to the amount
of information about the environment encoded in the
growth strategy. In this respect, questions concerning
the fine-tuning of the value of βmight be less relevant
for this problem than they likely are for the MaxEnt-
related growth-heterogeneity trade-off discussed in
[11–13]: relatively limited environmental cues could
suffice to bias the distribution of metabolic strategies
enough to generate a (stochastic) response close to the
globally optimal one, i.e. that achievable by perfectly
matching x to the stress levels.

2.5. Power-law distributed stress levels
A yet more complex scenario is that in which the
distribution of stress levels has a power-law beha-
viour of the type p(s)∝ 1/s on the interval s ∈
[smin, smax] (figure 4(a), top panel, with the corres-
ponding growth rate landscape µ(x, s) reported in
the bottom panel). Results for this case are shown in
figures 4(b)–(e). In brief, the optimal growth strategy
p⋆(x|s), which is uniform for sufficiently small β,

6
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Figure 4. (a) Probability density of the stress level s in the ‘power-law environment’ (top) and corresponding fitness landscape
(bottom). Here, smin = 3 · 10−4 and smax = 3 · 101. Magenta line: growth-maximizing value of x for each s. (b) Optimal choice for
p⋆ (x|s) for different values of β. Magenta line: growth-maximizing value of x as a function of s. Green line: mean value of x for
the optimal choice rule at different values of s. (c) Marginal probability density p⋆ (x) for different values of β. (d) Growth rate
distribution at optimality, p⋆ (µ|β), for different values of β. (e, top) Overall metabolic objective function F (equation (18)) as a
function of β for several value of the information cost-per-bit c. (e, bottom) Optimal value of β (β⋆) versus c: numerical results
(markers) vs theoretical prediction (equation (19), dashed line).

matches the globally optimal one (i.e. x̂(s), represen-
ted by themagenta line in figure 4(a))more andmore
closely as β increases (figure 4(b)). The distribution
of x at optimality (figure 4(c)) again underscores a
non-trivial structuring of the population, which sep-
arates into well-defined groups of faster-growing fer-
menters (x≃ 0) and slower-growing respirators (x≃
1). Remarkably, the separation already occurs effect-
ively at values ofβ comparablewith 1/µmax, withµmax

the fastest growth rate achievable in the medium. At
odds with the exponential case, however, the growth-
rate distribution now displays bimodality robustly
over β (see figure 4(d)). Finally, as in the exponen-
tial case, the value of β yielding the maximum fitness
F decreaseswith the cost-per-bit c, and themaximum
again appears to get flatter as c decreases (figure 4(e)),
suggesting that limited resources may suffice to fine-
tune β so as to achieve responses that are effectively
optimal.

2.6. Two-state environments
Figure 5 displays results obtained for the case of
a bimodal environment in which high-probability
favourable conditions coexist with low-probability
very adverse ones (figure 5(a)), as e.g. in experiments
probing bacterial resistance to stress via antibiotic
cycles [24]. Here, 95% of the distribution is con-
centrated around s0 = 0.05< sc, whereas high stress
levels take values around s1 = 0.8> sc3. According

3 The low-stress (high-stress) region is obtained by truncating in
the interval [0, 0.1] ([0.7, 0.9]) a normal density of mean 0.05 (0.8)
and standard deviation 10−2 (10−2). For s ∈ (0.1, 0.7), p(s) = 0.
In other terms, intermediate values of s are strictly prohibited.

to the growth-rate landscape (figure 5(a), bottom
panel), while the low-cost strategy (x= 0) is favored
in rich conditions, high-yield metabolism (x= 1)
provides the optimal response under stress (magenta
line in figure 5(a), bottompanel). Optimal adaptation
to a strict bimodal environment therefore requires the
ability to neatly separate the two phenotypes. Indeed,
as β increases, the optimal strategy selection rule
p⋆(x|s) reproducesmore andmore closely the optimal
response (figure 5(b)), while the population gradu-
ally acquires a structure in terms of x. As in previous
cases, as soon as β is sufficiently large one observes
the formation of two sub-populations (figure 5(c)):
one formed by cells that use a mixed strategy with
a stronger fermentative component (smaller x), the
other formed by a small but robust group of strict
respirators (x≃ 1). This partitioning is reflected in
turn in the distribution of growth rates (figure 5(d)),
which displays a marked bimodal character even for
large β, with lower growth rates associated with res-
pirators. (It should however be noted that, in this
environment, the background growth-rate landscape
is effectively bimodal, as seen from the β→ 0 limit
in figure 5(d).) These results paint a direct metabolic
realization of the bet-hedging scenario, with respirat-
ors forming the group of ‘persisters’ [24].

Noticeably, the dependence on β in this envir-
onment appears to be stronger than in previous
cases, suggesting that optimal adaptation to a two-
state medium requires the encoding of a consider-
able amount of information about stress levels in the
metabolic strategy. In view of this, it is reasonable
to ask how the presence of a broad, low-probability
background of stress levels along with the two ‘peaks’
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Figure 5. (a) Probability density of the stress level s in a two-state environment (top) and corresponding fitness landscape
(bottom). Magenta line: growth-maximizing value of x for each s. (b) Optimal choice for p⋆ (x|s) for different values of β.
Magenta line: growth-maximizing value of x for each s. Green line: mean value of x for the optimal choice rule at different as a
function of s. (c) Marginal probability density p⋆ (x) for different values of β. (d) Growth rate distribution at optimality,
p⋆ (µ|β), for different values of β. (e) Alternative bimodal stress distribution with an extended background of stress levels with
non-zero probability. (f) Corresponding growth rate distribution at optimality, p⋆ (µ|β), for different values of β.

at low and high stress would change optimal adapta-
tion. Remarkably, results shown in figure 5(e) suggest
that this scenario mainly affects the faster-growing
sub-population4. Indeed, as β grows, the optimal
population tends to exploit intermediate values of x
in a more and more refined way by depleting the sub-
population at smaller values of x (figure 5(f), to be
compared with figure 5(c)). In other terms, the pres-
ence of a robust sub-population of slower-growing
respirators is crucial for optimal adaptation.

2.7. A closer look at optimal growth strategies
It is finally instructive to revisit the optimal pheno-
typic distributions found in the four types of envir-
onments discussed above in terms of the biologic-
ally relevant variables, namely the specific intake q
and the specific proteome cost ϵ. The distribution
of these quantities can be obtained numerically from
the optimal growth strategy p⋆(x|s) and the defini-
tions (2) and (3) as

p⋆(q|β) =
ˆ

dsp(s)

ˆ
dxp⋆(x|s)δ[q(x)− q], (21)

p⋆(ϵ|β) =
ˆ

dsp(s)

ˆ
dxp⋆(x|s)δ[ϵ(x)− ϵ]. (22)

Results are reported in figures 6(a)–(d). One clearly
sees how, expectedly, optimal adaptation to a tightly
controlled medium gradually concentrates the meta-
bolic phenotypes around the growth-maximizing one

4 To obtain the probability density shown in figure 5(e) (top panel),
we first removed the truncations used for figure 5(a), then added a
uniform distribution in the interval [0, 1.0]multiplied by 0.8, and
finally normalized the overall p(s).

as β increases (figure 6(a)). In all other (more com-
plex) cases, however, the distributions of metabolic
phenotypes effectively define clear sub-populations
already for values of β comparable with 1/µmax.
Based on the previous results, this process by
itself can lead to an outcome close to the globally
optimum one (β →∞) in an exponential environ-
ment (figure 6(b)) as well as in a power-law envir-
onment (figure 6(c)). Indeed in both cases pheno-
typic distributions do not change substantially as β
is further increased. The bimodal environment again
appears to be more sensitive to the value of β (i.e. to
the amounts of resources available), as its correspond-
ing phenotypic distribution undergoes considerable
refinements as β gets larger and larger (figure 6(d)).
In this respect, it is fair to say that bimodal media
pose an especially complex adaptation problem for
cells that strive to optimize growth.

3. Discussion

The standard theoretical framework to describe expo-
nentially growingmicrobial populationsmostly relies
on the assumption that cells aim at maximizing their
growth rate in any given medium. This idea should
however be reconciled with the empirical fact that
bacterial populations display remarkable cell-to-cell
diversity even in terms of single-cell growth rates.
Such a question is especially pressing in the con-
text of metabolic networks, where optimality nor-
mally implies a maximal reduction of variability
(e.g. as in flux-balance-analysis and related mod-
els). Here we attempt to bridge optimality and vari-
ability in metabolism through the fact that meta-
bolic strategies need to encode information about the
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Figure 6. Numerical results for the probability densities of the specific proteome cost ϵ (left plot in each panel) and the specific
uptake q (right plot in each panel) for different values of β. Panels (a)–(d) correspond respectively to the cases of a tightly
controlled (a), exponential (b), power-law (c) or strict bimodal (d) stress distribution discussed in figures 2–5. The lower and
upper bounds for ϵ and q are fixed to ϵF = 0.1 and qR = 1, and to ϵR = 1 and qF = 10, respectively.

growth medium. More precisely, optimal strategies
for microbial growth in complex (random) media
depend on the amount of information about the
environment that can be encoded in the key meta-
bolic variable(s). By framing this idea within a simple
information-theory perspective, we have studied the
optimal growth strategies for a coarse-grained but
experiment-inspired model of growth metabolism
subject to random stress levels. The key parameter
β ⩾ 0 modulates, in essence, how precisely meta-
bolic variables can be tuned in response to the
stress levels or, equivalently for our purposes, the
amount of cellular resources available to tune the
metabolic response to the environmental conditions.
By changing β, one passes from optimal strategies
that are completely insensitive to the composition
of the medium (β= 0) to strategies that are per-
fectly matched to the structure of the environment
(β →∞). We have then analyzed the scenarios gen-
erated by these strategies in different types of envir-
onments. The general lesson is that, when cellular
resources are limited, metabolic strategies for optimal
growth require some degree of heterogeneity even
in tightly controlled media. In addition, we find
that, in realistic scenarios, outcomes close to those
achievablewith unlimited resources are often attained
effectively with a modest amount of fine-tuning
or, equivalently, with limited information about
the environment. In other terms, optimal meta-
bolic strategies for growth may be effectively robust
with respect to the amounts of cellular resources
available.

From a purely theoretical perspective, models
addressing the adaptation of populations to unpre-
dictable external conditions have been studied for

several decades. In our view, despite lacking an expli-
cit dynamics, our approach is conceptually related to
that of [25], where heterogeneities in the phenotype
distribution emerge as evolutionarily stable strategies
to cope with fluctuating environments. Likewise, the
‘exploration-exploitation’ paradigm discussed in [17]
leads to a similar outcome in terms of growth rate
distributions, albeit in a highly stylized framework.
A dynamical counterpart of the static scenario dis-
cussed here indeed shows that optimal adaptation can
be defined even for dynamically varying stress levels
(forthcoming). On the other hand, heterogeneity of
growth rates (and indirectly of metabolic pheno-
types) has been repeatedly observed in experiments
probing actual cell populations subject to different
stressors. Large variability in growth-rate distribu-
tions characterizes for instance microbial communit-
ies in fluctuating conditions [24, 26, 27], where het-
erogeneity induced e.g. by changes in environmental
cues coexists with medium-independent phenotypic
variability due to stochasticity in gene expression. By
expanding the pool of genotypes present within a
population, the latter plays a key role for its long-
term adaptation [28]. Obtaining a direct quantitative
picture of the the metabolic strategies of individual
cells in a live population is instead experimentally
challenging. Recent work integrating high-resolution
techniques for local microenvironment sensing with
statistical inference has however allowed to quant-
itatively assess the presence of different metabolic
phenotypes in a population of cells that engineers its
own environment [29]. Progress along these lines will
hopefully shed more light on the distributions of bio-
logically relevant variables in phenotypically hetero-
geneous populations.
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The results we presented here suggest that, in any
medium, fitness is maximized by an optimal distribu-
tion of phenotypes. To understand how close bacterial
populations come to these optimal strategies, one
needs to port our modeling framework to more real-
istic models of metabolic networks. It would be espe-
cially interesting, in our view, to compare the predic-
tions based on optimal growth driven by information
encoded about the environment with those obtained
within the fitness-heterogeneity trade-off scenario of
[11–13]. These approaches rely on the MaxEnt prin-
ciple to characterize optimal phenotypic distribu-
tions in terms of a fitness-variability trade-off, and
in turn provide a route to inferring how close real
microbial populations are to optimality. So far, this
issue has only been explored for populations living
in tightly-controlled media [12]. Naturally, however,
things may be environment-dependent. With proper
data, and by integrating the current framework with
the MaxEnt models introduced in [11], one could
potentially establish how much of the observed vari-
ability is due to adaptation to complex environments
versus stochastic bet-hedging.

A few other generalizations and open issues
could be of further interest. First, we assumed the
value of ν (equation (3)) to be given, represent-
ing a property of the metabolic and regulatory net-
works underlying the q− ϵ trade-off. Clearly, res-
ults depend on the choice of ν, albeit weakly if ν
varies in a realistic range. Important and poten-
tially insightful question however relate to (i) whether
the value of ν can, in some sense, be optimized
upon, and to (ii) how close empirical values of ν
are to such optima. An information-theoretic frame-
work similar to that employed here might be suited
to tackle this issue. Second, in our formulation we
have assumed that bacteria have knowledge of the
ensemble of conditions in which they grow, i.e. of
p(s). This model can however be generalized to the
case in which bacteria have to learn the ensemble
over time. From an information theory perspect-
ive, a dynamical approach is likely to yield yet more
insight into the idea of ‘optimal bacterial growth’.
Finally, it may be noted that our minimal model
of growth completely disregards maintenance costs,
namely the fact that cells can only grow when
certain basal (and possibly growth-rate dependent)
metabolic requirements are satisfied. While results
presented here can be seen as the low-maintenance
limit of this more general case, optimal strategies
and growth rate distributions are bound to be
affected by non-trivial maintenance costs, especially
in heterogeneous media. A detailed study of these
aspects would clarify the interplay between optimal
growth, maintenance and stress levels in complex
environments.

Data availability statement

The data that support the findings of this study are
openly available at the following URL https://github.
com/anna-pa-m/OptMetStrategy.

Appendix. Derivation of the optimal
distribution

Our goal is to determine the conditional distribu-
tion p(x|s) that maximizes the expectation value of
the growth rate—computed with respect to the joint
probability density of the degree of freedom x and of
the stress s, i.e. p(x, s)– when the mutual information
regarding the stress encoded in the conditional dis-
tribution is limited to a constant; that is, we want to
solve

max
p(x|s)

⟨µ⟩ subject to I= constant. (A.1)

To this end, we introduce, within the formalism of
Lagrange multipliers, the Lagrangian function

L [p(x|s)] =
ˆ

dsp(s)

ˆ
dxp(x|s)µ(x, s)

+ γ

[ˆ
dsp(s)

ˆ
dxp(x|s)

× [log2 p(x|s)− log2 p(x)]− I

]
+

ˆ
ds

[
λ(s)

ˆ
dxp(x|s)− 1

]
,

where γ is the Lagrangemultiplier associated with the
constraint on the mutual information between s and
x, and λ(s) ensures that for any value of s, the con-
ditional distribution p(x|s) is normalized to 1. Com-
puting the functional derivative one gets

δL
δp(x|s) =

ˆ
ds′
ˆ

dx′δ
(
x− x′

)
δ
(
s− s′

)
p
(
s′
)

×µ
(
x′, s′

)
+ γ

[ˆ
ds′
ˆ

dx′p
(
s′
)
log2

×p(x′|s′)
p(x′)

δ
(
x− x′

)
δ
(
s− s′

)]
+ γ

[ˆ
ds′
ˆ

dx′p
(
s′
)
p
(
x′|s′

) 1
p(x′|s′)

×δ
(
x− x′

)
δ
(
s− s′

)]
− γ

[ˆ
ds′
ˆ

dx′p
(
s′
)
p
(
x′|s′

) 1
p(x′)

δp(x′)
δp(x|s)

]
+

ˆ
ds′ dx′λ

(
s′
)
δ
(
s′ − s

)
δ
(
x− x′

)
.

The remaining integrations involving Dirac
δ-functions are easily performed, yielding
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δL
δp(x|s)

= p(s)µ(x, s)

+ γ

[
p(s) log2

p(x|s)
p(x)

+ p(s)− I0

]
+λ(s) ,

(A.2)

where

I0 =

ˆ
ds ′
ˆ

dx ′p(s ′)p(x ′|s ′) 1

p(x ′)

δp(x ′)

δp(x|s)
.

(A.3)

Note however that p(x) =
´
dsp(x, s) =´

dsp(x|s)p(s). Therefore

I0 =

ˆ
ds′
ˆ

dx′ p(s′)p(x′|s′) 1

p(x′)

ˆ
ds′′p(s′′)

× δ (s′′ − s)δ (x′ − x)

= p(s)

ˆ
dx′

1

p(x′)

ˆ
ds′ p(s′)p(x′|s′)δ (x− x′)

= p(s)

Setting the derivative of the Lagrangian to zero leads
to the condition

p(s)

[
µ(x, s)+ γ log2

p(x|s)
p(x)

+ γ− γ

]
+λ(s) = 0,

(A.4)

from which one immediately gets

p⋆ (x|s)∝ p⋆ (x)eβµ(x,s)+β
λ(s)
p(s) , (A.5)

where here we have defined β =−1/γ. Upon impos-
ing the normalization condition

ˆ
dxp⋆ (x|s) = 1 ∀s, (A.6)

the value ofλ(s) can be straightforwardly determined
to be

λ(s) = β−1p(s) log

[ˆ
dxp⋆ (x)eβµ(x,s)

]−1

. (A.7)

Substituting this into (A.5) one arrives at
equations (11) and (12), where N(s,β) =´
dxp⋆ (x)eβµ(x,s).
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