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Abstract
Networks of biochemical reactions, like cellular metabolic networks, are kept in
non-equilibrium steady states by the exchange fluxes connecting them to the
environment. In most cases, feasible flux configurations can be derived from
minimal mass-balance assumptions upon prescribing in- and outtake fluxes.
Here we consider the problem of inferring intracellular flux patterns from
extracellular metabolite levels. Resorting to a thermodynamic out of equilibrium
variational principle to describe the network at steady state, we show that the
switch from fermentative to oxidative phenotypes in cells can be characterized in
terms of the glucose, lactate, oxygen and carbon dioxide concentrations. Results
obtained for an exactly solvable toy model are fully recovered for a large scale
reconstruction of human catabolism. Finally we argue that, in spite of the many
approximations involved in the theory, available data for several human cell
types are well described by the predicted phenotypic map of the problem.
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1. Introduction

The wealth of biological data acquired in recent years via high-throughput techniques has lead
to increasingly refined descriptions of a cellʼs content in terms of macromolecules and
metabolites, as well as of the complex interactions between them that determine a cellʼs
physiology. Such interaction patterns represent the networks underlying cellular organization.
Of course, various such networks (metabolic, signaling, protein–protein interaction, regulatory,
etc) operate on separate time- and space-scales, continuously cross-talking and reciprocally
feeding into each other in single cells. In addition, because cells do not live in isolation, inter-
cellular interaction networks can also be considered as representations of multicellular
organization (e.g. tissues, organs, etc). Physiologic functions emerge through the integration of
collective biological interactions across different scales, from cellular-level, to tissue and organ
level. While this concept has always been at the center of biology, a formal and mathematical
description of physiology in terms of the dynamics of network of networks has become possible
only recently [1, 2]. Obtaining a comprehensive picture of cellular activity from large-scale data
is however still a major theoretical and computational challenge [3].

Mathematical network-based models represent a natural way to encode the inherent
complexity of the interaction structure revealed by integrated biological data. Different
approaches have been developed for a variety of cellular networks [4]. In many cases, the basic
idea on which such schemes rely is that of optimization: assuming biological networks are
optimized to perform a specific, context-dependent biological function (e.g. biomass or energy
production in metabolic networks) one focuses on the network states that maximize the specific
functionality. While such methods have met predictive and/or explanatory success [5], optimal
states normally depend on a multitude of interaction parameters, which makes robustness an
issue. Furthermore, identifying objective functions is not always straightforward, as testified
e.g. by the variety of optimality criteria that can be used to describe, to different degrees, the
same system [6, 7]. In some cases, it is even hard to argue that something is being optimized at
all. A different approach consists in placing the emphasis not on functional aspects but on the
physical constraints under which such networks operate, and in trying to identify generic
variational principles (similar to those derived for physical systems) by which the space of
possible network states can be reduced to the ‘physically relevant’ ones. Clearly, states selected
by physical variational rules will in general be unable to pin down a specific biological
functionality. The picture they provide will however be inherently robust and, in certain cases
(specifically whenever physical constraints set the relevant limits to the networkʼs operation),
one may hope to obtain biologically relevant insight.

One such case is possibly that of cellular metabolic networks. A cellʼs metabolism is, in
essence, the complex network of enzyme-catalyzed reactions that processes nutrients to derive
energy and molecular building blocks, while harvesting free energy from the environment and
allocating it in the multiple tasks a cell has to accomplish. Metabolic network models have been
extended to the scale of the whole genome and optimization-based schemes are routinely
employed for their mathematical analysis [8, 9]. Stationarity can be argued to be an appropriate
assumption in order to investigate the productive capabilities of the network in terms of output
metabolites or maximal flow of specific reactions (including biomass production). Therefore,
upon defining suitable objective functions, one may resort to frameworks such as flux balance
analysis (FBA) for their study [5]. At the computational level, FBA is normally a linear
programming (LP) problem, and it has been particularly successful in predicting the growth rate
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of microorganisms in batch cultures. In cases in which a clear objective function is lacking, as is
typical in multicellular organisms, an unbiased sampling of the steady states can provide useful
information on the organization of reaction pathways or on the design of experiments [10]. The
practical feasibility of sampling algorithms on genome-scale systems is however still a concern.

It is therefore important to understand how physics, and thermodynamics in particular,
constrains the solution space of metabolic networks. Recently, a simple and intuitive physical
description of steady states based on a thermodynamic variational principle has been proposed,
according to which reaction networks occurring in a given volume and exchanging compounds
with a stationary environment (a ‘bath’) tend to minimize the rate of decay of entropy
production [11]. The latter quantity can be written explicitly in terms of the stoichiometry of the
reaction network, of intracellular reaction fluxes and of extracellular metabolite levels.
Therefore, the rule allows in principle to explore the physically viable intracellular flux
configurations upon changing the composition of the environment.

In this article we shall apply this framework to infer viable steady-state flux patterns in the
catabolism of human metabolic networks, with the goal of clarifying the extent to which physics
accounts for the switch in cellular energetic strategies from fermentative to oxidative
phenotypes that is observed in many cell types [12–15]. We will show that, perhaps
surprisingly, thermodynamic principles alone predict the crossover between different metabolic
phenotypes using a small number of ‘environmental’ control parameters, such as the external
glucose, lactate, oxygen and carbon dioxide levels. Indeed, despite the crude approximations on
which the theory is based, experimental observations fall remarkably well within the derived
scenario. These results ultimately suggest that a more thorough understanding of the physical
and chemical constraints under which biological networks operate may provide us with much
conceptual insight and possibly predictive power.

2. Method

Let S denote the stoichiometric matrix of a given metabolic network with N reactions and M
metabolites, with μS i the stoichiometric coefficient of compound μ in reaction i. Upon
neglecting the discrete nature of molecules, noise and spatial gradients, the mass balance
equations for the concentration μc of each compound μ may be written in terms of the reaction
fluxes f{ }i as

∑=μ μ
=

c S f˙ . (1)
i

N

i i
1

The Gibbs energy of reaction i may in turn be decomposed in terms of the chemical potentials

μg of the different compounds, i.e.

∑Δ =
μ

μ μ
=

G S g , (2)i

M

i

1

where, for a well-mixed and diluted system, the chemical potentials at constant pressure and
temperature are given by

= +μ μ μg g RT clog ( ), (3)0
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where R is the ideal gas constant and concentrations are assumed to be measured in units of a
fixed reference level.

Differentiating (2) with respect to time and applying (3) and (1), one sees that

∑ ∑ ∑ ∑Δ = = =
μ

μ μ
μ

μ
μ

μ μ

μ μ

μ= = = =t
G S g RT S

c

c
RT f

S S

c

d
d

˙
˙

. (4)i i

M

i

j

N

j

M
i j

1 1 1 1

Introducing the shorthands

∑Δ
− = =

μ

μ μ

μ=

G

RT
y J

S S

c
, , (5)i

i ij

M
i j

1

Equation (4) can be re-written as

= − ∂
∂

y
H

f
˙ , (6)i

i

where

∑=
=

H J f f . (7)
i j

N

ij i j
, 1

This elementary derivation suggests that the time evolution of Gibbs energies follows the
gradients of the quadratic function H of the fluxes. In turn, steady flux states correspond to the
minima of H. (See [11] for a more precise microscopic derivation.) Notice that ⩾H 0 by
construction. It can furthermore be seen [11] that H corresponds to the rate of entropy decay, i.e.

= −H S R¨ , with S the internal entropy of the system [16].
Note that, in terms of the concentrations, H takes the form

∑=
μ

μ

μ=

H
c

c

˙
. (8)

M

1

2

It is convenient to distinguish the levels of intracellular compounds ( μc ,int) from those of
extracellular ones ( μc ,ext), so that

∑ ∑= +
μ

μ

μ μ

μ

μ= =

H
c

c

c

c

˙ ˙
. (9)

M M

1

,ext
2

,ext 1

,int
2

,int

In turn, the variations of intracellular and extracellular concentrations are linked by the
exchange fluxes μu . If we single out the latter (assuming a positive sign for fluxes entering the
cell), we get

∑ ∑ϵ= +
∑ +

μ

μ

μ μ

μ μ

μ= =

=( )
H

u

c

S f u

c
, (10)

M M
i
N

i i2

1

2

,ext 1

1

2

,int

where ϵ is the ratio of intracellular and extracellular volumes: ϵ = V Vint ext.
A trivial solution to the H-minimization problem is obtained by taking vanishing fluxes fi

and uptakes μu , leading to H = 0. We shall focus on solutions carrying non-vanishing fluxes,
corresponding to non-equilibrium steady states. Since it is reasonable to think that the volume
ratio ϵ will typically be small, the second term in (10) dominates H. In metabolic networks,
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however, the constraints provided with models are normally compatible with internal
homeostasis, implying ∑ + =μ μS f u 0i i i . Therefore the H is minimized by minimizing the
first (exchange) term alone. In summary, for given extracellular levels μc ,ext, the variational
principle takes the form of the optimization problem

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∑ ∑ = −

∈

∈

μ

μ

μ
μ μ

μ μ μ

=μ{ } { }

u

c
S f u

f f f

u u u

min subject to

,

, . (11)

f u

M

i

i i

i i i

,
1

2

,ext

min max

min max

i

For sakes of simplicity, we shall henceforth re-define

∑=
μ

μ

μ=

H
u

c
. (12)

M

1

2

,ext

In short, the above problem amounts to the minimization of a positive definite quadratic convex
function in a convex polytope defined by the conditions (11). Finding a solution requires in
general polynomial time [17]. Sampling all solutions uniformly, on the other hand, can either be
done exactly upon knowing the vertices of the polytope, or by stochastic methods (e.g. Monte–
Carlo). The latter procedure is also polynomial when a Hit-and-Run Markov chain is employed
[18–22].

In the following, we shall explicitly solve the above problem for specific metabolic
networks and compare its solutions both with empirical data and with solutions derived
from another variational principle that is widely employed to describe out-of-equilibrium
systems.

3. Results

3.1. Minimal model for ATP production

As a first example, we consider a minimal model for the production of ATP from either glucose
(through oxidative or fermentative metabolic pathways) or lactate (via oxidative pathways
only), with the goal of inferring how a cell employs the different energy-producing pathways as
a function of the extracellular levels of nutrients and waste products.

Figure 1 displays schematically the reactions of our minimal model. Each glucose
molecule enters the cell and is transformed to 2 pyruvate molecules thereby converting two
ADPs to ATPs (note that the stoichiometry is not depicted in the figure). Each pyruvate can
either be used to produce further 15 ATPs, with the concomitant consumption of O3 2 and
production of CO3 2 (oxidative pathway), or be transformed to lactate (fermentative pathway).
The latter reaction is reversible so that lactate can be both expelled and intaken by the cell; in
contrast, O2 can only be intaken and CO2 can only be expelled. We set the stoichiometry of this
simple model to match the one of the complete network presented below; in general, the precise
stoichiometry of ATP production via oxidation varies across species, with a yield in the range of
9–18 ATPs obtained per pyruvate molecule [23].

5

New J. Phys. 16 (2014) 115018 D De Martino et al



Denoting by μu the exchange reaction of metabolite μ (keeping in mind that >μu 0 for
intakes and <μu 0 for outtakes), by fox the flux trough the oxidative pathway (labeled 5 in
figure 1), and by fatp the ATP production flux (the sum of fluxes through reactions 2 and 5), the
homeostatic intracellular steady state is defined by the equations

= +

= +
− = =

f u f

f u u

u u f

2 15 ,

2 ,

3 , (13)

atp glc ox

ox glc lac

co2 o2 ox

where the subscripts glc, lac, co2, and o2 stand for glucose, lactate, carbon dioxide, and
molecular oxygen, respectively, and where we have used the fact that, by homeostasis, the flux
through glycolysis equals uglc. Since we have four extracellular species, H as defined in (12) is
given by

= + + +H
u

c

u

c

u

c

u

c
. (14)

glc
2

glc

lac
2

lac

co2
2

co2

o2
2

o2

Fixing the ATP production flux conventionally to =f 1atp (this serves no specific purpose
except fixing a scale for fluxes) and using the steady-state conditions (13), (14) can be re-
cast as

⎛
⎝⎜

⎞
⎠⎟=

−
+

−
+ +

( ) ( )
H

f

c

f

c
f

c c

1 15

4

16 1
9

1 1
. (15)

ox
2

glc

ox
2

lac
ox
2

co2 o2

In turn, the value of fox that minimizes H can be easily obtained by differentiating the above
equation. The minimum of H is obtained when

Figure 1. Schematic representation of the reactions of the minimal model for ATP
production. Reactions labeled 1, 4, 6, and 7 are exchange reactions of glucose (Glc),
lactate (Lac), oxygen (O2), and carbon dioxide (CO2), respectively. Reaction 2
represents glycolysis with transformation of one molecule of glucose to two molecules
of pyruvate and two ADPs to two ATPs. Reaction 3, which is reversible, transforms
pyruvate to lactate and viceversa. Finally, reaction 5 represents oxidative phosphoryla-
tion where pyruvate and 3 molecules of oxygen are transformed to 3 molecules of
carbon dioxide and 15 ATPs are created from 15 ADPs. Note that stoichiometric
coefficients are not explicitly reported in the network diagram.
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=
+

+ + +( )
f

9
. (16)

c c

c c c c

ox

15

4

16

15

4

16 1 1

glc lac

2

glc

2

lac co2 o2

Let us analyze how the emerging scenario changes with the extracellular levels. From the
steady state conditions (13), if there is no exchange of lactate, i.e. if =u 0lac , then glucose,
which in this case is the only carbon source, is completely oxidized and =f 1 16ox .
Substituting this value in (16), we obtain that the glucose concentration corresponding to zero
lactate exchange, which we denote as ⋆cglc, verifies

=
+

⋆c
c c

c c

5
12

. (17)glc
o2 co2

o2 co2

Note that ⋆cglc is independent of the external lactate concentration clac. For the physiological

levels in the blood plasma ( ≃c 30co2 mmol, ≃c 5o2 mmol), one finds ≃⋆c 1.8glc mmol. On the
other hand, combining (13) with (16), and using expression (17), one finds that

∝ −⋆u c c( )lac glc glc . This suggests that (17) defines a threshold separating, for any given levels

of oxygen and carbon dioxide, different metabolic phenotypes. In particular, if > ⋆c cglc glc one

has <u 0lac (there is a net lactate secretion), while >u 0lac for < ⋆c cglc glc (corresponding to a
net lactate intake).

We start by considering in detail the case > ⋆c cglc glc. Here, ATP is produced using glucose
exclusively, which can be channeled to both the oxidative and the fermentative pathway. By
recalling that one glucose produces two pyruvates, the fraction of oxidized glucose can be
written as = ⩽O f u(2 ) 1ox glc , which, in the steady state described by (13), becomes simply

=
−

O
f

f1 15
. (18)ox

ox

Substituting expression (16) for fox, one obtains the percentage of oxidized glucose as a
function of the external metabolite levels, namely

= +
+

O
ay x

ay

1

1
, (19)

where

= = =⋆ ⋆a y
c

c
x

c

c

15
64

, , . (20)lac

glc

glc

glc

In the blood plasma, one has typically ≃c 5glc mmol and ≃c 1lac mmol, so that ≃O 0.92. In
other words, oxidation is the dominant energy-producing strategy for cells in contact with the
blood.

If instead the glucose level is below threshold ( < ⋆c cglc glc), then there is a net lactate intake
in addition to glucose and no fermentation is possible, as it would imply lactate secretion. In this
case, the relevant quantity to consider is the fraction of carbons that are intaken as glucose, or
(recalling that one glucose molecule is converted to two pyruvate molecules)

= + ⩽G u u u2 (2 ) 1glc glc lac , which at steady state is
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=
−

G
f

f

1 15
. (21)ox

ox

To summarize: if > ⋆c cglc glc (or >⋆c c 1glc glc ), the only source of carbon is glucose (G = 1)

and the fraction of carbons that are oxidatively processed is given by O. If instead < ⋆c cglc glc (or

<⋆c c 1glc glc ), oxidative carbon processing is the only possibility and O = 1. The fraction of
carbons intaken as glucose is concomitantly given by G. Noticing that =G O1 , one can put
different regimes together by defining a new function L, representing the normalized number of
carbon atoms exchanged as lactate, being positive for outtakes and negative for intakes, which
is given by

⎪

⎪⎧⎨
⎩

=
− < = <

− > < =

⋆

⋆L
G c c O G

O c c O G

1 if 1( 1, 1)

1 if 1( 1, 1)
. (22)

glc glc

glc glc

Note that ∈ −L [ 1, 1]. This allows us to organize possible metabolic phenotypes in a single
diagram. The contour plot of L in the plane ⋆ ⋆c c c c( , )glc glc lac glc is displayed in figure 2, where
four regions can be distinguished: a mainly fermentative regime with lactate outtake (red), a
mainly oxidative regime with glucose as the exclusive carbon source (white, >⋆c c 1glc glc ), a

purely oxidative regime with glucose as the main carbon source (white, <⋆c c 1glc glc ), and a
purely oxidative regime with lactate as the main carbon source (green).

Within the H-minimization framework, the diagram maps out the internal metabolic states
of a cell as a function of the extracellular concentrations of glucose and lactate. The levels of
oxygen and carbon dioxide are implicitly included via the parameter ⋆cglc and serve as scaling
factors. In essence, figure 2 is the complete solution to the inference problem of determining the
main carbon source and the pattern of pathway usage by a cell when the extracellular
concentration of exchanged metabolites is known. We shall see that, despite its crudeness, the
scheme just described captures the key features of cellular energetic strategies. Indeed, the same
picture will emerge from a much more detailed model of cell metabolism.

Figure 2. Phenotypic map for the minimal model for ATP production. The critical value
=c cglc glc

* , defined in terms of the oxygen and carbon dioxide levels (17), separates the
plane in two zones depending on whether cells intake ( <c c 1glc glc

* , <L 0) or secrete
( >c c 1glc glc

* , >L 0) lactate. The intensity of the colors represents the relative value of
the lactate flux. For small values of c clac glc

* the lactate flux is always negligible, while
for ≳c c 10lac glc

* the amount of lactate exchange is large and, by crossing =c c 1glc glc
* ,

switches rapidly from a large lactate intake to a large lactate secretion. L is defined in
(22) and represents the fraction of carbon atoms exchanged as lactate.
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3.2. H-minimization versus minimum entropy production

It is instructive to compare these results with those obtained by minimizing entropy production,
a well-known variational principle for biochemical systems, described e.g. in [16]. The general
expression for the entropy production is given by [16]

∑=
μ

μ μ
=

TS u g˙ , (23)
M

1

where T is the temperature and μg is the chemical potential of metabolite μ. For the simple
model discussed in the previous section, it takes the form

⎡
⎣⎢

⎤
⎦⎥= − + − + −TS g g g g g g f˙ 1

2
3( ) 16

15
2

(24)glc lac o2 co2 lac glc ox

α≡ − +g g f
1
2

. (25)glc lac ox ox

In addition, the constraints ⩾u 0glc (glucose is entering the cell) and ⩾f 0ox lead, via (13), to
⩽ ⩽f0 1 15ox . Entropy production is easily seen to be minimized by two states only,

depending on the sign of the coefficient αox. In particular, it is minimized by taking =f 0ox
(complete fermentation) if α > 0ox , or =f 1 15ox (corresponding to no glucose uptake, and
complete oxidation of lactate) if α < 0ox .

Notice that, within this simple model, the minimization of entropy production predicts no
intermediate (or mixed) ATP producing strategy, and in particular no glucose oxidation.
Therefore, according to this variational principle, fluxes will saturate their lower or upper
bounds depending on the sign of certain linear functions of the chemical potentials. Such a
scenario inevitably leads to ‘extreme’ regimes separated by sharp switches between them,
which seems unlikely to agree with biological reality.

3.3. Large-scale model of ATP production

A realistic model of energy production by cells can be obtained by including the backbone of
four ubiquitous pathways leading to ATP production, namely glycolysis, pentose phosphate
pathway, citric acid cycle, and oxidative phosphorylation. We have built such a network,
extracting relevant reactions from the human reactome Recon-1 [24] (the complete list of
reactions is reported in table 1). Altogether, the network comprises 49 chemical species and 45
reactions (18 of which are irreversible). The reactions include the shuttling of six metabolites:
molecular oxygen, carbon dioxide, water, hydrogen, lactate, and glucose. Our goal is to analyze
its feasible steady states according to the H-minimization principle, along the lines followed for
the reduced toy model discussed above.

To apply the variational principle in this case, we again impose steady state conditions for
intracellular fluxes and single out the exchange reactions. Intracellular homeostasis is described by

∑ + =μ μ
=

S f u 0. (26)
i

N

i i
1

These equations generate a large number of linear dependencies among fluxes, which can be
resolved explicitly by transforming the stoichiometric matrix to its reduced row echelon form
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Table 1. Human catabolic reaction network. H[M] represents the (mitochondrial) hydrogen ion as an electromotive force, i.e. the
protons transported across the inner mitochondrial matrix that give rise to the electrochemical gradient driving the ATPase.

Enzyme Reaction Steady state value

ACONT ⟷CIT ICIT x3
ACYP + ⟶ + +13 DPG H O 3 PG H Pi2 − − + + +x x x x u233.16̄ 21 2 3

AKGDm + + ⟶ + +AKG CoA NAD CO NADH SUCCoA2 x3
ATPS4m + + ⟶ + +ADP 4 H Pi ATP 3 H[M] H O2 − +x x2503

CSm + + ⟶ + +ACCoA H O OAA CIT CoA H[M]2 x3
CYOOm3 + + ⟶ + + + −4 focytC 7.92H[M] O 4 ficytC 4 H 1.96H O 0.02O2 2 2 x50
CYOR_u10m + + ⟶ + +2 ficytC 2 H[M] Q H 2 focytC 4 H Q10 2 10 ×100
DPGM ⟷ +13 DPG 23 DPG H x1
DPGase + ⟶ +23 DPG H O 3 PG Pi2 x1
ENO ⟷ +2 PG H O PEP2 − +x x u16.83̄ 23

FBA ⟷ +FDP DHAP G3 P − +x x u16.83̄3

FUM + ⟷ −FUM H O MAL L2 x3
G6PDH2r + ⟷ + +G P NADP 6 PGL H NADPH6 − +x x3 50.53

GAPD + + ⟷ + +G3 P NAD Pi 13 DPG H NADH − +x x u16.83̄ 23

GND + ⟶ + + −6 PGC NADP CO NADPH RU5 P D2 − +x x3 50.53

HEX1 + ⟶ + +ATP GLC ADP G6 P H u
ICDHxm + ⟶ + +ICIT NAD AKG CO NADH2 − +x x5 1003

ICDHy + ⟶ + +ICIT NADP AKG CO NADPH2 −x x6 1003

LDH − + ⟷ + +LAC L NAD H NADH PYR −x u16.83̄ 2
MDH − + ⟷ + +MAL L NAD H NADH OAA x3
NADH2_u10m + + ⟶ + +5 H NADH Q 4 H NAD Q H10 10 2 − +x x1003

PDHm + + ⟶ + +CoA NAD PYR ACCoA CO NADH2 x3
PFK + ⟶ + +ATP F6 P ADP FDP H − +x x u16.83̄3

PGI ⟷G6 P F6 P − +x x u3 50.53

PGK + ⟶ +13 DPG ADP 3 PG ATP −x x2502

PGL + ⟶ +6 PGL H O 6 PGC H2 − +x x3 50.53

PGM ⟷2 PG 3 PG − + −x x u16.83̄ 23

PYK + + ⟶ +ADP H PEP ATP PYR − +x x u16.83̄ 23
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Table 1. (Continued.)

Enzyme Reaction Steady state value

RPE − ⟷ −RU5 P D XU5 P D − +x x2 33. 6̄3

RPI ⟷ −R5 P RU5 P D −x x16.83̄3

SUCD1m + ⟷ +FAD SUCC FADH2 FUM x3
SUCOASm + + ⟷ + +ATP CoA SUCC ADP Pi SUCCoA −x3

TALA + ⟷ +G3 P S7 P E4 P F6 P − +x x16.83̄3

TKT1 + − ⟷ +R5 P XU5 P D G3 P S7 P − +x x16.83̄3

TKT2 + − ⟷ +E4 P XU5 P D F6 P G3 P − +x x16.83̄3

TPI ⟷DHAP G3 P − +x x u16.83̄3

O2 S Reduction + + ⟶ +−NADPH O 2 H NADP 2 H O2 2 x
FAD Regeneration + ⟶ +Q FADH Q H FAD10 2 10 2 x3
ATP Consumption + ⟶ + +ATP H O ADP Pi H2 x2
Glucose exchange ⟷GLC u
Lactate exchange ⟷LAC − +u x2 16.83̄
CO2 Exchange ⟷CO2 − x50.5
O2 Exchange ⟷O2 x50
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(RREF) through Gaussian elimination [25]. It turns out to be possible to represent internal
fluxes in terms of five degrees of freedom only, which we label as x x x x u( , , , , )1 2 3 . The RREF
directly provides an expression of the different fluxes in terms of these parameters. Such
expressions, emphasizing the biological meaning of the five independent degrees of freedom,
are shown in the last column of table 1. In short, x1 describes the so-called Rapoport–Luebering
shunt (reactions catalyzed by DPGM and DPGase); x2 represents the ATP consumption, which
will be fixed to 1 to match the corresponding production flux (see section 3.1); the flux through
the Citric Acid Cycle is described by x3; u corresponds to the glucose uptake; and, finally, x
represents the flux through the superoxyde dismutation that reduces −O2 .

An expression for H can be obtained directly through the expressions of exchange
reactions, which are also defined by the steady state condition, as functions of the five
independent degrees of freedom. The latter can be read off from table 1. In particular, the
expressions for the exchange fluxes of lactate, glucose, carbon dioxide, and oxygen are
given by

= −
=
= − +
=

u x

u x

u u x
u u

50.5

50

2 16.83̄
. (27)

co2

o2

lac

glc

Note that they depend on the two parameters (x,u) exclusively. We neglect the exchanges of
water and hydrogen ions assuming to work in biochemical standard conditions, where the water
level is taken to be large and hydrogen is buffered: in other words, ≫c 1h2o and ≃ċ 0h . As a
consequence, the corresponding terms in H are negligible. Notice also that

+ + =
u u

u
6 2

0, (28)co2 lac
glc

corresponding to the mass balance of carbon atoms. To characterize the domain of values of
x x x x u( , , , , )1 2 3 where the minimum of H should be sought, one has to consider how the
reversibility assignments encoded in the reaction network transfer to the independent variables.
Indeed, while homeostasis defines linear dependencies among fluxes (i.e., linear equalities), the
18 irreversibility constraints (see table 1, with a positive (resp. negative) flux conventionally
taken for the forward (resp. reverse) direction) define linear inequalities for the five remaining
degrees of freedom. From table 1 it can be easily recognized that all five degrees of freedom
must be non-negative. A direct analysis of the redundancies of the constraints on the irreversible
fluxes in table 1 shows that the non-redundant constraints are the ones determined by the
enzymes ACYP, ICIDHy, PFK, PGK, and PGL. In particular, one finds that the independent
variables are cross-linked by the conditions

⎧

⎨
⎪
⎪⎪

⎩
⎪
⎪⎪

− − + + + ⩾
− ⩾
− + ⩾

− ⩾
− + ⩾

x x x u

x x

x x u

x

x x

1 233.16̄ 2 0

16. 6̄ 0

16.83̄ 0

1 250 0

16.83̄ 0,

(29)

1 3

3

3

3
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where we used the fact that =x 12 . Inequalities (29) together with the non-negativity
constraints determine the convex domain where the minimum of H must be found.

Now, using (27), H is given by

= + + +
−( )

H
u

c

x

c

x

c

u x

c

(50 ) (50.5 ) 2 16.83̄
. (30)

2

glc

2

o2

2

co2

2

lac

Note that H is a quadratic function with absolute minimum in the origin. The latter point
however lies outside the convex domain defined by (29). Therefore the feasible solution of the
H-minimization problem will lie on an edge of the domain. Simple algebraic calculations reveal
that H is minimized on the edge defined by

⎧

⎨
⎪
⎪

⎩
⎪
⎪

=
=

+ =
⩾
⩾

x

x x

x u
u
x

0

16.83̄

250 2 1
0
0

(31)

1

3

The condition + =x u250 2 1 reduces H to a function of a single variable that, for convenience,
we redefine to be =s x250 with ∈s [0, 1]. With this substitution, we are left with the simple
problem of minimizing the function

⎡
⎣⎢

⎤
⎦⎥= − + + + − = +H

s

c c c

s as

c
a

(1 )
4

1 1.01
25

(1 )
, 1

101
1500

. (32)
2

glc o2

2

co2

2 2

lac

The minimum of H turns out to be attained when

⎡
⎣⎢

⎤
⎦⎥

=
+

+ + +
s , (33)

c

a

c

c

a

c c c

1

4

1

4

1

25

1 1.01

glc lac

glc

2

lac o2

2

co2

which is a single point on the boundary of the convex domain. As for the minimal, we are
interested in describing the emerging metabolic phenotypes in terms of (a) the pattern of
pathway utilization, and (b) the substrates from which ATP is preferentially produced. The
emerging scenario is indeed very similar to that derived in the simpler case. In specific,

• ⟶s 0 for ⟶c 0o2 or ⟶c 0co2 , corresponding to glucose intake and complete
fermentation with lactate outtake;

• ⟶s a1 for ⟶c 0lac , corresponding to glucose intake and complete oxidation;

• ⟶s 1 for ⟶c 0glc , corresponding to lactate intake and complete oxidation.

In other words, as s is changed in a[0, 1 ] one passes continuously from fermentative
(s = 0) to oxidative ( =s a1 ) phenotypes, with lactate outtake, whereas for ∈s a[1 , 1] one has
complete oxidation without fermentation, and the preferred fuel switches continuously from
glucose ( =s a1 ) to lactate (s = 1). The value =s a1 defines the curve
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⎡
⎣⎢

⎤
⎦⎥+ ≡ ⋆c c c

240
101

1 1.01 1
, (34)

o2

2

co2 glc

through which a threshold value ⋆cglc for the glucose level cglc is obtained that, in parallel with
the minimal model, can be conveniently used to separate different metabolic phenotypes.

In physiological conditions for the blood ( ≃c 5o2 mmol and ≃c 30co2 mmol), one has
≃⋆c 1.8glc mmol. Below threshold, one finds partial lactate intake, whereas above threshold

partial lactate outtake (fermentation) is observed. In this realistic model, the fraction of oxidized
glucose is given by

=
+

O
u

u u3
. (35)co2

co2 lac

For the average value of glucose and lactate in blood ( ≃c 5glc mmol and ≃c 1lac mmol), (35)
predicts a small lactate outtake, the phenotype being almost completely oxidative (the fraction
of glucose oxidized is ≃O 0.92). In figure 3 (top panel) we display the critical curve ⋆cglc in the
plane c c c c( , )glc co2 glc o2 .

To make contact with empirical results, we have considered the experiments discussed in
[26–28], where data are given for glucose and lactate levels for the blood plasma (BP) and for
the extra cellular fluid (ECF) in brain tissues, both in human and in rat. By plotting these data on
the c c c c( , )glc co2 glc o2 plane, we can in principle assess whether the metabolisms of brain cells
in such environments is fermentative or oxidative and what is their preferred energy source.
However, lacking data for carbon dioxide and oxygen levels, in order to carry out a detailed
comparison we have employed the physiological values ≃c 5o2 mmol and ≃c 30co2 mmol.
Strikingly, experimental points distribute so that H-minimization predicts a lactate intake for
cells in the ECF and a lactate secretion for cells in the BP, in agreement with the conclusions
drawn in [26]. Since figure 3(a) does not describe the dependence on lactate levels, it cannot
provide the relative value of lactate uptake, with respect to glucose intake or carbon dioxide
outtake. This information can however be retrieved by studying how experimental points
distribute in the ⋆ ⋆c c c c( , )glc glc lac glc plane with respect to the contour plot of the quantity L (the
normalized number of carbon atoms exchanged as lactate), which can be defined in analogy to
(22) as

⎧
⎨
⎪⎪

⎩
⎪⎪

=
+

<

−
+

>

⋆

⋆
L

u

u u
c c

u

u u
c c

2
if 1

3

3
if 1.

(36)

lac

glc lac
glc glc

lac

co2 lac
glc glc

The resulting phenotypic map is shown in figure 3(b), where the emerging scenario is that of a
partial fermentation in the BP and partial lactate intake in the ECF. Values for the experimental
data measured for both ECF and BP are reported in table 2.

4. Discussion

Metabolic flux analysis for cell-autonomous systems and for populations [29] is a rich,
fruitful and expanding field of research, displaying multiple connections between theory and
experiments. For the greatest part, modeling schemes rely on the possibility to identify
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objective functions by which the complexity of the space of possible solutions can be
reduced, focusing on optimal flux patterns exclusively. In this way, given a set of uptake
fluxes describing a cellʼs exchanges with the environment, the physiologically relevant states
of the cell can be mapped onto a small set of flux configurations (possibly reduced to a single
point), which can be studied in detail by different computational techniques. Sampling

Figure 3. Phenotypic map for the realistic model for ATP production. Experimental
measurements of glucose and lactate concentrations in extra cellular fluids (ECF,
circles) and blood plasma (BP, crosses) are superimposed; we set =c 30co2 mmol and

=c 5o2 mmol. (a) Critical line =c cglc glc
* (dashed line) in the plane c c c c( , )glc co2 glc o2 .

Below the line the phenotype is oxidative with partial intake of lactate, above the line
the phenotype is partially fermentative with lactate outtake. (b) Fraction of lactate
uptake, with respect to glucose ( <L 0, green), or with respect to carbon dioxide ( >L 0,
red) in the plane c c c c( , )glc glc

* lac glc
* . L is defined in (36) and represents the fraction of

carbon atoms exchanged as lactate.

Table 2. Inferred values of lactate uptake from experimental glucose and lactate levels
in brain, for humans [27] and rats [28]. The first column reports the source of the
experimental data. The second and third columns report the measured levels of glucose
and lactate, respectively. Finally, the last two columns show our estimate for the
direction and of lactate and for the absolute value of L| |, respectively. L is defined in
(36) and represents the fraction of carbon atoms exchanged as lactate.

Area cglc (mmol) clac (mmol) Lac in/out lac %

Human cortex BP 5.64 0.96 OUT 7.5
Human cortex ECF 1.57 5.1 IN 6
Rats hippocampus BP 7.84 1.05 OUT 9
Rats hippocampus ECF 1.66 2.7 IN 3
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methods allow in principle to explore the solution space beyond optimality, to characterize,
e.g., sub-optimal states, correlations, etc, and improving such techniques is one of the current
frontiers of the field. At the other end of the modeling spectrum, one may be interested in
characterizing how physics constrains the solution space by means of variational principles
that characterize steady states in terms of the minima of specific functionals that are
physically- (rather than biologically) motivated. The thermodynamics of reaction networks, a
subject that goes back to at least [30] and it has recently gained attention from a stochastic
perspective [31, 32] suggests that steady states should be characterized in terms of their
entropy production. Since such principles should hold for cellular systems as well [16, 33–
35], it is interesting to study what type of information can be obtained about a cellʼs
metabolism from applying such ideas.

In this work, we have studied the problem of inferring the metabolic phenotype from the
level of metabolites in the extracellular space (i.e. from the exometabolome) using a
thermodynamic variational principle for the steady states of a chemical reaction network. The
variational principle, which holds for slowly varying chemical potentials, amounts to the
minimization of the rate of decay of entropy production. From a conceptual viewpoint, it merely
allows us to select intracellular flux states that are compatible with the observed extracellular
concentrations. From a technical viewpoint, it requires the minimization of a semi-positive
definite quadratic function of the fluxes in the space of feasible steady states, and can be carried
out in polynomial time.

We have applied it to the catabolic core of a detailed genome-scale reconstruction of the
human metabolic reactome with the goal of characterizing the conditions under which cells
switch from a fermentative to an oxidative phenotype as a function of the external levels of key
environmental indicators like glucose, lactate, oxygen and carbon dioxide. Our results indicate
that cells transition from one phenotype to the other in a continuous, modulated way, and that
mixed phenotypes are possible. This is in line with empirical knowledge [36, 37] and at odds
with the scenario predicted by another widely used variational principle (that of minimal
entropy production), which predicts sharp transitions [16] rather than smooth cross-overs. The
scenario we obtain is also recovered in an exactly solvable toy model that only retains the main
features of the key energy producing pathways. Quite remarkably given the crudeness of the
variational principle we employ, upon inferring from experimental values of glucose and lactate
levels in the brain we find very moderate levels of lactate exchange, in specific a small intake in
the ECFs and a small outtake in the plasma. Experimental evidence compares well with the
predicted “phase structure”, suggesting that indeed fundamental physical considerations might
suffice to explain at least part of the evidence on cellular energy production strategies. One of
the limitations of the approach discussed here is that, in principle, knowledge of intracellular
substrate levels (besides extracellular concentrations) is required to solve the full-fledged
variational problem. In this work, we have circumvented this difficulty by assuming that a
mass-balanced flux pattern for the intracellular state. This assumption is justified for the type of
systems we consider, but cannot be expected to hold generically. It would be interesting to see
how strongly solutions for large- or genome-scale networks depend on the particular internal
metabolite pools. In turn, characterizing robustness to fluctuations in metabolite levels may
highlight the presence of bottlenecks in the reaction network. On a more abstract level, it would
also be important to generalize these considerations to a dynamical setting, e.g., characterizing
trajectories (as opposed to steady states) in terms of physical or thermodynamical variational
principles.
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