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Abstract—This paper presents a preliminary implementation

of a general modeling framework for vector-valued functions

based on a multi-output kernel Ridge regression (KRR). The

proposed approach is based on a generalized definition of the

reproducing kernel Hilbert space (RKHS) to the case of vector-

valued functions, thus bridging the gap between multi-output

Neural Network (NN) structures and standard scalar kernel-

based approaches. The above concept is then used within the

KRR to train a multi-output surrogate model able to predict

the frequency responses of a high-speed link affected by four

parameters with a large variability. The performance of the

proposed approach, in terms of parametric and stochastic

analysis, is compared with the one provided by two state-of-

the-art techniques, such as the combination of the principal

components analysis (PCA) and the least-squares support vector

machine (LS-SVM) regression and a multi-output feed-forward

NN structure.

Index Terms—Kernel, reproducing kernel Hilbert space, Ker-

nel Ridge Regression, high-speed link, parametric modeling,

stochastic analysis

I. INTRODUCTION

In the last decades, Machine Learning (ML) kernel-based
regressions, such as support vector machine (SVM) regres-
sion [1], [2], least-squares support vector machine (LS-SVM)
regression [2], [3], and kernel Ridge Regression (KRR) and
its variants [4], have been successful adopted to construct
accurate and fast to evaluate parametric models of the re-
sponses of complex electromagnetic (EM) structures. The
resulting model, usually referred as “surrogate model”, can
be suitably adopted within uncertainty quantification and opti-
mization task, thus proving an efficient alternative to the plain
space exploration approaches based on a set of parametric
simulations via the expensive full-computation model [5].
Indeed, thanks to the beneficial properties of the kernel, such
kernel-based regressions allow to construct non-parametric
surrogate models, in which the overall complexity in terms
of regression unknowns, turns out to be independent form
the number of input parameters considered by the model [6].
Moreover, unlike neural network (NN) structures [7], [8],
all the aforementioned techniques can be described in terms
of a linear model typically estimated from the solution of
a convex optimization problem [9], thus leading to several
advantages during the model training in terms of training
time and convergence with respect to the number of training
samples [3].

Despite the above advantages, the main limitation of stan-
dard kernel-based regression compared to NN implemen-
tations is related to their limited capability to deal with
multi-output regression. Unfortunately, such kind of problem
are quite common in the modeling of EM structures and
components. As an example, we can consider the problem of
constructing a surrogate model able to predict the frequency
spectra or time waveforms of an EM structure as a function
of its internal parameter [7]. In this scenario, unlike multi-
output NN structures, the plain application of standard kernel-
based regressions turns out to be quite cumbersome, since
it would require to build a single-output model for each
of the considered frequency/time points, without accounting
for possible correlation among them. A possible alternative
relies on a two-step procedure in which an unsupervised
compression technique, such as the principal component
analysis (PCA) [10], is applied on the output dataset to
extract a possible inherent correlation existing among several
realizations of output data samples at different frequency/time
points [3], [11]. Such information is then used to get a
compressed representation of the multi-output response, in
which the number of actual single-output models required
to represent the data can be heavily reduced. It is important
to remark that the accuracy of the above modeling scheme
is heavily influenced by the capability of the dimensional
reduction technique to describe the output training samples
and to generalize well on the test data, as well as on the
capability of the scalar regression to accurately follow the
behavior of the compressed components. Indeed, differently
from a pure multiple-output implementation, the effect of a
possible small inaccuracy on the compress representation on
the vector-valued output is not directly accounted for during
the model training.

In order to bridge the gap between the multi-output NN im-
plementation and kernel-based approaches, this work presents
a KRR for vector-valued functions, based on the results
presented in [12], [13]. The proposed technique is based
on the extension of the definition of the reproducing kernel
Hilbert space (RKHS) to the case of vector-valued learning
problem [13]. The performance of the proposed methodol-
ogy is investigated on a multi-output problem consisting of
predicting the magnitude of the frequency response of a high-
speed interconnect as a function of 4 uniform distributed
parameters with a “large” variability [3]. The obtained results



are then compared with the ones provided by state-of-the-art
techniques such as the combination of the PCA and the LS-
SVM and a plain feed-forward multi-output NN structure.

II. KERNEL RIDGE REGRESSION FOR VECTOR-VALUED
FUNCTIONS

This section briefly presents the mathematical background
behind the proposed KRR for vector-valued functions. Let us
start defining the training set S = {(xl,yl)}Ll=1, in which
x 2 X ✓ RP is a vector collecting the configurations of the
input parameters (e.g., geometrical and electrical parameters
of an EM structure) and yi = [yi(f1), . . . , yi(fD)]T 2 RD

is a vector collecting the corresponding training output (e.g.,
the frequency samples of a frequency response) for a set of
values of the independent variable fd. The above training
set can be rewritten in its compact form as S = (X,Y)
where X = [x1, . . . ,xl]T is a L ⇥ P matrix collecting the
configurations of the training input and Y = [y1, . . . ,yl]

T

is a L ⇥ D matrix associated to the training output. Given
the information available in the training set S, our goal is to
construct a regression function able to provide an accurate
prediction of the output y(x) for any configuration of the
parameters x 2 X . For the proposed vector-valued KRR,
such regression function writes:

y(x) ⇡
LX

l=1

K(x,xl)cl, (1)

where K : X ⇥ X ! RD⇥D is the multi-output kernels
function, such as for any pair x and x0, K(x,x0) is a semi-
definite D⇥D matrix and cl 2 RD are vectors collecting the
regression coefficients [12].

Differently from single-output kernel regressions, the above
multi-output kernel function jointly acts on both the input
space (i.e., on x) and on the output dimensions {1, . . . , D}.
Without loss of generality, this work focuses on a specific type
of multi-output kernel called separable kernels, such that by
fixing both the input pairs x and x0, and the output pairs
d and d

0 (i.e., the output pair associated to the frequency
components fd and f

0
d), is defined by the following scalar

quantity [12], [13]:

(K(x,x0))d,d0 = kx(x,x
0)ko(d, d

0), (2)

where kx and ko are scalar kernel acting independently on
the input space (i.e., kx : X⇥X ! R) and output dimensions
(i.e., ko : {1, . . . , D} ⇥ {1, . . . , D} ! R). In the following
results, a RBF kernel is used for both the above scalar kernels,
such as:

kx/o(✓,✓
0) = exp

✓
�k✓ � ✓0k

�x/o

◆2

, (3)

where the pair (✓,✓0) can be any combination of input or out-
put pairs, �x and �o are the hyperparameters corresponding to
each of the scalar kernel, respectively. In our implementation
such parameters are tuned via Bayesian optimization [14]
based on a validation set [15].

Extending (2), the kernel matrix associated to all the input
training pairs X and output dimensions writes:

K(X,X) = B⌦Kx(X,X), (4)

where B 2 RD⇥D, such as (B)d,d0 = ko(d, d0)
and Kx(X,X) 2 RL⇥L such that (Kx(X,X))i,j =
kx(xi,xj). The overall kernel matrix turns out to be a
(DL)⇥ (DL) matrix.

According to [12], the coefficients cl in (1) can be com-
puted via the solution of the following linear system:

(K(X,X) + �NI)| {z }
A

c̄� ȳ = 0, (5)

where c̄ = vec(C) 2 RLD is a vector collecting all the
regression coefficients cl with C = [c1, . . . , cL]T 2 RL⇥D,
ȳ = vec(Y), � is a Tikhonov regularizer [15] and X 2 RL⇥P

as defined before. Indeed, similar to the scalar case, the
regression coefficients c̄ can be calculated by solving a linear
system of equation, such as:

c̄ = A�1ȳ. (6)

Unfortunately, a plain inversion of the matrix A can be
extremely expansive in terms of both computational time
and memory resource, since the computational complexity
of matrix inversion scales as O(n3), where n is the matrix
size. This makes the direct inversion algorithm extremely in-
efficient or intractable in a standard laptop, when the product
between the number of training samples (i.e, L) and the output
dimensionality D, defining the size of the matrix A, becomes
in the order of thousand. To overcome the above limitation,
in the proposed algorithm the the linear problem in (5) is
solved via an iterative procedure based on the gradient descent
algorithm [9], [16]:

c̄k = c̄k�1 � ↵[Ac̄k�1 � ȳ], (7)

where c̄k represents the unknown regression coefficients
estimated at the step k-th and ↵ is a scalar number, known as
the learning rate, defining the step-size at each iteration. In
particular, the proposed modeling framework implements the
conjugate gradient method [16], which provides an efficient
version of the above algorithm taylored for semi-definite
matrices, as the matrix A. The obtained coefficients can be
used within (1), in order to predict the vector-valued output
y for any value of the parameters x.

It is important to remark that the mathematical framework
presented so far describes a preliminary implementation of
vector-valued KRR, which has not been optimized in terms
of training time and computational complexity. Future work
will investigate the beneficial effect of applying compression
techniques on the matrix A. This will allow to heavily reduce
the matrix size and the number of coefficients to be estimated
during the model training [9].



Fig. 1. Comparison of the scatter plots computed from the frequency responses predicted by 3 surrogate model based on the proposed vector-valued KRR
and PCA+LS-SVM regression by considering all the frequencies point and the test samples for an increasing number of training samples (i.e., L = 50, 100
and 150).

Fig. 2. Network for the application example, reproduced from [3].

III. NUMERICAL RESULTS

The performance of the proposed preliminary implemen-
tation of the vector-valued KRR presented in Sec. II, are
investigated on the prediction of the parametric behavior of
the frequency response y(x; f) = |Vout(f ;x)|/E(f)| of the
high-speed link in Fig. 2. The frequency response values are
considered in a frequency bandwidth from 1MHz to 2GHz,
as a function of four normalized parameters collected in
the vector x = [x1, x2, x3, x4]T , defining the values of the
lumped components C1(x1), C2(x2), L1(x3), and L2(x4)
with a uniform variability of ±50% around their mean value
(i.e., C̄1 = 1 pF, C̄2 = 0.5 pF, L̄1 = 10 nH and L̄2 = 10 nH).

A MATLAB implementation of the above link has been
used to generate three different realizations of the training
set with L = 50, 100 and 150 samples, a validation set with
20 samples and a test set with 1000 samples based on a latin
hypercube sampling (LHS) for 100 frequency points (i.e., the
output space dimension is D = 100). The modeling approach
presented in Sec. II has been used to train three different
surrogate models by using the available training sets.

Table I compares the performance of the proposed model-
ing framework, for an increasing number of training samples
L, by considering the mean squared error (MSE) computed on
the test samples and for all the 100 frequency points. For the
sake of completeness, the obtained results are also compared

TABLE I
COMPARISON OF THE MSE VALUES COMPUTED FROM THE FREQUENCY

RESPONSES PREDICTED BY THE SURROGATE MODELS BASED ON THE
PROPOSED VECTOR-VALUED KRR, PCA+LS-SVM REGRESSION AND A

SIMPLE FEED-FORWARD NN STRUCTURE ON ALL THE FREQUENCIES
POINTS AND THE TEST SAMPLES FOR AN INCREASING NUMBER OF

TRAINING SAMPLES (I.E., L = 50, 100 AND 150).

Method MSE MSE MSE
L = 50 L = 100 L = 150

NN 8.01⇥ 10-4 8.43⇥ 10-4 7.12⇥ 10-4

PCA+LS-SVM 2.73⇥ 10-5 2.22⇥ 10-5 2.13⇥ 10-5

Proposed KRR 1.45⇥ 10-5 3.56⇥ 10-6 2.02⇥ 10-6
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Fig. 3. Parametric plots comparing the frequency responses predicted by the
proposed method and the PCA+LS-SVM surrogate models for 3 different
realizations of the input parameters.

with the ones obtained by two alternative surrogate models
based on a two-step scheme combining the PCA and the LS-
SVM regression, and a plain feed-forward multi-output NN
(additional details are provided in [3]). The results clearly
highlight the improved accuracy of the proposed techniques
compared with the NN. Moreover, the accuracy provided by
the proposed technique seems to outperform also the one
obtained by one of the most accurate state-of-the-art kernel-
based regression, such as the LS-SVM regression, for which
the MSE turns out to be almost constant w.r.t. the number



Fig. 4. Comparison of the PDFs computed at the frequency f = 1.8GHz
from the predictions of 3 surrogate models based on the proposed vector-
valued KRR, PCA+LS-SVM regression and a simple feed-forward NN
structure on all the frequencies point and the test samples for L = 150
training samples.

of training samples. Such behavior is motivated by the lack
of accuracy of the predictions obtained by such technique in
the high-frequency range, as shown in the parametric plots
of Fig. 3. On the other hand, the improved accuracy of
the proposed approach is motivated by the fact that, thanks
to the multi-output kernel, the obtained model is able to
directly account for the coupling among the components of
the multidimensional output, without the need of a two-
step procedure based on a direct data compression. As a
further proof, Figure 1 shows the scatter plots obtained by
considering all the frequency points for the 1000 test samples.
It is important to notice that the training cost of the PCA+LS-
SVM surrogate is 170⇥ faster than the one of the proposed
method.

Moreover, Fig. 4 investigates the effectiveness of the pro-
posed modeling approach within the uncertainty quantifica-
tion scenario, by comparing the probability density function
(PDF) of the output at a single frequency f = 1.8GHz
predicted by the considered surrogate models built with
L = 150 and the corresponding results obtained by a Monte
Carlo (MC) simulation with 1000 samples. Also in this case
the results clearly highlight the remarkable accuracy of the
proposed approach.

IV. CONCLUSIONS & FUTURE WORKS

This paper presented a preliminary implementation of a
complete modeling framework based on a vector-value KRR.
The proposed approach relies on a generalized definition of
the RKHS for vector-valued functions. In the above scenario,
the learning problem reduces to the inversion of a large linear
system. Such computational heavy task has been performed
via an iterative algorithm based on the conjugate gradient
method. The feasibility and the performance of the proposed
approach has been investigated via a parametric and a stochas-
tic analysis on the prediction of the frequency responses of
a high-speed link affected by four parameters with a large

variability and compared with the ones provided by two state-
of-the-art techniques, namely the combination of the PCA
with the LS-SVM regression and a plain feed-forward multi-
output NN.

It was found that the proposed preliminary version of the
multi-output KRR provides the most accurate method among
the considered ones, but it also exhibits a large training
cost, sine it requires the tuning of a massive number of
regression coefficients. Such limitation will be further address
in future publications through an advanced and more efficient
implementation based on a compressed regression matrix.
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